fractorium/Source/Fractorium/GLEmberController.cpp
Person 8086cfa731 22.21.4.2 4/19/2021
--User changes
 -Allow users to set the Exp value when using the Exp temporal filter type.
 -Set the default temporal filter type to be Box, which does not alter the palette values at all during animation. This is done to avoid confusion when using Gaussian or Exp which can produce darkened images.

--Bug fixes
 -Sending a sequence to the final render dialog when the keyframes had non zero rotate and center Y values would produce off center animations when rendered.
 -Temporal filters were being unnecessarily recreated many times when rendering or generating sequences.
 -Exp filter was always treated like a Box filter.

--Code changes
 -Add a new member function SaveCurrentAsXml(QString filename = "") to the controllers which is only used for testing.
 -Modernize some C++ code.
2021-04-19 21:07:24 -06:00

307 lines
10 KiB
C++

#include "FractoriumPch.h"
#include "GLEmberController.h"
#include "FractoriumEmberController.h"
#include "Fractorium.h"
#include "GLWidget.h"
/// <summary>
/// Constructor which assigns pointers to the main window and the GLWidget.
/// </summary>
/// <param name="fractorium">Pointer to the main window</param>
/// <param name="glWidget">Pointer to the GLWidget</param>
GLEmberControllerBase::GLEmberControllerBase(Fractorium* fractorium, GLWidget* glWidget)
{
m_Fractorium = fractorium;
m_GL = glWidget;
m_AffineType = eAffineType::AffinePre;
m_HoverType = eHoverType::HoverNone;
m_DragState = eDragState::DragNone;
m_DragModifier = 0;
}
/// <summary>
/// Empty destructor which does nothing.
/// </summary>
GLEmberControllerBase::~GLEmberControllerBase() { }
/// <summary>
/// Constructor which passes the pointers to the main window the GLWidget to the base,
/// then assigns the pointer to the parent controller.
/// </summary>
/// <param name="fractorium">Pointer to the main window</param>
/// <param name="glWidget">Pointer to the GLWidget</param>
/// <param name="controller">Pointer to the parent controller of the same template type</param>
template <typename T>
GLEmberController<T>::GLEmberController(Fractorium* fractorium, GLWidget* glWidget, FractoriumEmberController<T>* controller)
: GLEmberControllerBase(fractorium, glWidget)
{
GridStep = static_cast<T>(1.0 / 4.0); // michel, needs to insert on GUI to be flexible//TODO
m_FractoriumEmberController = controller;
m_HoverXform = nullptr;
m_SelectedXform = nullptr;
m_CenterDownX = 0;
m_CenterDownY = 0;
}
/// <summary>
/// Empty destructor which does nothing.
/// </summary>
template <typename T>
GLEmberController<T>::~GLEmberController() { }
/// <summary>
/// Check that the final output size of the current ember matches the dimensions passed in.
/// </summary>
/// <param name="w">The width to compare to</param>
/// <param name="h">The height to compare to</param>
/// <returns>True if any don't match, else false if they are both equal.</returns>
template <typename T>
bool GLEmberController<T>::CheckForSizeMismatch(int w, int h)
{
return m_FractoriumEmberController->FinalRasW() != w || m_FractoriumEmberController->FinalRasH() != h;
}
/// <summary>
/// Reset the drag and hover state. Called in response setting a new ember as the current one.
/// </summary>
template <typename T>
void GLEmberController<T>::ResetMouseState()
{
m_HoverType = eHoverType::HoverNone;
m_HoverXform = nullptr;
m_SelectedXform = nullptr;
}
/// <summary>
/// Calculate the scale.
/// Used when dragging the right mouse button.
/// </summary>
/// <returns>The distance dragged in pixels</returns>
template <typename T>
T GLEmberController<T>::CalcScale()
{
//Can't operate using world coords here because every time scale changes, the world bounds change.
//So must instead calculate distance traveled based on window coords, which do not change outside of resize events.
const auto windowCenter = ScrolledCenter(false);
const v2T windowMousePosDistanceFromCenter(m_MousePos.x - windowCenter.x, m_MousePos.y - windowCenter.y);
const v2T windowMouseDownDistanceFromCenter(m_MouseDownPos.x - windowCenter.x, m_MouseDownPos.y - windowCenter.y);
const T lengthMousePosFromCenterInPixels = glm::length(windowMousePosDistanceFromCenter);
const T lengthMouseDownFromCenterInPixels = glm::length(windowMouseDownDistanceFromCenter);
return lengthMousePosFromCenterInPixels - lengthMouseDownFromCenterInPixels;
}
/// <summary>
/// Calculate the rotation.
/// Used when dragging the right mouse button.
/// </summary>
/// <returns>The angular distance rotated from -180-180</returns>
template <typename T>
T GLEmberController<T>::CalcRotation()
{
const auto scrolledWorldCenter = ScrolledCenter(true);
const T rotStart = NormalizeDeg180<T>((std::atan2(m_MouseDownWorldPos.y - scrolledWorldCenter.y, m_MouseDownWorldPos.x - scrolledWorldCenter.x) * RAD_2_DEG_T));
const T rot = NormalizeDeg180<T>((std::atan2(m_MouseWorldPos.y - scrolledWorldCenter.y, m_MouseWorldPos.x - scrolledWorldCenter.x) * RAD_2_DEG_T));
return rotStart - rot;
}
/// <summary>
/// Return the window coordinates of the center of the viewable area.
/// This is the middle of the parent scroll area plus the scroll bar offset, all scaled by the device pixel ratio.
/// </summary>
/// <param name="toWorld">True to return world coordinates, else return window coordinates.</param>
/// <returns>The coordinates of the center of the viewable area in either window space or world space.</returns>
template <typename T>
v3T GLEmberController<T>::ScrolledCenter(bool toWorld)
{
const auto dprf = m_GL->devicePixelRatioF();
const auto wpsa = m_Fractorium->ui.GLParentScrollArea->width();
const auto hpsa = m_Fractorium->ui.GLParentScrollArea->height();
const auto hpos = m_Fractorium->ui.GLParentScrollArea->horizontalScrollBar()->value();
const auto vpos = m_Fractorium->ui.GLParentScrollArea->verticalScrollBar()->value();
v3T v;
if (!m_Fractorium->ui.GLParentScrollArea->horizontalScrollBar()->isVisible() && !m_Fractorium->ui.GLParentScrollArea->verticalScrollBar()->isVisible())
v = v3T(((m_GL->width() / 2)) * dprf,
((m_GL->height() / 2)) * dprf,
0);
else
v = v3T((hpos + (wpsa / 2)) * dprf,
(vpos + (hpsa / 2)) * dprf,
0);
if (toWorld)
return WindowToWorld(v, true);
return v;
}
/// <summary>
/// Snap the passed in world cartesian coordinate to the grid for rotation, scale or translation.
/// </summary>
/// <param name="vec">The world cartesian coordinate to be snapped</param>
/// <returns>The snapped world cartesian coordinate</returns>
template <typename T>
typename v2T GLEmberController<T>::SnapToGrid(const v2T& vec) const
{
return v2T(glm::round(vec.x / GridStep) * GridStep, glm::round(vec.y / GridStep) * GridStep);
}
/// <summary>
/// Snap the passed in world cartesian coordinate to the grid for rotation, scale or translation.
/// </summary>
/// <param name="vec">The world cartesian coordinate to be snapped</param>
/// <returns>The snapped world cartesian coordinate</returns>
template <typename T>
typename v3T GLEmberController<T>::SnapToGrid(const v3T& vec) const
{
return v3T(glm::round(vec.x / GridStep) * GridStep,
glm::round(vec.y / GridStep) * GridStep,
vec.z);
}
/// <summary>
/// Snap the passed in world cartesian coordinate to the grid for rotation only.
/// </summary>
/// <param name="vec">The world cartesian coordinate to be snapped</param>
/// <param name="divisions">The divisions of a circle to use for snapping</param>
/// <returns>The snapped world cartesian coordinate</returns>
template <typename T>
typename v3T GLEmberController<T>::SnapToNormalizedAngle(const v3T& vec, uint divisions) const
{
T bestRsq = numeric_limits<T>::max();
v3T c(0, 0, 0), best;
best.x = 1;
best.y = 0;
for (uint i = 0; i < divisions; i++)
{
const auto theta = 2.0 * M_PI * static_cast<T>(i) / static_cast<T>(divisions);
c.x = std::cos(theta);
c.y = std::sin(theta);
const auto rsq = glm::distance(vec, c);
if (rsq < bestRsq)
{
best = c;
bestRsq = rsq;
}
}
return best;
}
/// <summary>
/// Convert raster window coordinates to world cartesian coordinates.
/// </summary>
/// <param name="v">The window coordinates to convert</param>
/// <param name="flip">True to flip vertically, else don't.</param>
/// <returns>The converted world cartesian coordinates</returns>
template <typename T>
typename v3T GLEmberController<T>::WindowToWorld(const v3T& v, bool flip) const
{
const v3T mouse(v.x, flip ? m_Viewport[3] - v.y : v.y, 0);//Must flip y because in OpenGL, 0,0 is bottom left, but in windows, it's top left.
v3T newCoords = glm::unProject(mouse, m_Modelview, m_Projection, m_Viewport);//Perform the calculation.
newCoords.z = 0;//For some reason, unProject() always comes back with the z coordinate as something other than 0. It should be 0 at all times.
return newCoords;
}
/// <summary>
/// Template specialization for querying the viewport, modelview and projection
/// matrices as floats.
/// </summary>
template <>
void GLEmberController<float>::QueryVMP()
{
#ifndef USE_GLSL
m_GL->glGetIntegerv(GL_VIEWPORT, glm::value_ptr(m_Viewport));
m_GL->glGetFloatv(GL_MODELVIEW_MATRIX, glm::value_ptr(m_Modelview));
m_GL->glGetFloatv(GL_PROJECTION_MATRIX, glm::value_ptr(m_Projection));
#else
m_Viewport = m_GL->m_Viewport;
glm::tmat4x4<float, glm::defaultp> tempmat = glm::make_mat4(m_GL->m_ModelViewMatrix.data());
m_Modelview = tempmat;
tempmat = glm::make_mat4(m_GL->m_ProjMatrix.data());
m_Projection = tempmat;
#endif
}
#ifdef DO_DOUBLE
/// <summary>
/// Template specialization for querying the viewport, modelview and projection
/// matrices as doubles.
/// </summary>
template <>
void GLEmberController<double>::QueryVMP()
{
#ifndef USE_GLSL
m_GL->glGetIntegerv(GL_VIEWPORT, glm::value_ptr(m_Viewport));
m_GL->glGetDoublev(GL_MODELVIEW_MATRIX, glm::value_ptr(m_Modelview));
m_GL->glGetDoublev(GL_PROJECTION_MATRIX, glm::value_ptr(m_Projection));
#else
m_Viewport = m_GL->m_Viewport;
glm::tmat4x4<float, glm::defaultp> tempmat = glm::make_mat4(m_GL->m_ModelViewMatrix.data());
m_Modelview = tempmat;
tempmat = glm::make_mat4(m_GL->m_ProjMatrix.data());
m_Projection = tempmat;
#endif
}
#endif
/// <summary>
/// Template specialization for multiplying the current matrix
/// by an m4<float>.
/// </summary>
#ifndef USE_GLSL
template <>
void GLEmberController<float>::MultMatrix(tmat4x4<float, glm::defaultp>& mat)
{
m_GL->glMultMatrixf(glm::value_ptr(mat));
}
#endif
#ifdef DO_DOUBLE
/// <summary>
/// Template specialization for multiplying the current matrix
/// by an m4<double>.
/// </summary>
#ifndef USE_GLSL
template <>
void GLEmberController<double>::MultMatrix(tmat4x4<double, glm::defaultp>& mat)
{
m_GL->glMultMatrixd(glm::value_ptr(mat));
}
#endif
#endif
/// <summary>
/// Query the matrices currently being used.
/// Debugging function, unused.
/// </summary>
/// <param name="print">True to print values, else false.</param>
template <typename T>
void GLEmberController<T>::QueryMatrices(bool print)
{
if (const auto renderer = m_FractoriumEmberController->Renderer())
{
QueryVMP();
if (print)
{
for (glm::length_t i = 0; i < 4; i++)
qDebug() << "Viewport[" << i << "] = " << m_Viewport[i] << "\n";
for (glm::length_t i = 0; i < 16; i++)
qDebug() << "Modelview[" << i << "] = " << glm::value_ptr(m_Modelview)[i] << "\n";
for (glm::length_t i = 0; i < 16; i++)
qDebug() << "Projection[" << i << "] = " << glm::value_ptr(m_Projection)[i] << "\n";
}
}
}
template class GLEmberController<float>;
#ifdef DO_DOUBLE
template class GLEmberController<double>;
#endif