--User changes

-Optimization and correction for hexaplay3D and hexnix3D.
 -Major optimization on the GPU for flames which only have one xform, by skipping all random xform selection code.
 -Changes to how xaos is "preserved" when adding new xforms, copying xforms and duplicating xforms.
 --Duplicating xforms when no xaos is present in the flame now maintains not using xaos, and keeps all values as one.
 --Duplicating xforms when xaos is present, will result in xaos rows and columns that are the same as the xforms being duplicated, with the new row and column area having values of 1.
 --Duplicating xforms when xaos is present, while Control is pressed, will result in xaos rows and columns that have values of 0, with the new row and column area having values of 1.
 ---Copying xforms has the same behavior as duplicating with Control pressed.

--Bug fixes
 -hexaplay3D, hexnix3D and post_smartcrop were wrong on the GPU because they are the rare variations which preserve state between iterations.
 -Changing the sub batch size would improperly wrong the wrong number of iterations.

--Code changes
 -Some functions in Affine2D made const.
 -Change in the index at which points and variation state are preserved between kernel calls.
 -Some arguments in some member functions of GLEmberController made const.
This commit is contained in:
Person 2020-01-25 11:12:49 -08:00
parent 207ace6c67
commit 3b261124b2
19 changed files with 531 additions and 387 deletions

View File

@ -91,7 +91,7 @@ Affine2D<T>& Affine2D<T>::operator = (const Affine2D<T>& affine)
/// <param name="affine">The Affine2D to compare to</param>
/// <returns>True if all fields are equal, else false</returns>
template <typename T>
bool Affine2D<T>::operator == (const Affine2D<T>& affine)
bool Affine2D<T>::operator == (const Affine2D<T>& affine) const
{
return IsClose(A(), affine.A()) &&
IsClose(B(), affine.B()) &&
@ -107,7 +107,7 @@ bool Affine2D<T>::operator == (const Affine2D<T>& affine)
/// <param name="v">The vec2 to multiply by</param>
/// <returns>A new vec2 which is the product of the multiplication</returns>
template <typename T>
typename v2T Affine2D<T>::operator * (const v2T& v)
typename v2T Affine2D<T>::operator * (const v2T& v) const
{
return TransformVector(v);
}
@ -118,7 +118,7 @@ typename v2T Affine2D<T>::operator * (const v2T& v)
/// <param name="amount">The amount to scale by</param>
/// <returns>A new Affine2D which a scaled copy of this instance</returns>
template <typename T>
Affine2D<T> Affine2D<T>:: operator * (const T& t)
Affine2D<T> Affine2D<T>:: operator * (T t) const
{
return Affine2D<T>(A() * t,
D() * t,

View File

@ -67,9 +67,9 @@ public:
return *this;
}
bool operator == (const Affine2D<T>& affine);
v2T operator * (const v2T& v);
Affine2D<T> operator * (const T& t);
bool operator == (const Affine2D<T>& affine) const;
v2T operator * (const v2T& v) const;
Affine2D<T> operator * (T t) const;
void MakeID();
bool IsID() const;

View File

@ -375,7 +375,7 @@ public:
/// </summary>
/// <param name="xform">A pointer to the xform to find</param>
/// <returns>The index of the matched xform if found, else -1.</returns>
intmax_t GetXformIndex(Xform<T>* xform) const
intmax_t GetXformIndex(const Xform<T>* xform) const
{
intmax_t index = -1;
@ -392,7 +392,7 @@ public:
/// <param name="xform">A pointer to the xform to find</param>
/// <param name="forceFinal">If true, return the index of the final xform when its pointer is passed, even if a final is not present. Default: false.</param>
/// <returns>The index of the matched xform if found, else -1.</returns>
intmax_t GetTotalXformIndex(Xform<T>* xform, bool forceFinal = false) const
intmax_t GetTotalXformIndex(const Xform<T>* xform, bool forceFinal = false) const
{
size_t totalXformCount = TotalXformCount(forceFinal);
@ -427,7 +427,7 @@ public:
/// </summary>
/// <param name="xform">A pointer to the xform to test</param>
/// <returns>True if matched, else false.</returns>
bool IsFinalXform(Xform<T>* xform) const
bool IsFinalXform(const Xform<T>* xform) const
{
return &m_FinalXform == xform;
}
@ -640,6 +640,22 @@ public:
}
}
/// <summary>
/// Compute the total number of state fields within all variations of all xforms.
/// </summary>
/// <returns>The number of state fields</returns>
size_t GetVariationStateParamCount() const
{
size_t count = 0, i = 0, j = 0;
while (auto xform = GetTotalXform(i++))
for (j = 0; j < xform->TotalVariationCount(); j++)
if (auto var = xform->GetVariation(j))
count += var->StateParamCount();
return count;
}
/// <summary>
/// Flatten all xforms by adding a flatten variation if none is present, and if none of the
/// variations or parameters in the vector are not present.

View File

@ -1544,6 +1544,15 @@ public:
return "";
}
/// <summary>
/// Initialize the state variables contained in the passed in array.
/// </summary>
/// <param name="t">The pointer to the state variables.</param>
/// <param name="index">The offset in the pointer where the data begins.</param>
virtual void InitStateVars(T* t, size_t& index)
{
}
/// <summary>
/// Returns an OpenCL string for the initialization of the fields in this variation
/// that change during iterations.
@ -1693,6 +1702,7 @@ public:
void ParentXform(Xform<T>* xform) { m_Xform = xform; }
intmax_t IndexInXform() const { return m_Xform ? m_Xform->GetVariationIndex(const_cast<Variation<T>*>(this)) : -1; }
intmax_t XformIndexInEmber() const { return m_Xform ? m_Xform->IndexInParentEmber() : -1; }
virtual size_t StateParamCount() const { return 0; }
T m_Weight;//The weight of the variation.
@ -2058,6 +2068,7 @@ private:
using Variation<T>::Prefix; \
using Variation<T>::Precalc; \
using Variation<T>::StateOpenCLString; \
using Variation<T>::InitStateVars; \
using Variation<T>::WeightDefineString; \
using Variation<T>::DefaultZ; \
using Variation<T>::DefaultZCl;
@ -2283,7 +2294,7 @@ public:
/// Note these are different than regular variation parameters,
/// and thus require a completely different solution.
/// </summary>
/// <returns></returns>
/// <returns>The OpenCL string for the state variables</returns>
virtual string StateOpenCLString() const override
{
ostringstream os, os2;
@ -2301,6 +2312,43 @@ public:
return os.str();
}
/// <summary>
/// Returns the number of state variables present for this variation.
/// </summary>
/// <returns>The number of state variables</returns>
virtual size_t StateParamCount() const override
{
size_t count = 0;
for (auto& param : m_Params)
{
if (param.IsState())
{
count++;
}
}
return count;
}
/// <summary>
/// Initialize the state variables contained in the passed in array.
/// This is meant to be used only with OpenCL to initialize a state struct for every thread before
/// starting iteration.
/// </summary>
/// <param name="t">The pointer to the state variables.</param>
/// <param name="index">The offset in the pointer where the data begins.</param>
virtual void InitStateVars(T* t, size_t& index) override
{
for (auto& param : m_Params)
{
if (param.IsState())
{
t[index++] = param.ParamVal();
}
}
}
/// <summary>
/// Return the name, weight and parameters of the variation as a string.
/// </summary>

View File

@ -311,13 +311,13 @@ public:
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string index = ss2.str();
string weight = WeightDefineString();
string sc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dens = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seed = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dens = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seed = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tint m, n, iters = 0;\n"
<< "\t\treal_t x, y, u;\n"
@ -369,10 +369,10 @@ protected:
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Sc, prefix + "CircleRand_Sc", 1, eParamType::REAL_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_Sc, prefix + "CircleRand_Sc", 1, eParamType::REAL_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_Dens, prefix + "CircleRand_Dens", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "CircleRand_X", 10));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "CircleRand_Y", 10));
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "CircleRand_X", 10));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "CircleRand_Y", 10));
m_Params.push_back(ParamWithName<T>(&m_Seed, prefix + "CircleRand_Seed", 0, eParamType::INTEGER));
}
@ -1070,7 +1070,7 @@ public:
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T expx = std::exp(helper.In.x) * T(0.5);
T expnx = T(0.25) / expx;
T expnx = T(0.25) / Zeps(expx);
T boot = helper.In.z == 0 ? helper.m_PrecalcAtanyx : helper.In.z;
T tmp = m_Weight / Zeps(expx + expnx - (std::cos(helper.In.y) * std::cos(boot)));
helper.Out.x = (expx - expnx) * tmp;
@ -1085,7 +1085,7 @@ public:
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t expx = exp(vIn.x) * (real_t)(0.5);\n"
<< "\t\treal_t expnx = (real_t)(0.25) / expx;\n"
<< "\t\treal_t expnx = (real_t)(0.25) / Zeps(expx);\n"
<< "\t\treal_t boot = vIn.z == 0 ? precalcAtanyx : vIn.z;\n"
<< "\t\treal_t tmp = " << weight << " / Zeps(expx + expnx - (cos(vIn.y) * cos(boot)));\n"
<< "\n"
@ -3593,19 +3593,16 @@ public:
if (m_FCycle > 5)
{
m_FCycle = 0;
m_RSwtch = std::trunc(rand.Frand01<T>() * 3);//Chooses 6 or 3 nodes.
m_RSwtch = T(rand.RandBit());//Chooses 6 or 3 nodes.
}
if (m_BCycle > 2)
{
m_BCycle = 0;
m_RSwtch = std::trunc(rand.Frand01<T>() * 3);//Chooses 6 or 3 nodes.
m_RSwtch = T(rand.RandBit());//Chooses 6 or 3 nodes.
}
int posNeg = 1;
int loc;
T tempx, tempy;
T lrmaj = m_Weight;//Sets hexagon length radius - major plane.
T boost = 1;//Boost is the separation distance between the two planes.
T sumX, sumY;
@ -3622,48 +3619,33 @@ public:
sumY = helper.In.y;
}
if (rand.Frand01<T>() < T(0.5))
posNeg = -1;
//Determine whether one or two major planes.
int majplane = 1;
T abmajp = std::abs(m_MajP);
if (abmajp <= 1)
{
majplane = 1;//Want either 1 or 2.
}
else
{
majplane = 2;
boost = (abmajp - 1) * T(0.5);//Distance above and below XY plane.
}
int posNeg = rand.RandBit() ? -1 : 1;
//Creating Z factors relative to the planes. These will be added, whereas x and y will be assigned.
//Original does += z *, so using z on the right side of = is intentional.
if (majplane == 2)
helper.Out.z = helper.In.z * T(0.5) * m_ZLift + (posNeg * boost);
if (m_MajPlane == 2)
helper.Out.z = helper.In.z * T(0.5) * m_ZLift + (posNeg * m_Boost);
else
helper.Out.z = helper.In.z * T(0.5) * m_ZLift;
//Work out the segments and hexagonal nodes.
if (m_RSwtch <= 1)//Occasion to build using 60 degree segments.
if (m_RSwtch)//Occasion to build using 60 degree segments.
{
loc = int(m_FCycle);//Sequential nodes selection.
int loc = int(m_FCycle);//Sequential nodes selection.
tempx = m_Seg60[loc].x;
tempy = m_Seg60[loc].y;
m_FCycle++;
}
else//Occasion to build on 120 degree segments.
{
loc = int(m_BCycle);//Sequential nodes selection.
int loc = int(m_BCycle);//Sequential nodes selection.
tempx = m_Seg120[loc].x;
tempy = m_Seg120[loc].y;
m_BCycle++;
}
helper.Out.x = ((sumX + helper.In.x) * m_HalfScale) + (lrmaj * tempx);
helper.Out.y = ((sumY + helper.In.y) * m_HalfScale) + (lrmaj * tempy);
helper.Out.x = ((sumX + helper.In.x) * m_HalfScale) + (m_Weight * tempx);
helper.Out.y = ((sumY + helper.In.y) * m_HalfScale) + (m_Weight * tempy);
}
virtual string OpenCLString() const override
@ -3677,6 +3659,8 @@ public:
string majp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string zlift = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string majplane = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string boost = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seg60xStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 6;//Precalc.
string seg60yStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 6;
string seg120xStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 3;
@ -3689,20 +3673,16 @@ public:
<< "\t\tif (" << fcycle << " > 5)\n"
<< "\t\t{\n"
<< "\t\t " << fcycle << " = 0;\n"
<< "\t\t " << rswtch << " = trunc(MwcNext01(mwc) * 3.0);\n"
<< "\t\t " << rswtch << " = (real_t)(MwcNext(mwc) & 1);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (" << bcycle << " > 2)\n"
<< "\t\t{\n"
<< "\t\t " << bcycle << " = 0;\n"
<< "\t\t " << rswtch << " = trunc(MwcNext01(mwc) * 3.0);\n"
<< "\t\t " << rswtch << " = (real_t)(MwcNext(mwc) & 1);\n"
<< "\t\t}\n"
<< "\t\t\n"
<< "\t\tint posNeg = 1;\n"
<< "\t\tint loc;\n"
<< "\t\treal_t tempx, tempy;\n"
<< "\t\treal_t lrmaj = " << weight << ";\n"
<< "\t\treal_t boost = 1;\n"
<< "\t\treal_t sumX, sumY;\n\n";
if (m_VarType == eVariationType::VARTYPE_REG)
@ -3721,61 +3701,40 @@ public:
}
ss
<< "\t\t\n"
<< "\t\tif (MwcNext01(mwc) < 0.5)\n"
<< "\t\t posNeg = -1;\n"
<< "\n"
<< "\t\tint majplane = 1;\n"
<< "\t\treal_t abmajp = fabs(" << majp << ");\n"
<< "\t\tint posNeg = (MwcNext(mwc) & 1) ? -1 : 1;\n"
<< "\n"
<< "\t\tif (abmajp <= 1)\n"
<< "\t\t{\n"
<< "\t\t majplane = 1;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t majplane = 2;\n"
<< "\t\t boost = (abmajp - 1) * 0.5;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (majplane == 2)\n"
<< "\t\t vOut.z = fma(vIn.z * (real_t)(0.5), " << zlift << ", (posNeg * boost));\n"
<< "\t\tif (" << majplane << " == 2)\n"
<< "\t\t vOut.z = fma(vIn.z * (real_t)(0.5), " << zlift << ", (posNeg * " << boost << "));\n"
<< "\t\telse\n"
<< "\t\t vOut.z = vIn.z * 0.5 * " << zlift << ";\n"
<< "\n"
<< "\t\tif (" << rswtch << " <= 1)\n"
<< "\t\tif (" << rswtch << ")\n"
<< "\t\t{\n"
<< "\t\t loc = (int)" << fcycle << ";\n"
<< "\t\t int loc = (int)" << fcycle << ";\n"
<< "\t\t tempx = parVars[" << seg60xStartIndex << " + loc];\n"
<< "\t\t tempy = parVars[" << seg60yStartIndex << " + loc];\n"
<< "\t\t " << fcycle << " = " << fcycle << " + 1;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t loc = (int)" << bcycle << ";\n"
<< "\t\t int loc = (int)" << bcycle << ";\n"
<< "\t\t tempx = parVars[" << seg120xStartIndex << " + loc];\n"
<< "\t\t tempy = parVars[" << seg120yStartIndex << " + loc];\n"
<< "\t\t " << bcycle << " = " << bcycle << " + 1;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = fma((sumX + vIn.x), " << halfScale << ", (lrmaj * tempx));\n"
<< "\t\tvOut.y = fma((sumY + vIn.y), " << halfScale << ", (lrmaj * tempy));\n"
<< "\t\tvOut.x = fma(sumX + vIn.x, " << halfScale << ", " << weight << " * tempx);\n"
<< "\t\tvOut.y = fma(sumY + vIn.y, " << halfScale << ", " << weight << " * tempy);\n"
<< "\t}\n";
return ss.str();
}
virtual string StateInitOpenCLString() const override
virtual void InitStateVars(T* t, size_t& index) override
{
ostringstream ss, ss2;
ss2 << "_" << XformIndexInEmber();
string stateIndex = ss2.str();
string prefix = Prefix();
//CPU sets fycle and bcycle to 0 at the beginning in Precalc().
//Set to random in OpenCL since a value can't be set once and kept between kernel launches without writing it back to an OpenCL buffer.
ss << "\n\tvarState." << prefix << "hexaplay3D_rswtch" << stateIndex << " = trunc(MwcNext01(&mwc) * 3.0);";
ss << "\n\tvarState." << prefix << "hexaplay3D_fcycle" << stateIndex << " = trunc(MwcNext01(&mwc) * 5.0);";
ss << "\n\tvarState." << prefix << "hexaplay3D_bcycle" << stateIndex << " = trunc(MwcNext01(&mwc) * 2.0);";
return ss.str();
t[index++] = T(QTIsaac<ISAAC_SIZE, ISAAC_INT>::LockedRandBit());
t[index++] = 0;
t[index++] = 0;
}
virtual void Precalc() override
@ -3784,6 +3743,18 @@ public:
m_RSwtch = std::trunc(QTIsaac<ISAAC_SIZE, ISAAC_INT>::LockedFrand01<T>() * 3);//Chooses 6 or 3 nodes.
m_FCycle = 0;
m_BCycle = 0;
T absmajp = std::abs(m_MajP);
if (absmajp <= 1)
{
m_MajPlane = 1;//Want either 1 or 2.
}
else
{
m_MajPlane = 2;
m_Boost = (absmajp - 1) * T(0.5);//Distance above and below XY plane.
}
m_Seg60[0].x = 1;
m_Seg60[1].x = T(0.5);
m_Seg60[2].x = T(-0.5);
@ -3814,7 +3785,9 @@ protected:
m_Params.push_back(ParamWithName<T>(&m_MajP, prefix + "hexaplay3D_majp", 1, eParamType::REAL));
m_Params.push_back(ParamWithName<T>(&m_Scale, prefix + "hexaplay3D_scale", T(0.25), eParamType::REAL));
m_Params.push_back(ParamWithName<T>(&m_ZLift, prefix + "hexaplay3D_zlift", T(0.25), eParamType::REAL));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[0].x, prefix + "hexaplay3D_seg60x0"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_MajPlane, prefix + "hexaplay3D_majplane"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Boost, prefix + "hexaplay3D_boost"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[0].x, prefix + "hexaplay3D_seg60x0"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[1].x, prefix + "hexaplay3D_seg60x1"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[2].x, prefix + "hexaplay3D_seg60x2"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[3].x, prefix + "hexaplay3D_seg60x3"));
@ -3842,7 +3815,9 @@ private:
T m_MajP;
T m_Scale;
T m_ZLift;
v2T m_Seg60[6];//Precalc.
T m_MajPlane;//Precalc.
T m_Boost;
v2T m_Seg60[6];
v2T m_Seg120[3];
T m_HalfScale;
T m_RSwtch;//State.
@ -3873,22 +3848,19 @@ public:
if (m_FCycle > 5)
{
m_FCycle = 0;
m_RSwtch = std::trunc(rand.Frand01<T>() * 3);//Chooses 6 or 3 nodes.
m_RSwtch = T(rand.RandBit());//Chooses 6 or 3 nodes.
}
if (m_BCycle > 2)
{
m_BCycle = 0;
m_RSwtch = std::trunc(rand.Frand01<T>() * 3);//Chooses 6 or 3 nodes.
m_RSwtch = T(rand.RandBit());//Chooses 6 or 3 nodes.
}
T lrmaj = m_Weight;
T smooth = 1;
T smRotxFP = 0;
T smRotyFP = 0;
T smRotxFT = 0;
T smRotyFT = 0;
T gentleZ = 0;
T sumX, sumY, sumZ;
if (m_VarType == eVariationType::VARTYPE_REG)
@ -3906,75 +3878,39 @@ public:
sumZ = helper.In.z;
}
if (std::abs(m_Weight) <= 0.5)
smooth = m_Weight * 2;
else
smooth = 1;
int posNeg = 1;
int loc;
T boost = 0;
T scale = m_Scale;
int posNeg = rand.RandBit() ? -1 : 1;
T scale3;
T tempx, tempy;
if (rand.Frand01<T>() < T(0.5))
posNeg = -1;
int majplane = 0;
T abmajp = std::abs(m_MajP);
if (abmajp <= 1)
if (m_MajPlane == 0)
{
majplane = 0;
boost = 0;
helper.Out.z = m_Smooth * helper.In.z * m_Scale * m_ZLift;
}
else if (abmajp > 1 && abmajp < 2)
else if (m_MajPlane == 1 && m_MajP < 0)
{
majplane = 1;
boost = 0;
}
else
{
majplane = 2;
boost = (abmajp - 2) * T(0.5);
}
if (majplane == 0)
{
helper.Out.z = smooth * helper.In.z * scale * m_ZLift;
}
else if (majplane == 1 && m_MajP < 0)
{
if (m_MajP < -1 && m_MajP >= -2)
gentleZ = (abmajp - 1);
else
gentleZ = 1;
if (posNeg < 0)
helper.Out.z = -2 * (sumZ * gentleZ);
helper.Out.z = -2 * (sumZ * m_GentleZ);
}
if (majplane == 2 && m_MajP < 0)
else if (m_MajPlane == 2 && m_MajP < 0)
{
if (posNeg > 0)
{
helper.Out.z = (smooth * (helper.In.z * scale * m_ZLift + boost));
helper.Out.z = (m_Smooth * (helper.In.z * m_Scale * m_ZLift + m_Boost));
}
else//For this case when reg, assign and zero out. For all others, sum as usual.
{
helper.Out.z = (sumZ - (2 * smooth * sumZ)) + (smooth * posNeg * (helper.In.z * scale * m_ZLift + boost));
helper.Out.z = (sumZ - (2 * m_Smooth * sumZ)) + (m_Smooth * posNeg * (helper.In.z * m_Scale * m_ZLift + m_Boost));
if (m_VarType == eVariationType::VARTYPE_REG)
outPoint.m_Z = 0;
}
}
else
helper.Out.z = smooth * (helper.In.z * scale * m_ZLift + (posNeg * boost));
helper.Out.z = m_Smooth * (helper.In.z * m_Scale * m_ZLift + (posNeg * m_Boost));
if (m_RSwtch <= 1)
if (m_RSwtch)
{
loc = int(rand.Frand01<T>() * 6);
auto loc = rand.Rand(6);
tempx = m_Seg60[loc].x;
tempy = m_Seg60[loc].y;
scale3 = 1;
@ -3982,19 +3918,19 @@ public:
}
else
{
loc = int(rand.Frand01<T>() * 3);
auto loc = rand.Rand(3);
tempx = m_Seg120[loc].x;
tempy = m_Seg120[loc].y;
scale3 = m_3side;
m_BCycle++;
}
smRotxFP = (smooth * scale * sumX * tempx) - (smooth * scale * sumY * tempy);
smRotyFP = (smooth * scale * sumY * tempx) + (smooth * scale * sumX * tempy);
smRotxFT = (helper.In.x * smooth * scale * tempx) - (helper.In.y * smooth * scale * tempy);
smRotyFT = (helper.In.y * smooth * scale * tempx) + (helper.In.x * smooth * scale * tempy);
helper.Out.x = sumX * (1 - smooth) + smRotxFP + smRotxFT + smooth * lrmaj * scale3 * tempx;
helper.Out.y = sumY * (1 - smooth) + smRotyFP + smRotyFT + smooth * lrmaj * scale3 * tempy;
smRotxFP = (m_Smooth * m_Scale * sumX * tempx) - (m_Smooth * m_Scale * sumY * tempy);
smRotyFP = (m_Smooth * m_Scale * sumY * tempx) + (m_Smooth * m_Scale * sumX * tempy);
smRotxFT = (helper.In.x * m_Smooth * m_Scale * tempx) - (helper.In.y * m_Smooth * m_Scale * tempy);
smRotyFT = (helper.In.y * m_Smooth * m_Scale * tempx) + (helper.In.x * m_Smooth * m_Scale * tempy);
helper.Out.x = sumX * (1 - m_Smooth) + smRotxFP + smRotxFT + m_Smooth * m_Weight * scale3 * tempx;
helper.Out.y = sumY * (1 - m_Smooth) + smRotyFP + smRotyFT + m_Smooth * m_Weight * scale3 * tempy;
}
virtual string OpenCLString() const override
@ -4009,7 +3945,11 @@ public:
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string zlift = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string side3 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seg60xStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 6;//Precalc.
string smooth = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalc.
string majplane = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string boost = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string gentlez = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seg60xStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 6;
string seg60yStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 6;
string seg120xStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 3;
string seg120yStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 3;
@ -4020,22 +3960,21 @@ public:
<< "\t\tif (" << fcycle << " > 5)\n"
<< "\t\t{\n"
<< "\t\t " << fcycle << " = 0;\n"
<< "\t\t " << rswtch << " = trunc(MwcNext01(mwc) * 3.0);\n"
<< "\t\t " << rswtch << " = (real_t)(MwcNext(mwc) & 1);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (" << bcycle << " > 2)\n"
<< "\t\t{\n"
<< "\t\t " << bcycle << " = 0;\n"
<< "\t\t " << rswtch << " = trunc(MwcNext01(mwc) * 3.0);\n"
<< "\t\t " << rswtch << " = (real_t)(MwcNext(mwc) & 1);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\treal_t lrmaj = " << weight << ";\n"
<< "\t\treal_t smooth = 1;\n"
<< "\t\treal_t scale = " << scale << ";\n"//This is an optimal blend of memory accesses vs. caching to local variables which seems to work best.
<< "\t\treal_t smooth = " << smooth << ";\n"
<< "\t\treal_t smRotxFP = 0;\n"
<< "\t\treal_t smRotyFP = 0;\n"
<< "\t\treal_t smRotxFT = 0;\n"
<< "\t\treal_t smRotyFT = 0;\n"
<< "\t\treal_t gentleZ = 0;\n"
<< "\t\treal_t sumX, sumY, sumZ;\n\n";
if (m_VarType == eVariationType::VARTYPE_REG)
@ -4057,64 +3996,28 @@ public:
ss
<< "\n"
<< "\t\tif (fabs(lrmaj) <= 0.5)\n"
<< "\t\t smooth = lrmaj * 2;\n"
<< "\t\telse\n"
<< "\t\t smooth = 1;\n"
<< "\n"
<< "\t\tint posNeg = 1;\n"
<< "\t\tint loc;\n"
<< "\t\treal_t boost = 0;\n"
<< "\t\treal_t scale = " << scale << ";\n"//Temp will be used from here on.
<< "\t\tint posNeg = (MwcNext(mwc) & 1) ? -1 : 1;\n"
<< "\t\treal_t scale3;\n"
<< "\t\treal_t tempx, tempy;\n"
<< "\n"
<< "\t\tif (MwcNext01(mwc) < 0.5)\n"
<< "\t\t posNeg = -1;\n"
<< "\n"
<< "\t\tint majplane = 0;\n"
<< "\t\treal_t abmajp = fabs(" << majp << ");\n"
<< "\n"
<< "\t\tif (abmajp <= 1)\n"
<< "\t\t{\n"
<< "\t\t majplane = 0;\n"
<< "\t\t boost = 0;\n"
<< "\t\t}\n"
<< "\t\telse if (abmajp > 1 && abmajp < 2)\n"
<< "\t\t{\n"
<< "\t\t majplane = 1;\n"
<< "\t\t boost = 0;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t majplane = 2;\n"
<< "\t\t boost = (abmajp - 2) * 0.5;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (majplane == 0)\n"
<< "\t\tif (" << majplane << " == 0)\n"
<< "\t\t{\n"
<< "\t\t vOut.z = smooth * vIn.z * scale * " << zlift << ";\n"
<< "\t\t}\n"
<< "\t\telse if (majplane == 1 && " << majp << " < 0)\n"
<< "\t\telse if (" << majplane << " == 1 && " << majp << " < 0)\n"
<< "\t\t{\n"
<< "\t\t if (" << majp << " < -1 && " << majp << " >= -2)\n"
<< "\t\t gentleZ = (abmajp - 1);\n"
<< "\t\t else\n"
<< "\t\t gentleZ = 1;\n"
<< "\n"
<< "\t\t if (posNeg < 0)\n"
<< "\t\t vOut.z = -2 * (sumZ * gentleZ);\n"
<< "\t\t vOut.z = -2 * (sumZ * " << gentlez << ");\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (majplane == 2 && " << majp << " < 0)\n"
<< "\t\telse if (" << majplane << " == 2 && " << majp << " < 0)\n"
<< "\t\t{\n"
<< "\t\t if (posNeg > 0)\n"
<< "\t\t {\n"
<< "\t\t vOut.z = (smooth * fma(vIn.z * scale, " << zlift << ", boost));\n"
<< "\t\t vOut.z = (smooth * fma(vIn.z * scale, " << zlift << ", " << boost << "));\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.z = fma(smooth * posNeg, fma(vIn.z * scale, " << zlift << ", boost), sumZ - ((real_t)(2.0) * smooth * sumZ));\n";
<< "\t\t vOut.z = fma(smooth * posNeg, fma(vIn.z * scale, " << zlift << ", " << boost << "), sumZ - ((real_t)(2.0) * smooth * sumZ));\n";
if (m_VarType == eVariationType::VARTYPE_REG)
ss << "\t\t outPoint->m_Z = 0;\n";
@ -4124,12 +4027,12 @@ public:
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t vOut.z = smooth * fma(vIn.z * scale, " << zlift << ", (posNeg * boost));\n"
<< "\t\t vOut.z = smooth * fma(vIn.z * scale, " << zlift << ", (posNeg * " << boost << "));\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (" << rswtch << " <= 1)\n"
<< "\t\tif (" << rswtch << ")\n"
<< "\t\t{\n"
<< "\t\t loc = (int)(MwcNext01(mwc) * 6);\n"
<< "\t\t uint loc = MwcNextRange(mwc, 6);\n"
<< "\t\t tempx = parVars[" << seg60xStartIndex << " + loc];\n"
<< "\t\t tempy = parVars[" << seg60yStartIndex << " + loc];\n"
<< "\t\t scale3 = 1;\n"
@ -4137,7 +4040,7 @@ public:
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t loc = (int)(MwcNext01(mwc) * 3);\n"
<< "\t\t uint loc = MwcNextRange(mwc, 3);\n"
<< "\t\t tempx = parVars[" << seg120xStartIndex << " + loc];\n"
<< "\t\t tempy = parVars[" << seg120yStartIndex << " + loc];\n"
<< "\t\t scale3 = " << side3 << ";\n"
@ -4148,33 +4051,58 @@ public:
<< "\t\tsmRotyFP = fma(smooth * scale, sumY * tempx, (smooth * scale * sumX * tempy));\n"
<< "\t\tsmRotxFT = fma(vIn.x * smooth, scale * tempx, -(vIn.y * smooth * scale * tempy));\n"
<< "\t\tsmRotyFT = fma(vIn.y * smooth, scale * tempx, (vIn.x * smooth * scale * tempy));\n"
<< "\t\tvOut.x = fma(sumX, (1 - smooth), fma(smooth * lrmaj, scale3 * tempx, smRotxFP + smRotxFT));\n"
<< "\t\tvOut.y = fma(sumY, (1 - smooth), fma(smooth * lrmaj, scale3 * tempy, smRotyFP + smRotyFT));\n"
<< "\t\tvOut.x = fma(sumX, (1 - smooth), fma(smooth * " << weight << ", scale3 * tempx, smRotxFP + smRotxFT));\n"
<< "\t\tvOut.y = fma(sumY, (1 - smooth), fma(smooth * " << weight << ", scale3 * tempy, smRotyFP + smRotyFT));\n"
<< "\t}\n";
return ss.str();
}
virtual string StateInitOpenCLString() const override
virtual void InitStateVars(T* t, size_t& index) override
{
ostringstream ss, ss2;
ss2 << "_" << XformIndexInEmber();
string stateIndex = ss2.str();
string prefix = Prefix();
//CPU sets fycle and bcycle to 0 at the beginning in Precalc().
//Set to random in OpenCL since a value can't be set once and kept between kernel launches without writing it back to an OpenCL buffer.
//This doesn't seem to make a difference from setting them to 0, but do it anyway because it seems more correct.
ss << "\n\tvarState." << prefix << "hexnix3D_rswtch" << stateIndex << " = trunc(MwcNext01(&mwc) * (real_t)(3.0));";
ss << "\n\tvarState." << prefix << "hexnix3D_fcycle" << stateIndex << " = trunc(MwcNext01(&mwc) * (real_t)(5.0));";
ss << "\n\tvarState." << prefix << "hexnix3D_bcycle" << stateIndex << " = trunc(MwcNext01(&mwc) * (real_t)(2.0));";
return ss.str();
t[index++] = T(QTIsaac<ISAAC_SIZE, ISAAC_INT>::LockedRandBit());
t[index++] = 0;
t[index++] = 0;
}
virtual void Precalc() override
{
T hlift = std::sin(T(M_PI) / 3);
m_RSwtch = std::trunc(QTIsaac<ISAAC_SIZE, ISAAC_INT>::LockedFrand01<T>() * 3);//Chooses 6 or 3 nodes.
m_RSwtch = T(QTIsaac<ISAAC_SIZE, ISAAC_INT>::LockedRandBit());// QTIsaac<ISAAC_SIZE, ISAAC_INT>::LockedRand(4);// //std::trunc(QTIsaac<ISAAC_SIZE, ISAAC_INT>::LockedFrand01<T>() * 3);//Chooses 6 or 3 nodes.
m_FCycle = 0;
m_BCycle = 0;
auto absmajp = std::abs(m_MajP);
if (absmajp <= 1)
{
m_MajPlane = 0;
m_Boost = 0;
}
else if (absmajp > 1 && absmajp < 2)
{
m_MajPlane = 1;
m_Boost = 0;
}
else
{
m_MajPlane = 2;
m_Boost = (absmajp - 2) * T(0.5);
}
if (m_MajPlane == 1 && m_MajP < 0)
{
if (m_MajP < -1 && m_MajP >= -2)
m_GentleZ = absmajp - 1;
else
m_GentleZ = 1;
}
else
m_GentleZ = 0;
if (std::abs(m_Weight) <= T(0.5))
m_Smooth = m_Weight * 2;
else
m_Smooth = 1;
m_Seg60[0].x = 1;
m_Seg60[1].x = T(0.5);
m_Seg60[2].x = T(-0.5);
@ -4205,7 +4133,11 @@ protected:
m_Params.push_back(ParamWithName<T>(&m_Scale, prefix + "hexnix3D_scale", T(0.25), eParamType::REAL));
m_Params.push_back(ParamWithName<T>(&m_ZLift, prefix + "hexnix3D_zlift"));
m_Params.push_back(ParamWithName<T>(&m_3side, prefix + "hexnix3D_3side", T(0.667), eParamType::REAL));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[0].x, prefix + "hexnix3D_seg60x0"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Smooth, prefix + "hexnix3D_smooth"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_MajPlane, prefix + "hexnix3D_majplane"));
m_Params.push_back(ParamWithName<T>(true, &m_Boost, prefix + "hexnix3D_boost"));
m_Params.push_back(ParamWithName<T>(true, &m_GentleZ, prefix + "hexnix3D_gentlez"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[0].x, prefix + "hexnix3D_seg60x0"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[1].x, prefix + "hexnix3D_seg60x1"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[2].x, prefix + "hexnix3D_seg60x2"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[3].x, prefix + "hexnix3D_seg60x3"));
@ -4233,7 +4165,11 @@ private:
T m_Scale;
T m_ZLift;
T m_3side;
v2T m_Seg60[6];//Precalc.
T m_Smooth;//Precalc.
T m_MajPlane;
T m_Boost;
T m_GentleZ;
v2T m_Seg60[6];
v2T m_Seg120[3];
T m_RSwtch;//State.
T m_FCycle;

View File

@ -4244,31 +4244,31 @@ public:
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber();
string weight = WeightDefineString();
string index = ss2.str() + "]";
string stateIndex = ss2.str();
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string radius = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string roundstr = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string roundwidth = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string distortion = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string edge = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scatter = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string offset = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rotation = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cropmode = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string staticc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mode = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string radial = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string workradius = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string workpower = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string alpha = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string roundcoeff = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string workrotation = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x = "varState->" + m_Params[i++].Name() + stateIndex;//State.
string y = "varState->" + m_Params[i++].Name() + stateIndex;
string z = "varState->" + m_Params[i++].Name() + stateIndex;
string c = "varState->" + m_Params[i++].Name() + stateIndex;
string weight = WeightDefineString();
string index = ss2.str() + "]";
string stateIndex = ss2.str();
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string radius = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string roundstr = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string roundwidth = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string distortion = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string edge = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scatter = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string offset = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rotation = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cropmode = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string staticc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mode = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string radial = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string workradius = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string workpower = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string alpha = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string roundcoeff = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string workrotation = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x = "varState->" + m_Params[i++].Name() + stateIndex;//State.
string y = "varState->" + m_Params[i++].Name() + stateIndex;
string z = "varState->" + m_Params[i++].Name() + stateIndex;
string c = "varState->" + m_Params[i++].Name() + stateIndex;
ss << "\t{\n"
<< "\t\tint lastPart = 1;\n"
<< "\t\treal_t xi, yi, zi;\n"
@ -4456,19 +4456,6 @@ public:
return ss.str();
}
virtual string StateInitOpenCLString() const override
{
ostringstream ss, ss2;
ss2 << "_" << XformIndexInEmber();
string stateIndex = ss2.str();
string prefix = Prefix();
ss << "\n\tvarState." << prefix << "smartcrop_x" << stateIndex << " = 0;";
ss << "\n\tvarState." << prefix << "smartcrop_y" << stateIndex << " = 0;";
ss << "\n\tvarState." << prefix << "smartcrop_z" << stateIndex << " = 0;";
ss << "\n\tvarState." << prefix << "smartcrop_c" << stateIndex << " = 0;";
return ss.str();
}
virtual void Precalc() override
{
m_Mode = T(((m_Power > 0) == (m_Radius > 0)) ? 1 : 0);
@ -4496,29 +4483,30 @@ protected:
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "smartcrop_power", 4)); //Original used a prefix of scrop_, which is incompatible with Ember's design.
m_Params.push_back(ParamWithName<T>(&m_Radius, prefix + "smartcrop_radius", 1));
m_Params.push_back(ParamWithName<T>(&m_Roundstr, prefix + "smartcrop_roundstr"));
m_Params.push_back(ParamWithName<T>(&m_Roundwidth, prefix + "smartcrop_roundwidth", 1));
m_Params.push_back(ParamWithName<T>(&m_Distortion, prefix + "smartcrop_distortion", 1));
m_Params.push_back(ParamWithName<T>(&m_Edge, prefix + "smartcrop_edge"));
m_Params.push_back(ParamWithName<T>(&m_Scatter, prefix + "smartcrop_scatter"));
m_Params.push_back(ParamWithName<T>(&m_Offset, prefix + "smartcrop_offset"));
m_Params.push_back(ParamWithName<T>(&m_Rotation, prefix + "smartcrop_rotation"));
m_Params.push_back(ParamWithName<T>(&m_Cropmode, prefix + "smartcrop_cropmode", 1, eParamType::INTEGER, -1, 2));
m_Params.push_back(ParamWithName<T>(&m_Static, prefix + "smartcrop_static", 1, eParamType::INTEGER, -1, 3));
m_Params.push_back(ParamWithName<T>(true, &m_Mode, prefix + "smartcrop_mode"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Radial, prefix + "smartcrop_radial"));
m_Params.push_back(ParamWithName<T>(true, &m_WorkRadius, prefix + "smartcrop_work_radius"));
m_Params.push_back(ParamWithName<T>(true, &m_WorkPower, prefix + "smartcrop_work_power"));
m_Params.push_back(ParamWithName<T>(true, &m_Alpha, prefix + "smartcrop_alpha"));
m_Params.push_back(ParamWithName<T>(true, &m_RoundCoeff, prefix + "smartcrop_round_coeff"));
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "smartcrop_power", 4)); //Original used a prefix of scrop_, which is incompatible with Ember's design.
m_Params.push_back(ParamWithName<T>(&m_Radius, prefix + "smartcrop_radius", 1));
m_Params.push_back(ParamWithName<T>(&m_Roundstr, prefix + "smartcrop_roundstr"));
m_Params.push_back(ParamWithName<T>(&m_Roundwidth, prefix + "smartcrop_roundwidth", 1));
m_Params.push_back(ParamWithName<T>(&m_Distortion, prefix + "smartcrop_distortion", 1));
m_Params.push_back(ParamWithName<T>(&m_Edge, prefix + "smartcrop_edge"));
m_Params.push_back(ParamWithName<T>(&m_Scatter, prefix + "smartcrop_scatter"));
m_Params.push_back(ParamWithName<T>(&m_Offset, prefix + "smartcrop_offset"));
m_Params.push_back(ParamWithName<T>(&m_Rotation, prefix + "smartcrop_rotation"));
m_Params.push_back(ParamWithName<T>(&m_Cropmode, prefix + "smartcrop_cropmode", 1, eParamType::INTEGER, -1, 2));
m_Params.push_back(ParamWithName<T>(&m_Static, prefix + "smartcrop_static", 1, eParamType::INTEGER, -1, 3));
m_Params.push_back(ParamWithName<T>(true, &m_Mode, prefix + "smartcrop_mode"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Radial, prefix + "smartcrop_radial"));
m_Params.push_back(ParamWithName<T>(true, &m_WorkRadius, prefix + "smartcrop_work_radius"));
m_Params.push_back(ParamWithName<T>(true, &m_WorkPower, prefix + "smartcrop_work_power"));
m_Params.push_back(ParamWithName<T>(true, &m_Alpha, prefix + "smartcrop_alpha"));
m_Params.push_back(ParamWithName<T>(true, &m_RoundCoeff, prefix + "smartcrop_round_coeff"));
m_Params.push_back(ParamWithName<T>(true, &m_WorkRotation, prefix + "smartcrop_work_rotation"));
m_Params.push_back(ParamWithName<T>(true, true, &m_X, prefix + "smartcrop_x"));//State.
m_Params.push_back(ParamWithName<T>(true, true, &m_Y, prefix + "smartcrop_y"));
m_Params.push_back(ParamWithName<T>(true, true, &m_Z, prefix + "smartcrop_z"));
m_Params.push_back(ParamWithName<T>(true, true, &m_C, prefix + "smartcrop_c"));
m_Params.push_back(ParamWithName<T>(true, true, &m_X, prefix + "smartcrop_x"));//State.
m_Params.push_back(ParamWithName<T>(true, true, &m_Y, prefix + "smartcrop_y"));
m_Params.push_back(ParamWithName<T>(true, true, &m_Z, prefix + "smartcrop_z"));
m_Params.push_back(ParamWithName<T>(true, true, &m_C, prefix + "smartcrop_c"));
}
private:
T m_Power;
T m_Radius;

View File

@ -128,6 +128,8 @@ static string ConstantDefinesString(bool doublePrecision)
"\n"
"#define INDEX_IN_GRID_2D (GLOBAL_ID_Y * GLOBAL_SIZE_X + GLOBAL_ID_X)\n"
"#define INDEX_IN_GRID_3D ((GLOBAL_SIZE_X * GLOBAL_SIZE_Y * GLOBAL_ID_Z) + INDEX_IN_GRID_2D)\n"
"\n"
"#define BLOCK_START_INDEX_IN_GRID_2D ((BLOCK_ID_Y * GRID_SIZE_X * BLOCK_SIZE_Y * BLOCK_SIZE_X) + (BLOCK_ID_X * BLOCK_SIZE_X * BLOCK_SIZE_Y))\n"
"\n";
return os.str();
}

View File

@ -46,6 +46,7 @@ string IterOpenCLKernelCreator<T>::CreateIterKernelString(const Ember<T>& ember,
xformFuncs << VariationStateString(ember);
xformFuncs << parVarDefines << globalSharedDefines;
ember.GetPresentVariations(variations);
bool hasVarState = ember.GetVariationStateParamCount();
for (auto var : variations)
if (var)
@ -224,6 +225,7 @@ string IterOpenCLKernelCreator<T>::CreateIterKernelString(const Ember<T>& ember,
i++;
}
auto varStateString = VariationStateInitString(ember);
os <<
ConstantDefinesString(doublePrecision) <<
GlobalFunctionsString(ember) <<
@ -250,7 +252,15 @@ string IterOpenCLKernelCreator<T>::CreateIterKernelString(const Ember<T>& ember,
" __global real_t* globalShared,\n"
" __global uchar* xformDistributions,\n"//Using uchar is quicker than uint. Can't be constant because the size can be too large to fit when using xaos.
" __constant CarToRasCL* carToRas,\n"
" __global real4reals_bucket* histogram,\n"
" __global real4reals_bucket* histogram,\n";
if (hasVarState)
{
os <<
" __global VariationState* varStates,\n";
}
os <<
" uint histSize,\n"
" __read_only image2d_t palette,\n"
" __global Point* points\n"
@ -259,6 +269,8 @@ string IterOpenCLKernelCreator<T>::CreateIterKernelString(const Ember<T>& ember,
" bool fuse, ok;\n"
" uint threadIndex = INDEX_IN_BLOCK_2D;\n"
" uint pointsIndex = INDEX_IN_GRID_2D;\n"
" uint blockStartIndex = BLOCK_START_INDEX_IN_GRID_2D;\n"
" uint blockStartThreadIndex = blockStartIndex + threadIndex;\n"
" uint i, itersToDo;\n"
" uint consec = 0;\n"
//" int badvals = 0;\n"
@ -275,14 +287,18 @@ string IterOpenCLKernelCreator<T>::CreateIterKernelString(const Ember<T>& ember,
" uint threadXDivRows = (THREAD_ID_X / NWARPS);\n"
" uint threadsMinus1 = NTHREADS - 1;\n"
" VariationState varState;\n"
;
os <<
"\n"
"\n";
if (ember.XformCount() > 1)
{
os <<
#ifndef STRAIGHT_RAND
" __local Point swap[NTHREADS];\n"
" __local uint xfsel[NWARPS];\n"
" __local Point swap[NTHREADS];\n"
" __local uint xfsel[NWARPS];\n";
#endif
"\n"
}
os <<
" iPaletteCoord.y = 0;\n"
"\n"
" if (fuseCount > 0)\n"
@ -296,82 +312,107 @@ string IterOpenCLKernelCreator<T>::CreateIterKernelString(const Ember<T>& ember,
" firstPoint.m_Y = MwcNextFRange(&mwc, -ember->m_RandPointRange, ember->m_RandPointRange);\n"
" firstPoint.m_Z = 0.0;\n"
" firstPoint.m_ColorX = MwcNext01(&mwc);\n"
" firstPoint.m_LastXfUsed = 0 - 1;\n"//This ensures the first iteration chooses from the unweighted distribution array, all subsequent will choose from the weighted ones.
" firstPoint.m_LastXfUsed = 0 - 1;\n";//This ensures the first iteration chooses from the unweighted distribution array, all subsequent iterations will choose from the weighted ones.
//os <<
// varStateString << '\n';
os <<
" }\n"
" else\n"
" {\n"
" fuse = false;\n"
" itersToDo = iterCount;\n"
" firstPoint = points[pointsIndex];\n"
" firstPoint = points[blockStartThreadIndex];\n"
" }\n"
"\n"
;
auto varStateString = VariationStateInitString(ember);
if (!varStateString.empty())
os << varStateString << "\n\n";
if (hasVarState)
{
os <<
" varState = varStates[blockStartThreadIndex];\n";
}
//This is done once initially here and then again after each swap-sync in the main loop.
//This along with the randomness that the point shuffle provides gives sufficient randomness
//to produce results identical to those produced on the CPU.
os <<
#ifndef STRAIGHT_RAND
" if (THREAD_ID_Y == 0 && THREAD_ID_X < NWARPS)\n"
" xfsel[THREAD_ID_X] = MwcNext(&mwc) & " << CHOOSE_XFORM_GRAIN_M1 << ";\n"//It's faster to do the & here ahead of time than every time an xform is looked up to use inside the loop.
"\n"
#endif
" barrier(CLK_LOCAL_MEM_FENCE);\n"
"\n"
" for (i = 0; i < itersToDo; i++)\n"
" {\n";
os <<
" consec = 0;\n"
"\n"
" do\n"
" {\n";
//If xaos is present, the a hybrid of the cuburn method is used.
//This makes each thread in a row pick the same offset into a distribution, using xfsel.
//However, the distribution the offset is in, is determined by firstPoint.m_LastXfUsed.
if (ember.XaosPresent())
if (ember.XformCount() > 1)
{
#ifndef STRAIGHT_RAND
os <<
#ifdef STRAIGHT_RAND
" secondPoint.m_LastXfUsed = xformDistributions[MwcNext(&mwc) & " << CHOOSE_XFORM_GRAIN_M1 << " + (" << CHOOSE_XFORM_GRAIN << " * (firstPoint.m_LastXfUsed + 1u))];\n\n";
#else
" secondPoint.m_LastXfUsed = xformDistributions[xfsel[THREAD_ID_Y] + (" << CHOOSE_XFORM_GRAIN << " * (firstPoint.m_LastXfUsed + 1u))];\n\n";//Partial cuburn hybrid.
"\n"
" if (THREAD_ID_Y == 0 && THREAD_ID_X < NWARPS)\n"
" xfsel[THREAD_ID_X] = MwcNext(&mwc) & " << CHOOSE_XFORM_GRAIN_M1 << ";\n"//It's faster to do the & here ahead of time than every time an xform is looked up to use inside the loop.
"\n";
#endif
}
else
{
os <<
" secondPoint.m_LastXfUsed = 0;\n";
}
os <<
" barrier(CLK_LOCAL_MEM_FENCE);\n"
"\n"
" for (i = 0; i < itersToDo; i++)\n"
" {\n"
" consec = 0;\n"
"\n"
" do\n"
" {\n";
if (ember.XformCount() > 1)
{
//If xaos is present, the a hybrid of the cuburn method is used.
//This makes each thread in a row pick the same offset into a distribution, using xfsel.
//However, the distribution the offset is in, is determined by firstPoint.m_LastXfUsed.
if (ember.XaosPresent())
{
os <<
#ifdef STRAIGHT_RAND
" secondPoint.m_LastXfUsed = xformDistributions[MwcNext(&mwc) & " << CHOOSE_XFORM_GRAIN_M1 << "];\n\n";//For testing, using straight rand flam4/fractron style instead of cuburn.
" secondPoint.m_LastXfUsed = xformDistributions[(MwcNext(&mwc) & " << CHOOSE_XFORM_GRAIN_M1 << ") + (" << CHOOSE_XFORM_GRAIN << " * (firstPoint.m_LastXfUsed + 1u))];\n\n";
#else
" secondPoint.m_LastXfUsed = xformDistributions[xfsel[THREAD_ID_Y]];\n\n";
" secondPoint.m_LastXfUsed = xformDistributions[xfsel[THREAD_ID_Y] + (" << CHOOSE_XFORM_GRAIN << " * (firstPoint.m_LastXfUsed + 1u))];\n\n";//Partial cuburn hybrid.
#endif
}
else
{
os <<
#ifdef STRAIGHT_RAND
" secondPoint.m_LastXfUsed = xformDistributions[MwcNext(&mwc) & " << CHOOSE_XFORM_GRAIN_M1 << "];\n\n";//For testing, using straight rand flam4/fractron style instead of cuburn.
#else
" secondPoint.m_LastXfUsed = xformDistributions[xfsel[THREAD_ID_Y]];\n\n";
#endif
}
}
for (i = 0; i < ember.XformCount(); i++)
{
if (i == 0)
if (ember.XformCount() > 1)
{
if (i == 0)
{
os <<
" switch (secondPoint.m_LastXfUsed)\n"
" {\n";
}
os <<
" switch (secondPoint.m_LastXfUsed)\n"
" {\n";
" case " << i << ":\n"
" {\n" <<
" Xform" << i << "(&(xforms[" << i << "]), parVars, globalShared, &firstPoint, &secondPoint, &mwc, &varState);\n" <<
" break;\n"
" }\n";
if (i == ember.XformCount() - 1)
{
os <<
" }\n";
}
}
os <<
" case " << i << ":\n"
" {\n" <<
" Xform" << i << "(&(xforms[" << i << "]), parVars, globalShared, &firstPoint, &secondPoint, &mwc, &varState);\n" <<
" break;\n"
" }\n";
if (i == ember.XformCount() - 1)
else
{
os <<
" }\n";
os << " Xform0(&(xforms[0]), parVars, globalShared, &firstPoint, &secondPoint, &mwc, &varState);";
}
}
@ -397,25 +438,54 @@ string IterOpenCLKernelCreator<T>::CreateIterKernelString(const Ember<T>& ember,
" secondPoint.m_X = MwcNextFRange(&mwc, -ember->m_RandPointRange, ember->m_RandPointRange);\n"
" secondPoint.m_Y = MwcNextFRange(&mwc, -ember->m_RandPointRange, ember->m_RandPointRange);\n"
" secondPoint.m_Z = 0.0;\n"
" }\n"
" }\n";
#ifndef STRAIGHT_RAND
"\n"//Rotate points between threads. This is how randomization is achieved.
" uint swr = threadXY + ((i & 1u) * threadXDivRows);\n"
" uint sw = (swr * THREADS_PER_WARP + THREAD_ID_X) & threadsMinus1;\n"
"\n"
//Write to another thread's location.
" swap[sw] = secondPoint;\n"
"\n"
//Populate randomized xform index buffer with new random values.
" if (THREAD_ID_Y == 0 && THREAD_ID_X < NWARPS)\n"
" xfsel[THREAD_ID_X] = MwcNext(&mwc) & " << CHOOSE_XFORM_GRAIN_M1 << ";\n"
"\n"
" barrier(CLK_LOCAL_MEM_FENCE);\n"
//Another thread will have written to this thread's location, so read the new value and use it for accumulation below.
" firstPoint = swap[threadIndex];\n"
if (ember.XformCount() > 1)
{
os <<
"\n"//Rotate points between threads. This is how randomization is achieved.
" uint swr = threadXY + ((i & 1u) * threadXDivRows);\n"
" uint sw = (swr * THREADS_PER_WARP + THREAD_ID_X) & threadsMinus1;\n"
"\n"
//Write to another thread's location.
" swap[sw] = secondPoint;\n";
if (hasVarState)
{
os <<
" varStates[blockStartIndex + sw] = varState;\n";
}
os <<
"\n"
//Populate randomized xform index buffer with new random values.
" if (THREAD_ID_Y == 0 && THREAD_ID_X < NWARPS)\n"
" xfsel[THREAD_ID_X] = MwcNext(&mwc) & " << CHOOSE_XFORM_GRAIN_M1 << ";\n"
"\n"
" barrier(CLK_LOCAL_MEM_FENCE);\n"
//Another thread will have written to this thread's location, so read the new value and use it for accumulation below.
" firstPoint = swap[threadIndex];\n";
if (hasVarState)
{
os <<
" varState = varStates[blockStartThreadIndex];\n"
;
}
}
else
{
os <<
"\n"
" firstPoint = secondPoint;\n";
}
#else
" firstPoint = secondPoint;\n"//For testing, using straight rand flam4/fractron style instead of cuburn.
os <<
" firstPoint = secondPoint;\n";//For testing, using straight rand flam4/fractron style instead of cuburn.
#endif
os <<
"\n"
" if (fuse)\n"
" {\n"
@ -537,9 +607,17 @@ string IterOpenCLKernelCreator<T>::CreateIterKernelString(const Ember<T>& ember,
" points[pointsIndex].m_Z = MwcNextNeg1Pos1(&mwc);\n"
" points[pointsIndex].m_ColorX = MwcNextNeg1Pos1(&mwc);\n"
#else
" points[pointsIndex] = firstPoint;\n"
" seeds[pointsIndex] = mwc;\n"
" points[blockStartThreadIndex] = firstPoint;\n";
if (hasVarState)
{
os <<
" varStates[blockStartThreadIndex] = varState;\n";
}
#endif
os <<
" barrier(CLK_GLOBAL_MEM_FENCE);\n"
"}\n";
return os.str();
@ -593,7 +671,6 @@ string IterOpenCLKernelCreator<T>::GlobalFunctionsString(const Ember<T>& ember)
return os.str();
}
/// <summary>
/// Create an OpenCL string of #defines and a corresponding host side vector for variation weights and parametric variation values.
/// Parametric variations present a special problem in the iteration code.
@ -689,7 +766,6 @@ void IterOpenCLKernelCreator<T>::ParVarIndexDefines(const Ember<T>& ember, pair<
params.first = os.str();
}
}
/// <summary>
/// Create an OpenCL string of #defines and a corresponding host side vector for globally shared data.
/// Certain variations, such as crackle and dc_perlin use static, read-only buffers of data.
@ -750,7 +826,6 @@ void IterOpenCLKernelCreator<T>::SharedDataIndexDefines(const Ember<T>& ember, p
params.first = os.str();
}
}
/// <summary>
/// Create the string needed for the struct whose values will change between each iteration.
/// This is only needed for variations whose state changes.
@ -773,7 +848,6 @@ string IterOpenCLKernelCreator<T>::VariationStateString(const Ember<T>& ember)
os << "\n} VariationState;\n\n";
return os.str();
}
/// <summary>
/// Create the string needed for the initial state of the struct whose values will change between each iteration.
/// This is only needed for variations whose state changes.
@ -795,7 +869,6 @@ string IterOpenCLKernelCreator<T>::VariationStateInitString(const Ember<T>& embe
return os.str();
}
/// <summary>
/// Determine whether the two embers passed in differ enough
/// to require a rebuild of the iteration code.
@ -855,7 +928,6 @@ bool IterOpenCLKernelCreator<T>::IsBuildRequired(const Ember<T>& ember1, const E
return false;
}
/// <summary>
/// Create the zeroize kernel string.
/// OpenCL comes with no way to zeroize a buffer like memset()
@ -880,7 +952,6 @@ string IterOpenCLKernelCreator<T>::CreateZeroizeKernelString() const
"\n";
return os.str();
}
/// <summary>
/// Create the histogram summing kernel string.
/// This is used when running with multiple GPUs. It takes
@ -910,7 +981,6 @@ string IterOpenCLKernelCreator<T>::CreateSumHistKernelString() const
"\n";
return os.str();
}
/// <summary>
/// Create the string for 3D projection based on the 3D values of the ember.
/// Projection is done on the second point.
@ -1018,9 +1088,7 @@ string IterOpenCLKernelCreator<T>::CreateProjectionString(const Ember<T>& ember)
return os.str();
}
template EMBERCL_API class IterOpenCLKernelCreator<float>;
#ifdef DO_DOUBLE
template EMBERCL_API class IterOpenCLKernelCreator<double>;
#endif

View File

@ -331,6 +331,41 @@ bool RendererCL<T, bucketT>::WriteRandomPoints(size_t device)
}
#endif
/// <summary>
/// Resize the variation state vector to hold all of the variation state variables across all variations
/// in the ember, aligned to 16, for each thread that will be launched on a device.
/// </summary>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::InitStateVec()
{
size_t count = 0, i = 0, j = 0, k = 0;
while (auto xform = m_Ember.GetTotalXform(i++))
for (j = 0; j < xform->TotalVariationCount(); j++)
if (auto var = xform->GetVariation(j))
count += var->StateParamCount() * sizeof(T);
//Round to 16 and resize the buffer to be copied to OpenCL buffer here.
auto igkc = IterGridKernelCount();
size_t index = 0, count16 = ((count / 16) * 16) + (count % 16 > 0 ? 16 : 0);
auto elcount = count16 / sizeof(T);
m_VarStates.resize(igkc * elcount);
if (count16)
{
for (k = 0; k < igkc; k++)
{
i = 0;
index = k * elcount;
while (auto xform = m_Ember.GetTotalXform(i++))
for (j = 0; j < xform->TotalVariationCount(); j++)
if (auto var = xform->GetVariation(j))
var->InitStateVars(m_VarStates.data(), index);
}
}
}
/// <summary>
/// Set the percentage of a sub batch that should be executed in each thread per kernel call.
/// </summary>
@ -650,7 +685,7 @@ bool RendererCL<T, bucketT>::AnyNvidia() const
/// <summary>
/// Allocate all buffers required for running as well as the final
/// 2D image.
/// 2D image and perform some other initialization.
/// Note that only iteration-related buffers are allocated on secondary devices.
/// </summary>
/// <returns>True if success, else false.</returns>
@ -666,6 +701,8 @@ bool RendererCL<T, bucketT>::Alloc(bool histOnly)
size_t size = SuperSize() * sizeof(v4bT);//Size of histogram and density filter buffer.
static std::string loc = __FUNCTION__;
auto& wrapper = m_Devices[0]->m_Wrapper;
InitStateVec();
m_IterCountPerKernel = size_t(m_SubBatchPercentPerThread * m_Ember.m_SubBatchSize);//This isn't the greatest place to put this, but it must be computed before the number of iters to do is computed in the base.
if (b && !(b = wrapper.AddBuffer(m_DEFilterParamsBufferName, sizeof(m_DensityFilterCL)))) { ErrorStr(loc, "Failed to set DE filter parameters buffer", m_Devices[0].get()); }
@ -677,19 +714,22 @@ bool RendererCL<T, bucketT>::Alloc(bool histOnly)
for (auto& device : m_Devices)
{
if (b && !(b = device->m_Wrapper.AddBuffer(m_EmberBufferName, sizeof(m_EmberCL)))) { ErrorStr(loc, "Failed to set ember buffer", device.get()); break; }
if (b && !(b = device->m_Wrapper.AddBuffer(m_EmberBufferName, sizeof(m_EmberCL)))) { ErrorStr(loc, "Failed to set ember buffer", device.get()); break; }
if (b && !(b = device->m_Wrapper.AddBuffer(m_XformsBufferName, SizeOf(m_XformsCL)))) { ErrorStr(loc, "Failed to set xforms buffer", device.get()); break; }
if (b && !(b = device->m_Wrapper.AddBuffer(m_XformsBufferName, SizeOf(m_XformsCL)))) { ErrorStr(loc, "Failed to set xforms buffer", device.get()); break; }
if (b && !(b = device->m_Wrapper.AddBuffer(m_ParVarsBufferName, 128 * sizeof(T)))) { ErrorStr(loc, "Failed to set parametric variations buffer", device.get()); break; }//Will be resized with the needed amount later.
if (b && !(b = device->m_Wrapper.AddBuffer(m_ParVarsBufferName, 128 * sizeof(T)))) { ErrorStr(loc, "Failed to set parametric variations buffer", device.get()); break; }//Will be resized with the needed amount later.
if (b && !(b = device->m_Wrapper.AddBuffer(m_DistBufferName, CHOOSE_XFORM_GRAIN))) { ErrorStr(loc, "Failed to set xforms distribution buffer", device.get()); break; }//Will be resized for xaos.
if (b && !(b = device->m_Wrapper.AddBuffer(m_DistBufferName, CHOOSE_XFORM_GRAIN))) { ErrorStr(loc, "Failed to set xforms distribution buffer", device.get()); break; }//Will be resized for xaos.
if (b && !(b = device->m_Wrapper.AddBuffer(m_CarToRasBufferName, sizeof(m_CarToRasCL)))) { ErrorStr(loc, "Failed to set cartesian to raster buffer", device.get()); break; }
if (b && !(b = device->m_Wrapper.AddBuffer(m_CarToRasBufferName, sizeof(m_CarToRasCL)))) { ErrorStr(loc, "Failed to set cartesian to raster buffer", device.get()); break; }
if (b && !(b = device->m_Wrapper.AddBuffer(m_HistBufferName, size))) { ErrorStr(loc, "Failed to set histogram buffer", device.get()); break; }//Histogram. Will memset to zero later.
if (b && !(b = device->m_Wrapper.AddBuffer(m_HistBufferName, size))) { ErrorStr(loc, "Failed to set histogram buffer", device.get()); break; }//Histogram. Will memset to zero later.
if (b && !(b = device->m_Wrapper.AddBuffer(m_PointsBufferName, IterGridKernelCount() * sizeof(PointCL<T>)))) { ErrorStr(loc, "Failed to set points buffer", device.get()); break; }//Points between iter calls.
if (b && !(b = device->m_Wrapper.AddBuffer(m_PointsBufferName, IterGridKernelCount() * sizeof(PointCL<T>)))) { ErrorStr(loc, "Failed to set points buffer", device.get()); break; }//Points between iter calls.
if (m_VarStates.size())
if (b && !(b = device->m_Wrapper.AddBuffer(m_VarStateBufferName, SizeOf(m_VarStates)))) { ErrorStr(loc, "Failed to set variation state buffer", device.get()); break; }//Points between iter calls.
//Global shared is allocated once and written when building the kernel.
}
@ -835,7 +875,7 @@ EmberStats RendererCL<T, bucketT>::Iterate(size_t iterCount, size_t temporalSamp
break;
}
if (b && !(b = wrapper.WriteBuffer(m_XformsBufferName, reinterpret_cast<void*>(m_XformsCL.data()), sizeof(m_XformsCL[0]) * m_XformsCL.size())))
if (b && !(b = wrapper.WriteBuffer(m_XformsBufferName, reinterpret_cast<void*>(m_XformsCL.data()), SizeOf(m_XformsCL))))
{
ErrorStr(loc, "Write xforms buffer failed", device.get());
break;
@ -853,6 +893,15 @@ EmberStats RendererCL<T, bucketT>::Iterate(size_t iterCount, size_t temporalSamp
break;
}
if (m_VarStates.size())
{
if (b && !(b = wrapper.AddAndWriteBuffer(m_VarStateBufferName, reinterpret_cast<void*>(m_VarStates.data()), SizeOf(m_VarStates))))
{
ErrorStr(loc, "Write variation state buffer failed", device.get());
break;
}
}
if (b && !(b = wrapper.AddAndWriteImage("Palette", CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, m_PaletteFormat, m_Dmap.Size(), 1, 0, m_Dmap.m_Entries.data())))
{
ErrorStr(loc, "Write palette buffer failed", device.get());
@ -867,7 +916,7 @@ EmberStats RendererCL<T, bucketT>::Iterate(size_t iterCount, size_t temporalSamp
//So set it up right before the run.
if (!m_Params.second.empty())
{
if (!wrapper.AddAndWriteBuffer(m_ParVarsBufferName, m_Params.second.data(), m_Params.second.size() * sizeof(m_Params.second[0])))
if (!wrapper.AddAndWriteBuffer(m_ParVarsBufferName, m_Params.second.data(), SizeOf(m_Params.second)))
{
ErrorStr(loc, "Write parametric variations buffer failed", device.get());
break;
@ -988,7 +1037,6 @@ bool RendererCL<T, bucketT>::RunIter(size_t iterCount, size_t temporalSample, si
vector<std::thread> threadVec;
std::atomic<size_t> atomLaunchesRan;
std::atomic<intmax_t> atomItersRan, atomItersRemaining;
m_IterCountPerKernel = size_t(m_SubBatchPercentPerThread * m_Ember.m_SubBatchSize);
size_t adjustedIterCountPerKernel = m_IterCountPerKernel;
itersRan = 0;
atomItersRan.store(0);
@ -999,6 +1047,9 @@ bool RendererCL<T, bucketT>::RunIter(size_t iterCount, size_t temporalSample, si
//If a very small number of iters is requested, and multiple devices
//are present, then try to spread the launches over the devices.
//Otherwise, only one device would get used.
//This also applies to when running a single device, and the requested iters per thread based on the
//sub batch size, is greater than is required to run all requested iters. This will reduce the iters
//per thread to the appropriate value.
//Note that this can lead to doing a few more iterations than requested
//due to rounding up to ~32k kernel threads per launch.
if (m_Devices.size() >= launches)
@ -1057,6 +1108,9 @@ bool RendererCL<T, bucketT>::RunIter(size_t iterCount, size_t temporalSample, si
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_HistBufferName))) { ErrorStr(loc, "Setting histogram buffer argument failed", m_Devices[dev].get()); }//Histogram.
if (!m_VarStates.empty())
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_VarStateBufferName))) { ErrorStr(loc, "Setting variation state buffer argument failed", m_Devices[dev].get()); }//Variation state.
if (b && !(b = wrapper.SetArg (kernelIndex, argIndex++, histSuperSize))) { ErrorStr(loc, "Setting histogram size argument failed", m_Devices[dev].get()); }//Histogram size.
if (b && !(b = wrapper.SetImageArg (kernelIndex, argIndex++, false, "Palette"))) { ErrorStr(loc, "Setting palette argument failed", m_Devices[dev].get()); }//Palette.

View File

@ -141,6 +141,7 @@ public:
#ifdef TEST_CL
bool WriteRandomPoints(size_t device);
#endif
void InitStateVec();
void SubBatchPercentPerThread(float f);
float SubBatchPercentPerThread() const;
const string& IterKernel() const;
@ -238,6 +239,7 @@ private:
string m_AccumBufferName = "Accum";
string m_FinalImageName = "Final";
string m_PointsBufferName = "Points";
string m_VarStateBufferName = "VarState";
//Kernels.
string m_IterKernel;
@ -258,6 +260,7 @@ private:
FinalAccumOpenCLKernelCreator m_FinalAccumOpenCLKernelCreator;
pair<string, vector<T>> m_Params;
pair<string, vector<T>> m_GlobalShared;
vector<T> m_VarStates;
vector<unique_ptr<RendererClDevice>> m_Devices;
Ember<T> m_LastBuiltEmber;
};

View File

@ -877,12 +877,12 @@ static vector<const Variation<T>*> FindVarsWithout(const vector<const Variation<
/// <param name="xforms">The vector of xforms to add</param>
/// <param name="preserveXaos">True to preserve xaos else false.</param>
template <typename T>
static void AddXformsWithXaos(Ember<T>& ember, std::vector<Xform<T>>& xforms, bool preserveXaos)
static void AddXformsWithXaos(Ember<T>& ember, std::vector<std::pair<Xform<T>, size_t>>& xforms, bool preserveXaos)
{
auto origXformCount = ember.XformCount();
for (auto& it : xforms)
ember.AddXform(it);
ember.AddXform(it.first);
for (auto i = 0; i < ember.XformCount(); i++)
{
@ -901,8 +901,9 @@ static void AddXformsWithXaos(Ember<T>& ember, std::vector<Xform<T>>& xforms, bo
xf->SetXaos(j, 0);
else if (!preserveXaos)
xf->SetXaos(j, 1);
else if (i - origXformCount < xforms.size())//Should never be out of bounds, but just to be safe.
xf->SetXaos(j, xforms[i - origXformCount].Xaos(j - origXformCount));
//else if (i - origXformCount < xforms.size())//Should never be out of bounds, but just to be safe.
// xf->SetXaos(j, xforms[i - origXformCount].first.Xaos(j - origXformCount));
}
}
}

View File

@ -3212,7 +3212,7 @@
</size>
</property>
<property name="toolTip">
<string>&lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;Duplicate selected xforms.&lt;/p&gt;&lt;p&gt;If xaos is present in the flame, the duplicated xforms will be added with existing xaos preserved, else they'll just be added normally.&lt;/p&gt;&lt;/body&gt;&lt;/html&gt;</string>
<string>&lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;Duplicate selected xforms.&lt;/p&gt;&lt;p&gt;If xaos is present in the flame, the duplicated xforms will be added with existing xaos preserved, or as a layer if Ctrl is pressed, else they'll just be added normally.&lt;/p&gt;&lt;/body&gt;&lt;/html&gt;</string>
</property>
<property name="text">
<string/>
@ -8571,7 +8571,7 @@
<string>Paste selected x&amp;forms</string>
</property>
<property name="toolTip">
<string>Paste copied xforms into the current flame</string>
<string>&lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;Paste copied xforms as a layer into the current flame&lt;/p&gt;&lt;/body&gt;&lt;/html&gt;</string>
</property>
<property name="shortcut">
<string>Ctrl+X, Ctrl+V</string>

View File

@ -596,7 +596,7 @@ private:
EmberFile<T> m_EmberFile;
EmberFile<T> m_SequenceFile;
deque<Ember<T>> m_UndoList;
vector<Xform<T>> m_CopiedXforms;
vector<std::pair<Xform<T>, size_t>> m_CopiedXforms;
Xform<T> m_CopiedFinalXform;
Affine2D<T> m_CopiedAffine;
shared_ptr<VariationList<T>> m_VariationList;

View File

@ -686,7 +686,7 @@ void FractoriumEmberController<T>::CopySelectedXforms()
if (m_Ember.IsFinalXform(xform))
m_CopiedFinalXform = *xform;
else
m_CopiedXforms.push_back(*xform);
m_CopiedXforms.emplace_back(*xform, xfindex);
}, eXformUpdate::UPDATE_SELECTED, false);
m_Fractorium->ui.ActionPasteSelectedXforms->setEnabled(true);
}

View File

@ -264,7 +264,7 @@ void FractoriumEmberController<T>::AddLayer(int xforms)
{
Update([&]
{
std::vector<Xform<T>> vec(xforms);
std::vector<std::pair<Xform<T>, size_t>> vec(xforms);
AddXformsWithXaos(m_Ember, vec, false);
});

View File

@ -209,6 +209,7 @@ void Fractorium::OnAddLinkedXformButtonClicked(bool checked) { m_Controller->Add
/// <summary>
/// Duplicate the specified xforms in the current ember, and set the last one as the current xform.
/// If xaos is present in the ember, the duplicated xforms will be added with xaos preserved, else they'll just be added normally.
/// The manner in which xaos is preserved is altered when ctrl is pressed.
/// Called when the duplicate xform button is clicked.
/// Resets the rendering process.
/// </summary>
@ -217,19 +218,45 @@ template <typename T>
void FractoriumEmberController<T>::DuplicateXform()
{
bool forceFinal = m_Fractorium->HaveFinal();
vector<Xform<T>> vec;
bool ctrl = QGuiApplication::keyboardModifiers().testFlag(Qt::ControlModifier);
vector<std::pair<Xform<T>, size_t>> vec;
vec.reserve(m_Ember.XformCount());
UpdateXform([&](Xform<T>* xform, size_t xfindex, size_t selIndex)
{
vec.push_back(*xform);
vec.emplace_back(*xform, xfindex);
}, eXformUpdate::UPDATE_SELECTED_EXCEPT_FINAL, false);
Update([&]()
{
if (m_Ember.XaosPresent())
AddXformsWithXaos(m_Ember, vec, true);
{
if (!ctrl)
{
auto oldxfcount = m_Ember.XformCount();
for (auto& it : vec)
{
m_Ember.AddXform(it.first);
auto newxfcount = m_Ember.XformCount() - 1;
auto* newxform = m_Ember.GetXform(newxfcount);
for (size_t i = 0; i < oldxfcount; i++)
{
if (auto xform = m_Ember.GetXform(i))
{
newxform->SetXaos(i, it.first.Xaos(i));
xform->SetXaos(newxfcount, xform->Xaos(it.second));
}
}
}
}
else
{
AddXformsWithXaos(m_Ember, vec, true);
}
}
else
for (auto& it : vec)
m_Ember.AddXform(it);
m_Ember.AddXform(it.first);
int index = int(m_Ember.TotalXformCount(forceFinal) - (forceFinal ? 2 : 1));//Set index to the last item before final.
FillXforms(index);//Handles xaos.

View File

@ -119,9 +119,9 @@ public:
void CalcDragTranslation();
void SetSelectedXform(Xform<T>* xform);
void DrawGrid();
void DrawAffine(Xform<T>* xform, bool pre, bool selected, bool hovered);
int UpdateHover(v3T& glCoords);
bool CheckXformHover(Xform<T>* xform, v3T& glCoords, T& bestDist, bool pre, bool post);
void DrawAffine(const Xform<T>* xform, bool pre, bool selected, bool hovered);
int UpdateHover(const v3T& glCoords);
bool CheckXformHover(const Xform<T>* xform, const v3T& glCoords, T& bestDist, bool pre, bool post);
private:
v2T SnapToGrid(v2T& vec);

View File

@ -1519,7 +1519,7 @@ void GLEmberController<T>::DrawGrid()
/// <param name="selected">True if selected (draw enclosing circle), else false (only draw axes).</param>
/// <param name="hovered">True if the xform is being hovered over (draw tansparent disc), else false (no disc).</param>
template <typename T>
void GLEmberController<T>::DrawAffine(Xform<T>* xform, bool pre, bool selected, bool hovered)
void GLEmberController<T>::DrawAffine(const Xform<T>* xform, bool pre, bool selected, bool hovered)
{
auto ember = m_FractoriumEmberController->CurrentEmber();
auto final = ember->IsFinalXform(xform);
@ -1755,7 +1755,7 @@ void GLWidget::DrawAffineHelper(int index, float circleWidth, float lineWidth, b
/// <param name="glCoords">The mouse raster coordinates to check</param>
/// <returns>The index of the xform being hovered over, else -1 if no hover.</returns>
template <typename T>
int GLEmberController<T>::UpdateHover(v3T& glCoords)
int GLEmberController<T>::UpdateHover(const v3T& glCoords)
{
bool pre = m_Fractorium->ui.PreAffineGroupBox->isChecked();
bool post = m_Fractorium->ui.PostAffineGroupBox->isChecked();
@ -1838,7 +1838,7 @@ int GLEmberController<T>::UpdateHover(v3T& glCoords)
/// <param name="post">True to check post affine, else don't.</param>
/// <returns>True if hovering and the distance is smaller than the bestDist parameter</returns>
template <typename T>
bool GLEmberController<T>::CheckXformHover(Xform<T>* xform, v3T& glCoords, T& bestDist, bool pre, bool post)
bool GLEmberController<T>::CheckXformHover(const Xform<T>* xform, const v3T& glCoords, T& bestDist, bool pre, bool post)
{
bool preFound = false, postFound = false;
T dist = 0, scale = m_FractoriumEmberController->AffineScaleCurrentToLocked();

View File

@ -122,6 +122,7 @@ tar --exclude='package-linux.sh' \
./Data/Quartz_Varieties.ugr \
./Data/dark_linux.qss \
./Data/lightdark.qss \
./Data/uranium.qss \
.
[ $? -ne 0 ] && echo "Tar command failed." && exit 2