fractorium/Source/EmberCL/EmberCLFunctions.h
Person 47b6614c8a --Bug fixes
-Fix improper usage of rand() in cpow2, cpow3, hypertile1, hypertile3D1, hypertile3D2, juliac, juliaq.
 -Fix program crashing during density filtering on some Nvidia cards.
 -hypertile3D1 was wrong.
 -Parsing phoenix_julia when coming from Apophysis was wrong.
 -Density filtering was freezing on certain Nvidia cards.

--Code changes
 -Optimize juliac, npolar.
 -Add a new function Crand() which behaves like the legacy C rand() which returns an integer between 0 and 32766, inclusive.
 -Use RandBit() in some places.
 -Remove Zeps() from vignette, it's not needed.
 -Restructure OpenCL code for density filtering such that it does not hang after being compiled on some Nvidia cards, such as the gtx 1660. Remove barriers from conditionals where possible.
2020-12-28 21:46:55 -08:00

278 lines
7.7 KiB
C++

#pragma once
#include "EmberCLPch.h"
#include "EmberCLStructs.h"
#define USEFMA 1
/// <summary>
/// OpenCL global function strings.
/// </summary>
namespace EmberCLns
{
/// <summary>
/// OpenCL equivalent of Palette::RgbToHsv().
/// </summary>
static const char* RgbToHsvFunctionString =
//rgb 0 - 1,
//h 0 - 6, s 0 - 1, v 0 - 1
"static inline void RgbToHsv(real4_bucket* rgb, real4_bucket* hsv)\n"
"{\n"
" real_bucket_t max, min, del, rc, gc, bc;\n"
"\n"
//Compute maximum of r, g, b.
" if ((*rgb).x >= (*rgb).y)\n"
" {\n"
" if ((*rgb).x >= (*rgb).z)\n"
" max = (*rgb).x;\n"
" else\n"
" max = (*rgb).z;\n"
" }\n"
" else\n"
" {\n"
" if ((*rgb).y >= (*rgb).z)\n"
" max = (*rgb).y;\n"
" else\n"
" max = (*rgb).z;\n"
" }\n"
"\n"
//Compute minimum of r, g, b.
" if ((*rgb).x <= (*rgb).y)\n"
" {\n"
" if ((*rgb).x <= (*rgb).z)\n"
" min = (*rgb).x;\n"
" else\n"
" min = (*rgb).z;\n"
" }\n"
" else\n"
" {\n"
" if ((*rgb).y <= (*rgb).z)\n"
" min = (*rgb).y;\n"
" else\n"
" min = (*rgb).z;\n"
" }\n"
"\n"
" del = max - min;\n"
" (*hsv).z = max;\n"
"\n"
" if (max != 0)\n"
" (*hsv).y = del / max;\n"
" else\n"
" (*hsv).y = 0;\n"
"\n"
" (*hsv).x = 0;\n"
" if ((*hsv).y != 0)\n"
" {\n"
" rc = (max - (*rgb).x) / del;\n"
" gc = (max - (*rgb).y) / del;\n"
" bc = (max - (*rgb).z) / del;\n"
"\n"
" if ((*rgb).x == max)\n"
" (*hsv).x = bc - gc;\n"
" else if ((*rgb).y == max)\n"
" (*hsv).x = 2 + rc - bc;\n"
" else if ((*rgb).z == max)\n"
" (*hsv).x = 4 + gc - rc;\n"
"\n"
" if ((*hsv).x < 0)\n"
" (*hsv).x += 6;\n"
" }\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of Palette::HsvToRgb().
/// </summary>
static const char* HsvToRgbFunctionString =
//h 0 - 6, s 0 - 1, v 0 - 1
//rgb 0 - 1
"static inline void HsvToRgb(real4_bucket* hsv, real4_bucket* rgb)\n"
"{\n"
" int j;\n"
" real_bucket_t f, p, q, t;\n"
"\n"
" while ((*hsv).x >= 6)\n"
" (*hsv).x = (*hsv).x - 6;\n"
"\n"
" while ((*hsv).x < 0)\n"
" (*hsv).x = (*hsv).x + 6;\n"
"\n"
" j = (int)floor((*hsv).x);\n"
" f = (*hsv).x - j;\n"
" p = (*hsv).z * (1 - (*hsv).y);\n"
" q = (*hsv).z * (1 - ((*hsv).y * f));\n"
" t = (*hsv).z * (1 - ((*hsv).y * (1 - f)));\n"
"\n"
" switch (j)\n"
" {\n"
" case 0: (*rgb).x = (*hsv).z; (*rgb).y = t; (*rgb).z = p; break;\n"
" case 1: (*rgb).x = q; (*rgb).y = (*hsv).z; (*rgb).z = p; break;\n"
" case 2: (*rgb).x = p; (*rgb).y = (*hsv).z; (*rgb).z = t; break;\n"
" case 3: (*rgb).x = p; (*rgb).y = q; (*rgb).z = (*hsv).z; break;\n"
" case 4: (*rgb).x = t; (*rgb).y = p; (*rgb).z = (*hsv).z; break;\n"
" case 5: (*rgb).x = (*hsv).z; (*rgb).y = p; (*rgb).z = q; break;\n"
" default: (*rgb).x = (*hsv).z; (*rgb).y = t; (*rgb).z = p; break;\n"
" }\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of Palette::CalcAlpha().
/// </summary>
static const char* CalcAlphaFunctionString =
"static inline real_t CalcAlpha(real_bucket_t density, real_bucket_t gamma, real_bucket_t linrange)\n"//Not the slightest clue what this is doing.//DOC
"{\n"
" real_bucket_t frac, alpha, funcval = pow(linrange, gamma);\n"
"\n"
" if (density > 0)\n"
" {\n"
" if (density < linrange)\n"
" {\n"
" frac = density / linrange;\n"
" alpha = (1.0 - frac) * density * (funcval / linrange) + frac * pow(density, gamma);\n"
" }\n"
" else\n"
" alpha = pow(density, gamma);\n"
" }\n"
" else\n"
" alpha = 0;\n"
"\n"
" return alpha;\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of Renderer::CurveAdjust().
/// Only use float here instead of real_t because the output will be passed to write_imagef()
/// during final accumulation, which only takes floats.
/// </summary>
static const char* CurveAdjustFunctionString =
"static inline void CurveAdjust(__global real4reals_bucket* csa, float* a, uint index)\n"
"{\n"
" uint tempIndex = (uint)clamp(*a * CURVES_LENGTH_M1, 0.0f, CURVES_LENGTH_M1);\n"
" uint tempIndex2 = (uint)clamp(csa[tempIndex].m_Real4.x * CURVES_LENGTH_M1, 0.0f, CURVES_LENGTH_M1);\n"
"\n"
" *a = (float)csa[tempIndex2].m_Reals[index];\n"
"}\n"
"\n";
/// <summary>
/// Use MWC 64 from David Thomas at the Imperial College of London for
/// random numbers in OpenCL, instead of ISAAC which was used
/// for CPU rendering.
/// </summary>
static const char* RandFunctionString =
"enum { MWC64X_A = 4294883355u };\n\n"
"inline uint MwcNext(uint2* s)\n"
"{\n"
" uint res = (*s).x ^ (*s).y; \n"//Calculate the result.
" uint hi = mul_hi((*s).x, MWC64X_A); \n"//Step the RNG.
" (*s).x = (*s).x * MWC64X_A + (*s).y;\n"//Pack the state back up.
" (*s).y = hi + ((*s).x < (*s).y); \n"
" return res; \n"//Return the next result.
"}\n"
"\n"
"inline uint MwcNextRange(uint2* s, uint val)\n"
"{\n"
" return (val == 0) ? MwcNext(s) : (uint)(((ulong)MwcNext(s) * (ulong)val) >> 32);\n"
"}\n"
"\n"
"inline real_t MwcNext01(uint2* s)\n"
"{\n"
" return MwcNext(s) * (real_t)(1.0 / 4294967296.0);\n"
"}\n"
"\n"
"inline uint MwcNextCrand(uint2* s)\n"
"{\n"
" return MwcNextRange(s, 32767u);\n"
"}\n"
"\n"
"inline real_t MwcNextFRange(uint2* s, real_t lower, real_t upper)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
#ifdef USEFMA
" return fma(f, upper - lower, lower);\n"
#else
" return (f * (upper - lower) + lower);\n"
#endif
"}\n"
"\n"
"inline real_t MwcNextNeg1Pos1(uint2* s)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
#ifdef USEFMA
" return fma(f, (real_t)2.0, (real_t)-1.0);\n"
#else
" return (f * (real_t)2.0 + (real_t)-1.0);\n"
#endif
"}\n"
"\n"
"inline real_t MwcNext0505(uint2* s)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
" return -0.5 + f;\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent Renderer::AddToAccum().
/// </summary>
static const char* AddToAccumWithCheckFunctionString =
"inline bool AccumCheck(int superRasW, int superRasH, int i, int ii, int j, int jj)\n"
"{\n"
" return (j + jj >= 0 && j + jj < superRasH && i + ii >= 0 && i + ii < superRasW);\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent various CarToRas member functions.
/// Normaly would subtract m_RasLlX and m_RasLlY, but they were negated in RendererCL before being passed in, so they could be used with fma().
/// </summary>
static const char* CarToRasFunctionString =
"inline void CarToRasConvertPointToSingle(__constant CarToRasCL* carToRas, Point* point, uint* singleBufferIndex)\n"
"{\n"
#ifdef USEFMA
" *singleBufferIndex = (uint)fma(carToRas->m_PixPerImageUnitW, point->m_X, carToRas->m_RasLlX) + (carToRas->m_RasWidth * (uint)fma(carToRas->m_PixPerImageUnitH, point->m_Y, carToRas->m_RasLlY));\n"
#else
" *singleBufferIndex = (uint)(carToRas->m_PixPerImageUnitW * point->m_X + carToRas->m_RasLlX) + (carToRas->m_RasWidth * (uint)(carToRas->m_PixPerImageUnitH * point->m_Y + carToRas->m_RasLlY));\n"
#endif
"}\n"
"\n"
"inline bool CarToRasInBounds(__constant CarToRasCL* carToRas, Point* point)\n"
"{\n"
" return point->m_X >= carToRas->m_CarLlX &&\n"
" point->m_X < carToRas->m_CarUrX &&\n"
" point->m_Y < carToRas->m_CarUrY &&\n"
" point->m_Y >= carToRas->m_CarLlY;\n"
"}\n"
"\n";
static string AtomicString()
{
ostringstream os;
os <<
"void AtomicAdd(volatile __global real_bucket_t* source, const real_bucket_t operand)\n"
"{\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_bucket_t realVal;\n"
" } newVal;\n"
"\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_bucket_t realVal;\n"
" } prevVal;\n"
"\n"
" do\n"
" {\n"
" prevVal.realVal = *source;\n"
" newVal.realVal = prevVal.realVal + operand;\n"
" } while (atomic_cmpxchg((volatile __global atomi*)source, prevVal.intVal, newVal.intVal) != prevVal.intVal);\n"
"}\n";
return os.str();
}
}