2014-07-08 03:11:14 -04:00
# include "EmberPch.h"
# include "Renderer.h"
namespace EmberNs
{
/// <summary>
/// Constructor that sets default values and allocates iterators.
/// The thread count is set to the number of cores detected on the system.
/// </summary>
template < typename T , typename bucketT >
Renderer < T , bucketT > : : Renderer ( )
{
m_PixelAspectRatio = 1 ;
2014-09-10 01:41:26 -04:00
m_StandardIterator = unique_ptr < StandardIterator < T > > ( new StandardIterator < T > ( ) ) ;
m_XaosIterator = unique_ptr < XaosIterator < T > > ( new XaosIterator < T > ( ) ) ;
2014-07-08 03:11:14 -04:00
m_Iterator = m_StandardIterator . get ( ) ;
}
/// <summary>
/// Virtual destructor so derived class destructors get called.
/// </summary>
template < typename T , typename bucketT >
Renderer < T , bucketT > : : ~ Renderer ( )
{
}
/// <summary>
2014-10-14 11:53:15 -04:00
/// Non-virtual processing functions.
2014-07-08 03:11:14 -04:00
/// </summary>
/// <summary>
2014-10-14 11:53:15 -04:00
/// Add an ember to the end of the embers vector and reset the rendering process.
/// Reset the rendering process.
2014-07-08 03:11:14 -04:00
/// </summary>
2014-10-14 11:53:15 -04:00
/// <param name="ember">The ember to add</param>
2014-07-08 03:11:14 -04:00
template < typename T , typename bucketT >
2014-10-14 11:53:15 -04:00
void Renderer < T , bucketT > : : AddEmber ( Ember < T > & ember )
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
ChangeVal ( [ & ]
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
m_Embers . push_back ( ember ) ;
2014-09-10 01:41:26 -04:00
2014-10-14 11:53:15 -04:00
if ( m_Embers . size ( ) = = 1 )
m_Ember = m_Embers [ 0 ] ;
} , FULL_RENDER ) ;
}
/// <summary>
/// Set the m_Iterator member to point to the appropriate
/// iterator based on whether the ember currently being rendered
/// contains xaos.
/// After assigning, initialize the xform selection buffer.
/// </summary>
/// <returns>True if assignment and distribution initialization succeeded, else false.</returns>
template < typename T , typename bucketT >
bool Renderer < T , bucketT > : : AssignIterator ( )
{
//Setup iterator and distributions.
//Both iterator types were setup in the constructor (add more in the future if needed).
//So simply assign the pointer to the correct type and re-initialize its distributions
//based on the current ember.
if ( XaosPresent ( ) )
m_Iterator = m_XaosIterator . get ( ) ;
else
m_Iterator = m_StandardIterator . get ( ) ;
//Timing t;
return m_Iterator - > InitDistributions ( m_Ember ) ;
//t.Toc("Distrib creation");
}
/// <summary>
/// Virtual processing functions overriden from RendererBase.
/// </summary>
/// <summary>
/// Compute the bounds of the histogram and density filtering buffers.
/// These are affected by the final requested dimensions, spatial and density
/// filter sizes and supersampling.
/// </summary>
template < typename T , typename bucketT >
void Renderer < T , bucketT > : : ComputeBounds ( )
{
size_t maxDEFilterWidth = 0 ;
2014-10-15 11:19:59 -04:00
m_GutterWidth = ClampGte ( ( m_SpatialFilter - > FinalFilterWidth ( ) - Supersample ( ) ) / 2 , size_t ( 0 ) ) ;
2014-10-14 11:53:15 -04:00
//Check the size of the density estimation filter.
//If the radius of the density estimation filter is greater than the
//gutter width, have to pad with more. Otherwise, use the same value.
2015-05-03 20:13:14 -04:00
for ( auto & ember : m_Embers )
maxDEFilterWidth = std : : max < size_t > ( size_t ( ceil ( ember . m_MaxRadDE ) * m_Ember . m_Supersample ) , maxDEFilterWidth ) ;
2014-10-14 11:53:15 -04:00
//Need an extra ss = (int)floor(m_Supersample / 2.0) of pixels so that a local iteration count for DE can be determined.//SMOULDER
if ( maxDEFilterWidth > 0 )
2014-12-07 02:51:44 -05:00
maxDEFilterWidth + = size_t ( Floor < T > ( m_Ember . m_Supersample / T ( 2 ) ) ) ;
2014-10-14 11:53:15 -04:00
//To have a fully present set of pixels for the spatial filter, must
//add the DE filter width to the spatial filter width.//SMOULDER
m_DensityFilterOffset = maxDEFilterWidth ;
m_GutterWidth + = m_DensityFilterOffset ;
m_SuperRasW = ( Supersample ( ) * FinalRasW ( ) ) + ( 2 * m_GutterWidth ) ;
m_SuperRasH = ( Supersample ( ) * FinalRasH ( ) ) + ( 2 * m_GutterWidth ) ;
m_SuperSize = m_SuperRasW * m_SuperRasH ;
2014-07-08 03:11:14 -04:00
}
2015-03-21 18:27:37 -04:00
/// <summary>
/// Compute the scale based on the zoom, then the quality based on the computed scale.
/// This sets up the bounds of the cartesian plane that the raster bounds correspond to.
/// This must be called before ComputeCamera() which will use scale.
/// </summary>
template < typename T , typename bucketT >
void Renderer < T , bucketT > : : ComputeQuality ( )
{
m_Scale = pow ( T ( 2.0 ) , Zoom ( ) ) ;
m_ScaledQuality = Quality ( ) * m_Scale * m_Scale ;
}
/// <summary>
/// Compute the camera.
/// This sets up the bounds of the cartesian plane that the raster bounds correspond to.
/// This must be called after ComputeBounds() which sets up the raster bounds.
/// </summary>
template < typename T , typename bucketT >
void Renderer < T , bucketT > : : ComputeCamera ( )
{
m_PixelsPerUnitX = PixelsPerUnit ( ) * m_Scale ;
m_PixelsPerUnitY = m_PixelsPerUnitX ;
m_PixelsPerUnitX / = PixelAspectRatio ( ) ;
T shift = 0 ;
T t0 = T ( m_GutterWidth ) / ( Supersample ( ) * m_PixelsPerUnitX ) ;
T t1 = T ( m_GutterWidth ) / ( Supersample ( ) * m_PixelsPerUnitY ) ;
//These go from ll to ur, moving from negative to positive.
m_LowerLeftX = CenterX ( ) - FinalRasW ( ) / m_PixelsPerUnitX / T ( 2.0 ) ;
m_LowerLeftY = CenterY ( ) - FinalRasH ( ) / m_PixelsPerUnitY / T ( 2.0 ) ;
m_UpperRightX = m_LowerLeftX + FinalRasW ( ) / m_PixelsPerUnitX ;
m_UpperRightY = m_LowerLeftY + FinalRasH ( ) / m_PixelsPerUnitY ;
T carLlX = m_LowerLeftX - t0 ;
T carLlY = m_LowerLeftY - t1 + shift ;
T carUrX = m_UpperRightX + t0 ;
T carUrY = m_UpperRightY + t1 + shift ;
m_RotMat . MakeID ( ) ;
m_RotMat . Rotate ( - Rotate ( ) ) ;
m_CarToRas . Init ( carLlX , carLlY , carUrX , carUrY , m_SuperRasW , m_SuperRasH , PixelAspectRatio ( ) ) ;
}
2014-07-08 03:11:14 -04:00
/// <summary>
/// Set the current ember.
/// This will also populate the vector of embers with a single element copy
/// of the ember passed in.
/// Temporal samples will be set to 1 since there's only a single ember.
/// </summary>
/// <param name="ember">The ember to assign</param>
/// <param name="action">The requested process action. Note that it's critical the user supply the proper value here.
/// For example: Changing dimensions without setting action to FULL_RENDER will crash the program.
/// However, changing only the brightness and setting action to ACCUM_ONLY is perfectly fine.
/// </param>
template < typename T , typename bucketT >
void Renderer < T , bucketT > : : SetEmber ( Ember < T > & ember , eProcessAction action )
{
ChangeVal ( [ & ]
2014-09-10 01:41:26 -04:00
{
2014-07-08 03:11:14 -04:00
m_Embers . clear ( ) ;
m_Embers . push_back ( ember ) ;
m_Embers [ 0 ] . m_TemporalSamples = 1 ; //Set temporal samples here to 1 because using the real value only makes sense when using a vector of Embers for animation.
m_Ember = m_Embers [ 0 ] ;
} , action ) ;
}
/// <summary>
/// Set the vector of embers and set the m_Ember member to a copy of the first element.
/// Reset the rendering process.
/// </summary>
/// <param name="embers">The vector of embers</param>
template < typename T , typename bucketT >
void Renderer < T , bucketT > : : SetEmber ( vector < Ember < T > > & embers )
{
ChangeVal ( [ & ]
{
m_Embers = embers ;
if ( ! m_Embers . empty ( ) )
m_Ember = m_Embers [ 0 ] ;
} , FULL_RENDER ) ;
}
/// <summary>
2014-10-14 11:53:15 -04:00
/// Create the density filter if the current filter parameters differ
/// from the last density filter created.
/// The filter will be deleted if the max DE radius is 0, in which case regular
/// log scale filtering will be used.
2014-07-08 03:11:14 -04:00
/// </summary>
2014-10-14 11:53:15 -04:00
/// <param name="newAlloc">True if a new filter instance was created, else false.</param>
/// <returns>True if the filter is not nullptr (whether a new one was created or not) or if max rad is 0, else false.</returns>
2014-07-08 03:11:14 -04:00
template < typename T , typename bucketT >
2014-10-14 11:53:15 -04:00
bool Renderer < T , bucketT > : : CreateDEFilter ( bool & newAlloc )
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
//If they wanted DE, create it if needed, else clear the last DE filter which means we'll do regular log filtering after iters are done.
newAlloc = false ;
if ( m_Ember . m_MaxRadDE > 0 )
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
//Use intelligent testing so it isn't created every time a new ember is passed in.
if ( ( ! m_DensityFilter . get ( ) ) | |
( m_Ember . m_MinRadDE ! = m_DensityFilter - > MinRad ( ) ) | |
( m_Ember . m_MaxRadDE ! = m_DensityFilter - > MaxRad ( ) ) | |
( m_Ember . m_CurveDE ! = m_DensityFilter - > Curve ( ) ) | |
( m_Ember . m_Supersample ! = m_DensityFilter - > Supersample ( ) ) )
{
2015-08-10 23:10:23 -04:00
m_DensityFilter = unique_ptr < DensityFilter < bucketT > > ( new DensityFilter < bucketT > ( bucketT ( m_Ember . m_MinRadDE ) , bucketT ( m_Ember . m_MaxRadDE ) , bucketT ( m_Ember . m_CurveDE ) , m_Ember . m_Supersample ) ) ;
2014-10-14 11:53:15 -04:00
newAlloc = true ;
}
2014-07-08 03:11:14 -04:00
2014-10-14 11:53:15 -04:00
if ( newAlloc )
{
if ( ! m_DensityFilter . get ( ) ) { return false ; } //Did object creation succeed?
if ( ! m_DensityFilter - > Create ( ) ) { return false ; } //Object creation succeeded, did filter creation succeed?
//cout << m_DensityFilter->ToString() << endl;
}
else
if ( ! m_DensityFilter - > Valid ( ) ) { return false ; } //Previously created, are values ok?
}
else
{
m_DensityFilter . reset ( ) ; //They want to do log filtering. Return true because even though the filter is being deleted, nothing went wrong.
}
return true ;
}
/// <summary>
/// Create the spatial filter if the current filter parameters differ
/// from the last spatial filter created.
/// </summary>
/// <param name="newAlloc">True if a new filter instance was created, else false.</param>
/// <returns>True if the filter is not nullptr (whether a new one was created or not), else false.</returns>
template < typename T , typename bucketT >
bool Renderer < T , bucketT > : : CreateSpatialFilter ( bool & newAlloc )
{
newAlloc = false ;
//Use intelligent testing so it isn't created every time a new ember is passed in.
if ( ( ! m_SpatialFilter . get ( ) ) | |
( m_Ember . m_SpatialFilterType ! = m_SpatialFilter - > FilterType ( ) ) | |
( m_Ember . m_SpatialFilterRadius ! = m_SpatialFilter - > FilterRadius ( ) ) | |
( m_Ember . m_Supersample ! = m_SpatialFilter - > Supersample ( ) ) | |
( m_PixelAspectRatio ! = m_SpatialFilter - > PixelAspectRatio ( ) ) )
{
2015-08-10 23:10:23 -04:00
m_SpatialFilter = unique_ptr < SpatialFilter < bucketT > > (
SpatialFilterCreator < bucketT > : : Create ( m_Ember . m_SpatialFilterType , bucketT ( m_Ember . m_SpatialFilterRadius ) , m_Ember . m_Supersample , bucketT ( m_PixelAspectRatio ) ) ) ;
2014-10-17 02:05:08 -04:00
m_Ember . m_SpatialFilterRadius = m_SpatialFilter - > FilterRadius ( ) ; //It may have been changed internally if it was too small, so ensure they're synced.
2014-10-14 11:53:15 -04:00
newAlloc = true ;
}
return m_SpatialFilter . get ( ) ! = nullptr ;
2014-07-08 03:11:14 -04:00
}
/// <summary>
/// Create the temporal filter if the current filter parameters differ
/// from the last temporal filter created.
/// </summary>
/// <param name="newAlloc">True if a new filter instance was created, else false.</param>
2014-09-10 01:41:26 -04:00
/// <returns>True if the filter is not nullptr (whether a new one was created or not), else false.</returns>
2014-07-08 03:11:14 -04:00
template < typename T , typename bucketT >
bool Renderer < T , bucketT > : : CreateTemporalFilter ( bool & newAlloc )
{
newAlloc = false ;
//Use intelligent testing so it isn't created every time a new ember is passed in.
2014-08-03 19:16:10 -04:00
if ( ( ! m_TemporalFilter . get ( ) ) | |
( m_Ember . m_TemporalSamples ! = m_TemporalFilter - > TemporalSamples ( ) ) | |
2014-07-08 03:11:14 -04:00
( m_Ember . m_TemporalFilterType ! = m_TemporalFilter - > FilterType ( ) ) | |
2014-08-03 19:16:10 -04:00
( m_Ember . m_TemporalFilterWidth ! = m_TemporalFilter - > FilterWidth ( ) ) | |
( m_Ember . m_TemporalFilterExp ! = m_TemporalFilter - > FilterExp ( ) ) )
2014-07-08 03:11:14 -04:00
{
2014-09-10 01:41:26 -04:00
m_TemporalFilter = unique_ptr < TemporalFilter < T > > (
2014-11-03 02:16:34 -05:00
TemporalFilterCreator < T > : : Create ( m_Ember . m_TemporalFilterType , m_Ember . m_TemporalSamples , m_Ember . m_TemporalFilterWidth , m_Ember . m_TemporalFilterExp ) ) ;
2014-07-08 03:11:14 -04:00
newAlloc = true ;
}
2014-09-10 01:41:26 -04:00
return m_TemporalFilter . get ( ) ! = nullptr ;
2014-07-08 03:11:14 -04:00
}
/// <summary>
/// The main render loop. This is the core of the algorithm.
/// The processing steps are: Iterating, density filtering, final accumulation.
/// Various functions in it are virtual so they will resolve
/// to whatever overrides are provided in derived classes. This
/// future-proofs the algorithm for GPU-based renderers.
/// If the caller calls Abort() at any time, or the progress function returns 0,
/// the entire rendering process will exit as soon as it can.
2014-11-03 02:16:34 -05:00
/// The concept of passes from flam3 has been removed as it was never used.
2014-07-08 03:11:14 -04:00
/// The loop structure is:
/// {
2014-11-03 02:16:34 -05:00
/// Temporal Samples (Default 1 for single image)
2014-07-08 03:11:14 -04:00
/// {
2014-11-03 02:16:34 -05:00
/// Iterate (Either to completion or to a specified number of iterations)
2014-07-08 03:11:14 -04:00
/// {
/// }
/// }
///
/// Density filtering (Basic log, or full density estimation)
/// Final accumulation (Color correction and spatial filtering)
/// }
/// This loop structure has admittedly been severely butchered from what
/// flam3 did. The reason is that it was made to support interactive rendering
/// that can exit the process and pick up where it left off in response to the
/// user changing values in a fractal flame GUI editor.
/// To achieve this, each step in the rendering process is given an enumeration state
/// as well as a goto label. This allows the renderer to pick up in the state it left
/// off in if no changes prohibiting that have been made.
/// It also allows for the bare minimum amount of processing needed to complete the requested
/// action. For example, if the process has completed and the user only adjusts the brightness
/// of the last rendered ember then there is no need to perform the entire iteration process
/// over again. Rather, only final accumulation is needed.
/// </summary>
/// <param name="finalImage">Storage for the final image. It will be allocated if needed.</param>
/// <param name="time">The time if animating, else ignored.</param>
/// <param name="subBatchCountOverride">Run a specified number of sub batches. Default: 0, meaning run to completion.</param>
/// <param name="forceOutput">True to force rendering a complete image even if iterating is not complete, else don't. Default: false.</param>
/// <param name="finalOffset">Offset in finalImage to store the pixels to. Default: 0.</param>
/// <returns>True if nothing went wrong, else false.</returns>
template < typename T , typename bucketT >
2014-12-06 00:05:09 -05:00
eRenderStatus Renderer < T , bucketT > : : Run ( vector < byte > & finalImage , double time , size_t subBatchCountOverride , bool forceOutput , size_t finalOffset )
2014-07-08 03:11:14 -04:00
{
m_InRender = true ;
EnterRender ( ) ;
m_Abort = false ;
2014-11-03 02:16:34 -05:00
bool filterAndAccumOnly = m_ProcessAction = = FILTER_AND_ACCUM ;
2014-07-08 03:11:14 -04:00
bool accumOnly = m_ProcessAction = = ACCUM_ONLY ;
bool resume = m_ProcessState ! = NONE ;
bool newFilterAlloc ;
2015-03-21 18:27:37 -04:00
size_t i , temporalSample = 0 ;
2014-09-01 00:25:15 -04:00
T deTime ;
2014-07-08 03:11:14 -04:00
eRenderStatus success = RENDER_OK ;
2014-09-01 00:25:15 -04:00
//double iterationTime = 0;
//double accumulationTime = 0;
2014-07-08 03:11:14 -04:00
//Timing it;
//Reset timers and progress percent if: Beginning anew or only filtering and/or accumulating.
if ( ! resume | | accumOnly | | filterAndAccumOnly )
{
if ( ! resume ) //Only set this if it's the first run through.
m_ProcessState = ITER_STARTED ;
m_RenderTimer . Tic ( ) ;
m_ProgressTimer . Tic ( ) ;
}
if ( ! resume ) //Beginning, reset everything.
{
m_LastTemporalSample = 0 ;
m_LastIter = 0 ;
m_LastIterPercent = 0 ;
2014-08-06 00:50:52 -04:00
m_Stats . Clear ( ) ;
2014-07-08 03:11:14 -04:00
m_Gamma = 0 ;
m_Vibrancy = 0 ; //Accumulate these after each temporal sample.
m_VibGamCount = 0 ;
2015-03-21 18:27:37 -04:00
m_CurvesSet = false ;
2014-07-08 03:11:14 -04:00
m_Background . Clear ( ) ;
}
//User requested an increase in quality after finishing.
2014-11-03 02:16:34 -05:00
else if ( m_ProcessState = = ITER_STARTED & & m_ProcessAction = = KEEP_ITERATING & & TemporalSamples ( ) = = 1 )
2014-07-08 03:11:14 -04:00
{
m_LastTemporalSample = 0 ;
m_LastIter = m_Stats . m_Iters ;
m_LastIterPercent = 0 ; //Might skip a progress update, but shouldn't matter.
m_Gamma = 0 ;
m_Vibrancy = 0 ;
m_VibGamCount = 0 ;
m_Background . Clear ( ) ;
2015-03-21 18:27:37 -04:00
ComputeQuality ( ) ; //Must recompute quality when doing a quality increase.
2014-07-08 03:11:14 -04:00
}
//Make sure values are within valid range.
2014-10-15 11:19:59 -04:00
ClampGteRef ( m_Ember . m_Supersample , size_t ( 1 ) ) ;
2014-07-08 03:11:14 -04:00
//Make sure to get most recent update since loop won't be entered to call Interp().
//Vib, gam and background are normally summed for each temporal sample. However if iteration is skipped, make sure to get the latest.
if ( ( filterAndAccumOnly | | accumOnly ) & & TemporalSamples ( ) = = 1 ) //Disallow jumping when temporal samples > 1.
{
m_Ember = m_Embers [ 0 ] ;
2015-08-10 23:10:23 -04:00
m_Vibrancy = Vibrancy ( ) ;
m_Gamma = Gamma ( ) ;
2014-07-08 03:11:14 -04:00
m_Background = m_Ember . m_Background ;
2014-09-10 01:41:26 -04:00
2014-07-08 03:11:14 -04:00
if ( filterAndAccumOnly )
goto FilterAndAccum ;
2014-09-10 01:41:26 -04:00
2014-07-08 03:11:14 -04:00
if ( accumOnly )
goto AccumOnly ;
}
//it.Tic();
//Interpolate.
if ( m_Embers . size ( ) > 1 )
Interpolater < T > : : Interpolate ( m_Embers , T ( time ) , 0 , m_Ember ) ;
//it.Toc("Interp 1");
//Save only for palette insertion.
if ( m_InsertPalette & & BytesPerChannel ( ) = = 1 )
m_TempEmber = m_Ember ;
//Field would go here, however Ember omits it. Would need temps for width and height if ever implemented.
CreateSpatialFilter ( newFilterAlloc ) ;
CreateTemporalFilter ( newFilterAlloc ) ;
ComputeBounds ( ) ;
2014-09-10 01:41:26 -04:00
if ( m_SpatialFilter . get ( ) = = nullptr | | m_TemporalFilter . get ( ) = = nullptr )
2014-07-08 03:11:14 -04:00
{
m_ErrorReport . push_back ( " Spatial and temporal filter allocations failed, aborting. \n " ) ;
success = RENDER_ERROR ;
goto Finish ;
}
if ( ! resume & & ! Alloc ( ) )
{
m_ErrorReport . push_back ( " Histogram, accumulator and samples buffer allocations failed, aborting. \n " ) ;
success = RENDER_ERROR ;
goto Finish ;
}
if ( ! resume )
ResetBuckets ( true , false ) ; //Only reset hist here and do accum when needed later on.
2014-11-03 02:16:34 -05:00
deTime = T ( time ) + m_TemporalFilter - > Deltas ( ) [ 0 ] ;
//Interpolate and get an ember for DE purposes.
//Additional interpolation will be done in the temporal samples loop.
//it.Tic();
if ( m_Embers . size ( ) > 1 )
Interpolater < T > : : Interpolate ( m_Embers , deTime , 0 , m_Ember ) ;
//it.Toc("Interp 2");
2015-03-21 18:27:37 -04:00
ClampGteRef < T > ( m_Ember . m_MinRadDE , 0 ) ;
ClampGteRef < T > ( m_Ember . m_MaxRadDE , 0 ) ;
ClampGteRef < T > ( m_Ember . m_MaxRadDE , m_Ember . m_MinRadDE ) ;
2014-11-03 02:16:34 -05:00
if ( ! CreateDEFilter ( newFilterAlloc ) )
2014-07-08 03:11:14 -04:00
{
2014-11-03 02:16:34 -05:00
m_ErrorReport . push_back ( " Density filter creation failed, aborting. \n " ) ;
success = RENDER_ERROR ;
goto Finish ;
}
//Temporal samples, loop 1.
temporalSample = resume ? m_LastTemporalSample : 0 ;
for ( ; ( temporalSample < TemporalSamples ( ) ) & & ! m_Abort ; )
{
T colorScalar = m_TemporalFilter - > Filter ( ) [ temporalSample ] ;
T temporalTime = T ( time ) + m_TemporalFilter - > Deltas ( ) [ temporalSample ] ;
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
//Interpolate again.
2014-07-08 03:11:14 -04:00
//it.Tic();
2015-03-21 18:27:37 -04:00
if ( TemporalSamples ( ) > 1 & & m_Embers . size ( ) > 1 )
2014-11-03 02:16:34 -05:00
Interpolater < T > : : Interpolate ( m_Embers , temporalTime , 0 , m_Ember ) ; //This will perform all necessary precalcs via the ember/xform/variation assignment operators.
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
//it.Toc("Interp 3");
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
if ( ! resume & & ! AssignIterator ( ) )
2014-07-08 03:11:14 -04:00
{
2014-11-03 02:16:34 -05:00
m_ErrorReport . push_back ( " Iterator assignment failed, aborting. \n " ) ;
2014-07-08 03:11:14 -04:00
success = RENDER_ERROR ;
goto Finish ;
}
2015-03-21 18:27:37 -04:00
//Don't need to do this every time through for a single image.
if ( TemporalSamples ( ) > 1 | | ! resume )
{
ComputeQuality ( ) ;
ComputeCamera ( ) ;
MakeDmap ( colorScalar ) ; //For each temporal sample, the palette m_Dmap needs to be re-created with color scalar. 1 if no temporal samples.
}
2014-10-27 17:21:06 -04:00
2014-11-03 02:16:34 -05:00
//The actual number of times to iterate. Each thread will get (totalIters / ThreadCount) iters to do.
2015-03-21 18:27:37 -04:00
//This is based on zoom and scale calculated in ComputeQuality().
2014-11-03 02:16:34 -05:00
//Note that the iter count is based on the final image dimensions, and not the super sampled dimensions.
size_t itersPerTemporalSample = ItersPerTemporalSample ( ) ; //The total number of iterations for this temporal sample without overrides.
size_t sampleItersToDo ; //The number of iterations to actually do in this sample, considering overrides.
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
if ( subBatchCountOverride > 0 )
sampleItersToDo = subBatchCountOverride * SubBatchSize ( ) * ThreadCount ( ) ; //Run a specific number of sub batches.
else
sampleItersToDo = itersPerTemporalSample ; //Run as many iters as specified to complete this temporal sample.
2014-09-01 00:25:15 -04:00
2015-03-21 18:27:37 -04:00
sampleItersToDo = std : : min < size_t > ( sampleItersToDo , itersPerTemporalSample - m_LastIter ) ;
2014-11-03 02:16:34 -05:00
EmberStats stats = Iterate ( sampleItersToDo , temporalSample ) ; //The heavy work is done here.
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
//If no iters were executed, something went catastrophically wrong.
if ( stats . m_Iters = = 0 )
{
m_ErrorReport . push_back ( " Zero iterations ran, rendering failed, aborting. \n " ) ;
success = RENDER_ERROR ;
Abort ( ) ;
goto Finish ;
}
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
if ( m_Abort )
{
success = RENDER_ABORT ;
goto Finish ;
}
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
//Accumulate stats whether this batch ran to completion or exited prematurely.
m_LastIter + = stats . m_Iters ; //Sum of iter count of all threads, reset each temporal sample.
m_Stats . m_Iters + = stats . m_Iters ; //Sum of iter count of all threads, cumulative from beginning to end.
m_Stats . m_Badvals + = stats . m_Badvals ;
m_Stats . m_IterMs + = stats . m_IterMs ;
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
//After each temporal sample, accumulate these.
//Allow for incremental rendering by only taking action if the iter loop for this temporal sample is completely done.
if ( m_LastIter > = itersPerTemporalSample )
{
2015-08-10 23:10:23 -04:00
m_Vibrancy + = Vibrancy ( ) ;
m_Gamma + = Gamma ( ) ;
m_Background . r + = bucketT ( m_Ember . m_Background . r ) ;
m_Background . g + = bucketT ( m_Ember . m_Background . g ) ;
m_Background . b + = bucketT ( m_Ember . m_Background . b ) ;
2014-11-03 02:16:34 -05:00
m_VibGamCount + + ;
m_LastIter = 0 ;
temporalSample + + ;
}
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
m_LastTemporalSample = temporalSample ;
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
if ( subBatchCountOverride > 0 ) //Don't keep going through this loop if only doing an incremental render.
break ;
} //Temporal samples.
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
//If we've completed all temporal samples, then it was a complete render, so report progress.
if ( temporalSample > = TemporalSamples ( ) )
{
m_ProcessState = ITER_DONE ;
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
if ( m_Callback & & ! m_Callback - > ProgressFunc ( m_Ember , m_ProgressParameter , 100.0 , 0 , 0 ) )
2014-07-08 03:11:14 -04:00
{
2014-11-03 02:16:34 -05:00
Abort ( ) ;
success = RENDER_ABORT ;
goto Finish ;
2014-07-08 03:11:14 -04:00
}
2014-11-03 02:16:34 -05:00
}
2014-07-08 03:11:14 -04:00
FilterAndAccum :
2014-11-03 02:16:34 -05:00
if ( filterAndAccumOnly | | temporalSample > = TemporalSamples ( ) | | forceOutput )
{
//t.Toc("Iterating and accumulating");
//Compute k1 and k2.
eRenderStatus fullRun = RENDER_OK ; //Whether density filtering was run to completion without aborting prematurely or triggering an error.
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
T area = FinalRasW ( ) * FinalRasH ( ) / ( m_PixelsPerUnitX * m_PixelsPerUnitY ) ; //Need to use temps from field if ever implemented.
2015-08-10 23:10:23 -04:00
m_K1 = bucketT ( ( Brightness ( ) * 268 ) / 256 ) ;
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
//When doing an interactive render, force output early on in the render process, before all iterations are done.
//This presents a problem with the normal calculation of K2 since it relies on the quality value; it will scale the colors
//to be very dark. Correct it by pretending the number of iters done is the exact quality desired and then scale according to that.
if ( forceOutput )
{
2014-12-07 02:51:44 -05:00
T quality = ( T ( m_Stats . m_Iters ) / T ( FinalDimensions ( ) ) ) * ( m_Scale * m_Scale ) ;
2015-08-10 23:10:23 -04:00
m_K2 = bucketT ( ( Supersample ( ) * Supersample ( ) ) / ( area * quality * m_TemporalFilter - > SumFilt ( ) ) ) ;
2014-11-03 02:16:34 -05:00
}
else
2015-08-10 23:10:23 -04:00
m_K2 = bucketT ( ( Supersample ( ) * Supersample ( ) ) / ( area * m_ScaledQuality * m_TemporalFilter - > SumFilt ( ) ) ) ;
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
ResetBuckets ( false , true ) ; //Only the histogram was reset above, now reset the density filtering buffer.
//t.Tic();
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
//Apply appropriate filter if iterating is complete.
if ( filterAndAccumOnly | | temporalSample > = TemporalSamples ( ) )
{
fullRun = m_DensityFilter . get ( ) ? GaussianDensityFilter ( ) : LogScaleDensityFilter ( ) ;
}
else
{
//Apply requested filter for a forced output during interactive rendering.
if ( m_DensityFilter . get ( ) & & m_InteractiveFilter = = FILTER_DE )
fullRun = GaussianDensityFilter ( ) ;
else if ( ! m_DensityFilter . get ( ) | | m_InteractiveFilter = = FILTER_LOG )
fullRun = LogScaleDensityFilter ( ) ;
2014-10-14 11:53:15 -04:00
}
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
//Only update state if iterating and filtering finished completely (didn't arrive here via forceOutput).
if ( fullRun = = RENDER_OK & & m_ProcessState = = ITER_DONE )
m_ProcessState = FILTER_DONE ;
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
//Take special action if filtering exited prematurely.
if ( fullRun ! = RENDER_OK )
{
ResetBuckets ( false , true ) ; //Reset the accumulator, come back and try again on the next call.
success = fullRun ;
goto Finish ;
}
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
if ( m_Abort )
{
success = RENDER_ABORT ;
goto Finish ;
}
//t.Toc("Density estimation filtering time: ", true);
}
2014-07-08 03:11:14 -04:00
2014-10-14 11:53:15 -04:00
AccumOnly :
if ( m_ProcessState = = FILTER_DONE | | forceOutput )
2014-07-08 03:11:14 -04:00
{
2015-06-28 20:48:26 -04:00
//Original only allowed stages 0 and 1. Add 2 to mean final accum.
//Do not update state/progress on forced output because it will be immediately overwritten.
if ( m_Callback & & ! forceOutput & & ! m_Callback - > ProgressFunc ( m_Ember , m_ProgressParameter , 0 , 2 , 0 ) )
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
Abort ( ) ;
success = RENDER_ABORT ;
goto Finish ;
2014-07-08 03:11:14 -04:00
}
2014-10-14 11:53:15 -04:00
//Make sure a filter has been created.
CreateSpatialFilter ( newFilterAlloc ) ;
2014-07-08 03:11:14 -04:00
2015-03-21 18:27:37 -04:00
m_CurvesSet = m_Ember . m_Curves . CurvesSet ( ) ;
//Color curves must be re-calculated as well.
if ( m_CurvesSet )
for ( i = 0 ; i < COLORMAP_LENGTH ; i + + )
m_Csa [ i ] = m_Ember . m_Curves . BezierFunc ( i / T ( COLORMAP_LENGTH_MINUS_1 ) ) * T ( COLORMAP_LENGTH_MINUS_1 ) ;
2014-10-14 11:53:15 -04:00
if ( AccumulatorToFinalImage ( finalImage , finalOffset ) = = RENDER_OK )
{
m_Stats . m_RenderMs = m_RenderTimer . Toc ( ) ; //Record total time from the very beginning to the very end, including all intermediate calls.
2014-07-08 03:11:14 -04:00
2014-10-14 11:53:15 -04:00
//Even though the ember changes throughought the inner loops because of interpolation, it's probably ok to assign here.
//This will hold the last interpolated value (even though spatial and temporal filters were created based off of one of the first interpolated values).
m_LastEmber = m_Ember ;
2014-07-08 03:11:14 -04:00
2014-10-14 11:53:15 -04:00
if ( m_ProcessState = = FILTER_DONE ) //Only update state if gotten here legitimately, and not via forceOutput.
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
m_ProcessState = ACCUM_DONE ;
if ( m_Callback & & ! m_Callback - > ProgressFunc ( m_Ember , m_ProgressParameter , 100.0 , 2 , 0 ) ) //Finished.
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
Abort ( ) ;
success = RENDER_ABORT ;
goto Finish ;
2014-07-08 03:11:14 -04:00
}
}
}
2014-10-14 11:53:15 -04:00
else
{
success = RENDER_ERROR ;
}
}
Finish :
if ( success = = RENDER_OK & & m_Abort ) //If everything ran ok, but they've aborted, record abort as the status.
success = RENDER_ABORT ;
else if ( success ! = RENDER_OK ) //Regardless of abort status, if there was an error, leave that as the return status.
Abort ( ) ;
LeaveRender ( ) ;
m_InRender = false ;
return success ;
2014-07-08 03:11:14 -04:00
}
/// <summary>
2014-10-14 11:53:15 -04:00
/// Return EmberImageComments object with image comments filled out.
/// Run() should have completed before calling this.
2014-07-08 03:11:14 -04:00
/// </summary>
2014-10-14 11:53:15 -04:00
/// <param name="printEditDepth">The depth of the edit tags</param>
/// <param name="intPalette">If true use integers instead of floating point numbers when embedding a non-hex formatted palette, else use floating point numbers.</param>
/// <param name="hexPalette">If true, embed a hexadecimal palette instead of Xml Color tags, else use Xml color tags.</param>
/// <returns>The EmberImageComments object with image comments filled out</returns>
2014-07-08 03:11:14 -04:00
template < typename T , typename bucketT >
2014-10-14 11:53:15 -04:00
EmberImageComments Renderer < T , bucketT > : : ImageComments ( EmberStats & stats , size_t printEditDepth , bool intPalette , bool hexPalette )
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
ostringstream ss ;
EmberImageComments comments ;
ss . imbue ( std : : locale ( " " ) ) ;
comments . m_Genome = m_EmberToXml . ToString ( m_Ember , " " , printEditDepth , false , intPalette , hexPalette ) ;
2014-12-07 02:51:44 -05:00
ss < < ( double ( stats . m_Badvals ) / double ( stats . m_Iters ) ) ; //Percentage of bad values to iters.
2014-10-14 11:53:15 -04:00
comments . m_Badvals = ss . str ( ) ; ss . str ( " " ) ;
ss < < stats . m_Iters ;
comments . m_NumIters = ss . str ( ) ; ss . str ( " " ) ; //Total iters.
ss < < ( stats . m_RenderMs / 1000.0 ) ;
comments . m_Runtime = ss . str ( ) ; //Number of seconds for iterating, accumulating and filtering.
return comments ;
2014-07-08 03:11:14 -04:00
}
/// <summary>
2014-10-14 11:53:15 -04:00
/// New virtual functions to be overridden in derived renderers that use the GPU, but not accessed outside.
2014-07-08 03:11:14 -04:00
/// </summary>
/// <summary>
/// Make the final palette used for iteration.
/// </summary>
/// <param name="colorScalar">The color scalar to multiply the ember's palette by</param>
template < typename T , typename bucketT >
void Renderer < T , bucketT > : : MakeDmap ( T colorScalar )
{
2014-09-01 00:25:15 -04:00
m_Ember . m_Palette . template MakeDmap < bucketT > ( m_Dmap , colorScalar ) ;
2014-07-08 03:11:14 -04:00
}
/// <summary>
/// Allocate various buffers if the image dimensions, thread count, or sub batch size
/// has changed.
/// </summary>
/// <returns>True if success, else false</returns>
template < typename T , typename bucketT >
bool Renderer < T , bucketT > : : Alloc ( )
{
bool b = true ;
bool lock =
( m_SuperSize ! = m_HistBuckets . size ( ) ) | |
( m_SuperSize ! = m_AccumulatorBuckets . size ( ) ) | |
( m_ThreadsToUse ! = m_Samples . size ( ) ) | |
2014-11-28 04:37:51 -05:00
( m_Samples [ 0 ] . size ( ) ! = SubBatchSize ( ) ) ;
2014-07-08 03:11:14 -04:00
if ( lock )
EnterResize ( ) ;
if ( m_SuperSize ! = m_HistBuckets . size ( ) )
{
m_HistBuckets . resize ( m_SuperSize ) ;
if ( m_ReclaimOnResize )
m_HistBuckets . shrink_to_fit ( ) ;
b & = ( m_HistBuckets . size ( ) = = m_SuperSize ) ;
}
if ( m_SuperSize ! = m_AccumulatorBuckets . size ( ) )
{
m_AccumulatorBuckets . resize ( m_SuperSize ) ;
if ( m_ReclaimOnResize )
m_AccumulatorBuckets . shrink_to_fit ( ) ;
b & = ( m_AccumulatorBuckets . size ( ) = = m_SuperSize ) ;
}
if ( m_ThreadsToUse ! = m_Samples . size ( ) )
{
m_Samples . resize ( m_ThreadsToUse ) ;
if ( m_ReclaimOnResize )
m_Samples . shrink_to_fit ( ) ;
b & = ( m_Samples . size ( ) = = m_ThreadsToUse ) ;
}
2015-05-03 20:13:14 -04:00
for ( auto & sample : m_Samples )
2014-07-08 03:11:14 -04:00
{
2015-05-03 20:13:14 -04:00
if ( sample . size ( ) ! = SubBatchSize ( ) )
2014-07-08 03:11:14 -04:00
{
2015-05-03 20:13:14 -04:00
sample . resize ( SubBatchSize ( ) ) ;
2014-07-08 03:11:14 -04:00
if ( m_ReclaimOnResize )
2015-05-03 20:13:14 -04:00
sample . shrink_to_fit ( ) ;
2014-07-08 03:11:14 -04:00
2015-05-03 20:13:14 -04:00
b & = ( sample . size ( ) = = SubBatchSize ( ) ) ;
2014-07-08 03:11:14 -04:00
}
}
if ( lock )
LeaveResize ( ) ;
return b ;
}
/// <summary>
/// Clear histogram and/or density filtering buffers to all zeroes.
/// </summary>
/// <param name="resetHist">Clear histogram if true, else don't.</param>
/// <param name="resetAccum">Clear density filtering buffer if true, else don't.</param>
/// <returns>True if anything was cleared, else false.</returns>
template < typename T , typename bucketT >
bool Renderer < T , bucketT > : : ResetBuckets ( bool resetHist , bool resetAccum )
{
//parallel_invoke(
//[&]
//{
2014-10-14 11:53:15 -04:00
if ( resetHist & & ! m_HistBuckets . empty ( ) )
Memset ( m_HistBuckets ) ;
2014-07-08 03:11:14 -04:00
//},
//[&]
//{
2014-10-14 11:53:15 -04:00
if ( resetAccum & & ! m_AccumulatorBuckets . empty ( ) )
Memset ( m_AccumulatorBuckets ) ;
2014-07-08 03:11:14 -04:00
//});
return resetHist | | resetAccum ;
}
/// <summary>
/// Perform log scale density filtering.
/// Base case for simple log scale density estimation as discussed (mostly) in the paper
/// in section 4, p. 6-9.
/// </summary>
/// <returns>True if not prematurely aborted, else false.</returns>
template < typename T , typename bucketT >
eRenderStatus Renderer < T , bucketT > : : LogScaleDensityFilter ( )
{
2014-10-14 11:53:15 -04:00
size_t startRow = 0 ;
size_t endRow = m_SuperRasH ;
size_t startCol = 0 ;
size_t endCol = m_SuperRasW ;
2014-07-08 03:11:14 -04:00
//Timing t(4);
//Original didn't parallelize this, doing so gives a 50-75% speedup.
2014-11-03 02:16:34 -05:00
//The value can be directly assigned, which is quicker than summing.
parallel_for ( startRow , endRow , [ & ] ( size_t j )
2014-07-08 03:11:14 -04:00
{
2014-11-03 02:16:34 -05:00
size_t row = j * m_SuperRasW ;
//__m128 logm128;//Figure out SSE at some point.
//__m128 bucketm128;
//__m128 scaledBucket128;
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
for ( size_t i = startCol ; ( i < endCol ) & & ! m_Abort ; i + + )
2014-07-08 03:11:14 -04:00
{
2014-11-03 02:16:34 -05:00
size_t index = row + i ;
2014-09-10 01:41:26 -04:00
2014-11-03 02:16:34 -05:00
//Check for visibility first before doing anything else to avoid all possible unnecessary calculations.
if ( m_HistBuckets [ index ] . a ! = 0 )
2014-07-08 03:11:14 -04:00
{
2015-08-10 23:10:23 -04:00
bucketT logScale = ( m_K1 * log ( 1 + m_HistBuckets [ index ] . a * m_K2 ) ) / m_HistBuckets [ index ] . a ;
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
//Original did a temporary assignment, then *= logScale, then passed the result to bump_no_overflow().
//Combine here into one operation for a slight speedup.
2015-08-10 23:10:23 -04:00
m_AccumulatorBuckets [ index ] = m_HistBuckets [ index ] * logScale ;
2014-07-08 03:11:14 -04:00
}
2014-11-03 02:16:34 -05:00
}
} ) ;
2014-07-08 03:11:14 -04:00
//t.Toc(__FUNCTION__);
return m_Abort ? RENDER_ABORT : RENDER_OK ;
}
/// <summary>
/// Perform the more advanced Gaussian density filter.
/// More advanced density estimation filtering given less mention in the paper, but used
/// much more in practice as it gives the best results.
/// Section 8, p. 11-13.
/// </summary>
/// <returns>True if not prematurely aborted, else false.</returns>
template < typename T , typename bucketT >
eRenderStatus Renderer < T , bucketT > : : GaussianDensityFilter ( )
{
Timing totalTime , localTime ;
2014-10-14 11:53:15 -04:00
bool scf = ! ( Supersample ( ) & 1 ) ;
intmax_t ss = Floor < T > ( Supersample ( ) / T ( 2 ) ) ;
2015-08-10 23:10:23 -04:00
T scfact = pow ( Supersample ( ) / ( Supersample ( ) + T ( 1 ) ) , T ( 2 ) ) ;
2014-10-15 11:19:59 -04:00
2014-10-14 11:53:15 -04:00
size_t threads = m_ThreadsToUse ;
size_t startRow = Supersample ( ) - 1 ;
size_t endRow = m_SuperRasH - ( Supersample ( ) - 1 ) ; //Original did + which is most likely wrong.
intmax_t startCol = Supersample ( ) - 1 ;
intmax_t endCol = m_SuperRasW - ( Supersample ( ) - 1 ) ;
2014-12-07 02:51:44 -05:00
size_t chunkSize = size_t ( ceil ( double ( endRow - startRow ) / double ( threads ) ) ) ;
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
//parallel_for scales very well, dividing the work almost perfectly among all processors.
2014-10-15 11:19:59 -04:00
parallel_for ( size_t ( 0 ) , threads , [ & ] ( size_t threadIndex )
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
size_t pixelNumber = 0 ;
2015-03-21 18:27:37 -04:00
int localStartRow = int ( std : : min < size_t > ( startRow + ( threadIndex * chunkSize ) , endRow - 1 ) ) ;
int localEndRow = int ( std : : min < size_t > ( localStartRow + chunkSize , endRow ) ) ;
2014-10-14 11:53:15 -04:00
size_t pixelsThisThread = size_t ( localEndRow - localStartRow ) * m_SuperRasW ;
2014-07-08 03:11:14 -04:00
double lastPercent = 0 ;
2015-03-21 18:27:37 -04:00
tvec4 < bucketT , glm : : defaultp > logScaleBucket ;
2014-10-15 11:19:59 -04:00
2014-10-14 11:53:15 -04:00
for ( intmax_t j = localStartRow ; ( j < localEndRow ) & & ! m_Abort ; j + + )
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
size_t bucketRowStart = j * m_SuperRasW ; //Pull out of inner loop for optimization.
2015-03-21 18:27:37 -04:00
const tvec4 < bucketT , glm : : defaultp > * bucket ;
const tvec4 < bucketT , glm : : defaultp > * buckets = m_HistBuckets . data ( ) ;
2015-08-10 23:10:23 -04:00
const bucketT * filterCoefs = m_DensityFilter - > Coefs ( ) ;
const bucketT * filterWidths = m_DensityFilter - > Widths ( ) ;
2014-10-15 11:19:59 -04:00
2014-10-14 11:53:15 -04:00
for ( intmax_t i = startCol ; i < endCol ; i + + )
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
intmax_t ii , jj , arrFilterWidth ;
size_t filterSelectInt , filterCoefIndex ;
2014-07-08 03:11:14 -04:00
T filterSelect = 0 ;
bucket = buckets + bucketRowStart + i ;
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
//Don't do anything if there's no hits here. Must also put this first to avoid dividing by zero below.
if ( bucket - > a = = 0 )
continue ;
2014-10-15 11:19:59 -04:00
2015-08-10 23:10:23 -04:00
bucketT cacheLog = ( m_K1 * log ( 1 + bucket - > a * m_K2 ) ) / bucket - > a ; //Caching this calculation gives a 30% speedup.
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
if ( ss = = 0 )
{
filterSelect = bucket - > a ;
}
else
{
//The original contained a glaring flaw as it would run past the boundaries of the buffers
//when calculating the density for a box centered on the last row or column.
//Clamp here to not run over the edge.
2015-03-21 18:27:37 -04:00
intmax_t densityBoxLeftX = ( i - std : : min ( i , ss ) ) ;
intmax_t densityBoxRightX = ( i + std : : min ( ss , intmax_t ( m_SuperRasW ) - i - 1 ) ) ;
intmax_t densityBoxTopY = ( j - std : : min ( j , ss ) ) ;
intmax_t densityBoxBottomY = ( j + std : : min ( ss , intmax_t ( m_SuperRasH ) - j - 1 ) ) ;
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
//Count density in ssxss area.
//Original went one col at a time, which is cache inefficient. Go one row at at time here for a slight speedup.
for ( jj = densityBoxTopY ; jj < = densityBoxBottomY ; jj + + )
for ( ii = densityBoxLeftX ; ii < = densityBoxRightX ; ii + + )
filterSelect + = buckets [ ii + ( jj * m_SuperRasW ) ] . a ; //Original divided by 255 in every iteration. Omit here because colors are already in the range of [0..1].
}
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
//Scale if supersample > 1 for equal iters.
if ( scf )
filterSelect * = scfact ;
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
if ( filterSelect > m_DensityFilter - > MaxFilteredCounts ( ) )
filterSelectInt = m_DensityFilter - > MaxFilterIndex ( ) ;
else if ( filterSelect < = DE_THRESH )
2014-12-07 02:51:44 -05:00
filterSelectInt = size_t ( ceil ( filterSelect ) ) - 1 ;
2014-07-08 03:11:14 -04:00
else
2014-12-07 02:51:44 -05:00
filterSelectInt = DE_THRESH + size_t ( Floor < T > ( pow ( filterSelect - DE_THRESH , m_DensityFilter - > Curve ( ) ) ) ) ;
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
//If the filter selected below the min specified clamp it to the min.
if ( filterSelectInt > m_DensityFilter - > MaxFilterIndex ( ) )
filterSelectInt = m_DensityFilter - > MaxFilterIndex ( ) ;
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
//Only have to calculate the values for ~1/8 of the square.
filterCoefIndex = filterSelectInt * m_DensityFilter - > KernelSize ( ) ;
2014-12-07 02:51:44 -05:00
arrFilterWidth = intmax_t ( ceil ( filterWidths [ filterSelectInt ] ) ) - 1 ;
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
for ( jj = 0 ; jj < = arrFilterWidth ; jj + + )
{
for ( ii = 0 ; ii < = jj ; ii + + , filterCoefIndex + + )
{
//Skip if coef is 0.
if ( filterCoefs [ filterCoefIndex ] = = 0 )
continue ;
2014-10-15 11:19:59 -04:00
2015-08-10 23:10:23 -04:00
bucketT logScale = filterCoefs [ filterCoefIndex ] * cacheLog ;
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
//Original first assigned the fields, then scaled them. Combine into a single step for a 1% optimization.
2015-08-10 23:10:23 -04:00
logScaleBucket = ( * bucket * logScale ) ;
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
if ( jj = = 0 & & ii = = 0 )
{
AddToAccum ( logScaleBucket , i , ii , j , jj ) ;
}
else if ( ii = = 0 )
{
AddToAccum ( logScaleBucket , i , 0 , j , - jj ) ;
AddToAccum ( logScaleBucket , i , - jj , j , 0 ) ;
AddToAccum ( logScaleBucket , i , jj , j , 0 ) ;
AddToAccum ( logScaleBucket , i , 0 , j , jj ) ;
}
else if ( jj = = ii )
{
AddToAccum ( logScaleBucket , i , - ii , j , - jj ) ;
AddToAccum ( logScaleBucket , i , ii , j , - jj ) ;
AddToAccum ( logScaleBucket , i , - ii , j , jj ) ;
AddToAccum ( logScaleBucket , i , ii , j , jj ) ;
}
else
{
//Attempting to optimize cache access by putting these in order makes no difference, even on large images, but do it anyway.
AddToAccum ( logScaleBucket , i , - ii , j , - jj ) ;
AddToAccum ( logScaleBucket , i , ii , j , - jj ) ;
AddToAccum ( logScaleBucket , i , - jj , j , - ii ) ;
AddToAccum ( logScaleBucket , i , jj , j , - ii ) ;
AddToAccum ( logScaleBucket , i , - jj , j , ii ) ;
AddToAccum ( logScaleBucket , i , jj , j , ii ) ;
AddToAccum ( logScaleBucket , i , - ii , j , jj ) ;
AddToAccum ( logScaleBucket , i , ii , j , jj ) ;
}
}
}
}
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
if ( m_Callback & & threadIndex = = 0 )
{
pixelNumber + = m_SuperRasW ;
double percent = ( double ( pixelNumber ) / double ( pixelsThisThread ) ) * 100.0 ;
double percentDiff = percent - lastPercent ;
double toc = localTime . Toc ( ) ;
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
if ( percentDiff > = 10 | | ( toc > 1000 & & percentDiff > = 1 ) )
{
double etaMs = ( ( 100.0 - percent ) / percent ) * totalTime . Toc ( ) ;
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
if ( ! m_Callback - > ProgressFunc ( m_Ember , m_ProgressParameter , percent , 1 , etaMs ) )
Abort ( ) ;
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
lastPercent = percent ;
localTime . Tic ( ) ;
}
}
}
} ) ;
2014-10-15 11:19:59 -04:00
2014-07-08 03:11:14 -04:00
if ( m_Callback & & ! m_Abort )
m_Callback - > ProgressFunc ( m_Ember , m_ProgressParameter , 100.0 , 1 , 0 ) ;
//totalTime.Toc(__FUNCTION__);
return m_Abort ? RENDER_ABORT : RENDER_OK ;
}
/// <summary>
/// Thin wrapper around AccumulatorToFinalImage().
/// </summary>
/// <param name="pixels">The pixel vector to allocate and store the final image in</param>
/// <param name="finalOffset">Offset in the buffer to store the pixels to</param>
/// <returns>True if not prematurely aborted, else false.</returns>
template < typename T , typename bucketT >
2014-12-06 00:05:09 -05:00
eRenderStatus Renderer < T , bucketT > : : AccumulatorToFinalImage ( vector < byte > & pixels , size_t finalOffset )
2014-07-08 03:11:14 -04:00
{
if ( PrepFinalAccumVector ( pixels ) )
return AccumulatorToFinalImage ( pixels . data ( ) , finalOffset ) ;
2014-09-10 01:41:26 -04:00
2014-07-08 03:11:14 -04:00
return RENDER_ERROR ;
}
/// <summary>
/// Produce a final, visible image by clipping, gamma correcting and spatial filtering the color values
/// in the density filtering buffer and save to the passed in buffer.
/// </summary>
/// <param name="pixels">The pre-allocated pixel buffer to store the final image in</param>
/// <param name="finalOffset">Offset in the buffer to store the pixels to. Default: 0.</param>
/// <returns>True if not prematurely aborted, else false.</returns>
template < typename T , typename bucketT >
2014-12-06 00:05:09 -05:00
eRenderStatus Renderer < T , bucketT > : : AccumulatorToFinalImage ( byte * pixels , size_t finalOffset )
2014-07-08 03:11:14 -04:00
{
if ( ! pixels )
return RENDER_ERROR ;
EnterFinalAccum ( ) ;
//Timing t(4);
2014-10-14 11:53:15 -04:00
size_t filterWidth = m_SpatialFilter - > FinalFilterWidth ( ) ;
2015-08-10 23:10:23 -04:00
bucketT g , linRange , vibrancy ;
Color < bucketT > background ;
2014-07-08 03:11:14 -04:00
pixels + = finalOffset ;
PrepFinalAccumVals ( background , g , linRange , vibrancy ) ;
//If early clip, go through the entire accumulator and perform gamma correction first.
//The original does it this way as well and it's roughly 11 times faster to do it this way than inline below with each pixel.
if ( EarlyClip ( ) )
{
2014-10-15 11:19:59 -04:00
parallel_for ( size_t ( 0 ) , m_SuperRasH , [ & ] ( size_t j )
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
size_t rowStart = j * m_SuperRasW ; //Pull out of inner loop for optimization.
2014-09-10 01:41:26 -04:00
2014-10-14 11:53:15 -04:00
for ( size_t i = 0 ; i < m_SuperRasW & & ! m_Abort ; i + + )
2014-07-08 03:11:14 -04:00
{
GammaCorrection ( m_AccumulatorBuckets [ i + rowStart ] , background , g , linRange , vibrancy , true , false , & ( m_AccumulatorBuckets [ i + rowStart ] [ 0 ] ) ) ; //Write back in place.
}
} ) ;
}
if ( m_Abort )
{
LeaveFinalAccum ( ) ;
return RENDER_ABORT ;
}
//Note that abort is not checked here. The final accumulation must run to completion
//otherwise artifacts that resemble page tearing will occur in an interactive run. It's
//critical to never exit this loop prematurely.
2014-10-14 11:53:15 -04:00
//for (size_t j = 0; j < FinalRasH(); j++)//Keep around for debugging.
2014-10-15 11:19:59 -04:00
parallel_for ( size_t ( 0 ) , FinalRasH ( ) , [ & ] ( size_t j )
2014-07-08 03:11:14 -04:00
{
Color < bucketT > newBucket ;
2014-10-14 11:53:15 -04:00
size_t pixelsRowStart = ( m_YAxisUp ? ( ( FinalRasH ( ) - j ) - 1 ) : j ) * FinalRowSize ( ) ; //Pull out of inner loop for optimization.
size_t y = m_DensityFilterOffset + ( j * Supersample ( ) ) ; //Start at the beginning row of each super sample block.
2015-03-21 18:27:37 -04:00
glm : : uint16 * p16 ;
2014-07-08 03:11:14 -04:00
2014-10-14 11:53:15 -04:00
for ( size_t i = 0 ; i < FinalRasW ( ) ; i + + , pixelsRowStart + = PixelSize ( ) )
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
size_t ii , jj ;
size_t x = m_DensityFilterOffset + ( i * Supersample ( ) ) ; //Start at the beginning column of each super sample block.
2014-07-08 03:11:14 -04:00
newBucket . Clear ( ) ;
2014-09-10 01:41:26 -04:00
2014-07-08 03:11:14 -04:00
//Original was iterating column-wise, which is slow.
//Here, iterate one row at a time, giving a 10% speed increase.
for ( jj = 0 ; jj < filterWidth ; jj + + )
{
2014-10-14 11:53:15 -04:00
size_t filterKRowIndex = jj * filterWidth ;
size_t accumRowIndex = ( y + jj ) * m_SuperRasW ; //Pull out of inner loop for optimization.
2014-09-10 01:41:26 -04:00
2014-07-08 03:11:14 -04:00
for ( ii = 0 ; ii < filterWidth ; ii + + )
{
//Need to dereference the spatial filter pointer object to use the [] operator. Makes no speed difference.
2015-08-10 23:10:23 -04:00
bucketT k = ( ( * m_SpatialFilter ) [ ii + filterKRowIndex ] ) ;
2014-07-08 03:11:14 -04:00
newBucket + = ( m_AccumulatorBuckets [ ( x + ii ) + accumRowIndex ] * k ) ;
}
}
2014-09-10 01:41:26 -04:00
2014-07-08 03:11:14 -04:00
if ( BytesPerChannel ( ) = = 2 )
{
2015-03-21 18:27:37 -04:00
p16 = reinterpret_cast < glm : : uint16 * > ( pixels + pixelsRowStart ) ;
2014-07-08 03:11:14 -04:00
if ( EarlyClip ( ) )
{
2015-03-21 18:27:37 -04:00
if ( m_CurvesSet )
{
CurveAdjust ( newBucket . r , 1 ) ;
CurveAdjust ( newBucket . g , 2 ) ;
CurveAdjust ( newBucket . b , 3 ) ;
}
p16 [ 0 ] = glm : : uint16 ( Clamp < bucketT > ( newBucket . r , 0 , 255 ) * bucketT ( 256 ) ) ;
p16 [ 1 ] = glm : : uint16 ( Clamp < bucketT > ( newBucket . g , 0 , 255 ) * bucketT ( 256 ) ) ;
p16 [ 2 ] = glm : : uint16 ( Clamp < bucketT > ( newBucket . b , 0 , 255 ) * bucketT ( 256 ) ) ;
2014-09-01 00:25:15 -04:00
2014-07-08 03:11:14 -04:00
if ( NumChannels ( ) > 3 )
{
if ( Transparency ( ) )
2014-12-07 02:51:44 -05:00
p16 [ 3 ] = byte ( Clamp < bucketT > ( newBucket . a , 0 , 1 ) * bucketT ( 65535.0 ) ) ;
2014-07-08 03:11:14 -04:00
else
p16 [ 3 ] = 65535 ;
}
}
else
{
2015-03-21 18:27:37 -04:00
GammaCorrection ( * ( reinterpret_cast < tvec4 < bucketT , glm : : defaultp > * > ( & newBucket ) ) , background , g , linRange , vibrancy , NumChannels ( ) > 3 , true , p16 ) ;
2014-07-08 03:11:14 -04:00
}
}
else
{
if ( EarlyClip ( ) )
{
2015-03-21 18:27:37 -04:00
if ( m_CurvesSet )
{
CurveAdjust ( newBucket . r , 1 ) ;
CurveAdjust ( newBucket . g , 2 ) ;
CurveAdjust ( newBucket . b , 3 ) ;
}
2014-12-07 02:51:44 -05:00
pixels [ pixelsRowStart ] = byte ( Clamp < bucketT > ( newBucket . r , 0 , 255 ) ) ;
pixels [ pixelsRowStart + 1 ] = byte ( Clamp < bucketT > ( newBucket . g , 0 , 255 ) ) ;
pixels [ pixelsRowStart + 2 ] = byte ( Clamp < bucketT > ( newBucket . b , 0 , 255 ) ) ;
2014-09-01 00:25:15 -04:00
2014-07-08 03:11:14 -04:00
if ( NumChannels ( ) > 3 )
{
if ( Transparency ( ) )
2014-12-07 02:51:44 -05:00
pixels [ pixelsRowStart + 3 ] = byte ( Clamp < bucketT > ( newBucket . a , 0 , 1 ) * bucketT ( 255.0 ) ) ;
2014-07-08 03:11:14 -04:00
else
pixels [ pixelsRowStart + 3 ] = 255 ;
}
}
else
{
2015-03-21 18:27:37 -04:00
GammaCorrection ( * ( reinterpret_cast < tvec4 < bucketT , glm : : defaultp > * > ( & newBucket ) ) , background , g , linRange , vibrancy , NumChannels ( ) > 3 , true , pixels + pixelsRowStart ) ;
2014-07-08 03:11:14 -04:00
}
}
}
} ) ;
2014-09-10 01:41:26 -04:00
2014-07-08 03:11:14 -04:00
//Insert the palette into the image for debugging purposes. Only works with 8bpc.
if ( m_InsertPalette & & BytesPerChannel ( ) = = 1 )
{
2014-10-14 11:53:15 -04:00
size_t i , j , ph = 100 ;
2014-07-08 03:11:14 -04:00
if ( ph > = FinalRasH ( ) )
ph = FinalRasH ( ) ;
2014-09-10 01:41:26 -04:00
2014-07-08 03:11:14 -04:00
for ( j = 0 ; j < ph ; j + + )
{
for ( i = 0 ; i < FinalRasW ( ) ; i + + )
{
2014-12-06 00:05:09 -05:00
byte * p = pixels + ( NumChannels ( ) * ( i + j * FinalRasW ( ) ) ) ;
2014-07-08 03:11:14 -04:00
2014-12-07 02:51:44 -05:00
p [ 0 ] = byte ( m_TempEmber . m_Palette [ i * 256 / FinalRasW ( ) ] [ 0 ] * WHITE ) ; //The palette is [0..1], output image is [0..255].
p [ 1 ] = byte ( m_TempEmber . m_Palette [ i * 256 / FinalRasW ( ) ] [ 1 ] * WHITE ) ;
p [ 2 ] = byte ( m_TempEmber . m_Palette [ i * 256 / FinalRasW ( ) ] [ 2 ] * WHITE ) ;
2014-07-08 03:11:14 -04:00
}
}
}
//t.Toc(__FUNCTION__);
LeaveFinalAccum ( ) ;
return m_Abort ? RENDER_ABORT : RENDER_OK ;
}
//#define TG 1
//#define NEWSUBBATCH 1
/// <summary>
/// Run the iteration algorithm for the specified number of iterations.
/// This is only called after all other setup has been done.
/// This function will be called multiple times for an interactive rendering, and
/// once for a straight through render.
/// The iteration is reset and fused in each thread after each sub batch is done
2014-11-28 04:37:51 -05:00
/// which by default is 10,240 iterations.
2014-07-08 03:11:14 -04:00
/// </summary>
/// <param name="iterCount">The number of iterations to run</param>
2014-11-03 02:16:34 -05:00
/// <param name="temporalSample">The temporal sample this is running for</param>
2014-07-08 03:11:14 -04:00
/// <returns>Rendering statistics</returns>
template < typename T , typename bucketT >
2014-11-03 02:16:34 -05:00
EmberStats Renderer < T , bucketT > : : Iterate ( size_t iterCount , size_t temporalSample )
2014-07-08 03:11:14 -04:00
{
//Timing t2(4);
2014-08-06 00:50:52 -04:00
m_IterTimer . Tic ( ) ;
2014-12-07 02:51:44 -05:00
size_t totalItersPerThread = size_t ( ceil ( double ( iterCount ) / double ( m_ThreadsToUse ) ) ) ;
2014-07-08 03:11:14 -04:00
double percent , etaMs ;
EmberStats stats ;
2014-09-01 00:25:15 -04:00
# ifdef TG
2014-10-14 11:53:15 -04:00
size_t threadIndex ;
2014-07-08 03:11:14 -04:00
2014-10-14 11:53:15 -04:00
for ( size_t i = 0 ; i < m_ThreadsToUse ; i + + )
2014-07-08 03:11:14 -04:00
{
threadIndex = i ;
m_TaskGroup . run ( [ & , threadIndex ] ( ) {
# else
2014-10-15 11:19:59 -04:00
parallel_for ( size_t ( 0 ) , m_ThreadsToUse , [ & ] ( size_t threadIndex )
2014-07-08 03:11:14 -04:00
{
2015-05-03 20:13:14 -04:00
# endif
2015-06-22 10:03:15 -04:00
# if defined(WIN32)
2015-05-31 01:14:34 -04:00
SetThreadPriority ( GetCurrentThread ( ) , m_Priority ) ;
2015-06-22 10:03:15 -04:00
# elif defined(__APPLE__)
sched_param sp = { 0 } ;
sp . sched_priority = m_Priority ;
pthread_setschedparam ( pthread_self ( ) , SCHED_RR , & sp ) ;
2015-06-17 23:05:53 -04:00
# else
2015-06-20 14:35:08 -04:00
pthread_setschedprio ( pthread_self ( ) , ( int ) m_Priority ) ;
2014-07-08 03:11:14 -04:00
# endif
2014-11-28 04:37:51 -05:00
//Timing t;
IterParams < T > params ;
2014-07-08 03:11:14 -04:00
m_BadVals [ threadIndex ] = 0 ;
2015-03-21 18:27:37 -04:00
params . m_Count = std : : min ( totalItersPerThread , SubBatchSize ( ) ) ;
2014-11-28 04:37:51 -05:00
params . m_Skip = FuseCount ( ) ;
//params.m_OneColDiv2 = m_CarToRas.OneCol() / 2;
//params.m_OneRowDiv2 = m_CarToRas.OneRow() / 2;
2014-07-08 03:11:14 -04:00
2014-11-03 02:16:34 -05:00
//Sub batch iterations, loop 2.
2014-11-28 04:37:51 -05:00
for ( m_SubBatch [ threadIndex ] = 0 ; ( m_SubBatch [ threadIndex ] < totalItersPerThread ) & & ! m_Abort ; m_SubBatch [ threadIndex ] + = params . m_Count )
2014-07-08 03:11:14 -04:00
{
2014-11-28 04:37:51 -05:00
//Must recalculate the number of iters to run on each sub batch because the last batch will most likely have less than SubBatchSize iters.
2014-07-08 03:11:14 -04:00
//For example, if 51,000 are requested, and the sbs is 10,000, it should run 5 sub batches of 10,000 iters, and one final sub batch of 1,000 iters.
2015-03-21 18:27:37 -04:00
params . m_Count = std : : min ( params . m_Count , totalItersPerThread - m_SubBatch [ threadIndex ] ) ;
2014-07-08 03:11:14 -04:00
//Use first as random point, the rest are iterated points.
//Note that this gets reset with a new random point for each subBatchSize iterations.
//This helps correct if iteration happens to be on a bad trajectory.
2015-01-14 04:42:44 -05:00
m_Samples [ threadIndex ] [ 0 ] . m_X = m_Rand [ threadIndex ] . template Frand11 < T > ( ) ;
m_Samples [ threadIndex ] [ 0 ] . m_Y = m_Rand [ threadIndex ] . template Frand11 < T > ( ) ;
2014-07-08 03:11:14 -04:00
m_Samples [ threadIndex ] [ 0 ] . m_Z = 0 ; //m_Ember.m_CamZPos;//Apo set this to 0, then made the user use special variations to kick it. It seems easier to just set it to zpos.
2015-01-14 04:42:44 -05:00
m_Samples [ threadIndex ] [ 0 ] . m_ColorX = m_Rand [ threadIndex ] . template Frand01 < T > ( ) ;
2014-07-08 03:11:14 -04:00
//Finally, iterate.
//t.Tic();
2014-11-03 02:16:34 -05:00
//Iterating, loop 3.
2014-11-28 04:37:51 -05:00
m_BadVals [ threadIndex ] + = m_Iterator - > Iterate ( m_Ember , params , m_Samples [ threadIndex ] . data ( ) , m_Rand [ threadIndex ] ) ;
2014-07-08 03:11:14 -04:00
//iterationTime += t.Toc();
if ( m_LockAccum )
m_AccumCs . Enter ( ) ;
//t.Tic();
//Map temp buffer samples into the histogram using the palette for color.
2014-11-28 04:37:51 -05:00
Accumulate ( m_Rand [ threadIndex ] , m_Samples [ threadIndex ] . data ( ) , params . m_Count , & m_Dmap ) ;
2014-07-08 03:11:14 -04:00
//accumulationTime += t.Toc();
if ( m_LockAccum )
m_AccumCs . Leave ( ) ;
2014-09-10 01:41:26 -04:00
2014-07-08 03:11:14 -04:00
if ( m_Callback & & threadIndex = = 0 )
{
percent = 100.0 *
2014-11-03 02:16:34 -05:00
double
(
2014-07-08 03:11:14 -04:00
double
(
double
(
2014-11-03 02:16:34 -05:00
//Takes progress of current thread and multiplies by thread count.
//This assumes the threads progress at roughly the same speed.
double ( m_LastIter + ( m_SubBatch [ threadIndex ] * m_ThreadsToUse ) ) / double ( ItersPerTemporalSample ( ) )
) + temporalSample
2014-12-07 02:51:44 -05:00
) / double ( TemporalSamples ( ) )
2014-11-03 02:16:34 -05:00
) ;
2014-07-08 03:11:14 -04:00
double percentDiff = percent - m_LastIterPercent ;
double toc = m_ProgressTimer . Toc ( ) ;
if ( percentDiff > = 10 | | ( toc > 1000 & & percentDiff > = 1 ) ) //Call callback function if either 10% has passed, or one second (and 1%).
{
etaMs = ( ( 100.0 - percent ) / percent ) * m_RenderTimer . Toc ( ) ;
2014-09-10 01:41:26 -04:00
2014-07-08 03:11:14 -04:00
if ( ! m_Callback - > ProgressFunc ( m_Ember , m_ProgressParameter , percent , 0 , etaMs ) )
Abort ( ) ;
m_LastIterPercent = percent ;
m_ProgressTimer . Tic ( ) ;
}
}
}
} ) ;
# ifdef TG
}
m_TaskGroup . wait ( ) ;
# endif
stats . m_Iters = std : : accumulate ( m_SubBatch . begin ( ) , m_SubBatch . end ( ) , 0ULL ) ; //Sum of iter count of all threads.
2014-08-06 00:50:52 -04:00
stats . m_Badvals = std : : accumulate ( m_BadVals . begin ( ) , m_BadVals . end ( ) , 0ULL ) ;
stats . m_IterMs = m_IterTimer . Toc ( ) ;
2014-07-08 03:11:14 -04:00
//t2.Toc(__FUNCTION__);
return stats ;
}
/// <summary>
2014-10-14 11:53:15 -04:00
/// Non-virtual render properties, getters and setters.
2014-07-26 15:03:51 -04:00
/// </summary>
2014-07-08 03:11:14 -04:00
/// <summary>
2014-10-14 11:53:15 -04:00
/// Get the pixel aspect ratio of the output image.
2014-07-08 03:11:14 -04:00
/// Default: 1.
/// </summary>
2014-10-14 11:53:15 -04:00
/// <returns>The pixel aspect ratio.</returns>
template < typename T , typename bucketT > T Renderer < T , bucketT > : : PixelAspectRatio ( ) const { return m_PixelAspectRatio ; }
2014-07-08 03:11:14 -04:00
/// <summary>
2014-10-14 11:53:15 -04:00
/// Set the pixel aspect ratio of the output image.
/// Reset the rendering process.
2014-07-08 03:11:14 -04:00
/// </summary>
2014-10-14 11:53:15 -04:00
/// <param name="pixelAspectRatio">The pixel aspect ratio.</param>
2014-07-08 03:11:14 -04:00
template < typename T , typename bucketT >
2014-10-14 11:53:15 -04:00
void Renderer < T , bucketT > : : PixelAspectRatio ( T pixelAspectRatio )
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
ChangeVal ( [ & ] { m_PixelAspectRatio = pixelAspectRatio ; } , FULL_RENDER ) ;
2014-07-08 03:11:14 -04:00
}
/// <summary>
2014-10-14 11:53:15 -04:00
/// Non-virtual renderer properties, getters only.
2014-07-08 03:11:14 -04:00
/// </summary>
2015-03-21 18:27:37 -04:00
template < typename T , typename bucketT > T Renderer < T , bucketT > : : Scale ( ) const { return m_Scale ; }
template < typename T , typename bucketT > T Renderer < T , bucketT > : : PixelsPerUnitX ( ) const { return m_PixelsPerUnitX ; }
template < typename T , typename bucketT > T Renderer < T , bucketT > : : PixelsPerUnitY ( ) const { return m_PixelsPerUnitY ; }
2015-08-10 23:10:23 -04:00
template < typename T , typename bucketT > bucketT Renderer < T , bucketT > : : K1 ( ) const { return m_K1 ; }
template < typename T , typename bucketT > bucketT Renderer < T , bucketT > : : K2 ( ) const { return m_K2 ; }
2015-03-21 18:27:37 -04:00
template < typename T , typename bucketT > const CarToRas < T > * Renderer < T , bucketT > : : CoordMap ( ) const { return & m_CarToRas ; }
template < typename T , typename bucketT > tvec4 < bucketT , glm : : defaultp > * Renderer < T , bucketT > : : HistBuckets ( ) { return m_HistBuckets . data ( ) ; }
template < typename T , typename bucketT > tvec4 < bucketT , glm : : defaultp > * Renderer < T , bucketT > : : AccumulatorBuckets ( ) { return m_AccumulatorBuckets . data ( ) ; }
2015-08-10 23:10:23 -04:00
template < typename T , typename bucketT > SpatialFilter < bucketT > * Renderer < T , bucketT > : : GetSpatialFilter ( ) { return m_SpatialFilter . get ( ) ; }
2015-03-21 18:27:37 -04:00
template < typename T , typename bucketT > TemporalFilter < T > * Renderer < T , bucketT > : : GetTemporalFilter ( ) { return m_TemporalFilter . get ( ) ; }
2014-07-08 03:11:14 -04:00
/// <summary>
2014-10-14 11:53:15 -04:00
/// Virtual renderer properties overridden from RendererBase, getters only.
2014-07-08 03:11:14 -04:00
/// </summary>
2014-12-07 02:51:44 -05:00
template < typename T , typename bucketT > double Renderer < T , bucketT > : : ScaledQuality ( ) const { return double ( m_ScaledQuality ) ; }
template < typename T , typename bucketT > double Renderer < T , bucketT > : : LowerLeftX ( bool gutter ) const { return double ( gutter ? m_CarToRas . CarLlX ( ) : m_LowerLeftX ) ; }
template < typename T , typename bucketT > double Renderer < T , bucketT > : : LowerLeftY ( bool gutter ) const { return double ( gutter ? m_CarToRas . CarLlY ( ) : m_LowerLeftY ) ; }
template < typename T , typename bucketT > double Renderer < T , bucketT > : : UpperRightX ( bool gutter ) const { return double ( gutter ? m_CarToRas . CarUrX ( ) : m_UpperRightX ) ; }
template < typename T , typename bucketT > double Renderer < T , bucketT > : : UpperRightY ( bool gutter ) const { return double ( gutter ? m_CarToRas . CarUrY ( ) : m_UpperRightY ) ; }
2014-10-14 11:53:15 -04:00
template < typename T , typename bucketT > DensityFilterBase * Renderer < T , bucketT > : : GetDensityFilter ( ) { return m_DensityFilter . get ( ) ; }
2014-07-08 03:11:14 -04:00
/// <summary>
2014-10-14 11:53:15 -04:00
/// Non-virtual ember wrappers, getters only.
2014-07-08 03:11:14 -04:00
/// </summary>
2014-10-14 11:53:15 -04:00
template < typename T , typename bucketT > bool Renderer < T , bucketT > : : XaosPresent ( ) const { return m_Ember . XaosPresent ( ) ; }
template < typename T , typename bucketT > size_t Renderer < T , bucketT > : : Supersample ( ) const { return m_Ember . m_Supersample ; }
template < typename T , typename bucketT > size_t Renderer < T , bucketT > : : PaletteIndex ( ) const { return m_Ember . PaletteIndex ( ) ; }
template < typename T , typename bucketT > T Renderer < T , bucketT > : : Time ( ) const { return m_Ember . m_Time ; }
template < typename T , typename bucketT > T Renderer < T , bucketT > : : Quality ( ) const { return m_Ember . m_Quality ; }
template < typename T , typename bucketT > T Renderer < T , bucketT > : : SpatialFilterRadius ( ) const { return m_Ember . m_SpatialFilterRadius ; }
template < typename T , typename bucketT > T Renderer < T , bucketT > : : PixelsPerUnit ( ) const { return m_Ember . m_PixelsPerUnit ; }
template < typename T , typename bucketT > T Renderer < T , bucketT > : : Zoom ( ) const { return m_Ember . m_Zoom ; }
template < typename T , typename bucketT > T Renderer < T , bucketT > : : CenterX ( ) const { return m_Ember . m_CenterX ; }
template < typename T , typename bucketT > T Renderer < T , bucketT > : : CenterY ( ) const { return m_Ember . m_CenterY ; }
template < typename T , typename bucketT > T Renderer < T , bucketT > : : Rotate ( ) const { return m_Ember . m_Rotate ; }
2015-08-10 23:10:23 -04:00
template < typename T , typename bucketT > bucketT Renderer < T , bucketT > : : Brightness ( ) const { return bucketT ( m_Ember . m_Brightness ) ; }
template < typename T , typename bucketT > bucketT Renderer < T , bucketT > : : Gamma ( ) const { return bucketT ( m_Ember . m_Gamma ) ; }
template < typename T , typename bucketT > bucketT Renderer < T , bucketT > : : Vibrancy ( ) const { return bucketT ( m_Ember . m_Vibrancy ) ; }
template < typename T , typename bucketT > bucketT Renderer < T , bucketT > : : GammaThresh ( ) const { return bucketT ( m_Ember . m_GammaThresh ) ; }
template < typename T , typename bucketT > bucketT Renderer < T , bucketT > : : HighlightPower ( ) const { return bucketT ( m_Ember . m_HighlightPower ) ; }
2014-10-14 11:53:15 -04:00
template < typename T , typename bucketT > Color < T > Renderer < T , bucketT > : : Background ( ) const { return m_Ember . m_Background ; }
template < typename T , typename bucketT > const Xform < T > * Renderer < T , bucketT > : : Xforms ( ) const { return m_Ember . Xforms ( ) ; }
template < typename T , typename bucketT > Xform < T > * Renderer < T , bucketT > : : NonConstXforms ( ) { return m_Ember . NonConstXforms ( ) ; }
template < typename T , typename bucketT > size_t Renderer < T , bucketT > : : XformCount ( ) const { return m_Ember . XformCount ( ) ; }
template < typename T , typename bucketT > const Xform < T > * Renderer < T , bucketT > : : FinalXform ( ) const { return m_Ember . FinalXform ( ) ; }
template < typename T , typename bucketT > Xform < T > * Renderer < T , bucketT > : : NonConstFinalXform ( ) { return m_Ember . NonConstFinalXform ( ) ; }
template < typename T , typename bucketT > bool Renderer < T , bucketT > : : UseFinalXform ( ) const { return m_Ember . UseFinalXform ( ) ; }
template < typename T , typename bucketT > const Palette < T > * Renderer < T , bucketT > : : GetPalette ( ) const { return & m_Ember . m_Palette ; }
template < typename T , typename bucketT > ePaletteMode Renderer < T , bucketT > : : PaletteMode ( ) const { return m_Ember . m_PaletteMode ; }
2014-07-08 03:11:14 -04:00
/// <summary>
2014-10-14 11:53:15 -04:00
/// Virtual ember wrappers overridden from RendererBase, getters only.
2014-07-08 03:11:14 -04:00
/// </summary>
2014-10-14 11:53:15 -04:00
template < typename T , typename bucketT > size_t Renderer < T , bucketT > : : TemporalSamples ( ) const { return m_Ember . m_TemporalSamples ; }
template < typename T , typename bucketT > size_t Renderer < T , bucketT > : : FinalRasW ( ) const { return m_Ember . m_FinalRasW ; }
template < typename T , typename bucketT > size_t Renderer < T , bucketT > : : FinalRasH ( ) const { return m_Ember . m_FinalRasH ; }
2014-11-28 04:37:51 -05:00
template < typename T , typename bucketT > size_t Renderer < T , bucketT > : : SubBatchSize ( ) const { return m_Ember . m_SubBatchSize ; }
template < typename T , typename bucketT > size_t Renderer < T , bucketT > : : FuseCount ( ) const { return m_Ember . m_FuseCount ; }
2014-07-08 03:11:14 -04:00
/// <summary>
2014-10-14 11:53:15 -04:00
/// Non-virtual iterator wrappers.
2014-07-08 03:11:14 -04:00
/// </summary>
2014-12-07 02:51:44 -05:00
template < typename T , typename bucketT > const byte * Renderer < T , bucketT > : : XformDistributions ( ) const { return m_Iterator ! = nullptr ? m_Iterator - > XformDistributions ( ) : nullptr ; }
template < typename T , typename bucketT > size_t Renderer < T , bucketT > : : XformDistributionsSize ( ) const { return m_Iterator ! = nullptr ? m_Iterator - > XformDistributionsSize ( ) : 0 ; }
template < typename T , typename bucketT > Point < T > * Renderer < T , bucketT > : : Samples ( size_t threadIndex ) const { return threadIndex < m_Samples . size ( ) ? const_cast < Point < T > * > ( m_Samples [ threadIndex ] . data ( ) ) : nullptr ; }
2014-07-08 03:11:14 -04:00
/// <summary>
/// Non-virtual functions that might be needed by a derived class.
/// </summary>
/// <summary>
/// Prepare various values needed for producing a final output image.
/// </summary>
/// <param name="background">The computed background value, which may differ from the background member</param>
/// <param name="g">The computed gamma</param>
/// <param name="linRange">The computed linear range</param>
/// <param name="vibrancy">The computed vibrancy</param>
template < typename T , typename bucketT >
2015-08-10 23:10:23 -04:00
void Renderer < T , bucketT > : : PrepFinalAccumVals ( Color < bucketT > & background , bucketT & g , bucketT & linRange , bucketT & vibrancy )
2014-07-08 03:11:14 -04:00
{
//If they are doing incremental rendering, they can get here without doing a full temporal
//sample, which means the values will be zero.
2015-08-10 23:10:23 -04:00
vibrancy = m_Vibrancy = = 0 ? Vibrancy ( ) : m_Vibrancy ;
2014-10-14 11:53:15 -04:00
size_t vibGamCount = m_VibGamCount = = 0 ? 1 : m_VibGamCount ;
2015-08-10 23:10:23 -04:00
bucketT gamma = m_Gamma = = 0 ? Gamma ( ) : m_Gamma ;
g = 1 / ClampGte < bucketT > ( gamma / vibGamCount , bucketT ( 0.01 ) ) ; //Ensure a divide by zero doesn't occur.
2014-07-08 03:11:14 -04:00
linRange = GammaThresh ( ) ;
vibrancy / = vibGamCount ;
2015-08-10 23:10:23 -04:00
background . x = ( IsNearZero ( m_Background . r ) ? bucketT ( m_Ember . m_Background . r ) : m_Background . r ) / ( vibGamCount / bucketT ( 256.0 ) ) ; //Background is [0, 1].
background . y = ( IsNearZero ( m_Background . g ) ? bucketT ( m_Ember . m_Background . g ) : m_Background . g ) / ( vibGamCount / bucketT ( 256.0 ) ) ;
background . z = ( IsNearZero ( m_Background . b ) ? bucketT ( m_Ember . m_Background . b ) : m_Background . b ) / ( vibGamCount / bucketT ( 256.0 ) ) ;
2014-07-08 03:11:14 -04:00
}
/// <summary>
2014-10-14 11:53:15 -04:00
/// Miscellaneous non-virtual functions used only in this class.
2014-07-08 03:11:14 -04:00
/// </summary>
/// <summary>
/// Accumulate the samples to the histogram.
/// To be called after a sub batch is finished iterating.
/// </summary>
/// <param name="samples">The samples to accumulate</param>
/// <param name="sampleCount">The number of samples</param>
/// <param name="palette">The palette to use</param>
template < typename T , typename bucketT >
2014-11-28 04:37:51 -05:00
void Renderer < T , bucketT > : : Accumulate ( QTIsaac < ISAAC_SIZE , ISAAC_INT > & rand , Point < T > * samples , size_t sampleCount , const Palette < bucketT > * palette )
2014-07-08 03:11:14 -04:00
{
2014-10-14 11:53:15 -04:00
size_t histIndex , intColorIndex , histSize = m_HistBuckets . size ( ) ;
2014-07-08 03:11:14 -04:00
bucketT colorIndex , colorIndexFrac ;
2015-05-03 20:13:14 -04:00
auto dmap = palette - > m_Entries . data ( ) ;
2014-11-28 04:37:51 -05:00
//T oneColDiv2 = m_CarToRas.OneCol() / 2;
//T oneRowDiv2 = m_CarToRas.OneRow() / 2;
2014-07-08 03:11:14 -04:00
//It's critical to understand what's going on here as it's one of the most important parts of the algorithm.
2014-09-10 01:41:26 -04:00
//A color value gets retrieved from the palette and
2014-07-08 03:11:14 -04:00
//its RGB values are added to the existing RGB values in the histogram bucket.
//Alpha is always 1 in the palettes, so that serves as the hit count.
//This differs from the original since redundantly adding both an alpha component and a hit count is omitted.
//This will eventually leave us with large values for pixels with many hits, which will be log scaled down later.
//Original used a function called bump_no_overflow(). Just do a straight add because the type will always be float or double.
//Doing so gives a 25% speed increase.
//Splitting these conditionals into separate loops makes no speed difference.
2014-10-14 11:53:15 -04:00
for ( size_t i = 0 ; i < sampleCount & & ! m_Abort ; i + + )
2014-07-08 03:11:14 -04:00
{
2014-11-28 04:37:51 -05:00
Point < T > p ( samples [ i ] ) ; //Slightly faster to cache this.
2014-07-08 03:11:14 -04:00
if ( Rotate ( ) ! = 0 )
{
2014-11-28 04:37:51 -05:00
T p00 = p . m_X - CenterX ( ) ;
T p11 = p . m_Y - m_Ember . m_RotCenterY ;
2014-07-08 03:11:14 -04:00
2014-11-28 04:37:51 -05:00
p . m_X = ( p00 * m_RotMat . A ( ) ) + ( p11 * m_RotMat . B ( ) ) + CenterX ( ) ;
p . m_Y = ( p00 * m_RotMat . D ( ) ) + ( p11 * m_RotMat . E ( ) ) + m_Ember . m_RotCenterY ;
2014-07-08 03:11:14 -04:00
}
2014-11-28 04:37:51 -05:00
//T angle = rand.Frand01<T>() * M_2PI;
//T r = exp(T(0.5) * sqrt(-log(rand.Frand01<T>()))) - 1;
//T r = (rand.Frand01<T>() + rand.Frand01<T>() - 1);
//T r = (rand.Frand01<T>() + rand.Frand01<T>() + rand.Frand01<T>() + rand.Frand01<T>() - 2);
//p.m_X += (r * oneColDiv2) * cos(angle);
//p.m_Y += (r * oneRowDiv2) * sin(angle);
//p.m_X += r * cos(angle);
//p.m_Y += r * sin(angle);
2014-07-08 03:11:14 -04:00
//Checking this first before converting gives better performance than converting and checking a single value, which the original did.
//Second, an interesting optimization observation is that when keeping the bounds vars within m_CarToRas and calling its InBounds() member function,
//rather than here as members, about a 7% speedup is achieved. This is possibly due to the fact that data from m_CarToRas is accessed
//right after the call to Convert(), so some caching efficiencies get realized.
2014-11-28 04:37:51 -05:00
if ( m_CarToRas . InBounds ( p ) )
2014-07-08 03:11:14 -04:00
{
2014-11-28 04:37:51 -05:00
if ( p . m_VizAdjusted ! = 0 )
2014-07-08 03:11:14 -04:00
{
2014-11-28 04:37:51 -05:00
m_CarToRas . Convert ( p , histIndex ) ;
2014-09-10 01:41:26 -04:00
2014-07-08 03:11:14 -04:00
//There is a very slim chance that a point will be right on the border and will technically be in bounds, passing the InBounds() test,
//but ends up being mapped to a histogram bucket that is out of bounds due to roundoff error. Perform one final check before proceeding.
//This will result in a few points at the very edges getting discarded, but prevents a crash and doesn't seem to make a speed difference.
if ( histIndex < histSize )
{
//Linear is a linear scale for when the color index is not a whole number, which is most of the time.
//It uses a portion of the value of the index, and the remainder of the next index.
//Example: index = 25.7
//Fraction = 0.7
//Color = (dmap[25] * 0.3) + (dmap[26] * 0.7)
//Use overloaded addition and multiplication operators in vec4 to perform the accumulation.
if ( PaletteMode ( ) = = PALETTE_LINEAR )
{
2014-12-07 02:51:44 -05:00
colorIndex = bucketT ( p . m_ColorX ) * COLORMAP_LENGTH ;
intColorIndex = size_t ( colorIndex ) ;
2014-07-08 03:11:14 -04:00
if ( intColorIndex < 0 )
{
intColorIndex = 0 ;
colorIndexFrac = 0 ;
}
else if ( intColorIndex > = COLORMAP_LENGTH_MINUS_1 )
{
intColorIndex = COLORMAP_LENGTH_MINUS_1 - 1 ;
colorIndexFrac = 1 ;
}
else
{
2014-12-07 02:51:44 -05:00
colorIndexFrac = colorIndex - bucketT ( intColorIndex ) ; //Interpolate between intColorIndex and intColorIndex + 1.
2014-07-08 03:11:14 -04:00
}
2014-09-10 01:41:26 -04:00
2014-11-28 04:37:51 -05:00
if ( p . m_VizAdjusted = = 1 )
2014-07-08 03:11:14 -04:00
m_HistBuckets [ histIndex ] + = ( ( dmap [ intColorIndex ] * ( 1 - colorIndexFrac ) ) + ( dmap [ intColorIndex + 1 ] * colorIndexFrac ) ) ;
else
2014-12-07 02:51:44 -05:00
m_HistBuckets [ histIndex ] + = ( ( ( dmap [ intColorIndex ] * ( 1 - colorIndexFrac ) ) + ( dmap [ intColorIndex + 1 ] * colorIndexFrac ) ) * bucketT ( p . m_VizAdjusted ) ) ;
2014-07-08 03:11:14 -04:00
}
else if ( PaletteMode ( ) = = PALETTE_STEP )
{
2014-12-07 02:51:44 -05:00
intColorIndex = Clamp < size_t > ( size_t ( p . m_ColorX * COLORMAP_LENGTH ) , 0 , COLORMAP_LENGTH_MINUS_1 ) ;
2014-07-08 03:11:14 -04:00
2014-11-28 04:37:51 -05:00
if ( p . m_VizAdjusted = = 1 )
2014-07-08 03:11:14 -04:00
m_HistBuckets [ histIndex ] + = dmap [ intColorIndex ] ;
else
2014-12-07 02:51:44 -05:00
m_HistBuckets [ histIndex ] + = ( dmap [ intColorIndex ] * bucketT ( p . m_VizAdjusted ) ) ;
2014-07-08 03:11:14 -04:00
}
}
}
}
}
}
/// <summary>
/// Add a value to the density filtering buffer with a bounds check.
/// </summary>
/// <param name="bucket">The bucket being filtered</param>
/// <param name="i">The column of the bucket</param>
/// <param name="ii">The offset to add to the column</param>
/// <param name="j">The row of the bucket</param>
/// <param name="jj">The offset to add to the row</param>
template < typename T , typename bucketT >
2015-03-21 18:27:37 -04:00
void Renderer < T , bucketT > : : AddToAccum ( const tvec4 < bucketT , glm : : defaultp > & bucket , intmax_t i , intmax_t ii , intmax_t j , intmax_t jj )
2014-07-08 03:11:14 -04:00
{
2014-12-07 02:51:44 -05:00
if ( j + jj > = 0 & & j + jj < intmax_t ( m_SuperRasH ) & & i + ii > = 0 & & i + ii < intmax_t ( m_SuperRasW ) )
2014-07-08 03:11:14 -04:00
m_AccumulatorBuckets [ ( i + ii ) + ( ( j + jj ) * m_SuperRasW ) ] + = bucket ;
}
/// <summary>
/// Clip and gamma correct a pixel.
/// Because this code is used in both early and late clipping, a few extra arguments are passed
/// to specify what actions to take. Coupled with an additional template argument, this allows
/// using one function to perform all color clipping, gamma correction and final accumulation.
2015-08-10 23:10:23 -04:00
/// Template argument accumT is expected to match bucketT for the case of early clipping, byte for late clip for
2014-07-08 03:11:14 -04:00
/// images with one byte per channel and unsigned short for images with two bytes per channel.
/// </summary>
/// <param name="bucket">The pixel to correct</param>
/// <param name="background">The background color</param>
/// <param name="g">The gamma to use</param>
/// <param name="linRange">The linear range to use</param>
/// <param name="vibrancy">The vibrancy to use</param>
/// <param name="doAlpha">True if either early clip, or late clip with 4 channel output, else false.</param>
/// <param name="scale">True if late clip, else false.</param>
/// <param name="correctedChannels">The storage space for the corrected values to be written to</param>
template < typename T , typename bucketT >
template < typename accumT >
2015-08-10 23:10:23 -04:00
void Renderer < T , bucketT > : : GammaCorrection ( tvec4 < bucketT , glm : : defaultp > & bucket , Color < bucketT > & background , bucketT g , bucketT linRange , bucketT vibrancy , bool doAlpha , bool scale , accumT * correctedChannels )
2014-07-08 03:11:14 -04:00
{
2015-08-10 23:10:23 -04:00
bucketT alpha , ls , a , newRgb [ 3 ] ; //Would normally use a Color<bucketT>, but don't want to call a needless constructor every time this function is called, which is once per pixel.
static bucketT scaleVal = ( numeric_limits < accumT > : : max ( ) + 1 ) / bucketT ( 256.0 ) ;
2014-07-08 03:11:14 -04:00
if ( bucket . a < = 0 )
{
alpha = 0 ;
ls = 0 ;
}
else
{
2015-08-10 23:10:23 -04:00
alpha = Palette < bucketT > : : CalcAlpha ( bucket . a , g , linRange ) ;
ls = vibrancy * 255 * alpha / bucket . a ;
ClampRef < bucketT > ( alpha , 0 , 1 ) ;
2014-07-08 03:11:14 -04:00
}
2014-09-01 00:25:15 -04:00
2015-08-10 23:10:23 -04:00
Palette < bucketT > : : template CalcNewRgb < bucketT > ( & bucket [ 0 ] , ls , HighlightPower ( ) , newRgb ) ;
2014-07-08 03:11:14 -04:00
2014-10-14 11:53:15 -04:00
for ( glm : : length_t rgbi = 0 ; rgbi < 3 ; rgbi + + )
2014-07-08 03:11:14 -04:00
{
2015-08-10 23:10:23 -04:00
a = newRgb [ rgbi ] + ( ( 1 - vibrancy ) * 255 * pow ( bucket [ rgbi ] , g ) ) ;
2014-07-08 03:11:14 -04:00
if ( NumChannels ( ) < = 3 | | ! Transparency ( ) )
{
2015-08-10 23:10:23 -04:00
a + = ( 1 - alpha ) * background [ rgbi ] ;
2014-07-08 03:11:14 -04:00
}
else
{
if ( alpha > 0 )
a / = alpha ;
else
a = 0 ;
}
if ( ! scale )
2015-03-21 18:27:37 -04:00
{
2015-08-10 23:10:23 -04:00
correctedChannels [ rgbi ] = accumT ( Clamp < bucketT > ( a , 0 , 255 ) ) ; //Early clip, just assign directly.
2015-03-21 18:27:37 -04:00
}
2014-07-08 03:11:14 -04:00
else
2015-03-21 18:27:37 -04:00
{
if ( m_CurvesSet )
CurveAdjust ( a , rgbi + 1 ) ;
2015-08-10 23:10:23 -04:00
correctedChannels [ rgbi ] = accumT ( Clamp < bucketT > ( a , 0 , 255 ) * scaleVal ) ; //Final accum, multiply by 1 for 8 bpc, or 256 for 16 bpc.
2015-03-21 18:27:37 -04:00
}
2014-07-08 03:11:14 -04:00
}
if ( doAlpha )
{
if ( ! scale )
2014-12-07 02:51:44 -05:00
correctedChannels [ 3 ] = accumT ( alpha ) ; //Early clip, just assign alpha directly.
2014-07-08 03:11:14 -04:00
else if ( Transparency ( ) )
2014-12-07 02:51:44 -05:00
correctedChannels [ 3 ] = accumT ( alpha * numeric_limits < accumT > : : max ( ) ) ; //Final accum, 4 channels, using transparency. Scale alpha from 0-1 to 0-255 for 8 bpc or 0-65535 for 16 bpc.
2014-07-08 03:11:14 -04:00
else
correctedChannels [ 3 ] = numeric_limits < accumT > : : max ( ) ; //Final accum, 4 channels, but not using transparency. 255 for 8 bpc, 65535 for 16 bpc.
}
}
2014-12-05 21:30:46 -05:00
2015-03-21 18:27:37 -04:00
template < typename T , typename bucketT >
2015-08-10 23:10:23 -04:00
void Renderer < T , bucketT > : : CurveAdjust ( bucketT & a , const glm : : length_t & index )
2015-03-21 18:27:37 -04:00
{
2015-08-10 23:10:23 -04:00
size_t tempIndex = size_t ( Clamp < bucketT > ( a , 0 , COLORMAP_LENGTH_MINUS_1 ) ) ;
size_t tempIndex2 = size_t ( Clamp < bucketT > ( m_Csa [ tempIndex ] . x , 0 , COLORMAP_LENGTH_MINUS_1 ) ) ;
2015-03-21 18:27:37 -04:00
a = std : : round ( m_Csa [ tempIndex2 ] [ index ] ) ;
}
2014-12-05 21:30:46 -05:00
//This class had to be implemented in a cpp file because the compiler was breaking.
//So the explicit instantiation must be declared here rather than in Ember.cpp where
//all of the other classes are done.
template EMBER_API class Renderer < float , float > ;
# ifdef DO_DOUBLE
2015-08-10 23:10:23 -04:00
template EMBER_API class Renderer < double , float > ;
2014-12-05 21:30:46 -05:00
# endif
2014-09-10 01:41:26 -04:00
}