fractorium/Source/EmberCL/IterOpenCLKernelCreator.cpp
mfeemster b29bedec38 0.4.1.5 Beta 11/28/2014
--User Changes
 Remove limit on the number of xforms allowable on the GPU. This was previously 21.
 Show actual strips count to be used in parens outside of user specified strips count on final render dialog.
 Allow for adjustment of iteration depth and fuse count per ember and save/read these values with the xml.
 Iteration optimizations on both CPU and GPU.
 Automatically adjust default quality spinner value when using CPU/GPU to 10/30, respectively.

--Bug Fixes
 Fix severe randomization bug with OpenCL.
 Fix undo list off by one error when doing a new edit anywhere but the end of the undo list.
 Make integer variation parameters use 4 decimal places in the variations list like all the others.
 New build of the latest Qt to fix scroll bar drawing bug.
 Prevent grid from showing as much when pressing control to increase a spinner's increment speed. Still shows sometimes, but better than before.

--Code Changes
 Pass count and fuse to iterator as a structure now to allow for passing more params in the future.
 Slightly different grid/block logic when running DE filtering on the GPU.
 Attempt a different way of doing DE, but #define out because it ended up not being faster.
 Restructure some things to allow for a variable length xforms buffer to be passed to the GPU.
 Add sub batch size and fuse count as ember members, and remove them from the renderer classes.
 Remove m_LastPass from Renderer. It should have been removed with passes.
 Pass seeds as a buffer to the OpenCL iteration kernel, rather than a single seed that gets modified.
 Slight optimization on CPU accum.
 Use case statement instead of if/else for xform chosing in OpenCL for a 2% speedup on params with large numbers of xforms.
 Add SizeOf() wrapper around sizeof(vec[0]) * vec.size().
 Remove LogScaleSum() functions from the CPU and GPU because they're no longer used since passes were removed.
 Make some OpenCLWrapper getters const.
 Better ogranize RendererCL methods that return grid dimensions.
2014-11-28 01:37:51 -08:00

837 lines
28 KiB
C++

#include "EmberCLPch.h"
#include "IterOpenCLKernelCreator.h"
//#define STRAIGHT_RAND 1
#define USE_CASE 1
namespace EmberCLns
{
/// <summary>
/// Empty constructor that does nothing. The user must call the one which takes a bool
/// argument before using this class.
/// This constructor only exists so the class can be a member of a class.
/// </summary>
template <typename T>
IterOpenCLKernelCreator<T>::IterOpenCLKernelCreator()
{
}
/// <summary>
/// Constructor that sets up some basic entry point strings and creates
/// the zeroization kernel string since it requires no conditional inputs.
/// </summary>
template <typename T>
IterOpenCLKernelCreator<T>::IterOpenCLKernelCreator(bool nVidia)
{
m_NVidia = nVidia;
m_IterEntryPoint = "IterateKernel";
m_ZeroizeEntryPoint = "ZeroizeKernel";
m_ZeroizeKernel = CreateZeroizeKernelString();
}
/// <summary>
/// Accessors.
/// </summary>
template <typename T> string IterOpenCLKernelCreator<T>::ZeroizeKernel() { return m_ZeroizeKernel; }
template <typename T> string IterOpenCLKernelCreator<T>::ZeroizeEntryPoint() { return m_ZeroizeEntryPoint; }
template <typename T> string IterOpenCLKernelCreator<T>::IterEntryPoint() { return m_IterEntryPoint; }
/// <summary>
/// Create the iteration kernel string using the Cuburn method.
/// Template argument expected to be float or double.
/// </summary>
/// <param name="ember">The ember to create the kernel string for</param>
/// <param name="params">The parametric variation #define string</param>
/// <param name="doAccum">Debugging parameter to include or omit accumulating to the histogram. Default: true.</param>
/// <returns>The kernel string</returns>
template <typename T>
string IterOpenCLKernelCreator<T>::CreateIterKernelString(Ember<T>& ember, string& parVarDefines, bool lockAccum, bool doAccum)
{
bool doublePrecision = typeid(T) == typeid(double);
size_t i, v, varIndex, varCount, totalXformCount = ember.TotalXformCount();
ostringstream kernelIterBody, xformFuncs, os;
vector<Variation<T>*> variations;
xformFuncs << "\n" << parVarDefines << endl;
ember.GetPresentVariations(variations);
ForEach(variations, [&](Variation<T>* var) { if (var) xformFuncs << var->OpenCLFuncsString(); });
for (i = 0; i < totalXformCount; i++)
{
Xform<T>* xform = ember.GetTotalXform(i);
size_t totalVarCount = xform->TotalVariationCount();
bool needPrecalcSumSquares = false;
bool needPrecalcSqrtSumSquares = false;
bool needPrecalcAngles = false;
bool needPrecalcAtanXY = false;
bool needPrecalcAtanYX = false;
v = varIndex = varCount = 0;
xformFuncs <<
"void Xform" << i << "(__constant XformCL* xform, __constant real_t* parVars, Point* inPoint, Point* outPoint, uint2* mwc)\n" <<
"{\n"
" real_t transX, transY, transZ;\n"
" real4 vIn, vOut = 0.0;\n";
//Determine if any variations, regular, pre, or post need precalcs.
while (Variation<T>* var = xform->GetVariation(v++))
{
needPrecalcSumSquares |= var->NeedPrecalcSumSquares();
needPrecalcSqrtSumSquares |= var->NeedPrecalcSqrtSumSquares();
needPrecalcAngles |= var->NeedPrecalcAngles();
needPrecalcAtanXY |= var->NeedPrecalcAtanXY();
needPrecalcAtanYX |= var->NeedPrecalcAtanYX();
}
if (needPrecalcSumSquares)
xformFuncs << "\treal_t precalcSumSquares;\n";
if (needPrecalcSqrtSumSquares)
xformFuncs << "\treal_t precalcSqrtSumSquares;\n";
if (needPrecalcAngles)
{
xformFuncs << "\treal_t precalcSina;\n";
xformFuncs << "\treal_t precalcCosa;\n";
}
if (needPrecalcAtanXY)
xformFuncs << "\treal_t precalcAtanxy;\n";
if (needPrecalcAtanYX)
xformFuncs << "\treal_t precalcAtanyx;\n";
xformFuncs << "\treal_t tempColor = outPoint->m_ColorX = xform->m_ColorSpeedCache + (xform->m_OneMinusColorCache * inPoint->m_ColorX);\n\n";
if (xform->PreVariationCount() + xform->VariationCount() == 0)
{
xformFuncs <<
" outPoint->m_X = (xform->m_A * inPoint->m_X) + (xform->m_B * inPoint->m_Y) + xform->m_C;\n" <<
" outPoint->m_Y = (xform->m_D * inPoint->m_X) + (xform->m_E * inPoint->m_Y) + xform->m_F;\n" <<
" outPoint->m_Z = inPoint->m_Z;\n";
}
else
{
xformFuncs <<
" transX = (xform->m_A * inPoint->m_X) + (xform->m_B * inPoint->m_Y) + xform->m_C;\n" <<
" transY = (xform->m_D * inPoint->m_X) + (xform->m_E * inPoint->m_Y) + xform->m_F;\n" <<
" transZ = inPoint->m_Z;\n";
varCount = xform->PreVariationCount();
if (varCount > 0)
{
xformFuncs << "\n\t//Apply each of the " << varCount << " pre variations in this xform.\n";
//Output the code for each pre variation in this xform.
for (varIndex = 0; varIndex < varCount; varIndex++)
{
if (Variation<T>* var = xform->GetVariation(varIndex))
{
xformFuncs << "\n\t//" << var->Name() << ".\n";
xformFuncs << var->PrecalcOpenCLString();
xformFuncs << xform->ReadOpenCLString(VARTYPE_PRE) << endl;
xformFuncs << var->OpenCLString() << endl;
xformFuncs << xform->WriteOpenCLString(VARTYPE_PRE, var->AssignType()) << endl;
}
}
}
if (xform->VariationCount() > 0)
{
if (xform->NeedPrecalcSumSquares())
xformFuncs << "\tprecalcSumSquares = SQR(transX) + SQR(transY);\n";
if (xform->NeedPrecalcSqrtSumSquares())
xformFuncs << "\tprecalcSqrtSumSquares = sqrt(precalcSumSquares);\n";
if (xform->NeedPrecalcAngles())
{
xformFuncs << "\tprecalcSina = transX / Zeps(precalcSqrtSumSquares);\n";
xformFuncs << "\tprecalcCosa = transY / Zeps(precalcSqrtSumSquares);\n";
}
if (xform->NeedPrecalcAtanXY())
xformFuncs << "\tprecalcAtanxy = atan2(transX, transY);\n";
if (xform->NeedPrecalcAtanYX())
xformFuncs << "\tprecalcAtanyx = atan2(transY, transX);\n";
xformFuncs << "\n\toutPoint->m_X = 0;";
xformFuncs << "\n\toutPoint->m_Y = 0;";
xformFuncs << "\n\toutPoint->m_Z = 0;\n";
xformFuncs << "\n\t//Apply each of the " << xform->VariationCount() << " regular variations in this xform.\n\n";
xformFuncs << xform->ReadOpenCLString(VARTYPE_REG);
varCount += xform->VariationCount();
//Output the code for each regular variation in this xform.
for (; varIndex < varCount; varIndex++)
{
if (Variation<T>* var = xform->GetVariation(varIndex))
{
xformFuncs << "\n\t//" << var->Name() << ".\n"
<< var->OpenCLString() << (varIndex == varCount - 1 ? "\n" : "\n\n")
<< xform->WriteOpenCLString(VARTYPE_REG, ASSIGNTYPE_SUM);
}
}
}
else
{
xformFuncs <<
" outPoint->m_X = transX;\n"
" outPoint->m_Y = transY;\n"
" outPoint->m_Z = transZ;\n";
}
}
if (xform->PostVariationCount() > 0)
{
varCount += xform->PostVariationCount();
xformFuncs << "\n\t//Apply each of the " << xform->PostVariationCount() << " post variations in this xform.\n";
//Output the code for each post variation in this xform.
for (; varIndex < varCount; varIndex++)
{
if (Variation<T>* var = xform->GetVariation(varIndex))
{
xformFuncs << "\n\t//" << var->Name() << ".\n";
xformFuncs << var->PrecalcOpenCLString();
xformFuncs << xform->ReadOpenCLString(VARTYPE_POST) << endl;
xformFuncs << var->OpenCLString() << endl;
xformFuncs << xform->WriteOpenCLString(VARTYPE_POST, var->AssignType()) << (varIndex == varCount - 1 ? "\n" : "\n\n");
}
}
}
if (xform->HasPost())
{
xformFuncs <<
"\n\t//Apply post affine transform.\n"
"\treal_t tempX = outPoint->m_X;\n"
"\n"
"\toutPoint->m_X = (xform->m_PostA * tempX) + (xform->m_PostB * outPoint->m_Y) + xform->m_PostC;\n" <<
"\toutPoint->m_Y = (xform->m_PostD * tempX) + (xform->m_PostE * outPoint->m_Y) + xform->m_PostF;\n";
}
xformFuncs << "\toutPoint->m_ColorX = outPoint->m_ColorX + xform->m_DirectColor * (tempColor - outPoint->m_ColorX);\n";
xformFuncs << "}\n"
<< "\n";
}
os <<
ConstantDefinesString(doublePrecision) <<
InlineMathFunctionsString <<
ClampRealFunctionString <<
RandFunctionString <<
PointCLStructString <<
XformCLStructString <<
EmberCLStructString <<
UnionCLStructString <<
CarToRasCLStructString <<
CarToRasFunctionString <<
AtomicString(doublePrecision, m_NVidia) <<
xformFuncs.str() <<
"__kernel void " << m_IterEntryPoint << "(\n" <<
" uint iterCount,\n"
" uint fuseCount,\n"
" __global uint2* seeds,\n"
" __constant EmberCL* ember,\n"
" __constant XformCL* xforms,\n"
" __constant real_t* parVars,\n"
" __global uchar* xformDistributions,\n"//Using uchar is quicker than uint. Can't be constant because the size can be too large to fit when using xaos.//FINALOPT
" __constant CarToRasCL* carToRas,\n"
" __global real4reals* histogram,\n"
" uint histSize,\n"
" __read_only image2d_t palette,\n"
" __global Point* points\n"
"\t)\n"
"{\n"
" bool fuse, ok;\n"
" uint threadIndex = INDEX_IN_BLOCK_2D;\n"
" uint pointsIndex = INDEX_IN_GRID_2D;\n"
" uint i, itersToDo;\n"
" uint consec = 0;\n"
//" int badvals = 0;\n"
" uint histIndex;\n"
" real_t p00, p01;\n"
" Point firstPoint, secondPoint, tempPoint;\n"
" uint2 mwc = seeds[pointsIndex];\n"
" float4 palColor1;\n"
" int2 iPaletteCoord;\n"
" const sampler_t paletteSampler = CLK_NORMALIZED_COORDS_FALSE |\n"//Coords from 0 to 255.
" CLK_ADDRESS_CLAMP_TO_EDGE |\n"//Clamp to edge
" CLK_FILTER_NEAREST;\n"//Don't interpolate
" uint threadXY = (THREAD_ID_X + THREAD_ID_Y);\n"
" uint threadXDivRows = (THREAD_ID_X / (NTHREADS / THREADS_PER_WARP));\n"
" uint threadsMinus1 = NTHREADS - 1;\n"
;
os <<
"\n"
#ifndef STRAIGHT_RAND
" __local Point swap[NTHREADS];\n"
" __local uint xfsel[NWARPS];\n"
#endif
"\n"
" iPaletteCoord.y = 0;\n"
"\n"
" if (fuseCount > 0)\n"
" {\n"
" fuse = true;\n"
" itersToDo = fuseCount;\n"
" firstPoint.m_X = MwcNextNeg1Pos1(&mwc);\n"
" firstPoint.m_Y = MwcNextNeg1Pos1(&mwc);\n"
" firstPoint.m_Z = 0.0;\n"
" firstPoint.m_ColorX = MwcNext01(&mwc);\n"
" firstPoint.m_LastXfUsed = 0;\n"
" }\n"
" else\n"
" {\n"
" fuse = false;\n"
" itersToDo = iterCount;\n"
" firstPoint = points[pointsIndex];\n"
" }\n"
"\n";
//This is done once initially here and then again after each swap-sync in the main loop.
//This along with the randomness that the point shuffle provides gives sufficient randomness
//to produce results identical to those produced on the CPU.
os <<
#ifndef STRAIGHT_RAND
" if (THREAD_ID_Y == 0 && THREAD_ID_X < NWARPS)\n"
" xfsel[THREAD_ID_X] = MwcNext(&mwc) % " << CHOOSE_XFORM_GRAIN << ";\n"//It's faster to do the % here ahead of time than every time an xform is looked up to use inside the loop.
"\n"
#endif
" barrier(CLK_LOCAL_MEM_FENCE);\n"
"\n"
" for (i = 0; i < itersToDo; i++)\n"
" {\n";
os <<
" consec = 0;\n"
"\n"
" do\n"
" {\n";
//If xaos is present, the a hybrid of the cuburn method is used.
//This makes each thread in a row pick the same offset into a distribution, using xfsel.
//However, the distribution the offset is in, is determined by firstPoint.m_LastXfUsed.
if (ember.XaosPresent())
{
os <<
#ifdef STRAIGHT_RAND
" secondPoint.m_LastXfUsed = xformDistributions[MwcNext(&mwc) % " << CHOOSE_XFORM_GRAIN << " + (" << CHOOSE_XFORM_GRAIN << " * (firstPoint.m_LastXfUsed + 1u))];\n\n";
#else
" secondPoint.m_LastXfUsed = xformDistributions[xfsel[THREAD_ID_Y] + (" << CHOOSE_XFORM_GRAIN << " * (firstPoint.m_LastXfUsed + 1u))];\n\n";//Partial cuburn hybrid.
#endif
}
else
{
os <<
#ifdef STRAIGHT_RAND
" secondPoint.m_LastXfUsed = xformDistributions[MwcNext(&mwc) % " << CHOOSE_XFORM_GRAIN << "];\n\n";//For testing, using straight rand flam4/fractron style instead of cuburn.
#else
" secondPoint.m_LastXfUsed = xformDistributions[xfsel[THREAD_ID_Y]];\n\n";
#endif
}
for (i = 0; i < ember.XformCount(); i++)
{
#ifdef USE_CASE
if (i == 0)
{
os <<
" switch (secondPoint.m_LastXfUsed)\n"
" {\n";
}
os <<
" case " << i << ":\n"
" {\n" <<
" Xform" << i << "(&(xforms[" << i << "]), parVars, &firstPoint, &secondPoint, &mwc);\n" <<
" break;\n"
" }\n";
if (i == ember.XformCount() - 1)
{
os <<
" }\n";
}
#else
if (i == 0)
os <<
" if (secondPoint.m_LastXfUsed == " << i << ")\n";
else
os <<
" else if (secondPoint.m_LastXfUsed == " << i << ")\n";
os <<
" {\n" <<
" Xform" << i << "(&(xforms[" << i << "]), parVars, &firstPoint, &secondPoint, &mwc);\n" <<
" }\n";
#endif
}
os <<
"\n"
" ok = !BadVal(secondPoint.m_X) && !BadVal(secondPoint.m_Y);\n"
//" ok = !BadVal(secondPoint.m_X) && !BadVal(secondPoint.m_Y) && !BadVal(secondPoint.m_Z);\n"
"\n"
" if (!ok)\n"
" {\n"
" firstPoint.m_X = MwcNextNeg1Pos1(&mwc);\n"
" firstPoint.m_Y = MwcNextNeg1Pos1(&mwc);\n"
" firstPoint.m_Z = 0.0;\n"
" firstPoint.m_ColorX = secondPoint.m_ColorX;\n"
" consec++;\n"
//" badvals++;\n"
" }\n"
" }\n"
" while (!ok && consec < 5);\n"
"\n"
" if (!ok)\n"
" {\n"
" secondPoint.m_X = MwcNextNeg1Pos1(&mwc);\n"
" secondPoint.m_Y = MwcNextNeg1Pos1(&mwc);\n"
" secondPoint.m_Z = 0.0;\n"
" }\n"
#ifndef STRAIGHT_RAND
"\n"//Rotate points between threads. This is how randomization is achieved.
" uint swr = threadXY + ((i & 1u) * threadXDivRows);\n"
" uint sw = (swr * THREADS_PER_WARP + THREAD_ID_X) & threadsMinus1;\n"
"\n"
//Write to another thread's location.
" swap[sw] = secondPoint;\n"
"\n"
//Populate randomized xform index buffer with new random values.
" if (THREAD_ID_Y == 0 && THREAD_ID_X < NWARPS)\n"
" xfsel[THREAD_ID_X] = MwcNext(&mwc) % " << CHOOSE_XFORM_GRAIN << ";\n"
"\n"
" barrier(CLK_LOCAL_MEM_FENCE);\n"
//Another thread will have written to this thread's location, so read the new value and use it for accumulation below.
" firstPoint = swap[threadIndex];\n"
#else
" firstPoint = secondPoint;\n"//For testing, using straight rand flam4/fractron style instead of cuburn.
#endif
"\n"
" if (fuse)\n"
" {\n"
" if (i >= fuseCount - 1)\n"
" {\n"
" i = 0;\n"
" fuse = false;\n"
" itersToDo = iterCount;\n"
" barrier(CLK_LOCAL_MEM_FENCE);\n"//Sort of seems necessary, sort of doesn't. Makes no speed difference.
" }\n"
"\n"
" continue;\n"
" }\n"
"\n";
if (ember.UseFinalXform())
{
size_t finalIndex = ember.TotalXformCount() - 1;
//CPU takes an extra step here to preserve the opacity of the randomly selected xform, rather than the final xform's opacity.
//The same thing takes place here automatically because secondPoint.m_LastXfUsed is used below to retrieve the opacity when accumulating.
os <<
" if ((xforms[" << finalIndex << "].m_Opacity == 1) || (MwcNext01(&mwc) < xforms[" << finalIndex << "].m_Opacity))\n"
" {\n"
" tempPoint.m_LastXfUsed = secondPoint.m_LastXfUsed;\n"
" Xform" << finalIndex << "(&(xforms[" << finalIndex << "]), parVars, &secondPoint, &tempPoint, &mwc);\n"
" secondPoint = tempPoint;\n"
" }\n"
"\n";
}
os << CreateProjectionString(ember);
if (doAccum)
{
os <<
" p00 = secondPoint.m_X - ember->m_CenterX;\n"
" p01 = secondPoint.m_Y - ember->m_CenterY;\n"
" tempPoint.m_X = (p00 * ember->m_RotA) + (p01 * ember->m_RotB) + ember->m_CenterX;\n"
" tempPoint.m_Y = (p00 * ember->m_RotD) + (p01 * ember->m_RotE) + ember->m_CenterY;\n"
"\n"
//Add this point to the appropriate location in the histogram.
" if (CarToRasInBounds(carToRas, &tempPoint))\n"
" {\n"
" CarToRasConvertPointToSingle(carToRas, &tempPoint, &histIndex);\n"
"\n"
" if (histIndex < histSize)\n"//Provides an extra level of safety and makes no speed difference.
" {\n";
//Basic texture index interoplation does not produce identical results
//to the CPU. So the code here must explicitly do the same thing and not
//rely on the GPU texture coordinate lookup.
if (ember.m_PaletteMode == PALETTE_LINEAR)
{
os <<
" real_t colorIndexFrac;\n"
" real_t colorIndex = secondPoint.m_ColorX * COLORMAP_LENGTH;\n"
" int intColorIndex = (int)colorIndex;\n"
" float4 palColor2;\n"
"\n"
" if (intColorIndex < 0)\n"
" {\n"
" intColorIndex = 0;\n"
" colorIndexFrac = 0;\n"
" }\n"
" else if (intColorIndex >= COLORMAP_LENGTH_MINUS_1)\n"
" {\n"
" intColorIndex = COLORMAP_LENGTH_MINUS_1 - 1;\n"
" colorIndexFrac = 1.0;\n"
" }\n"
" else\n"
" {\n"
" colorIndexFrac = colorIndex - (real_t)intColorIndex;\n"//Interpolate between intColorIndex and intColorIndex + 1.
" }\n"
"\n"
" iPaletteCoord.x = intColorIndex;\n"//Palette operations are strictly float because OpenCL does not support dp64 textures.
" palColor1 = read_imagef(palette, paletteSampler, iPaletteCoord);\n"
" iPaletteCoord.x += 1;\n"
" palColor2 = read_imagef(palette, paletteSampler, iPaletteCoord);\n"
" palColor1 = (palColor1 * (1.0f - (float)colorIndexFrac)) + (palColor2 * (float)colorIndexFrac);\n";//The 1.0f here *must* have the 'f' suffix at the end to compile.
}
else if (ember.m_PaletteMode == PALETTE_STEP)
{
os <<
" iPaletteCoord.x = (int)(secondPoint.m_ColorX * COLORMAP_LENGTH);\n"
" palColor1 = read_imagef(palette, paletteSampler, iPaletteCoord);\n";
}
if (lockAccum)
{
if (typeid(T) == typeid(double))
{
os <<
" AtomicAdd(&(histogram[histIndex].m_Reals[0]), (real_t)palColor1.x * xforms[secondPoint.m_LastXfUsed].m_VizAdjusted);\n"//Always apply opacity, even though it's usually 1.
" AtomicAdd(&(histogram[histIndex].m_Reals[1]), (real_t)palColor1.y * xforms[secondPoint.m_LastXfUsed].m_VizAdjusted);\n"
" AtomicAdd(&(histogram[histIndex].m_Reals[2]), (real_t)palColor1.z * xforms[secondPoint.m_LastXfUsed].m_VizAdjusted);\n"
" AtomicAdd(&(histogram[histIndex].m_Reals[3]), (real_t)palColor1.w * xforms[secondPoint.m_LastXfUsed].m_VizAdjusted);\n";
}
else
{
os <<
" AtomicAdd(&(histogram[histIndex].m_Reals[0]), palColor1.x * xforms[secondPoint.m_LastXfUsed].m_VizAdjusted);\n"//Always apply opacity, even though it's usually 1.
" AtomicAdd(&(histogram[histIndex].m_Reals[1]), palColor1.y * xforms[secondPoint.m_LastXfUsed].m_VizAdjusted);\n"
" AtomicAdd(&(histogram[histIndex].m_Reals[2]), palColor1.z * xforms[secondPoint.m_LastXfUsed].m_VizAdjusted);\n"
" AtomicAdd(&(histogram[histIndex].m_Reals[3]), palColor1.w * xforms[secondPoint.m_LastXfUsed].m_VizAdjusted);\n";
}
}
else
{
if (typeid(T) == typeid(double))
{
os <<
" real4 realColor;\n"
"\n"
" realColor.x = (real_t)palColor1.x;\n"
" realColor.y = (real_t)palColor1.y;\n"
" realColor.z = (real_t)palColor1.z;\n"
" realColor.w = (real_t)palColor1.w;\n"
" histogram[histIndex].m_Real4 += (realColor * xforms[secondPoint.m_LastXfUsed].m_VizAdjusted);\n";
}
else
{
os <<
" histogram[histIndex].m_Real4 += (palColor1 * xforms[secondPoint.m_LastXfUsed].m_VizAdjusted);\n";
}
}
os <<
" }\n"//histIndex < histSize.
" }\n"//CarToRasInBounds.
"\n"
" barrier(CLK_GLOBAL_MEM_FENCE);\n";//Barrier every time, whether or not the point was in bounds, else artifacts will occur when doing strips.
}
os <<
" }\n"//Main for loop.
"\n"
//At this point, iterating for this round is done, so write the final points back out
//to the global points buffer to be used as inputs for the next round. This preserves point trajectory
//between kernel calls.
#ifdef TEST_CL_BUFFERS//Use this to populate with test values and read back in EmberTester.
" points[pointsIndex].m_X = MwcNextNeg1Pos1(&mwc);\n"
" points[pointsIndex].m_Y = MwcNextNeg1Pos1(&mwc);\n"
" points[pointsIndex].m_Z = MwcNextNeg1Pos1(&mwc);\n"
" points[pointsIndex].m_ColorX = MwcNextNeg1Pos1(&mwc);\n"
#else
" points[pointsIndex] = firstPoint;\n"
" seeds[pointsIndex] = mwc;\n"
#endif
" barrier(CLK_GLOBAL_MEM_FENCE);\n"
"}\n";
return os.str();
}
/// <summary>
/// Create an OpenCL string of #defines and a corresponding host side vector for parametric variation values.
/// Parametric variations present a special problem in the iteration code.
/// The values can't be passed in with the array of other xform values because
/// the length of the parametric values is unknown.
/// This is solved by passing a separate buffer of values dedicated specifically
/// to parametric variations.
/// In OpenCL, a series of #define constants are declared which specify the indices in
/// the buffer where the various values are stored.
/// The possibility of a parametric variation type being present in multiple xforms is taken
/// into account by appending the xform index to the #define, thus making each unique.
/// The kernel creator then uses these to retrieve the values in the iteration code.
/// Example:
/// Xform1: Curl (curl_c1: 1.1, curl_c2: 2.2)
/// Xform2: Curl (curl_c1: 4.4, curl_c2: 5.5)
/// Xform3: Blob (blob_low: 1, blob_high: 2, blob_waves: 3)
///
/// Host vector to be passed as arg to the iter kernel call:
/// [1.1][2.2][4.4][5.5][1][2][3]
///
/// #defines in OpenCL to access the buffer:
///
/// #define CURL_C1_1 0
/// #define CURL_C2_1 1
/// #define CURL_C1_2 2
/// #define CURL_C2_2 3
/// #define BLOB_LOW_3 4
/// #define BLOB_HIGH_3 5
/// #define BLOB_WAVES_ 6
///
/// The variations the use these #defines by first looking up the index of the
/// xform they belong to in the parent ember and generating the OpenCL string based on that
/// in their overridden OpenCLString() functions.
/// Template argument expected to be float or double.
/// </summary>
/// <param name="ember">The ember to create the values from</param>
/// <param name="params">The string,vector pair to store the values in</param>
/// <param name="doVals">True if the vector should be populated, else false. Default: true.</param>
/// <param name="doString">True if the string should be populated, else false. Default: true.</param>
template <typename T>
void IterOpenCLKernelCreator<T>::ParVarIndexDefines(Ember<T>& ember, pair<string, vector<T>>& params, bool doVals, bool doString)
{
size_t i, j, k, size = 0, xformCount = ember.TotalXformCount();
Xform<T>* xform;
ostringstream os;
if (doVals)
params.second.clear();
for (i = 0; i < xformCount; i++)
{
if (xform = ember.GetTotalXform(i))
{
size_t varCount = xform->TotalVariationCount();
for (j = 0; j < varCount; j++)
{
if (ParametricVariation<T>* parVar = dynamic_cast<ParametricVariation<T>*>(xform->GetVariation(j)))
{
for (k = 0; k < parVar->ParamCount(); k++)
{
if (doString)
os << "#define " << ToUpper(parVar->Params()[k].Name()) << "_" << i << " " << size << endl;//Uniquely identify this param in this variation in this xform.
if (doVals)
params.second.push_back(parVar->Params()[k].ParamVal());
size++;
}
}
}
}
}
if (doString)
{
os << "\n";
params.first = os.str();
}
}
/// <summary>
/// Determine whether the two embers passed in differ enough
/// to require a rebuild of the iteration code.
/// A rebuild is required if they differ in the following ways:
/// Xform count
/// Final xform presence
/// Xaos presence
/// Palette accumulation mode
/// Xform post affine presence
/// Variation count
/// Variation type
/// Template argument expected to be float or double.
/// </summary>
/// <param name="ember1">The first ember to compare</param>
/// <param name="ember2">The second ember to compare</param>
/// <returns>True if a rebuild is required, else false</returns>
template <typename T>
bool IterOpenCLKernelCreator<T>::IsBuildRequired(Ember<T>& ember1, Ember<T>& ember2)
{
size_t i, j, xformCount = ember1.TotalXformCount();
if (xformCount != ember2.TotalXformCount())
return true;
if (ember1.UseFinalXform() != ember2.UseFinalXform())
return true;
if (ember1.XaosPresent() != ember2.XaosPresent())
return true;
if (ember1.m_PaletteMode != ember2.m_PaletteMode)
return true;
if (ember1.ProjBits() != ember2.ProjBits())
return true;
for (i = 0; i < xformCount; i++)
{
Xform<T>* xform1 = ember1.GetTotalXform(i);
Xform<T>* xform2 = ember2.GetTotalXform(i);
size_t varCount = xform1->TotalVariationCount();
if (xform1->HasPost() != xform2->HasPost())
return true;
if (varCount != xform2->TotalVariationCount())
return true;
for (j = 0; j < varCount; j++)
if (xform1->GetVariation(j)->VariationId() != xform2->GetVariation(j)->VariationId())
return true;
}
return false;
}
/// <summary>
/// Create the zeroize kernel string.
/// OpenCL comes with no way to zeroize a buffer like memset()
/// would do on the CPU. So a special kernel must be ran to set a range
/// of memory addresses to zero.
/// </summary>
/// <returns>The kernel string</returns>
template <typename T>
string IterOpenCLKernelCreator<T>::CreateZeroizeKernelString()
{
ostringstream os;
os <<
ConstantDefinesString(typeid(T) == typeid(double)) <<//Double precision doesn't matter here since it's not used.
"__kernel void " << m_ZeroizeEntryPoint << "(__global uchar* buffer, uint width, uint height)\n"
"{\n"
" if (GLOBAL_ID_X >= width || GLOBAL_ID_Y >= height)\n"
" return;\n"
"\n"
" buffer[(GLOBAL_ID_Y * width) + GLOBAL_ID_X] = 0;\n"//Can't use INDEX_IN_GRID_2D here because the grid might be larger than the buffer to make even dimensions.
" barrier(CLK_GLOBAL_MEM_FENCE);\n"//Just to be safe.
"}\n"
"\n";
return os.str();
}
/// <summary>
/// Create the string for 3D projection based on the 3D values of the ember.
/// Projection is done on the second point.
/// If any of these fields toggle between 0 and nonzero between runs, a recompile is triggered.
/// </summary>
/// <param name="ember">The ember to create the projection string for</param>
/// <returns>The kernel string</returns>
template <typename T>
string IterOpenCLKernelCreator<T>::CreateProjectionString(Ember<T>& ember)
{
size_t projBits = ember.ProjBits();
ostringstream os;
if (projBits)
{
if (projBits & PROJBITS_BLUR)
{
if (projBits & PROJBITS_YAW)
{
os <<
" real_t dsin, dcos;\n"
" real_t t = MwcNext01(&mwc) * M_2PI;\n"
" real_t z = secondPoint.m_Z - ember->m_CamZPos;\n"
" real_t x = ember->m_C00 * secondPoint.m_X + ember->m_C10 * secondPoint.m_Y;\n"
" real_t y = ember->m_C01 * secondPoint.m_X + ember->m_C11 * secondPoint.m_Y + ember->m_C21 * z;\n"
"\n"
" z = ember->m_C02 * secondPoint.m_X + ember->m_C12 * secondPoint.m_Y + ember->m_C22 * z;\n"
"\n"
" real_t zr = Zeps(1 - ember->m_CamPerspective * z);\n"
" real_t dr = MwcNext01(&mwc) * ember->m_BlurCoef * z;\n"
"\n"
" dsin = sin(t);\n"
" dcos = cos(t);\n"
"\n"
" secondPoint.m_X = (x + dr * dcos) / zr;\n"
" secondPoint.m_Y = (y + dr * dsin) / zr;\n"
" secondPoint.m_Z -= ember->m_CamZPos;\n";
}
else
{
os <<
" real_t y, z, zr;\n"
" real_t dsin, dcos;\n"
" real_t t = MwcNext01(&mwc) * M_2PI;\n"
"\n"
" z = secondPoint.m_Z - ember->m_CamZPos;\n"
" y = ember->m_C11 * secondPoint.m_Y + ember->m_C21 * z;\n"
" z = ember->m_C12 * secondPoint.m_Y + ember->m_C22 * z;\n"
" zr = Zeps(1 - ember->m_CamPerspective * z);\n"
"\n"
" dsin = sin(t);\n"
" dcos = cos(t);\n"
"\n"
" real_t dr = MwcNext01(&mwc) * ember->m_BlurCoef * z;\n"
"\n"
" secondPoint.m_X = (secondPoint.m_X + dr * dcos) / zr;\n"
" secondPoint.m_Y = (y + dr * dsin) / zr;\n"
" secondPoint.m_Z -= ember->m_CamZPos;\n";
}
}
else if ((projBits & PROJBITS_PITCH) || (projBits & PROJBITS_YAW))
{
if (projBits & PROJBITS_YAW)
{
os <<
" real_t z = secondPoint.m_Z - ember->m_CamZPos;\n"
" real_t x = ember->m_C00 * secondPoint.m_X + ember->m_C10 * secondPoint.m_Y;\n"
" real_t y = ember->m_C01 * secondPoint.m_X + ember->m_C11 * secondPoint.m_Y + ember->m_C21 * z;\n"
" real_t zr = Zeps(1 - ember->m_CamPerspective * (ember->m_C02 * secondPoint.m_X + ember->m_C12 * secondPoint.m_Y + ember->m_C22 * z));\n"
"\n"
" secondPoint.m_X = x / zr;\n"
" secondPoint.m_Y = y / zr;\n"
" secondPoint.m_Z -= ember->m_CamZPos;\n";
}
else
{
os <<
" real_t z = secondPoint.m_Z - ember->m_CamZPos;\n"
" real_t y = ember->m_C11 * secondPoint.m_Y + ember->m_C21 * z;\n"
" real_t zr = Zeps(1 - ember->m_CamPerspective * (ember->m_C12 * secondPoint.m_Y + ember->m_C22 * z));\n"
"\n"
" secondPoint.m_X /= zr;\n"
" secondPoint.m_Y = y / zr;\n"
" secondPoint.m_Z -= ember->m_CamZPos;\n";
}
}
else
{
os <<
" real_t zr = Zeps(1 - ember->m_CamPerspective * (secondPoint.m_Z - ember->m_CamZPos));\n"
"\n"
" secondPoint.m_X /= zr;\n"
" secondPoint.m_Y /= zr;\n"
" secondPoint.m_Z -= ember->m_CamZPos;\n";
}
}
return os.str();
}
}