fractorium/Source/Ember/Interpolate.h
mfeemster 19cb27b83a --User changes
-Remove some warnings about interpolation type on first and last flames.

--Code changes
 -Make DE block size always be 16x16, this should help stability on some Nvidia cards. No changes for AMD cards since they were that size already.
-Since the block size is now so small, do not reduce it further when supersampling.
 -Clean up some variable names and documentation around OpenCL DE to be more clear.
2016-03-12 19:25:19 -08:00

940 lines
30 KiB
C++

#pragma once
#include "Ember.h"
#include "VariationList.h"
/// <summary>
/// Interpolater class.
/// </summary>
namespace EmberNs
{
/// <summary>
/// g++ needs a forward declaration here.
/// </summary>
template <typename T> class Ember;
template <typename T> class VariationList;
/// <summary>
/// Contains many static functions for handling interpolation and other miscellaneous operations on
/// embers and vectors of embers. This class is similar to, and used in conjunction with SheepTools.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
class EMBER_API Interpolater
{
public:
/// <summary>
/// Aligns the specified array of embers and stores in the output array.
/// This is used to prepare embers before interpolating them.
/// Alignment means that every ember in a list will have the same number of xforms.
/// Each xform at a given position will have mostly the same variations as the xform
/// in the same position in the rest of the embers. However some
/// intelligence is applied to add or remove variations that wouldn't look good with
/// the others present.
/// After this function completes, sourceEmbers will remain unchanged and destEmbers
/// will contain the aligned list of embers from sourceEmbers.
/// </summary>
/// <param name="sourceEmbers">The array of embers to align</param>
/// <param name="destEmbers">The array which will contain the aligned embers </param>
/// <param name="count">The number of elements in sourceEmbers</param>
static void Align(Ember<T>* sourceEmbers, Ember<T>* destEmbers, size_t count)
{
bool aligned = true;
bool currentFinal, final = sourceEmbers[0].UseFinalXform();
size_t i, xf, currentCount, maxCount = sourceEmbers[0].XformCount();
Xform<T>* destOtherXform;
VariationList<T>& variationList(VariationList<T>::Instance());
//Determine the max number of xforms present in sourceEmbers.
//Also check if final xforms are used in any of them.
for (i = 1; i < count; i++)
{
currentCount = sourceEmbers[i].XformCount();
if (currentCount != maxCount)//Any difference, less or more, means unaligned.
{
aligned = false;
if (currentCount > maxCount)
maxCount = currentCount;
}
currentFinal = sourceEmbers[i].UseFinalXform();
if (final != currentFinal)//Check if any used final.
{
aligned = false;
final |= currentFinal;
}
}
//Copy them using the max xform count, and do final if any had final.
for (i = 0; i < count; i++)
destEmbers[i] = sourceEmbers[i].Copy(maxCount, final);
if (final)
maxCount++;
//Check to see if there's a parametric variation present in one xform
//but not in an aligned xform. If this is the case, use the parameters
//from the xform with the variation as the defaults for the blank one.
//All embers will have the same number of xforms at this point.
for (i = 0; i < count; i++)
{
size_t ii;
for (xf = 0; xf < maxCount; xf++)//This will include both normal xforms and the final.
{
auto destXform = destEmbers[i].GetTotalXform(xf, final);
//Ensure every parametric variation contained in every xform at either position i - 1 or i + 1 is also contained in the dest xform.
if (i > 0)
destOtherXform = destEmbers[i - 1].GetTotalXform(xf);
else if (i < count - 1)
destOtherXform = destEmbers[i + 1].GetTotalXform(xf);
else
destOtherXform = nullptr;//Should never happen
if (destOtherXform)
MergeXformVariations1Way(destOtherXform, destXform, true, true);
//This is a new xform. Let's see if it's possible to choose a better 'identity' xform.
//Check the neighbors to see if any of these variations are used:
//rings2, fan2, blob, perspective, julian, juliascope, ngon, curl, super_shape, split
//If so, can use a better starting point for these.
//If the current xform index is greater than what the original xform count was for this ember, then it's a padding xform.
if (xf >= sourceEmbers[i].TotalXformCount() && !aligned)
{
size_t found = 0;
//Remove linear.
destXform->DeleteVariationById(eVariationId::VAR_LINEAR);
//Only do the next substitution for log interpolation.
if ((i == 0 && destEmbers[i].m_AffineInterp == eAffineInterp::AFFINE_INTERP_LOG) ||
(i > 0 && destEmbers[i - 1].m_AffineInterp == eAffineInterp::AFFINE_INTERP_LOG))
{
for (ii = -1; ii <= 1; ii += 2)
{
//Skip if out of bounds.
if (i + ii < 0 || i + ii >= count)
continue;
//Skip if this is also padding.
if (xf >= sourceEmbers[i + ii].TotalXformCount())
continue;
destOtherXform = destEmbers[i + ii].GetTotalXform(xf);
//Spherical / Ngon (trumps all others due to holes)
//Interpolate these against a 180 degree rotated identity
//with weight -1.
//Added JULIAN/JULIASCOPE to get rid of black wedges.
if (destOtherXform->GetVariationById(eVariationId::VAR_SPHERICAL) ||
destOtherXform->GetVariationById(eVariationId::VAR_NGON) ||
destOtherXform->GetVariationById(eVariationId::VAR_JULIAN) ||
destOtherXform->GetVariationById(eVariationId::VAR_JULIASCOPE) ||
destOtherXform->GetVariationById(eVariationId::VAR_POLAR) ||
destOtherXform->GetVariationById(eVariationId::VAR_WEDGE_SPH) ||
destOtherXform->GetVariationById(eVariationId::VAR_WEDGE_JULIA))
{
destXform->AddVariation(variationList.GetVariationCopy(eVariationId::VAR_LINEAR, -1));
//Set the coefs appropriately.
destXform->m_Affine.A(-1);
destXform->m_Affine.D(0);
destXform->m_Affine.B(0);
destXform->m_Affine.E(-1);
destXform->m_Affine.C(0);
destXform->m_Affine.F(0);
found = -1;
}
}
}
if (found == 0)
{
for (ii = -1; ii <= 1; ii += 2)
{
//Skip if out of bounds.
if (i + ii < 0 || i + ii >= count)
continue;
//Skip if this is also padding.
if (xf >= sourceEmbers[i + ii].TotalXformCount())
continue;
destOtherXform = destEmbers[i + ii].GetTotalXform(xf);
if (destOtherXform->GetVariationById(eVariationId::VAR_RECTANGLES))
{
if (auto var = variationList.GetParametricVariationCopy(eVariationId::VAR_RECTANGLES))
{
var->SetParamVal("rectangles_x", 0);
var->SetParamVal("rectangles_y", 0);
destXform->AddVariation(var);
}
found++;
}
if (destOtherXform->GetVariationById(eVariationId::VAR_RINGS2))
{
if (auto var = variationList.GetParametricVariationCopy(eVariationId::VAR_RINGS2))
{
var->SetParamVal("rings2_val", 0);
destXform->AddVariation(var);
}
found++;
}
if (destOtherXform->GetVariationById(eVariationId::VAR_FAN2))
{
destXform->AddVariation(variationList.GetVariationCopy(eVariationId::VAR_FAN2));
found++;
}
if (destOtherXform->GetVariationById(eVariationId::VAR_BLOB))
{
if (auto var = variationList.GetParametricVariationCopy(eVariationId::VAR_BLOB))
{
var->SetParamVal("blob_low", 1);
destXform->AddVariation(var);
}
found++;
}
if (destOtherXform->GetVariationById(eVariationId::VAR_PERSPECTIVE))
{
destXform->AddVariation(variationList.GetVariationCopy(eVariationId::VAR_PERSPECTIVE));
found++;
}
if (destOtherXform->GetVariationById(eVariationId::VAR_CURL))
{
if (auto var = variationList.GetParametricVariationCopy(eVariationId::VAR_CURL))
{
var->SetParamVal("curl_c1", 0);
destXform->AddVariation(var);
}
found++;
}
if (destOtherXform->GetVariationById(eVariationId::VAR_SUPER_SHAPE))
{
if (auto var = variationList.GetParametricVariationCopy(eVariationId::VAR_SUPER_SHAPE))
{
var->SetParamVal("super_shape_n1", 2);
var->SetParamVal("super_shape_n2", 2);
var->SetParamVal("super_shape_n3", 2);
destXform->AddVariation(var);
}
found++;
}
}
}
//If none matched those, try the affine ones, fan and rings.
if (found == 0)
{
for (ii = -1; ii <= 1; ii += 2)
{
//Skip if out of bounds.
if (i + ii < 0 || i + ii >= count)
continue;
//Skip if this is also padding.
if (xf >= sourceEmbers[i + ii].TotalXformCount())
continue;
destOtherXform = destEmbers[i + ii].GetTotalXform(xf);
if (destOtherXform->GetVariationById(eVariationId::VAR_FAN))
{
destXform->AddVariation(variationList.GetVariationCopy(eVariationId::VAR_FAN));
found++;
}
if (destOtherXform->GetVariationById(eVariationId::VAR_RINGS))
{
destXform->AddVariation(variationList.GetVariationCopy(eVariationId::VAR_RINGS));
found++;
}
}
if (found > 0)
{
//Set the coefs appropriately.
destXform->m_Affine.A(0);
destXform->m_Affine.B(1);//This will be swapping x and y, seems strange, but it's what the original did.
destXform->m_Affine.C(0);
destXform->m_Affine.D(1);
destXform->m_Affine.E(0);
destXform->m_Affine.F(0);
}
}
//If there still are no matches, switch back to linear.
if (found == 0)
{
destXform->AddVariation(variationList.GetVariationCopy(eVariationId::VAR_LINEAR));
}
else if (found > 0)
{
//Otherwise, normalize the weights.
destXform->NormalizeVariationWeights();
}
}
}//Xforms.
}//Embers.
}
/// <summary>
/// Thin wrapper around AnyXaosPresent().
/// </summary>
/// <param name="embers">The vector of embers to inspect for xaos</param>
/// <returns>True if at least one ember contained xaos, else false.</returns>
static bool AnyXaosPresent(vector<Ember<T>>& embers)
{
return AnyXaosPresent(embers.data(), embers.size());
}
/// <summary>
/// Determine whether at least one ember in the array contained xaos.
/// </summary>
/// <param name="embers">The array of embers to inspect</param>
/// <param name="size">The size of the embers array</param>
/// <returns>True if at least one ember contained xaos, else false.</returns>
static bool AnyXaosPresent(Ember<T>* embers, size_t size)
{
for (size_t i = 0; i < size; i++)
if (embers[i].XaosPresent())
return true;
return false;
}
/// <summary>
/// Thin wrapper around MaxXformCount().
/// </summary>
/// <param name="embers">The vector of embers to inspect for the greatest xform count</param>
/// <returns>The greatest non-final xform count in any of the embers</returns>
static size_t MaxXformCount(vector<Ember<T>>& embers)
{
return MaxXformCount(embers.data(), embers.size());
}
/// <summary>
/// Find the maximum number of non-final xforms present in the array of embers.
/// </summary>
/// <param name="embers">The array of embers to inspect</param>
/// <param name="size">The size of the embers array</param>
/// <returns>The greatest non-final xform count in any of the embers</returns>
static size_t MaxXformCount(Ember<T>* embers, size_t size)
{
size_t i, maxCount = 0;
for (i = 0; i < size; i++)
if (embers[i].XformCount() > maxCount)
maxCount = embers[i].XformCount();
return maxCount;
}
/// <summary>
/// Thin wrapper around AnyFinalPresent().
/// </summary>
/// <param name="embers">The vector of embers to inspect the presence of a final xform</param>
/// <returns>True if any contained a non-empty final xform, else false.</returns>
static bool AnyFinalPresent(vector<Ember<T>>& embers)
{
return AnyFinalPresent(embers.data(), embers.size());
}
/// <summary>
/// Determine whether at least one ember in the array contained a non-empty final xform.
/// </summary>
/// <param name="embers">The array of embers to inspect the presence of a final xform</param>
/// <param name="size">The size of the embers array</param>
/// <returns>True if any contained a final xform, else false.</returns>
static bool AnyFinalPresent(Ember<T>* embers, size_t size)
{
for (size_t i = 0; i < size; i++)
if (embers[i].UseFinalXform())
return true;
return false;
}
/// <summary>
/// Thin wrapper around Interpolate().
/// </summary>
/// <param name="embers">The vector of embers to interpolate</param>
/// <param name="time">The time position in the vector specifying the point of interpolation</param>
/// <param name="stagger">Stagger if > 0</param>
/// <param name="result">The interpolated result</param>
static void Interpolate(vector<Ember<T>>& embers, T time, T stagger, Ember<T>& result)
{
Interpolate(embers.data(), embers.size(), time, stagger, result);
}
/// <summary>
/// Interpolates the array of embers at a specified time and stores the result.
/// </summary>
/// <param name="embers">The embers array</param>
/// <param name="size">The size of the embers array</param>
/// <param name="time">The time position in the vector specifying the point of interpolation</param>
/// <param name="stagger">Stagger if > 0</param>
/// <param name="result">The interpolated result</param>
static void Interpolate(Ember<T>* embers, size_t size, T time, T stagger, Ember<T>& result)
{
if (size == 1)
{
result = embers[0];//Deep copy.
return;
}
size_t i1, i2;
vector<T> c(2);
Ember<T> localEmbers[4];
bool smoothFlag = false;
if (embers[0].m_Time >= time)
{
i1 = 0;
i2 = 1;
}
else if (embers[size - 1].m_Time <= time)
{
i1 = size - 2;
i2 = size - 1;
}
else
{
i1 = 0;
while (embers[i1].m_Time < time)
i1++;
i1--;
i2 = i1 + 1;
}
c[0] = (embers[i2].m_Time - time) / (embers[i2].m_Time - embers[i1].m_Time);
c[1] = 1 - c[0];
//To interpolate the xforms, make copies of the source embers
//and ensure that they both have the same number of xforms before progressing.
if (embers[i1].m_Interp == eInterp::EMBER_INTERP_LINEAR)
{
Align(&embers[i1], &localEmbers[0], 2);
smoothFlag = false;
}
else
{
if (i1 == 0)
{
Align(&embers[i1], &localEmbers[0], 2);
smoothFlag = false;
}
if (i2 == size - 1)
{
Align(&embers[i1], &localEmbers[0], 2);
smoothFlag = false;
}
Align(&embers[i1 - 1], &localEmbers[0], 4);//Should really be doing some sort of checking here to ensure the ember vectors have 4 elements.
smoothFlag = true;
}
result.m_Time = time;
result.m_Interp = eInterp::EMBER_INTERP_LINEAR;
result.m_AffineInterp = embers[0].m_AffineInterp;
result.m_PaletteInterp = ePaletteInterp::INTERP_HSV;
if (!smoothFlag)
result.Interpolate(&localEmbers[0], 2, c, stagger);
else
result.InterpolateCatmullRom(&localEmbers[0], 4, c[1]);
}
/// <summary>
/// Merge the variations in a vector of xforms into a single xform so that
/// it contains one variation for each variation type that was present in the
/// vector of xforms.
/// </summary>
/// <param name="xforms">The xforms to merge</param>
/// <param name="clearWeights">Clear weights if true, else copy weights</param>
/// <returns>The xform whose variations are a result of the merge</returns>
static Xform<T> MergeXforms(vector<Xform<T>*>& xforms, bool clearWeights = false)
{
Xform<T> xform;
for (auto xf : xforms)
MergeXformVariations1Way(xf, &xform, false, clearWeights);
return xform;
}
/// <summary>
/// Merges the xform variations from one xform to another, but not back.
/// </summary>
/// <param name="source">The source xform to merge from</param>
/// <param name="dest">The destination xform to merge to</param>
/// <param name="parVarsOnly">If true, only merge parametric variations, else merge all</param>
/// <param name="clearWeights">If true, set variation weights in dest to 0, else copy weights</param>
static void MergeXformVariations1Way(Xform<T>* source, Xform<T>* dest, bool parVarsOnly, bool clearWeights)
{
for (size_t i = 0; i < source->TotalVariationCount(); i++)//Iterate through the first xform's variations.
{
Variation<T>* var = source->GetVariation(i);//Grab the variation at index in in the first xform.
Variation<T>* var2 = dest->GetVariationById(var->VariationId());//See if the same variation exists in the second xform.
ParametricVariation<T>* parVar = dynamic_cast<ParametricVariation<T>*>(var);//Parametric cast of the first var for later.
if (!var2)//Only take action if the second xform did not contain this variation.
{
if (parVarsOnly)//Only add if parametric.
{
if (parVar)
{
Variation<T>* parVarCopy = parVar->Copy();
if (clearWeights)
parVarCopy->m_Weight = 0;
dest->AddVariation(parVarCopy);
}
}
else//Add regardless of type.
{
Variation<T>* varCopy = var->Copy();
if (clearWeights)
varCopy->m_Weight = 0;
dest->AddVariation(varCopy);
}
}
}
}
/// <summary>
/// Merges the xform variations from one xform to another, and back.
/// After this function completes, both xforms will have the same variations.
/// </summary>
/// <param name="source">The source xform to merge from, and to</param>
/// <param name="dest">The destination xform to merge to, and from</param>
/// <param name="parVarsOnly">If true, only merge parametric variations, else merge all</param>
/// <param name="clearWeights">If true, set variation weights in dest to 0, else copy weights</param>
static void MergeXformVariations2Way(Xform<T>* source, Xform<T>* dest, bool parVarsOnly, bool clearWeights)
{
MergeXformVariations1Way(source, dest, parVarsOnly, clearWeights);
MergeXformVariations1Way(dest, source, parVarsOnly, clearWeights);
}
/// <summary>
/// Interpolate a vector of parametric variations by a vector of coefficients and store the ouput in a new parametric variation.
/// Elements in first which are not the same variation type as second will be ignored.
/// </summary>
/// <param name="first">The vector of parametric variations to interpolate</param>
/// <param name="second">The parametric variation to store the output. This must be initialized first to the desired type.</param>
/// <param name="c">The vector of coefficients used to interpolate</param>
static void InterpParametricVar(vector<ParametricVariation<T>*>& first, ParametricVariation<T>* second, vector<T>& c)
{
//First, make sure the variation vector is the same size as the coefficient vector.
if (second && first.size() == c.size())
{
second->Clear();
auto secondParams = second->Params();
//Iterate through each of the source variations.
for (size_t i = 0; i < first.size(); i++)
{
auto firstVar = first[i];
//Make sure the source variation at this index is the same type as the variation being written to.
if (firstVar->VariationId() == second->VariationId())
{
size_t size = firstVar->ParamCount();
auto firstParams = firstVar->Params();
//Multiply each parameter of the variation at this index by the coefficient at this index, and add
//the result to the corresponding parameter in second.
for (size_t j = 0; j < size; j++)
{
if (!firstParams[j].IsPrecalc())
*(secondParams[j].Param()) += c[i] * firstParams[j].ParamVal();
}
}
}
second->Precalc();
}
}
/// <summary>
/// Thin wrapper around ConvertLinearToPolar().
/// </summary>
/// <param name="embers">The vector of embers whose affine transforms will be copied and converted</param>
/// <param name="xfi">The xform index in each ember to convert</param>
/// <param name="cflag">If 0 convert pre affine, else post affine.</param>
/// <param name="cxAng">The vec2 vector to store the polar angular values</param>
/// <param name="cxMag">The vec2 vector to store the polar magnitude values</param>
/// <param name="cxTrn">The vec2 vector to store the polar translation values</param>
static void ConvertLinearToPolar(vector<Ember<T>>& embers, size_t xfi, size_t cflag, vector<v2T>& cxAng, vector<v2T>& cxMag, vector<v2T>& cxTrn)
{
ConvertLinearToPolar(embers.data(), embers.size(), xfi, cflag, cxAng, cxMag, cxTrn);
}
/// <summary>
/// Convert pre or post affine coordinates of the xform at a specific index in each ember from linear to polar and store as separate
/// vec2 components in the vector parameters cxAng, cxMag and cxTrn.
/// </summary>
/// <param name="embers">The array of embers whose affine transforms will be copied and converted</param>
/// <param name="size">The size of the embers array</param>
/// <param name="xfi">The xform index in each ember to convert</param>
/// <param name="cflag">If 0 convert pre affine, else post affine.</param>
/// <param name="cxAng">The vec2 vector to store the polar angular values</param>
/// <param name="cxMag">The vec2 vector to store the polar magnitude values</param>
/// <param name="cxTrn">The vec2 vector to store the polar translation values</param>
static void ConvertLinearToPolar(Ember<T>* embers, size_t size, size_t xfi, size_t cflag, vector<v2T>& cxAng, vector<v2T>& cxMag, vector<v2T>& cxTrn)
{
if (size == cxAng.size() &&
size == cxMag.size() &&
size == cxTrn.size())
{
T c1[2], d, t, refang;
glm::length_t col, k;
int zlm[2];
const char* loc = __FUNCTION__;
for (k = 0; k < size; k++)
{
//Establish the angles and magnitudes for each component.
//Keep translation linear.
zlm[0] = zlm[1] = 0;
if (auto xform = embers[k].GetTotalXform(xfi))
{
for (col = 0; col < 2; col++)
{
if (cflag == 0)
{
c1[0] = xform->m_Affine.m_Mat[0][col];//a or b.
c1[1] = xform->m_Affine.m_Mat[1][col];//d or e.
t = xform->m_Affine.m_Mat[col][2];//c or f.
}
else
{
c1[0] = xform->m_Post.m_Mat[0][col];
c1[1] = xform->m_Post.m_Mat[1][col];
t = xform->m_Post.m_Mat[col][2];
}
cxAng[k][col] = atan2(c1[1], c1[0]);
cxMag[k][col] = std::sqrt(c1[0] * c1[0] + c1[1] * c1[1]);
if (cxMag[k][col] == 0)
zlm[col] = 1;
cxTrn[k][col] = t;
}
if (zlm[0] == 1 && zlm[1] == 0)
cxAng[k][0] = cxAng[k][1];
else if (zlm[0] == 0 && zlm[1] == 1)
cxAng[k][1] = cxAng[k][0];
}
else
{
cout << loc << ": xform " << xfi << " is missing when it was expected, something is severely wrong.\n";
}
}
//Make sure the rotation is the shorter direction around the circle
//by adjusting each angle in succession, and rotate clockwise if 180 degrees.
for (col = 0; col < 2; col++)
{
for (k = 1; k < size; k++)
{
if (auto xform = embers[k].GetTotalXform(xfi))
{
//Adjust angles differently if an asymmetric case.
if (xform->m_Wind[col] > 0 && cflag == 0)
{
//Adjust the angles to make sure that it's within wind : wind + 2pi.
refang = xform->m_Wind[col] - M_2PI;
//Make sure both angles are within [refang refang + 2 * pi].
while (cxAng[k - 1][col] < refang)
cxAng[k - 1][col] += M_2PI;
while (cxAng[k - 1][col] > refang + M_2PI)
cxAng[k - 1][col] -= M_2PI;
while (cxAng[k][col] < refang)
cxAng[k][col] += M_2PI;
while (cxAng[k][col] > refang + M_2PI)
cxAng[k][col] -= M_2PI;
}
else
{
//Normal way of adjusting angles.
d = cxAng[k][col] - cxAng[k - 1][col];
//Adjust to avoid the -pi/pi discontinuity.
if (d > M_PI + EPS)
cxAng[k][col] -= M_2PI;
else if (d < -(M_PI - EPS))//Forces clockwise rotation at 180.
cxAng[k][col] += M_2PI;
}
}
else
{
cout << loc << ": xform " << xfi << " is missing when it was expected, something is severely wrong.\n";
}
}
}
}
}
/// <summary>
/// Never really understood what this did, but it has to do with winding.
/// </summary>
/// <param name="embers">The array of embers</param>
/// <param name="count">The size of the embers array</param>
static void AsymmetricRefAngles(Ember<T>* embers, size_t count)
{
size_t k, xfi;
T cxang[4][2], c1[2], d;
for (xfi = 0; xfi < embers[0].XformCount(); xfi++)//Final xforms don't rotate regardless of their symmetry.
{
for (k = 0; k < count; k++)
{
//Establish the angle for each component.
//Should potentially functionalize.
for (glm::length_t col = 0; col < 2; col++)
{
c1[0] = embers[k].GetXform(xfi)->m_Affine.m_Mat[0][col];//A,D then B,E.
c1[1] = embers[k].GetXform(xfi)->m_Affine.m_Mat[1][col];
cxang[k][col] = atan2(c1[1], c1[0]);
}
}
for (k = 1; k < count; k++)
{
for (size_t col = 0; col < 2; col++)
{
int sym0, sym1;
int padSymFlag;
d = cxang[k][col] - cxang[k - 1][col];
//Adjust to avoid the -pi/pi discontinuity.
if (d > T(M_PI + EPS))
cxang[k][col] -= 2 * T(M_PI);
else if (d < -T(M_PI - EPS) )
cxang[k][col] += 2 * T(M_PI);
//If this is an asymmetric case, store the NON-symmetric angle
//Check them pairwise and store the reference angle in the second
//to avoid overwriting if asymmetric on both sides.
padSymFlag = 0;
sym0 = (embers[k - 1].GetXform(xfi)->m_Animate == 0 || (embers[k - 1].GetXform(xfi)->Empty() && padSymFlag));
sym1 = (embers[k ].GetXform(xfi)->m_Animate == 0 || (embers[k ].GetXform(xfi)->Empty() && padSymFlag));
if (sym1 && !sym0)
embers[k].GetXform(xfi)->m_Wind[col] = cxang[k - 1][col] + 2 * T(M_PI);
else if (sym0 && !sym1)
embers[k].GetXform(xfi)->m_Wind[col] = cxang[k][col] + 2 * T(M_PI);
}
}
}
}
/// <summary>
/// Never really understood what this did.
/// </summary>
/// <param name="coefs">The coefficients vector</param>
/// <param name="cxAng">The vec2 vector to store the polar angular values</param>
/// <param name="cxMag">The vec2 vector to store the polar magnitude values</param>
/// <param name="cxTrn">The vec2 vector to store the polar translation values</param>
/// <param name="store">The Affine2D to store the inerpolated values in</param>
static void InterpAndConvertBack(vector<T>& coefs, vector<v2T>& cxAng, vector<v2T>& cxMag, vector<v2T>& cxTrn, Affine2D<T>& store)
{
size_t size = coefs.size();
glm::length_t i, col, accmode[2] = { 0, 0 };
T expmag, accang[2] = { 0, 0 }, accmag[2] = { 0, 0 };
//Accumulation mode defaults to logarithmic, but in special
//cases switch to linear accumulation.
for (col = 0; col < 2; col++)
{
for (i = 0; i < size; i++)
{
if (log(cxMag[i][col]) < -10)
accmode[col] = 1;//Mode set to linear interp.
}
}
for (i = 0; i < size; i++)
{
for (col = 0; col < 2; col++)
{
accang[col] += coefs[i] * cxAng[i][col];
if (accmode[col] == 0)
accmag[col] += coefs[i] * std::log(cxMag[i][col]);
else
accmag[col] += coefs[i] * (cxMag[i][col]);
//Translation is ready to go.
store.m_Mat[col][2] += coefs[i] * cxTrn[i][col];
}
}
//Convert the angle back to rectangular.
for (col = 0; col < 2; col++)
{
if (accmode[col] == 0)
expmag = std::exp(accmag[col]);
else
expmag = accmag[col];
store.m_Mat[0][col] = expmag * std::cos(accang[col]);
store.m_Mat[1][col] = expmag * std::sin(accang[col]);
}
}
/// <summary>
/// Smooths the time values for animations.
/// </summary>
/// <param name="t">The time value to smooth</param>
/// <returns>the smoothed time value</returns>
static inline T Smoother(T t)
{
return 3 * t * t - 2 * t * t * t;
}
/// <summary>
/// Gets the stagger coef based on the position of the current xform among the others.
/// Never really understood what this did.
/// </summary>
/// <param name="t">The time value</param>
/// <param name="staggerPercent">The stagger percentage</param>
/// <param name="numXforms">The number xforms in the ember</param>
/// <param name="thisXform">The index of this xform within the ember</param>
/// <returns>The stagger coefficient</returns>
static inline T GetStaggerCoef(T t, T staggerPercent, size_t numXforms, size_t thisXform)
{
//maxStag is the spacing between xform start times if staggerPercent = 1.0.
T maxStag = T(numXforms - 1) / numXforms;
//Scale the spacing by staggerPercent.
T stagScaled = staggerPercent * maxStag;
//t ranges from 1 to 0 (the contribution of cp[0] to the blend).
//The first line below makes the first xform interpolate first.
//The second line makes the last xform interpolate first.
T st = stagScaled * (numXforms - 1 - thisXform) / (numXforms - 1);
T ett = st + (1 - stagScaled);
if (t <= st)
return 0;
else if (t >= ett)
return 1;
else
return Smoother((t - st) / (1 - stagScaled));
}
/// <summary>
/// Apply the specified motion function to a value.
/// </summary>
/// <param name="funcNum">The function type to apply, sin, triangle, hill or saw.</param>
/// <param name="timeVal">The time value to apply the motion function to</param>
/// <returns>The new time value computed by applying the specified motion function to the time value</returns>
static T MotionFuncs(eMotion funcNum, T timeVal)
{
//Motion funcs should be cyclic, and equal to 0 at integral time values
//abs peak values should be not be greater than 1.
switch (funcNum)
{
case EmberNs::eMotion::MOTION_SIN:
{
return std::sin(T(2.0) * T(M_PI) * timeVal);
}
break;
case EmberNs::eMotion::MOTION_TRIANGLE:
{
T fr = fmod(timeVal, T(1.0));
if (fr < 0)
fr += 1;
if (fr <= T(0.25))
fr *= 4;
else if (fr <= T(0.75))
fr = -4 * fr + 2;
else
fr = 4 * fr - 4;
return fr;
}
break;
case EmberNs::eMotion::MOTION_HILL:
{
return ((1 - std::cos(T(2.0) * T(M_PI) * timeVal)) * T(0.5));
}
break;
case EmberNs::eMotion::MOTION_SAW:
{
return (T(2.0) * fmod(timeVal - T(0.5), T(1.0)) - T(1.0));
}
break;
default:
return timeVal;
break;
}
}
/// <summary>
/// Compare xforms for sorting based first on color speed and second on determinants if
/// color speeds are equal.
/// </summary>
/// <param name="a">The first xform to compare</param>
/// <param name="b">The second xform to compare</param>
/// <returns>true if a > b, else false.</returns>
static inline bool CompareXforms(const Xform<T>& a, const Xform<T>& b)
{
if (a.m_ColorSpeed > b.m_ColorSpeed) return true;
if (a.m_ColorSpeed < b.m_ColorSpeed) return false;
//Original did this every time, even though it's only needed if the color speeds are equal.
m2T aMat2 = a.m_Affine.ToMat2ColMajor();
m2T bMat2 = b.m_Affine.ToMat2ColMajor();
T ad = glm::determinant(aMat2);
T bd = glm::determinant(bMat2);
if (a.m_ColorSpeed > 0)
{
if (ad < 0) return false;
if (bd < 0) return true;
ad = atan2(a.m_Affine.A(), a.m_Affine.D());
bd = atan2(b.m_Affine.A(), b.m_Affine.D());
}
return ad > bd;
}
};
}