speice.io/blog/2024-11-15-playing-with-fire/2-transforms/index.mdx

146 lines
4.6 KiB
Plaintext
Raw Normal View History

2024-11-18 22:01:31 -05:00
---
slug: 2024/11/playing-with-fire-transforms
title: "Playing with fire: Transforms and variations"
date: 2024-11-15 13:00:00
authors: [bspeice]
tags: []
---
Now that we have a basic chaos game in place, it's time to spice things up. Transforms and variations create the
interesting patterns that fractal flames are known for.
<!-- truncate -->
This blog post uses a set of reference parameters ([available here](../params.flame)) to demonstrate a practical
implementation of the fractal flame algorithm. If you're interested in tweaking the parameters, or generating
your own art, [Apophysis](https://sourceforge.net/projects/apophysis/) is a good introductory tool.
2024-11-29 19:25:29 -05:00
TODO: Include the reference image here
2024-11-18 22:01:31 -05:00
## Transforms and variations
import CodeBlock from '@theme/CodeBlock'
We previously introduced "transforms" as the "functions" of an "iterated function system." Their general format is:
$$
F_i(x,y) = (a_i \cdot x + b_i \cdot y + c_i, \hspace{0.2cm} d_i \cdot x + e_i \cdot y + f_i)
$$
2024-11-19 21:42:03 -05:00
import coefsSrc from '!!raw-loader!../src/coefs'
<CodeBlock language={'typescript'}>{coefsSrc}</CodeBlock>
2024-11-18 22:01:31 -05:00
We also introduced the Sierpinski Gasket functions ($F_0$, $F_1$, and $F_2$), demonstrating how they are related to
the general format. For example:
$$
\begin{align*}
F_0(x,y) &= \left({x \over 2}, {y \over 2}\right) \\
&= (a_0 \cdot x + b_0 \cdot y + c_o, d_0 \cdot x + e_0 \cdot y + f_0) \\
& a_0 = 0.5 \hspace{0.2cm} b_0 = 0 \hspace{0.2cm} c_0 = 0 \\
& d_0 = 0 \hspace{0.2cm} e_0 = 0.5 \hspace{0.2cm} f_0 = 0
\end{align*}
$$
2024-11-19 21:42:03 -05:00
However, these transforms are pretty boring. We can build more exciting images by using additional functions
2024-11-18 22:01:31 -05:00
within the transform. These "sub-functions" are called "variations":
$$
F_i(x, y) = V_j(a_i \cdot x + b_i \cdot y + c_i, \hspace{0.2cm} d_i \cdot x + e_i \cdot y + f_i)
$$
The fractal flame paper lists 49 variation functions ($V_j$ above), but the sky's the limit here.
For example, the official `flam3` implementation supports
[98 variations](https://github.com/scottdraves/flam3/blob/7fb50c82e90e051f00efcc3123d0e06de26594b2/variations.c).
Our reference image will focus on just four variations:
### Linear (variation 0)
2024-11-19 21:42:03 -05:00
This variation returns the $x$ and $y$ coordinates as-is:
2024-11-18 22:01:31 -05:00
$$
V_0(x,y) = (x,y)
$$
2024-11-19 21:42:03 -05:00
import linearSrc from '!!raw-loader!../src/linear'
<CodeBlock language={'typescript'}>{linearSrc}</CodeBlock>
2024-11-18 22:01:31 -05:00
### Julia (variation 13)
2024-11-18 22:08:23 -05:00
This variation still uses just the $x$ and $y$ coordinates, but does crazy things with them:
2024-11-18 22:01:31 -05:00
<small>TODO: Is this related to the Julia set?</small>
$$
\begin{align*}
r &= \sqrt{x^2 + y^2} \\
\theta &= \text{arctan}(x / y) \\
\Omega &= \left\{
\begin{array}{lr}
0 \hspace{0.4cm} \text{w.p. } 0.5 \\
\pi \hspace{0.4cm} \text{w.p. } 0.5 \\
\end{array}
\right\} \\
V_{13}(x, y) &= \sqrt{r} \cdot (\text{cos} ( \theta / 2 + \Omega ), \text{sin} ( \theta / 2 + \Omega ))
\end{align*}
$$
2024-11-19 21:42:03 -05:00
import juliaSrc from '!!raw-loader!../src/julia'
2024-11-18 22:01:31 -05:00
2024-11-19 21:42:03 -05:00
<CodeBlock language={'typescript'}>{juliaSrc}</CodeBlock>
2024-11-18 22:01:31 -05:00
### Popcorn (variation 17)
2024-11-18 22:08:23 -05:00
This is known as a "dependent variation" because it depends on knowing the transform coefficients
(specifically, $c$ and $f$):
2024-11-18 22:01:31 -05:00
$$
V_{17}(x,y) = (x + c \cdot \text{sin}(\text{tan }3y), y + f \cdot \text{sin}(\text{tan }3x))
$$
2024-11-19 21:42:03 -05:00
import popcornSrc from '!!raw-loader!../src/popcorn'
<CodeBlock language={'typescript'}>{popcornSrc}</CodeBlock>
2024-11-18 22:01:31 -05:00
### PDJ (variation 24)
This is known as a "parametric" variation because it has additional parameters given to it:
$$
p_1 = \text{pdj.a} \hspace{0.2cm} p_2 = \text{pdj.b} \hspace{0.2cm} p_3 = \text{pdj.c} \hspace{0.2cm} p_4 = \text{pdj.d} \\
V_{24} = (\text{sin}(p_1 \cdot y) - \text{cos}(p_2 \cdot x), \text{sin}(p_3 \cdot x) - \text{cos}(p_4 \cdot y))
$$
2024-11-19 21:42:03 -05:00
import pdjSrc from '!!raw-loader!../src/pdj'
<CodeBlock language={'typescript'}>{pdjSrc}</CodeBlock>
## Blending
2024-11-19 21:42:03 -05:00
Now, one variation is fun, but we can also combine variations in a single transform by "blending."
2024-11-29 19:25:29 -05:00
Each variation receives the same $x$ and $y$ inputs, and we add together each variation's $x$ and $y$ outputs.
We'll also give each variation a weight ($v_j$) that scales the output, which allows us to control
how much each variation contributes to the transform:
2024-11-19 21:42:03 -05:00
$$
F_i(x,y) = \sum_{j} v_{ij} V_j(a_i \cdot x + b_i \cdot y + c_i, \hspace{0.2cm} d_i \cdot x + e_i \cdot y + f_i)
$$
The formula looks intimidating, but it's not hard to implement:
import blendSource from "!!raw-loader!./blend";
<CodeBlock language={'typescript'}>{blendSource}</CodeBlock>
2024-11-19 21:42:03 -05:00
And with that in place, we have enough to render a first full fractal flame:
2024-11-29 19:25:29 -05:00
import Canvas from "../src/Canvas";
2024-11-29 19:25:29 -05:00
import FlameBlend from "./FlameBlend";
<Canvas width={500} height={500}>
<FlameBlend/>
</Canvas>