fractorium/Source/EmberCL/FunctionMapper.cpp
mfeemster cf9da379b6 --User changes
-Allow for pausing the renderer in the main window. This makes is more efficient when entering many parameters, such as when following a tutorial.
 -Add support for new variations: erf, gamma, jac_cn, jac_dn, jac_sn, logDB, pressure_wave, pRose3D, splits3D, w, waves2b, x, xerf, y, z.
 -Inform user of the start and stop of file parsing in EmberAnimate because the files could potentially be very large.
 -Move the follwing fields to a new table called Animation: Interpolation, Affine Interpolation, Temporal Samples, Temporal Filter Width, Temporal Filter Type.
  -These currently have no effect on the interactive renderer and instead are used when running flames through EmberGenome to generate sequences, and then animating them in Fractorium or EmberAnimate.
 -Add new parameter overrides for EmberRender and EmberAnimate which directly assign values to all flames being rendered, rather than scale:
  --quality
  --demin
  --demax

--Bug fixes
 -Left pad instead of right pad names of sequence outputs from EmberGenome.
 -Unique file naming was broken for files which already had an underscore in them.
 -Properly report that png is the default format of EmberRender and EmberAnimate output instead of erroneously claiming it was jpg.
 -Make command line programs search these folders in this order for the palette file:
  ./
  ~/.fractorium
  ~/.config/fractorium
  /usr/share/fractorium
  /usr/local/share/fractorium
 -Fix possible bad values in hexes.
 -Better assignment of Z variables.
 -Fix boarders due to use of poorly implemented rint() function from flam3. Use std::rint() now.
 -wedge_sph was completely wrong due to having accidentally swapped the mapping of two parameters.
 -Make juliascope juliascope_power parameter be of type REAL_NONZERO since it's used as a denominator.
 -Make Z assignment compatible with the originals in:
  -arch, bcircle, bCollide, bent, bent2, bisplit, blob, blur_linear, blur_square, bMod, boarders, boarders2, bSwirl, bTransform, butterfly, cardioid, cell, circleblur, circlize, circlize2, circus, collideoscope, cos, cosine, cosh, coth, cpow, cpow2, crescents, cropn, csc, csch, curl, curve, dc_gridout, deltaa, diamond, disc2, eclipse, eCollide, edisc, eJulia, elliptic, eMod, eMotion, ennepers, epispiral, ePush, eRotate, eScale, eSwirl, ex, exp, expo, exponential, fan, fdisc, fibonacci, fibonacci2, fisheye, flipcircle, flipy, flower, flux, funnel, glynnia, GlynnSim1, GlynnSim2, GlynnSim3, gridout, handkerchief, heart, hole, idisc, julia, julian2, juliaNab, kaleidoscope, lazyTravis, Lissajous, mask, MobiusN, mobius_strip, modulus, murl, murl2, npolar, ortho, oscilloscope, parabola, perspective, petal, phoenix_julia, pie (was also inconsistent between cpu and gpu), poincare, popcorn, popcorn2, power, pow_block, rational3, rays, rblur, rings, rippled, roundspher, sec, secant2, sigmoid, sin, sineblur, sinh, sinusgrid, sphericaln, spiralwing, spirograph, split, squarize, squirrel, squish, sschecks, starblur, stripes, stwin, super_shape, tan, tancos, tangent, tanh, TwinTrian, twoface, unpolar, waves, wavesn, wedge_julia, whorl, xheart, zblur, zscale.

--Code changes
 -Generalize Variation::PrecalcHelper() and rename to PrePostPrecalcHelper().
  --Do the same for the OpenCL version and rename it PrePostPrecalcOpenCLString().
 -Rename Variation::m_AssignType to m_PrePostAssignType since it's only relevant to pre/post variations.
2016-01-29 17:02:15 -08:00

384 lines
9.1 KiB
C++

#include "EmberCLPch.h"
#include "FunctionMapper.h"
namespace EmberCLns
{
std::unordered_map<string, string> FunctionMapper::m_GlobalMap;
FunctionMapper::FunctionMapper()
{
if (m_GlobalMap.empty())
{
m_GlobalMap["LRint"] =
"inline real_t LRint(real_t x)\n"
"{\n"
" intPrec temp = (x >= 0.0 ? (intPrec)(x + 0.5) : (intPrec)(x - 0.5));\n"
" return (real_t)temp;\n"
"}\n";
m_GlobalMap["Round"] =
"inline real_t Round(real_t r)\n"
"{\n"
" return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5);\n"
"}\n";
m_GlobalMap["Sign"] =
"inline real_t Sign(real_t v)\n"
"{\n"
" return (v < 0.0) ? -1 : (v > 0.0) ? 1 : 0.0;\n"
"}\n";
m_GlobalMap["SignNz"] =
"inline real_t SignNz(real_t v)\n"
"{\n"
" return (v < 0.0) ? -1.0 : 1.0;\n"
"}\n";
m_GlobalMap["Sqr"] =
"inline real_t Sqr(real_t v)\n"
"{\n"
" return v * v;\n"
"}\n";
m_GlobalMap["SafeSqrt"] =
"inline real_t SafeSqrt(real_t x)\n"
"{\n"
" if (x <= 0.0)\n"
" return 0.0;\n"
"\n"
" return sqrt(x);\n"
"}\n";
m_GlobalMap["SafeDivInv"] =
"inline real_t SafeDivInv(real_t q, real_t r)\n"
"{\n"
" if (r < EPS)\n"
" return 1 / r;\n"
"\n"
" return q / r;\n"
"}\n";
m_GlobalMap["Cube"] =
"inline real_t Cube(real_t v)\n"
"{\n"
" return v * v * v;\n"
"}\n";
m_GlobalMap["Hypot"] =
"inline real_t Hypot(real_t x, real_t y)\n"
"{\n"
" return sqrt(SQR(x) + SQR(y));\n"
"}\n";
m_GlobalMap["Spread"] =
"inline real_t Spread(real_t x, real_t y)\n"
"{\n"
" return Hypot(x, y) * ((x) > 0.0 ? 1.0 : -1.0);\n"
"}\n";
m_GlobalMap["Powq4"] =
"inline real_t Powq4(real_t x, real_t y)\n"
"{\n"
" return pow(fabs(x), y) * SignNz(x);\n"
"}\n";
m_GlobalMap["Powq4c"] =
"inline real_t Powq4c(real_t x, real_t y)\n"
"{\n"
" return y == 1.0 ? x : Powq4(x, y);\n"
"}\n";
m_GlobalMap["Zeps"] =
"inline real_t Zeps(real_t x)\n"
"{\n"
" return x == 0.0 ? EPS : x;\n"
"}\n";
m_GlobalMap["Lerp"] =
"inline real_t Lerp(real_t a, real_t b, real_t p)\n"
"{\n"
" return a + (b - a) * p;\n"
"}\n";
m_GlobalMap["Fabsmod"] =
"inline real_t Fabsmod(real_t v)\n"
"{\n"
" real_t dummy;\n"
"\n"
" return modf(v, &dummy);\n"
"}\n";
m_GlobalMap["Fosc"] =
"inline real_t Fosc(real_t p, real_t amp, real_t ph)\n"
"{\n"
" return 0.5 - cos(p * amp + ph) * 0.5;\n"
"}\n";
m_GlobalMap["Foscn"] =
"inline real_t Foscn(real_t p, real_t ph)\n"
"{\n"
" return 0.5 - cos(p + ph) * 0.5;\n"
"}\n";
m_GlobalMap["LogScale"] =
"inline real_t LogScale(real_t x)\n"
"{\n"
" return x == 0.0 ? 0.0 : log((fabs(x) + 1) * M_E) * SignNz(x) / M_E;\n"
"}\n";
m_GlobalMap["LogMap"] =
"inline real_t LogMap(real_t x)\n"
"{\n"
" return x == 0.0 ? 0.0 : (M_E + log(x * M_E)) * 0.25 * SignNz(x);\n"
"}\n";
m_GlobalMap["ClampGte"] =
"inline real_t ClampGte(real_t val, real_t gte)\n"
"{\n"
" return (val < gte) ? gte : val;\n"
"}\n";
m_GlobalMap["Swap"] =
"inline void Swap(real_t* val1, real_t* val2)\n"
"{\n"
" real_t tmp = *val1;\n"
" *val1 = *val2;\n"
" *val2 = tmp;\n"
"}\n";
m_GlobalMap["Vratio"] =
"inline real_t Vratio(real2* p, real2* q, real2* u)\n"
"{\n"
" real2 pmq = *p - *q;\n"
"\n"
" if (pmq.x == 0 && pmq.y == 0)\n"
" return 1.0;\n"
"\n"
" return 2 * (((*u).x - (*q).x) * pmq.x + ((*u).y - (*q).y) * pmq.y) / Zeps(SQR(pmq.x) + SQR(pmq.y));\n"
"}\n";
m_GlobalMap["Closest"] =
"inline int Closest(real2* p, int n, real2* u)\n"
"{\n"
" real_t d2;\n"
" real_t d2min = TMAX;\n"
" int i, j = 0;\n"
"\n"
" for (i = 0; i < n; i++)\n"
" {\n"
" d2 = Sqr(p[i].x - (*u).x) + Sqr(p[i].y - (*u).y);\n"
"\n"
" if (d2 < d2min)\n"
" {\n"
" d2min = d2;\n"
" j = i;\n"
" }\n"
" }\n"
"\n"
" return j;\n"
"}\n";
m_GlobalMap["Voronoi"] =
"inline real_t Voronoi(real2* p, int n, int q, real2* u)\n"
"{\n"
" real_t ratio;\n"
" real_t ratiomax = TLOW;\n"
" int i;\n"
"\n"
" for (i = 0; i < n; i++)\n"
" {\n"
" if (i != q)\n"
" {\n"
" ratio = Vratio(&p[i], &p[q], u);\n"
"\n"
" if (ratio > ratiomax)\n"
" ratiomax = ratio;\n"
" }\n"
" }\n"
"\n"
" return ratiomax;\n"
"}\n";
m_GlobalMap["SimplexNoise3D"] =
"inline real_t SimplexNoise3D(real3* v, __global real_t* p, __global real3* grad)\n"
"{\n"
" real3 c[4];\n"
" real_t n = 0;\n"
" int gi[4];\n"
" real_t t;\n"
" real_t skewIn = ((*v).x + (*v).y + (*v).z) * 0.333333;\n"
" int i = (int)floor((*v).x + skewIn);\n"
" int j = (int)floor((*v).y + skewIn);\n"
" int k = (int)floor((*v).z + skewIn);\n"
" t = (i + j + k) * 0.1666666;\n"
" real_t x0 = i - t;\n"
" real_t y0 = j - t;\n"
" real_t z0 = k - t;\n"
" c[0].x = (*v).x - x0;\n"
" c[0].y = (*v).y - y0;\n"
" c[0].z = (*v).z - z0;\n"
" int i1, j1, k1;\n"
" int i2, j2, k2;\n"
"\n"
" if (c[0].x >= c[0].y)\n"
" {\n"
" if (c[0].y >= c[0].z)\n"
" {\n"
" i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0;\n"
" }\n"
" else\n"
" {\n"
" if (c[0].x >= c[0].z)\n"
" {\n"
" i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1;\n"
" }\n"
" else\n"
" {\n"
" i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1;\n"
" }\n"
" }\n"
" }\n"
" else\n"
" {\n"
" if (c[0].y < c[0].z)\n"
" {\n"
" i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1;\n"
" }\n"
" else\n"
" {\n"
" if (c[0].x < c[0].z)\n"
" {\n"
" i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1;\n"
" }\n"
" else\n"
" {\n"
" i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0;\n"
" }\n"
" }\n"
" }\n"
"\n"
" c[1].x = c[0].x - i1 + 0.1666666;\n"
" c[1].y = c[0].y - j1 + 0.1666666;\n"
" c[1].z = c[0].z - k1 + 0.1666666;\n"
" c[2].x = c[0].x - i2 + 2 * 0.1666666;\n"
" c[2].y = c[0].y - j2 + 2 * 0.1666666;\n"
" c[2].z = c[0].z - k2 + 2 * 0.1666666;\n"
" c[3].x = c[0].x - 1 + 3 * 0.1666666;\n"
" c[3].y = c[0].y - 1 + 3 * 0.1666666;\n"
" c[3].z = c[0].z - 1 + 3 * 0.1666666;\n"
" int ii = i & 0x3ff;\n"
" int jj = j & 0x3ff;\n"
" int kk = k & 0x3ff;\n"
" gi[0] = (int)p[ii + (int)p[jj + (int)p[kk]]];\n"
" gi[1] = (int)p[ii + i1 + (int)p[jj + j1 + (int)p[kk + k1]]];\n"
" gi[2] = (int)p[ii + i2 + (int)p[jj + j2 + (int)p[kk + k2]]];\n"
" gi[3] = (int)p[ii + 1 + (int)p[jj + 1 + (int)p[kk + 1]]];\n"
" for (uint corner = 0; corner < 4; corner++)\n"
" {\n"
" t = 0.6 - Sqr(c[corner].x) - Sqr(c[corner].y) - Sqr(c[corner].z);\n"
"\n"
" if (t > 0)\n"
" {\n"
" real3 u = grad[gi[corner]];\n"
" t *= t;\n"
" n += t * t * (u.x * c[corner].x + u.y * c[corner].y + u.z * c[corner].z);\n"
" }\n"
" }\n"
"\n"
" return 32 * n;\n"
"}\n";
m_GlobalMap["PerlinNoise3D"] =
"inline real_t PerlinNoise3D(real3* v, __global real_t* p, __global real3* grad, real_t aScale, real_t fScale, int octaves)\n"
"{\n"
" int i;\n"
" real_t n = 0, a = 1;\n"
" real3 u = *v;\n"
"\n"
" for (i = 0; i < octaves; i++)\n"
" {\n"
" n += SimplexNoise3D(&u, p, grad) / Zeps(a);\n"
" a *= aScale;\n"
" u.x *= fScale;\n"
" u.y *= fScale;\n"
" u.x *= fScale;\n"
" }\n"
"\n"
" return n;\n"
"}\n";
m_GlobalMap["JacobiElliptic"] =
"inline void JacobiElliptic(real_t uu, real_t emmc, real_t* sn, real_t* cn, real_t* dn)\n"
"{\n"
" real_t CA = 0.0003;\n"
" real_t a, b, c, d, em[13], en[13];\n"
" int bo;\n"
" int l;\n"
" int ii;\n"
" int i;\n"
" real_t emc = emmc;\n"
" real_t u = uu;\n"
"\n"
" if (emc != 0)\n"
" {\n"
" bo = 0;\n"
"\n"
" if (emc < 0)\n"
" bo = 1;\n"
"\n"
" if (bo != 0)\n"
" {\n"
" d = 1 - emc;\n"
" emc = -emc / d;\n"
" d = sqrt(d);\n"
" u = d * u;\n"
" }\n"
"\n"
" a = 1;\n"
" *dn = 1;\n"
"\n"
" for (i = 0; i < 8; i++)\n"
" {\n"
" l = i;\n"
" em[i] = a;\n"
" emc = sqrt(emc);\n"
" en[i] = emc;\n"
" c = 0.5 * (a + emc);\n"
"\n"
" if (fabs(a - emc) <= CA * a)\n"
" break;\n"
"\n"
" emc = a * emc;\n"
" a = c;\n"
" }\n"
"\n"
" u = c * u;\n"
" *sn = sincos(u, cn);\n"
"\n"
" if (*sn != 0)\n"
" {\n"
" a = *cn / *sn;\n"
" c = a * c;\n"
"\n"
" for (ii = l; ii >= 0; --ii)\n"
" {\n"
" b = em[ii];\n"
" a = c * a;\n"
" c = *dn * c;\n"
" *dn = (en[ii] + a) / (b + a);\n"
" a = c / b;\n"
" }\n"
"\n"
" a = 1 / sqrt(c * c + 1);\n"
"\n"
" if (*sn < 0)\n"
" *sn = -a;\n"
" else\n"
" *sn = a;\n"
"\n"
" *cn = c * *sn;\n"
" }\n"
"\n"
" if (bo != 0)\n"
" {\n"
" a = *dn;\n"
" *dn = *cn;\n"
" *cn = a;\n"
" *sn = *sn / d;\n"
" }\n"
" }\n"
" else\n"
" {\n"
" *cn = 1 / cosh(u);\n"
" *dn = *cn;\n"
" *sn = tanh(u);\n"
" }\n"
"}\n";
}
}
const string* FunctionMapper::GetGlobalFunc(const string& func)
{
const auto& text = m_GlobalMap.find(func);
if (text != m_GlobalMap.end())
return &text->second;
else
return nullptr;
}
}