fractorium/Source/Ember/Variation.h

2103 lines
53 KiB
C
Raw Normal View History

#pragma once
#include "Point.h"
#include "Isaac.h"
/// <summary>
/// Base variation classes. Individual variations will be grouped into files of roughly 50
/// to avoid a single file becoming too unweildy.
/// </summary>
namespace EmberNs
{
/// <summary>
/// Xform and Variation need each other, but each can't include the other.
/// So Xform includes this file, and use a forward declaration here.
/// </summary>
template <typename T> class Xform;
/// <summary>
/// The type of variation: regular, pre or post.
/// </summary>
enum eVariationType
{
VARTYPE_REG,
VARTYPE_PRE,
VARTYPE_POST,
};
/// <summary>
/// How to handle the results of the variation when it's a pre or post.
/// If the calculation involved the input points, then it should be directly assigned
/// to the output. However, if they did not involve the input points, they should be added
/// to the output.
/// </summary>
enum eVariationAssignType
{
ASSIGNTYPE_SET,
ASSIGNTYPE_SUM
};
/// <summary>
/// Complete list of every variation class ID.
/// </summary>
enum eVariationId
{
VAR_ARCH ,
VAR_AUGER ,
VAR_BARYCENTROID ,
VAR_BCIRCLE ,
VAR_BCOLLIDE ,
VAR_BENT ,
VAR_BENT2 ,
VAR_BIPOLAR ,
VAR_BISPLIT ,
VAR_BLADE ,
VAR_BLADE3D ,
VAR_BLOB ,
VAR_BLOB2 ,
VAR_BLOB3D ,
VAR_BLOCKY ,
VAR_BLUR ,
VAR_BLUR_CIRCLE ,
VAR_BLUR_HEART ,
VAR_BLUR_LINEAR ,
VAR_BLUR_PIXELIZE ,
VAR_BLUR_SQUARE ,
VAR_BLUR_ZOOM ,
VAR_BLUR3D ,
VAR_BMOD ,
VAR_BOARDERS ,
VAR_BOARDERS2 ,
VAR_BSWIRL ,
VAR_BTRANSFORM ,
VAR_BUBBLE ,
VAR_BUBBLE2 ,
VAR_BUTTERFLY ,
VAR_BWRAPS ,
VAR_CARDIOID ,
VAR_CELL ,
VAR_CHECKS ,
VAR_CIRCLEBLUR ,
VAR_CIRCLECROP ,
VAR_CIRCLELINEAR ,
VAR_CIRCLERAND ,
VAR_CIRCLETRANS1 ,
VAR_CIRCLIZE ,
VAR_CIRCLIZE2 ,
VAR_CIRCUS ,
VAR_COLLIDEOSCOPE ,
VAR_CONIC ,
VAR_COS ,
VAR_COS_WRAP ,
VAR_COSH ,
VAR_COSHQ ,
VAR_COSINE ,
VAR_COSQ ,
VAR_COT ,
VAR_COTH ,
VAR_COTHQ ,
VAR_COTQ ,
VAR_CPOW ,
VAR_CPOW2 ,
VAR_CRESCENTS ,
VAR_CROP ,
VAR_CROPN ,
VAR_CROSS ,
VAR_CSC ,
VAR_CSCH ,
VAR_CSCHQ ,
VAR_CSCQ ,
VAR_CUBIC3D ,
VAR_CUBIC_LATTICE3D,
VAR_CURL ,
VAR_CURL3D ,
VAR_CURL_SP ,
VAR_CURVATURE ,
VAR_CURVE ,
VAR_CYLINDER ,
VAR_DELTA_A ,
VAR_DEPTH ,
VAR_DIAMOND ,
VAR_DISC ,
VAR_DISC2 ,
VAR_DISC3D ,
VAR_ECLIPSE ,
VAR_ECOLLIDE ,
VAR_EDISC ,
VAR_EJULIA ,
VAR_ELLIPTIC ,
VAR_EMOD ,
VAR_EMOTION ,
VAR_ENNEPERS ,
VAR_EPISPIRAL ,
VAR_EPUSH ,
VAR_EROTATE ,
VAR_ESCALE ,
VAR_ESCHER ,
VAR_ESTIQ ,
VAR_ESWIRL ,
VAR_EX ,
VAR_EXP ,
VAR_EXPO ,
VAR_EXPONENTIAL ,
VAR_EXTRUDE ,
VAR_EYEFISH ,
VAR_FALLOFF ,
VAR_FALLOFF2 ,
VAR_FALLOFF3 ,
VAR_FAN ,
VAR_FAN2 ,
VAR_FARBLUR ,
VAR_FDISC ,
VAR_FIBONACCI ,
VAR_FIBONACCI2 ,
VAR_FISHEYE ,
VAR_FLATTEN ,
VAR_FLIP_CIRCLE ,
VAR_FLIP_Y ,
VAR_FLOWER ,
VAR_FLUX ,
VAR_FOCI ,
VAR_FOCI3D ,
VAR_FOURTH ,
VAR_FUNNEL ,
VAR_GAUSSIAN_BLUR ,
VAR_GDOFFS ,
VAR_GLYNNIA ,
VAR_GLYNNSIM1 ,
VAR_GLYNNSIM2 ,
VAR_GLYNNSIM3 ,
VAR_GRIDOUT ,
VAR_HANDKERCHIEF ,
VAR_HEART ,
VAR_HEAT ,
VAR_HEMISPHERE ,
VAR_HO ,
VAR_HOLE ,
VAR_HORSESHOE ,
VAR_HYPERBOLIC ,
VAR_HYPERTILE ,
VAR_HYPERTILE1 ,
VAR_HYPERTILE2 ,
VAR_HYPERTILE3D ,
VAR_HYPERTILE3D1 ,
VAR_HYPERTILE3D2 ,
VAR_IDISC ,
VAR_INTERFERENCE2 ,
VAR_JULIA ,
VAR_JULIA3D ,
VAR_JULIA3DQ ,
VAR_JULIA3DZ ,
VAR_JULIAC ,
VAR_JULIAN ,
VAR_JULIAN2 ,
VAR_JULIAN3DX ,
VAR_JULIANAB ,
VAR_JULIAQ ,
VAR_JULIASCOPE ,
VAR_KALEIDOSCOPE ,
VAR_LAZY_TRAVIS ,
VAR_LAZYSUSAN ,
VAR_LINE ,
VAR_LINEAR ,
VAR_LINEAR_T ,
VAR_LINEAR_T3D ,
//VAR_LINEAR_XZ ,
//VAR_LINEAR_YZ ,
VAR_LINEAR3D ,
VAR_LISSAJOUS ,
VAR_LOG ,
VAR_LOQ ,
VAR_LOONIE ,
VAR_LOONIE3D ,
VAR_MASK ,
VAR_MCARPET ,
VAR_MIRROR_X ,
VAR_MIRROR_Y ,
VAR_MIRROR_Z ,
VAR_MOBIQ ,
VAR_MOBIUS ,
VAR_MOBIUS_STRIP ,
VAR_MOBIUSN ,
VAR_MODULUS ,
VAR_MURL ,
VAR_MURL2 ,
VAR_NGON ,
VAR_NOISE ,
VAR_NPOLAR ,
VAR_OCTAGON ,
VAR_ORTHO ,
VAR_OSCILLOSCOPE ,
VAR_OVOID ,
VAR_OVOID3D ,
VAR_PARABOLA ,
VAR_PDJ ,
VAR_PERSPECTIVE ,
VAR_PETAL ,
VAR_PHOENIX_JULIA ,
VAR_PIE ,
VAR_PIE3D ,
VAR_POINCARE ,
VAR_POINCARE3D ,
VAR_POLAR ,
VAR_POLAR2 ,
VAR_POLYNOMIAL ,
VAR_POPCORN ,
VAR_POPCORN2 ,
VAR_POPCORN23D ,
VAR_POW_BLOCK ,
VAR_POWER ,
VAR_PSPHERE ,
VAR_Q_ODE ,
VAR_RADIAL_BLUR ,
VAR_RATIONAL3 ,
VAR_RAYS ,
VAR_RBLUR ,
VAR_RECTANGLES ,
VAR_RINGS ,
VAR_RINGS2 ,
VAR_RIPPLE ,
VAR_RIPPLED ,
VAR_ROTATE_X ,
VAR_ROTATE_Y ,
VAR_ROTATE_Z ,
VAR_ROUNDSPHER ,
VAR_ROUNDSPHER3D ,
VAR_SCRY ,
VAR_SCRY3D ,
VAR_SEC ,
VAR_SECANT2 ,
VAR_SECH ,
VAR_SECHQ ,
VAR_SECQ ,
VAR_SEPARATION ,
VAR_SHRED_RAD ,
VAR_SHRED_LIN ,
VAR_SIGMOID ,
VAR_SIN ,
VAR_SINEBLUR ,
VAR_SINH ,
VAR_SINHQ ,
VAR_SINQ ,
VAR_SINTRANGE ,
VAR_SINUS_GRID ,
VAR_SINUSOIDAL ,
VAR_SINUSOIDAL3D ,
VAR_SPHERICAL ,
VAR_SPHERICAL3D ,
VAR_SPHERICALN ,
VAR_SPHERIVOID ,
VAR_SPHYP3D ,
VAR_SPIRAL ,
VAR_SPIRAL_WING ,
VAR_SPIROGRAPH ,
VAR_SPLIT ,
VAR_SPLIT_BRDR ,
VAR_SPLITS ,
VAR_SQUARE ,
VAR_SQUARE3D ,
VAR_SQUARIZE ,
VAR_SQUIRREL ,
VAR_SQUISH ,
VAR_SSCHECKS ,
VAR_STARBLUR ,
VAR_STRIPES ,
VAR_STWIN ,
VAR_SUPER_SHAPE ,
VAR_SUPER_SHAPE3D ,
VAR_SVF ,
VAR_SWIRL ,
VAR_TAN ,
VAR_TANCOS ,
VAR_TANGENT ,
VAR_TANH ,
VAR_TANHQ ,
VAR_TANQ ,
VAR_TARGET ,
VAR_TAURUS ,
VAR_TRADE ,
VAR_TRUCHET ,
VAR_TWINTRIAN ,
VAR_TWO_FACE ,
VAR_UNPOLAR ,
VAR_VORON ,
VAR_WAFFLE ,
VAR_WAVES ,
VAR_WAVES2 ,
VAR_WAVES23D ,
VAR_WAVESN ,
VAR_WDISC ,
VAR_WEDGE ,
VAR_WEDGE_JULIA ,
VAR_WEDGE_SPH ,
VAR_WHORL ,
VAR_XHEART ,
VAR_XTRB ,
VAR_ZBLUR ,
VAR_ZCONE ,
VAR_ZSCALE ,
VAR_ZTRANSLATE ,
VAR_PRE_ARCH,
VAR_PRE_AUGER,
VAR_PRE_BARYCENTROID,
VAR_PRE_BCIRCLE,
VAR_PRE_BCOLLIDE,
VAR_PRE_BENT,
VAR_PRE_BENT2,
VAR_PRE_BIPOLAR,
VAR_PRE_BISPLIT,
VAR_PRE_BLADE,
VAR_PRE_BLADE3D,
VAR_PRE_BLOB,
VAR_PRE_BLOB2,
VAR_PRE_BLOB3D,
VAR_PRE_BLOCKY,
VAR_PRE_BLUR,
VAR_PRE_BLUR_CIRCLE,
VAR_PRE_BLUR_HEART,
VAR_PRE_BLUR_LINEAR,
VAR_PRE_BLUR_PIXELIZE,
VAR_PRE_BLUR_SQUARE,
VAR_PRE_BLUR_ZOOM,
VAR_PRE_BLUR3D,
VAR_PRE_BMOD,
VAR_PRE_BOARDERS,
VAR_PRE_BOARDERS2,
VAR_PRE_BSWIRL,
VAR_PRE_BTRANSFORM,
VAR_PRE_BUBBLE,
VAR_PRE_BUBBLE2,
VAR_PRE_BUTTERFLY,
VAR_PRE_BWRAPS,
VAR_PRE_CARDIOID,
VAR_PRE_CELL,
VAR_PRE_CHECKS,
VAR_PRE_CIRCLEBLUR,
VAR_PRE_CIRCLECROP,
VAR_PRE_CIRCLELINEAR,
VAR_PRE_CIRCLERAND,
VAR_PRE_CIRCLETRANS1,
VAR_PRE_CIRCLIZE,
VAR_PRE_CIRCLIZE2,
VAR_PRE_CIRCUS,
VAR_PRE_COLLIDEOSCOPE,
VAR_PRE_CONIC,
VAR_PRE_COS,
VAR_PRE_COS_WRAP,
VAR_PRE_COSH,
VAR_PRE_COSHQ,
VAR_PRE_COSINE,
VAR_PRE_COSQ,
VAR_PRE_COT,
VAR_PRE_COTH,
VAR_PRE_COTHQ,
VAR_PRE_COTQ,
VAR_PRE_CPOW,
VAR_PRE_CPOW2,
VAR_PRE_CRESCENTS,
VAR_PRE_CROP,
VAR_PRE_CROPN,
VAR_PRE_CROSS,
VAR_PRE_CSC,
VAR_PRE_CSCH,
VAR_PRE_CSCHQ,
VAR_PRE_CSCQ,
VAR_PRE_CUBIC3D,
VAR_PRE_CUBIC_LATTICE3D,
VAR_PRE_CURL,
VAR_PRE_CURL3D,
VAR_PRE_CURL_SP,
VAR_PRE_CURVATURE,
VAR_PRE_CURVE,
VAR_PRE_CYLINDER,
VAR_PRE_DELTA_A,
VAR_PRE_DEPTH,
VAR_PRE_DIAMOND,
VAR_PRE_DISC,
VAR_PRE_DISC2,
VAR_PRE_DISC3D,
VAR_PRE_ECLIPSE,
VAR_PRE_ECOLLIDE,
VAR_PRE_EDISC,
VAR_PRE_EJULIA,
VAR_PRE_ELLIPTIC,
VAR_PRE_EMOD,
VAR_PRE_EMOTION,
VAR_PRE_ENNEPERS,
VAR_PRE_EPISPIRAL,
VAR_PRE_EPUSH,
VAR_PRE_EROTATE,
VAR_PRE_ESCALE,
VAR_PRE_ESCHER,
VAR_PRE_ESTIQ,
VAR_PRE_ESWIRL,
VAR_PRE_EX,
VAR_PRE_EXP,
VAR_PRE_EXPO,
VAR_PRE_EXPONENTIAL,
VAR_PRE_EXTRUDE,
VAR_PRE_EYEFISH,
VAR_PRE_FALLOFF,
VAR_PRE_FALLOFF2,
VAR_PRE_FALLOFF3,
VAR_PRE_FAN,
VAR_PRE_FAN2,
VAR_PRE_FARBLUR,
VAR_PRE_FDISC,
VAR_PRE_FIBONACCI,
VAR_PRE_FIBONACCI2,
VAR_PRE_FISHEYE,
VAR_PRE_FLATTEN,
VAR_PRE_FLIP_CIRCLE,
VAR_PRE_FLIP_Y,
VAR_PRE_FLOWER,
VAR_PRE_FLUX,
VAR_PRE_FOCI,
VAR_PRE_FOCI3D,
VAR_PRE_FOURTH,
VAR_PRE_FUNNEL,
VAR_PRE_GAUSSIAN_BLUR,
VAR_PRE_GDOFFS,
VAR_PRE_GLYNNIA,
VAR_PRE_GLYNNSIM1,
VAR_PRE_GLYNNSIM2,
VAR_PRE_GLYNNSIM3,
VAR_PRE_GRIDOUT,
VAR_PRE_HANDKERCHIEF,
VAR_PRE_HEART,
VAR_PRE_HEAT,
VAR_PRE_HEMISPHERE,
VAR_PRE_HO,
VAR_PRE_HOLE,
VAR_PRE_HORSESHOE,
VAR_PRE_HYPERBOLIC,
VAR_PRE_HYPERTILE,
VAR_PRE_HYPERTILE1,
VAR_PRE_HYPERTILE2,
VAR_PRE_HYPERTILE3D,
VAR_PRE_HYPERTILE3D1,
VAR_PRE_HYPERTILE3D2,
VAR_PRE_IDISC,
VAR_PRE_INTERFERENCE2,
VAR_PRE_JULIA,
VAR_PRE_JULIA3D,
VAR_PRE_JULIA3DQ,
VAR_PRE_JULIA3DZ,
VAR_PRE_JULIAC,
VAR_PRE_JULIAN,
VAR_PRE_JULIAN2,
VAR_PRE_JULIAN3DX,
VAR_PRE_JULIANAB,
VAR_PRE_JULIAQ,
VAR_PRE_JULIASCOPE,
VAR_PRE_KALEIDOSCOPE,
VAR_PRE_LAZY_TRAVIS,
VAR_PRE_LAZYSUSAN,
VAR_PRE_LINE,
VAR_PRE_LINEAR,
VAR_PRE_LINEAR_T,
VAR_PRE_LINEAR_T3D,
//VAR_PRE_LINEAR_XZ,
//VAR_PRE_LINEAR_YZ,
VAR_PRE_LINEAR3D,
VAR_PRE_LISSAJOUS,
VAR_PRE_LOG,
VAR_PRE_LOQ,
VAR_PRE_LOONIE,
VAR_PRE_LOONIE3D,
VAR_PRE_MASK,
VAR_PRE_MCARPET,
VAR_PRE_MIRROR_X,
VAR_PRE_MIRROR_Y,
VAR_PRE_MIRROR_Z,
VAR_PRE_MOBIQ,
VAR_PRE_MOBIUS,
VAR_PRE_MOBIUS_STRIP,
VAR_PRE_MOBIUSN,
VAR_PRE_MODULUS,
VAR_PRE_MURL,
VAR_PRE_MURL2,
VAR_PRE_NGON,
VAR_PRE_NOISE,
VAR_PRE_NPOLAR,
VAR_PRE_OCTAGON,
VAR_PRE_ORTHO,
VAR_PRE_OSCILLOSCOPE,
VAR_PRE_OVOID,
VAR_PRE_OVOID3D,
VAR_PRE_PARABOLA,
VAR_PRE_PDJ,
VAR_PRE_PERSPECTIVE,
VAR_PRE_PETAL,
VAR_PRE_PHOENIX_JULIA,
VAR_PRE_PIE,
VAR_PRE_PIE3D,
VAR_PRE_POINCARE,
VAR_PRE_POINCARE3D,
VAR_PRE_POLAR,
VAR_PRE_POLAR2,
VAR_PRE_POLYNOMIAL,
VAR_PRE_POPCORN,
VAR_PRE_POPCORN2,
VAR_PRE_POPCORN23D,
VAR_PRE_POW_BLOCK,
VAR_PRE_POWER,
VAR_PRE_PSPHERE,
VAR_PRE_Q_ODE,
VAR_PRE_RADIAL_BLUR,
VAR_PRE_RATIONAL3,
VAR_PRE_RAYS,
VAR_PRE_RBLUR,
VAR_PRE_RECTANGLES,
VAR_PRE_RINGS,
VAR_PRE_RINGS2,
VAR_PRE_RIPPLE,
VAR_PRE_RIPPLED,
VAR_PRE_ROTATE_X,
VAR_PRE_ROTATE_Y,
VAR_PRE_ROTATE_Z,
VAR_PRE_ROUNDSPHER,
VAR_PRE_ROUNDSPHER3D,
VAR_PRE_SCRY,
VAR_PRE_SCRY3D,
VAR_PRE_SEC,
VAR_PRE_SECANT2,
VAR_PRE_SECH,
VAR_PRE_SECHQ,
VAR_PRE_SECQ,
VAR_PRE_SEPARATION,
VAR_PRE_SHRED_RAD,
VAR_PRE_SHRED_LIN,
VAR_PRE_SIGMOID,
VAR_PRE_SIN,
VAR_PRE_SINEBLUR,
VAR_PRE_SINH,
VAR_PRE_SINHQ,
VAR_PRE_SINQ,
VAR_PRE_SINTRANGE,
VAR_PRE_SINUS_GRID,
VAR_PRE_SINUSOIDAL,
VAR_PRE_SINUSOIDAL3D,
VAR_PRE_SPHERICAL,
VAR_PRE_SPHERICAL3D,
VAR_PRE_SPHERICALN,
VAR_PRE_SPHERIVOID,
VAR_PRE_SPHYP3D,
VAR_PRE_SPIRAL,
VAR_PRE_SPIRAL_WING,
VAR_PRE_SPIROGRAPH,
VAR_PRE_SPLIT,
VAR_PRE_SPLIT_BRDR,
VAR_PRE_SPLITS,
VAR_PRE_SQUARE,
VAR_PRE_SQUARE3D,
VAR_PRE_SQUARIZE,
VAR_PRE_SQUIRREL,
VAR_PRE_SQUISH,
VAR_PRE_SSCHECKS,
VAR_PRE_STARBLUR,
VAR_PRE_STRIPES,
VAR_PRE_STWIN,
VAR_PRE_SUPER_SHAPE,
VAR_PRE_SUPER_SHAPE3D,
VAR_PRE_SVF,
VAR_PRE_SWIRL,
VAR_PRE_TAN,
VAR_PRE_TANCOS,
VAR_PRE_TANGENT,
VAR_PRE_TANH,
VAR_PRE_TANHQ,
VAR_PRE_TANQ,
VAR_PRE_TARGET,
VAR_PRE_TAURUS,
VAR_PRE_TRADE,
VAR_PRE_TRUCHET,
VAR_PRE_TWINTRIAN,
VAR_PRE_TWO_FACE,
VAR_PRE_UNPOLAR,
VAR_PRE_VORON,
VAR_PRE_WAFFLE,
VAR_PRE_WAVES,
VAR_PRE_WAVES2,
VAR_PRE_WAVES23D,
VAR_PRE_WAVESN,
VAR_PRE_WDISC,
VAR_PRE_WEDGE,
VAR_PRE_WEDGE_JULIA,
VAR_PRE_WEDGE_SPH,
VAR_PRE_WHORL,
VAR_PRE_XHEART,
VAR_PRE_XTRB,
VAR_PRE_ZBLUR,
VAR_PRE_ZCONE,
VAR_PRE_ZSCALE,
VAR_PRE_ZTRANSLATE,
VAR_POST_ARCH,
VAR_POST_AUGER,
VAR_POST_BARYCENTROID,
VAR_POST_BCIRCLE,
VAR_POST_BCOLLIDE,
VAR_POST_BENT,
VAR_POST_BENT2,
VAR_POST_BIPOLAR,
VAR_POST_BISPLIT,
VAR_POST_BLADE,
VAR_POST_BLADE3D,
VAR_POST_BLOB,
VAR_POST_BLOB2,
VAR_POST_BLOB3D,
VAR_POST_BLOCKY,
VAR_POST_BLUR,
VAR_POST_BLUR_CIRCLE,
VAR_POST_BLUR_HEART,
VAR_POST_BLUR_LINEAR,
VAR_POST_BLUR_PIXELIZE,
VAR_POST_BLUR_SQUARE,
VAR_POST_BLUR_ZOOM,
VAR_POST_BLUR3D,
VAR_POST_BMOD,
VAR_POST_BOARDERS,
VAR_POST_BOARDERS2,
VAR_POST_BSWIRL,
VAR_POST_BTRANSFORM,
VAR_POST_BUBBLE,
VAR_POST_BUBBLE2,
VAR_POST_BUTTERFLY,
VAR_POST_BWRAPS,
VAR_POST_CARDIOID,
VAR_POST_CELL,
VAR_POST_CHECKS,
VAR_POST_CIRCLEBLUR,
VAR_POST_CIRCLECROP,
VAR_POST_CIRCLELINEAR,
VAR_POST_CIRCLERAND,
VAR_POST_CIRCLETRANS1,
VAR_POST_CIRCLIZE,
VAR_POST_CIRCLIZE2,
VAR_POST_CIRCUS,
VAR_POST_COLLIDEOSCOPE,
VAR_POST_CONIC,
VAR_POST_COS,
VAR_POST_COS_WRAP,
VAR_POST_COSH,
VAR_POST_COSHQ,
VAR_POST_COSINE,
VAR_POST_COSQ,
VAR_POST_COT,
VAR_POST_COTH,
VAR_POST_COTHQ,
VAR_POST_COTQ,
VAR_POST_CPOW,
VAR_POST_CPOW2,
VAR_POST_CRESCENTS,
VAR_POST_CROP,
VAR_POST_CROPN,
VAR_POST_CROSS,
VAR_POST_CSC,
VAR_POST_CSCH,
VAR_POST_CSCHQ,
VAR_POST_CSCQ,
VAR_POST_CUBIC3D,
VAR_POST_CUBIC_LATTICE3D,
VAR_POST_CURL,
VAR_POST_CURL3D,
VAR_POST_CURL_SP,
VAR_POST_CURVATURE,
VAR_POST_CURVE,
VAR_POST_CYLINDER,
VAR_POST_DELTA_A,
VAR_POST_DEPTH,
VAR_POST_DIAMOND,
VAR_POST_DISC,
VAR_POST_DISC2,
VAR_POST_DISC3D,
VAR_POST_ECLIPSE,
VAR_POST_ECOLLIDE,
VAR_POST_EDISC,
VAR_POST_EJULIA,
VAR_POST_ELLIPTIC,
VAR_POST_EMOD,
VAR_POST_EMOTION,
VAR_POST_ENNEPERS,
VAR_POST_EPISPIRAL,
VAR_POST_EPUSH,
VAR_POST_EROTATE,
VAR_POST_ESCALE,
VAR_POST_ESCHER,
VAR_POST_ESTIQ,
VAR_POST_ESWIRL,
VAR_POST_EX,
VAR_POST_EXP,
VAR_POST_EXPO,
VAR_POST_EXPONENTIAL,
VAR_POST_EXTRUDE,
VAR_POST_EYEFISH,
VAR_POST_FALLOFF,
VAR_POST_FALLOFF2,
VAR_POST_FALLOFF3,
VAR_POST_FAN,
VAR_POST_FAN2,
VAR_POST_FARBLUR,
VAR_POST_FDISC,
VAR_POST_FIBONACCI,
VAR_POST_FIBONACCI2,
VAR_POST_FISHEYE,
VAR_POST_FLATTEN,
VAR_POST_FLIP_CIRCLE,
VAR_POST_FLIP_Y,
VAR_POST_FLOWER,
VAR_POST_FLUX,
VAR_POST_FOCI,
VAR_POST_FOCI3D,
VAR_POST_FOURTH,
VAR_POST_FUNNEL,
VAR_POST_GAUSSIAN_BLUR,
VAR_POST_GDOFFS,
VAR_POST_GLYNNIA,
VAR_POST_GLYNNSIM1,
VAR_POST_GLYNNSIM2,
VAR_POST_GLYNNSIM3,
VAR_POST_GRIDOUT,
VAR_POST_HANDKERCHIEF,
VAR_POST_HEART,
VAR_POST_HEAT,
VAR_POST_HEMISPHERE,
VAR_POST_HO,
VAR_POST_HOLE,
VAR_POST_HORSESHOE,
VAR_POST_HYPERBOLIC,
VAR_POST_HYPERTILE,
VAR_POST_HYPERTILE1,
VAR_POST_HYPERTILE2,
VAR_POST_HYPERTILE3D,
VAR_POST_HYPERTILE3D1,
VAR_POST_HYPERTILE3D2,
VAR_POST_IDISC,
VAR_POST_INTERFERENCE2,
VAR_POST_JULIA,
VAR_POST_JULIA3D,
VAR_POST_JULIA3DQ,
VAR_POST_JULIA3DZ,
VAR_POST_JULIAC,
VAR_POST_JULIAN,
VAR_POST_JULIAN2,
VAR_POST_JULIAN3DX,
VAR_POST_JULIANAB,
VAR_POST_JULIAQ,
VAR_POST_JULIASCOPE,
VAR_POST_KALEIDOSCOPE,
VAR_POST_LAZY_TRAVIS,
VAR_POST_LAZYSUSAN,
VAR_POST_LINE,
VAR_POST_LINEAR,
VAR_POST_LINEAR_T,
VAR_POST_LINEAR_T3D,
//VAR_POST_LINEAR_XZ,
//VAR_POST_LINEAR_YZ,
VAR_POST_LINEAR3D,
VAR_POST_LISSAJOUS,
VAR_POST_LOG,
VAR_POST_LOQ,
VAR_POST_LOONIE,
VAR_POST_LOONIE3D,
VAR_POST_MASK,
VAR_POST_MCARPET,
VAR_POST_MIRROR_X,
VAR_POST_MIRROR_Y,
VAR_POST_MIRROR_Z,
VAR_POST_MOBIQ,
VAR_POST_MOBIUS,
VAR_POST_MOBIUS_STRIP,
VAR_POST_MOBIUSN,
VAR_POST_MODULUS,
VAR_POST_MURL,
VAR_POST_MURL2,
VAR_POST_NGON,
VAR_POST_NOISE,
VAR_POST_NPOLAR,
VAR_POST_OCTAGON,
VAR_POST_ORTHO,
VAR_POST_OSCILLOSCOPE,
VAR_POST_OVOID,
VAR_POST_OVOID3D,
VAR_POST_PARABOLA,
VAR_POST_PDJ,
VAR_POST_PERSPECTIVE,
VAR_POST_PETAL,
VAR_POST_PHOENIX_JULIA,
VAR_POST_PIE,
VAR_POST_PIE3D,
VAR_POST_POINCARE,
VAR_POST_POINCARE3D,
VAR_POST_POLAR,
VAR_POST_POLAR2,
VAR_POST_POLYNOMIAL,
VAR_POST_POPCORN,
VAR_POST_POPCORN2,
VAR_POST_POPCORN23D,
VAR_POST_POW_BLOCK,
VAR_POST_POWER,
VAR_POST_PSPHERE,
VAR_POST_Q_ODE,
VAR_POST_RADIAL_BLUR,
VAR_POST_RATIONAL3,
VAR_POST_RAYS,
VAR_POST_RBLUR,
VAR_POST_RECTANGLES,
VAR_POST_RINGS,
VAR_POST_RINGS2,
VAR_POST_RIPPLE,
VAR_POST_RIPPLED,
VAR_POST_ROTATE_X,
VAR_POST_ROTATE_Y,
VAR_POST_ROTATE_Z,
VAR_POST_ROUNDSPHER,
VAR_POST_ROUNDSPHER3D,
VAR_POST_SCRY,
VAR_POST_SCRY3D,
VAR_POST_SEC,
VAR_POST_SECANT2,
VAR_POST_SECH,
VAR_POST_SECHQ,
VAR_POST_SECQ,
VAR_POST_SEPARATION,
VAR_POST_SHRED_RAD,
VAR_POST_SHRED_LIN,
VAR_POST_SIGMOID,
VAR_POST_SIN,
VAR_POST_SINEBLUR,
VAR_POST_SINH,
VAR_POST_SINHQ,
VAR_POST_SINQ,
VAR_POST_SINTRANGE,
VAR_POST_SINUS_GRID,
VAR_POST_SINUSOIDAL,
VAR_POST_SINUSOIDAL3D,
VAR_POST_SPHERICAL,
VAR_POST_SPHERICAL3D,
VAR_POST_SPHERICALN,
VAR_POST_SPHERIVOID,
VAR_POST_SPHYP3D,
VAR_POST_SPIRAL,
VAR_POST_SPIRAL_WING,
VAR_POST_SPIROGRAPH,
VAR_POST_SPLIT,
VAR_POST_SPLIT_BRDR,
VAR_POST_SPLITS,
VAR_POST_SQUARE,
VAR_POST_SQUARE3D,
VAR_POST_SQUARIZE,
VAR_POST_SQUIRREL,
VAR_POST_SQUISH,
VAR_POST_SSCHECKS,
VAR_POST_STARBLUR,
VAR_POST_STRIPES,
VAR_POST_STWIN,
VAR_POST_SUPER_SHAPE,
VAR_POST_SUPER_SHAPE3D,
VAR_POST_SVF,
VAR_POST_SWIRL,
VAR_POST_TAN,
VAR_POST_TANCOS,
VAR_POST_TANGENT,
VAR_POST_TANH,
VAR_POST_TANHQ,
VAR_POST_TANQ,
VAR_POST_TARGET,
VAR_POST_TAURUS,
VAR_POST_TRADE,
VAR_POST_TRUCHET,
VAR_POST_TWINTRIAN,
VAR_POST_TWO_FACE,
VAR_POST_UNPOLAR,
VAR_POST_VORON,
VAR_POST_WAFFLE,
VAR_POST_WAVES,
VAR_POST_WAVES2,
VAR_POST_WAVES23D,
VAR_POST_WAVESN,
VAR_POST_WDISC,
VAR_POST_WEDGE,
VAR_POST_WEDGE_JULIA,
VAR_POST_WEDGE_SPH,
VAR_POST_WHORL,
VAR_POST_XHEART,
VAR_POST_XTRB,
VAR_POST_ZBLUR,
VAR_POST_ZCONE,
VAR_POST_ZSCALE,
VAR_POST_ZTRANSLATE,
//Direct color are special and only some have pre/post counterparts.
VAR_DC_BUBBLE,
VAR_DC_CARPET,
VAR_DC_CUBE,
VAR_DC_CYLINDER,
VAR_DC_GRIDOUT,
VAR_DC_LINEAR,
VAR_DC_TRIANGLE,
VAR_DC_ZTRANSL,
VAR_PRE_DC_CARPET,
VAR_PRE_DC_CUBE,
VAR_PRE_DC_GRIDOUT,
VAR_PRE_DC_TRIANGLE,
VAR_PRE_DC_ZTRANSL,
VAR_POST_DC_CARPET,
VAR_POST_DC_CUBE,
VAR_POST_DC_GRIDOUT,
VAR_POST_DC_TRIANGLE,
VAR_POST_DC_ZTRANSL,
LAST_VAR = VAR_POST_DC_ZTRANSL + 1
};
/// <summary>
/// Translated and precalculated values that get passed to each variation's virtual function.
/// Note that this must be passed in and not a member because multiple threads will be calling
/// the variation functions simultaneously. Each thread will get its own IteratorHelper object.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
class EMBER_API IteratorHelper
{
public:
v2T m_Color;
T m_TransX, m_TransY, m_TransZ;//Translated point gotten by applying the affine transform to the input point gotten from the output of the previous iteration (excluding final).
T m_PrecalcSumSquares;//Precalculated value of the sum of the squares of the translated point.
T m_PrecalcSqrtSumSquares;//Precalculated value of the square root of m_PrecalcSumSquares.
T m_PrecalcSina;//Precalculated value of m_TransX / m_PrecalcSqrtSumSquares.
T m_PrecalcCosa;//Precalculated value of m_TransY / m_PrecalcSqrtSumSquares.
T m_PrecalcAtanxy;//Precalculated value of atan2(m_TransX, m_TransY).
T m_PrecalcAtanyx;//Precalculated value of atan2(m_TransY, m_TransX).
v4T In, Out;
};
/// <summary>
/// The base variation class from which all variations will derive.
/// Each has a unique ID, name and weight, as well as a virtual function Func() which
/// does the actual calculations.
/// Each also has boolean values that specify whether precalculations are needed.
/// These precalc flags are used by the parent Xform to determine which values to
/// precalculate in each iteration.
/// Template argument expected to be float or double.
/// </summary>
template <class T>
class EMBER_API Variation
{
public:
/// <summary>
/// Constructor which takes parameters.
/// </summary>
/// <param name="name">The unique name of the variation</param>
/// <param name="id">The unique ID of the variation</param>
/// <param name="weight">The weight. Default: 1.</param>
/// <param name="needPrecalcSumSquares">Whether it uses the precalc sum squares value in its calculations. Default: false.</param>
/// <param name="needPrecalcSqrtSumSquares">Whether it uses the sqrt precalc sum squares value in its calculations. Default: false.</param>
/// <param name="needPrecalcAngles">Whether it uses the precalc sin and cos values in its calculations. Default: false.</param>
/// <param name="needPrecalcAtanXY">Whether it uses the precalc atan XY value in its calculations. Default: false.</param>
/// <param name="needPrecalcAtanYX">Whether it uses the precalc atan YX value in its calculations. Default: false.</param>
Variation(const char* name, eVariationId id, T weight = 1.0,
bool needPrecalcSumSquares = false,
bool needPrecalcSqrtSumSquares = false,
bool needPrecalcAngles = false,
bool needPrecalcAtanXY = false,
bool needPrecalcAtanYX = false)
: m_Name(name)//Omit unnecessary default constructor call.
{
2014-09-10 01:41:26 -04:00
m_Xform = nullptr;
m_VariationId = id;
m_Weight = weight;
m_NeedPrecalcSumSquares = needPrecalcSumSquares;
m_NeedPrecalcSqrtSumSquares = needPrecalcSqrtSumSquares;
m_NeedPrecalcAngles = needPrecalcAngles;
m_NeedPrecalcAtanXY = needPrecalcAtanXY;
m_NeedPrecalcAtanYX = needPrecalcAtanYX;
//Make absolutely sure that flag logic makes sense.
if (m_NeedPrecalcSqrtSumSquares)
m_NeedPrecalcSumSquares = true;
if (m_NeedPrecalcAngles)
{
m_NeedPrecalcSumSquares = true;
m_NeedPrecalcSqrtSumSquares = true;
}
m_AssignType = ASSIGNTYPE_SET;
SetType();
}
/// <summary>
/// Default copy constructor.
/// </summary>
/// <param name="variation">The Variation object to copy</param>
Variation(const Variation<T>& variation)
{
Variation<T>::operator=<T>(variation);
}
/// <summary>
/// Copy constructor to copy a Variation object of type U.
/// </summary>
/// <param name="variation">The Variation object to copy</param>
template <typename U>
Variation(const Variation<U>& variation)
{
Variation<T>::operator=<U>(variation);
}
/// <summary>
/// Empty virtual destructor.
/// Note that even though this is empty, it must be present
/// and be virtual for the derived classes to properly get destroyed.
/// </summary>
virtual ~Variation()
{
}
/// <summary>
/// Default assignment operator.
/// </summary>
/// <param name="variation">The Variation object to copy</param>
Variation<T>& operator = (const Variation<T>& variation)
{
if (this != &variation)
Variation<T>::operator=<T>(variation);
return *this;
}
/// <summary>
/// Assignment operator to assign a Variation object of type U.
/// </summary>
/// <param name="variation">The Variation object to copy.</param>
/// <returns>Reference to updated self</returns>
template <typename U>
Variation<T>& operator = (const Variation<U>& variation)
{
m_Name = variation.Name();
m_VarType = variation.VarType();
m_AssignType = variation.AssignType();
m_VariationId = variation.VariationId();
m_Weight = T(variation.m_Weight);
m_Xform = typeid(T) == typeid(U) ? const_cast<Xform<T>*>(reinterpret_cast<const Xform<T>*>(variation.ParentXform())) : nullptr;
m_NeedPrecalcSumSquares = variation.NeedPrecalcSumSquares();
m_NeedPrecalcSqrtSumSquares = variation.NeedPrecalcSqrtSumSquares();
m_NeedPrecalcAngles = variation.NeedPrecalcAngles();
m_NeedPrecalcAtanXY = variation.NeedPrecalcAtanXY();
m_NeedPrecalcAtanYX = variation.NeedPrecalcAtanYX();
return *this;
}
/// <summary>
/// Per-variation precalc used for pre and post variations.
/// </summary>
/// <param name="iteratorHelper">The helper to read values from in the case of pre, and store precalc values to in both cases.</param>
/// <param name="point">The point to read values from in the case of post, ignored for pre.</param>
void PrecalcHelper(IteratorHelper<T>& iteratorHelper, Point<T>* point)
{
if (m_VarType == VARTYPE_PRE)
{
if (m_NeedPrecalcSumSquares)
{
iteratorHelper.m_PrecalcSumSquares = SQR(iteratorHelper.m_TransX) + SQR(iteratorHelper.m_TransY);
if (m_NeedPrecalcSqrtSumSquares)
{
iteratorHelper.m_PrecalcSqrtSumSquares = sqrt(iteratorHelper.m_PrecalcSumSquares);
if (m_NeedPrecalcAngles)
{
iteratorHelper.m_PrecalcSina = iteratorHelper.m_TransX / iteratorHelper.m_PrecalcSqrtSumSquares;
iteratorHelper.m_PrecalcCosa = iteratorHelper.m_TransY / iteratorHelper.m_PrecalcSqrtSumSquares;
}
}
}
if (m_NeedPrecalcAtanXY)
iteratorHelper.m_PrecalcAtanxy = atan2(iteratorHelper.m_TransX, iteratorHelper.m_TransY);
if (m_NeedPrecalcAtanYX)
iteratorHelper.m_PrecalcAtanyx = atan2(iteratorHelper.m_TransY, iteratorHelper.m_TransX);
}
else if (m_VarType == VARTYPE_POST)
{
if (m_NeedPrecalcSumSquares)
{
iteratorHelper.m_PrecalcSumSquares = SQR(point->m_X) + SQR(point->m_Y);
if (m_NeedPrecalcSqrtSumSquares)
{
iteratorHelper.m_PrecalcSqrtSumSquares = sqrt(iteratorHelper.m_PrecalcSumSquares);
if (m_NeedPrecalcAngles)
{
iteratorHelper.m_PrecalcSina = point->m_X / iteratorHelper.m_PrecalcSqrtSumSquares;
iteratorHelper.m_PrecalcCosa = point->m_Y / iteratorHelper.m_PrecalcSqrtSumSquares;
}
}
}
if (m_NeedPrecalcAtanXY)
iteratorHelper.m_PrecalcAtanxy = atan2(point->m_X, point->m_Y);
if (m_NeedPrecalcAtanYX)
iteratorHelper.m_PrecalcAtanyx = atan2(point->m_Y, point->m_X);
}
}
/// <summary>
/// Per-variation precalc OpenCL string used for pre and post variations.
/// </summary>
/// <returns>The per-variation OpenCL precalc string</returns>
string PrecalcOpenCLString()
{
ostringstream ss;
if (m_VarType == VARTYPE_PRE)
{
if (m_NeedPrecalcSumSquares)
{
ss << "\tprecalcSumSquares = SQR(transX) + SQR(transY);\n";
if (m_NeedPrecalcSqrtSumSquares)
{
ss << "\tprecalcSqrtSumSquares = sqrt(precalcSumSquares);\n";
if (m_NeedPrecalcAngles)
{
ss << "\tprecalcSina = transX / precalcSqrtSumSquares;\n";
ss << "\tprecalcCosa = transY / precalcSqrtSumSquares;\n";
}
}
}
if (m_NeedPrecalcAtanXY)
ss << "\tprecalcAtanxy = atan2(transX, transY);\n";
if (m_NeedPrecalcAtanYX)
ss << "\tprecalcAtanyx = atan2(transY, transX);\n";
}
else if (m_VarType == VARTYPE_POST)
{
if (m_NeedPrecalcSumSquares)
{
ss << "\tprecalcSumSquares = SQR(outPoint->m_X) + SQR(outPoint->m_Y);\n";
if (m_NeedPrecalcSqrtSumSquares)
{
ss << "\tprecalcSqrtSumSquares = sqrt(precalcSumSquares);\n";
if (m_NeedPrecalcAngles)
{
ss << "\tprecalcSina = outPoint->m_X / precalcSqrtSumSquares;\n";
ss << "\tprecalcCosa = outPoint->m_Y / precalcSqrtSumSquares;\n";
}
}
}
if (m_NeedPrecalcAtanXY)
ss << "\tprecalcAtanxy = atan2(outPoint->m_X, outPoint->m_Y);\n";
if (m_NeedPrecalcAtanYX)
ss << "\tprecalcAtanyx = atan2(outPoint->m_Y, outPoint->m_X);\n";
}
if (NeedAnyPrecalc())
ss << "\n";
return ss.str();
}
/// <summary>
/// Return the name and weight of the variation as a string.
/// </summary>
/// <returns>The name and weight of the variation</returns>
virtual string ToString() const
{
ostringstream ss;
ss << m_Name << "(" << m_Weight << ")";
return ss.str();
}
/// <summary>
/// Abstract copy function. Derived classes must implement.
/// </summary>
/// <returns>A copy of this object</returns>
virtual Variation<T>* Copy() = 0;
/// <summary>
/// Create a new Variation<float>, store it in the pointer reference passed in and
/// copy the this Variation's values into it.
/// Note this is a severe hack to overcome two shortcomings in C++.
/// One is that templated functions cannot be virtual.
/// The second is that function overloading only works when parameters differ, not just return types.
/// In an ideal world, all copy functionality would be consolidated into a single function that looked like:
/// template <typename U> virtual Variation<U> Copy();
/// Since that isn't possible, the only way to do what's needed is to create two functions to do this, one for
/// Variation<float> and another for Variation<double>.
/// This further offends design sensiblities since it requires this template class to know which types it's going to
/// be instantiated for. Sadly, there is no alternative and it must be done this way. Fortunately, we know it will
/// only ever be used with float and double.
/// </summary>
/// <param name="var">A reference to a pointer which will store the newly created Variation<float>*</param>
virtual void Copy(Variation<float>*& var) const = 0;
#ifdef DO_DOUBLE
/// <summary>
/// See description for Copy(Variation<float>*& var).
/// </summary>
/// <param name="var">A reference to a pointer which will store the newly created Variation<double>*</param>
virtual void Copy(Variation<double>*& var) const = 0;
#endif
/// <summary>
/// Abstract function where the actual work takes place. Derived classes must implement.
/// </summary>
/// <param name="helper">The IteratorHelper object which holds translated and precalculated values</param>
/// <param name="outPoint">The point to store the result in</param>
/// <param name="rand">The random number generator to use.</param>
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) = 0;
/// <summary>
/// Return a string which performs the equivalent calculation in Func(), but on the GPU in OpenCL.
/// Derived classes will implement this.
/// </summary>
/// <returns>The OpenCL string to perform the equivalent calculation on the GPU in OpenCL</returns>
virtual string OpenCLString() { return ""; }
/// <summary>
/// If the OpenCL string depends on any functions specific to this variation, return them.
/// </summary>
/// <returns>The OpenCL string for functions specific to this variation</returns>
virtual string OpenCLFuncsString() { return ""; }
/// <summary>
/// In addition to the standard precalculation stored in the IteratorHelper object, some
/// variations have additional precalculation work to do that can save processing time while iterating.
/// For most this is left empty, however a few will override.
/// </summary>
virtual void Precalc() { }
/// <summary>
/// When creating random embers, the variations are placed in a random state.
/// For most this base implementation will be used, however a few will override.
/// </summary>
/// <param name="rand">The rand.</param>
virtual void Random(QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand)
{
m_Weight = rand.Frand11<T>();
}
/// <summary>
/// Returns the string prefix to be used with params and the variation name.
/// </summary>
/// <returns>pre_, post_ or the empty string</returns>
string Prefix() const
{
if (m_VarType == VARTYPE_PRE)
return "pre_";
else if (m_VarType == VARTYPE_POST)
return "post_";
else
return "";
}
string BaseName() const
{
string prefix = Prefix();
if (prefix != "" && m_Name.find(prefix) == 0)
return m_Name.substr(prefix.size(), m_Name.size() - prefix.size());
else
return m_Name;
}
/// <summary>
/// Accessors.
/// </summary>
inline bool NeedPrecalcSumSquares() const { return m_NeedPrecalcSumSquares; }
inline bool NeedPrecalcSqrtSumSquares() const { return m_NeedPrecalcSqrtSumSquares; }
inline bool NeedPrecalcAngles() const { return m_NeedPrecalcAngles; }
inline bool NeedPrecalcAtanXY() const { return m_NeedPrecalcAtanXY; }
inline bool NeedPrecalcAtanYX() const { return m_NeedPrecalcAtanYX; }
inline bool NeedAnyPrecalc() const { return NeedPrecalcSumSquares() || NeedPrecalcSqrtSumSquares() || NeedPrecalcAngles() || NeedPrecalcAtanXY() || NeedPrecalcAtanYX(); }
eVariationId VariationId() const { return m_VariationId; }
string Name() const { return m_Name; }
eVariationType VarType() const { return m_VarType; }
eVariationAssignType AssignType() const { return m_AssignType; }
const Xform<T>* ParentXform() const { return m_Xform; }
void ParentXform(Xform<T>* xform) { m_Xform = xform; }
0.4.1.3 Beta 10/14/2014 --User Changes Size is no longer fixed to the window size. Size scaling is done differently in the final render dialog. This fixes several bugs. Remove Xml saving size from settings and options dialog, it no longer applies. Final render can be broken into strips. Set default save path to the desktop if none is found in the settings file. Set default output size to 1920x1080 if none is found in the settings file. --Bug Fixes Better memory size reporting in final render dialog. --Code Changes Migrate to C++11, Qt 5.3.1, and Visual Studio 2013. Change most instances of unsigned int to size_t, and int to intmax_t. Add m_OrigPixPerUnit and m_ScaleType to Ember for scaling purposes. Replace some sprintf_s() calls in XmlToEmber with ostringstream. Move more non-templated members into RendererBase. Add CopyVec() overload that takes a per element function pointer. Add vector Memset(). Replace '&' with '+' instead of "&amp;" in XmlToEmber for much faster parsing. Break strips rendering out into EmberCommon and call from EmberRender and Fractorium. Make AddAndWriteBuffer() just call WriteBuffer(). Make AddAndWriteImage() delete the existing image first before replacing it. Add SetOutputTexture() to RendererCL to support making new textures in response to resize events. Remove multiple return statements in RendererCL, and replace with a bool that tracks results. Add ToDouble(), MakeEnd(), ToString() and Exists() wrappers in Fractorium. Add Size() wrapper in EmberFile. Make QString function arguments const QString&, and string with const string&. Make ShowCritical() wrapper for invoking a message box from another thread. Add combo box to TwoButtonWidget and rename.
2014-10-14 11:53:15 -04:00
intmax_t IndexInXform() { return m_Xform ? m_Xform->GetVariationIndex(this) : -1; }
intmax_t XformIndexInEmber() { return m_Xform ? m_Xform->IndexInParentEmber() : -1; }
T m_Weight;//The weight of the variation.
protected:
void SetType()
{
if (m_Name.find("pre_") == 0)
m_VarType = VARTYPE_PRE;
else if (m_Name.find("post_") == 0)
m_VarType = VARTYPE_POST;
else
m_VarType = VARTYPE_REG;
}
Xform<T>* m_Xform;//The parent Xform that this variation is a child of.
eVariationId m_VariationId;//The unique ID of this variation.
string m_Name;//The unique name of this variation.
eVariationType m_VarType;//The type of variation: regular, pre or post.
eVariationAssignType m_AssignType;//Whether to assign the results for pre/post, or sum them.
private:
bool m_NeedPrecalcSumSquares;//Whether this variation uses the precalc sum squares value in its calculations.
bool m_NeedPrecalcSqrtSumSquares;//Whether it uses the sqrt precalc sum squares value in its calculations.
bool m_NeedPrecalcAngles;//Whether it uses the precalc sin and cos values in its calculations.
bool m_NeedPrecalcAtanXY;//Whether it uses the precalc atan XY value in its calculations.
bool m_NeedPrecalcAtanYX;//Whether it uses the precalc atan YX value in its calculations.
};
/// <summary>
/// The type of parameter represented by ParamWithName<T>.
/// This allows restricting of certain parameters to sensible values.
/// </summary>
enum eParamType
{
REAL,
REAL_CYCLIC,
REAL_NONZERO,
INTEGER,
INTEGER_NONZERO
};
template <typename T> class ParametricVariation;
/// <summary>
/// Parametric variations use parameters in addition to weight.
/// These values are stored in members of classes derived from ParametricVariation,
/// however for easy access, pointers to them are also stored in a vector
/// of ParamWithName in ParametricVariation.
/// Each of these takes the form of a name string and a pointer to a value.
/// Also, some of them can be considered precalculated values, rather than
/// formal parameters.
/// This class encapsulates a single parameter.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
class EMBER_API ParamWithName
{
friend ParametricVariation<T>;
public:
/// <summary>
/// Default constructor.
/// </summary>
ParamWithName()
{
2014-09-10 01:41:26 -04:00
Init(nullptr, "", 0, REAL, TLOW, TMAX);
}
/// <summary>
/// Constructor for a precalc param that takes arguments.
/// </summary>
/// <param name="isPrecalc">Whether the parameter is actually a precalculated value. Default: false.</param>
/// <param name="param">A pointer to the parameter</param>
/// <param name="name">The name of the parameter</param>
ParamWithName(bool isPrecalc,
T* param,
string name)
{
Init(param, name, 0, REAL, TLOW, TMAX, true);
}
/// <summary>
/// Constructor for a non-precalc param that takes arguments.
/// </summary>
/// <param name="param">A pointer to the parameter</param>
/// <param name="name">The name of the parameter</param>
/// <param name="def">The default value of the parameter</param>
/// <param name="type">The type of the parameter</param>
/// <param name="min">The minimum value the parameter can be</param>
/// <param name="max">The maximum value the parameter can be</param>
ParamWithName(T* param, string name, T def = 0, eParamType type = REAL, T min = TLOW, T max = TMAX)
{
Init(param, name, def, type, min, max);
}
/// <summary>
/// Copy constructor.
/// Note this constructor does not take an additional template parameter
/// like the others do. This is because there is not way to assign the
/// param pointer from one type to another. Luckily, such functionality is not needed
/// with this class.
/// </summary>
/// <param name="paramWithName">The ParamWithName object to copy</param>
ParamWithName(const ParamWithName<T>& paramWithName)
{
*this = paramWithName;
}
/// <summary>
/// Assignment operator.
/// Note this assignment operator does not take an additional template parameter
/// like the others do. This is because there is not way to assign the
/// param pointer from one type to another. Luckily, such functionality is not needed
/// with this class.
/// </summary>
/// <param name="paramWithName">The ParamWithName object to copy.</param>
/// <returns>Reference to updated self</returns>
ParamWithName<T>& operator = (const ParamWithName<T>& paramWithName)
{
if (this != &paramWithName)
{
m_Param = paramWithName.m_Param;
m_Def = paramWithName.m_Def;
m_Min = paramWithName.m_Min;
m_Max = paramWithName.m_Max;
m_Type = paramWithName.m_Type;
m_Name = paramWithName.m_Name;
m_IsPrecalc = paramWithName.m_IsPrecalc;
}
return *this;
}
/// <summary>
/// Constructor that takes arguments.
/// </summary>
/// <param name="param">A pointer to the parameter</param>
/// <param name="name">The name of the parameter</param>
/// <param name="def">The default value of the parameter</param>
/// <param name="type">The type of the parameter</param>
/// <param name="min">The minimum value the parameter can be</param>
/// <param name="max">The maximum value the parameter can be</param>
/// <param name="isPrecalc">Whether the parameter is actually a precalculated value. Default: false.</param>
void Init(T* param, string name, T def = 0, eParamType type = REAL, T min = TLOW, T max = TMAX, bool isPrecalc = false)
{
m_Param = param;
m_Def = def;
m_Min = min;
m_Max = max;
m_Type = type;
m_Name = name;
m_IsPrecalc = isPrecalc;
Set(m_Def);//Initial value.
}
/// <summary>
/// Set this parameter to the val.
/// Depending on the type that was specified in the constructor, various restrictions
/// will be put on the value.
/// </summary>
/// <param name="val">The value to set the parameter to</param>
void Set(T val)
{
switch (m_Type)
{
case REAL :
{
*m_Param = std::max(std::min(val, m_Max), m_Min);
break;
}
case REAL_CYCLIC :
{
if (val > m_Max)
*m_Param = m_Min + fmod(val - m_Min, m_Max - m_Min);
else if (val < m_Min)
*m_Param = m_Max - fmod(m_Max - val, m_Max - m_Min);
else
*m_Param = val;
break;
}
case REAL_NONZERO :
{
T vd = std::max(std::min(val, m_Max), m_Min);
if (IsNearZero(vd))
*m_Param = EPS * SignNz(vd);
else
*m_Param = vd;
break;
}
case INTEGER :
{
*m_Param = T(int(std::max(std::min<T>(T(Floor<T>(val + T(0.5))), m_Max), m_Min)));
break;
}
case INTEGER_NONZERO :
2014-09-10 01:41:26 -04:00
default:
{
int vi = int(std::max(std::min<T>(T(Floor<T>(val + T(0.5))), m_Max), m_Min));
if (vi == 0)
vi = int(SignNz<T>(val));
*m_Param = T(vi);
break;
}
}
}
/// <summary>
/// Return the values of the ParamWithName as a string.
/// </summary>
/// <returns>The ParamWithName values as a string</returns>
string ToString() const
{
ostringstream ss;
ss << "Param Name: " << m_Name << endl
<< "Param Pointer: " << m_Param << endl
<< "Param Value: " << *m_Param << endl
<< "Param Def: " << m_Def << endl
<< "Param Min: " << m_Min << endl
<< "Param Max: " << m_Max << endl
<< "Param Type: " << m_Type << endl
<< "Is Precalc: " << m_IsPrecalc << endl;
return ss.str();
}
/// <summary>
/// Accessors.
/// </summary>
T* Param() const { return m_Param; }
T ParamVal() const { return *m_Param; }
T Def() const { return m_Def; }
T Min() const { return m_Min; }
T Max() const { return m_Max; }
eParamType Type() const { return m_Type; }
string Name() const { return m_Name; }
bool IsPrecalc() const { return m_IsPrecalc; }
private:
T* m_Param;//Pointer to the parameter value.
T m_Def;//The default value of the parameter.
T m_Min;//The minimum value the parameter can be.
T m_Max;//The maximum value the parameter can be.
eParamType m_Type;//The type of the parameter.
string m_Name;//Name of the parameter.
bool m_IsPrecalc;//Whether the parameter is actually a precalculated value.
};
/// <summary>
/// Parametric variations use parameters in addition to weight.
/// These values are stored in members of derived classes, however
/// for easy access, pointers to them are also stored in a vector
/// of ParamWithName in this class.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
class EMBER_API ParametricVariation : public Variation<T>
{
using Variation<T>::Precalc;
public:
/// <summary>
/// Constructor which takes arguments and just passes them to the base class.
/// </summary>
/// <param name="name">The unique name of the variation</param>
/// <param name="id">The unique ID of the variation</param>
/// <param name="weight">The weight. Default: 1.</param>
/// <param name="needPrecalcSumSquares">Whether it uses the precalc sum squares value in its calculations. Default: false.</param>
/// <param name="needPrecalcSqrtSumSquares">Whether it uses the sqrt precalc sum squares value in its calculations. Default: false.</param>
/// <param name="needPrecalcAngles">Whether it uses the precalc sin and cos values in its calculations. Default: false.</param>
/// <param name="needPrecalcAtanXY">Whether it uses the precalc atan XY value in its calculations. Default: false.</param>
/// <param name="needPrecalcAtanYX">Whether it uses the precalc atan YX value in its calculations. Default: false.</param>
ParametricVariation(const char* name, eVariationId id, T weight = 1.0,
bool needPrecalcSumSquares = false,
bool needPrecalcSqrtSumSquares = false,
bool needPrecalcAngles = false,
bool needPrecalcAtanXY = false,
bool needPrecalcAtanYX = false)
: Variation<T>(name, id, weight,
needPrecalcSumSquares,
needPrecalcSqrtSumSquares,
needPrecalcAngles,
needPrecalcAtanXY,
needPrecalcAtanYX)
{
m_Params.reserve(5);
}
/// <summary>
/// Default copy constructor.
/// </summary>
/// <param name="var">The ParametricVariation object to copy</param>
ParametricVariation(const ParametricVariation<T>& var)
: Variation<T>(var)
{
//Derived classes will have to initialize the m_Params vector
//to the addresses of its members and then assign values from var.
m_Params.reserve(5);
}
/// <summary>
/// Copy constructor to copy a ParametricVariation object of type U.
/// </summary>
/// <param name="var">The ParametricVariation object to copy</param>
template <typename U>
ParametricVariation(const ParametricVariation<U>& var)
: Variation<T>(var)
{
//Derived classes will have to initialize the m_Params vector
//to the addresses of its members and then assign values from var.
m_Params.reserve(5);
}
2014-09-10 01:41:26 -04:00
/// <summary>
/// Empty virtual destructor.
/// Needed to eliminate warnings about inlining.
/// </summary>
virtual ~ParametricVariation()
{
}
/// <summary>
/// Determine whether the params vector contains a parameter with the specified name.
/// </summary>
/// <param name="name">The name to search for</param>
/// <returns>True if found, else false.</returns>
bool ContainsParam(const char* name)
{
bool b = false;
ForEach(m_Params, [&](ParamWithName<T>& param)
{
if (!_stricmp(param.Name().c_str(), name))
b = true;
});
return b;
}
/// <summary>
/// Get a pointer to a parameter value with the specified name.
/// </summary>
/// <param name="name">The name to search for</param>
/// <returns>A pointer to the parameter value if the name matched, else false.</returns>
T* GetParam(const char* name)
{
for (size_t i = 0; i < m_Params.size(); i++)
if (!_stricmp(m_Params[i].Name().c_str(), name))
return m_Params[i].Param();
2014-09-10 01:41:26 -04:00
return nullptr;
}
/// <summary>
/// Get a parameter value with the specified name.
/// </summary>
/// <param name="name">The name to search for</param>
/// <returns>A parameter value if the name matched, else 0.</returns>
T GetParamVal(const char* name) const
{
for (size_t i = 0; i < m_Params.size(); i++)
if (!_stricmp(m_Params[i].Name().c_str(), name))
return m_Params[i].ParamVal();
return 0;
}
/// <summary>
/// Assign a value to the parameter with the specified name and call virtual Precalc() if found.
/// </summary>
/// <param name="name">The name of the parameter to assign to</param>
/// <param name="val">The value to assign</param>
/// <returns>True if the name matched, else false.</returns>
virtual bool SetParamVal(const char* name, T val)
{
bool b = false;
ForEach(m_Params, [&](ParamWithName<T>& param)
{
if (!_stricmp(param.Name().c_str(), name))
{
param.Set(val);
b = true;
}
});
if (b)
this->Precalc();
return b;
}
/// <summary>
/// Assign a value to the parameter at the specified index and call virtual Precalc() if found.
/// </summary>
/// <param name="index">The index of the parameter to assign to</param>
/// <param name="val">The value to assign</param>
/// <returns>True if the index was in range, else false.</returns>
virtual bool SetParamVal(int index, T val)
{
bool b = false;
if (index < m_Params.size())
m_Params[index].Set(val);
if (b)
this->Precalc();
return b;
}
/// <summary>
/// Severe hack to get g++ to compile this.
/// </summary>
virtual void Precalc() override { }
/// <summary>
/// Place the parametric variation in a random state by setting all of the
/// non-precalc params to values between -1 and 1;
/// </summary>
/// <param name="rand">The rand.</param>
virtual void Random(QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
Variation<T>::Random(rand);
ForEach(m_Params, [&](ParamWithName<T>& param) { param.Set(rand.Frand11<T>()); });
this->Precalc();
}
/// <summary>
/// Assign all 0 to all parameters and call virtual Precalc().
/// </summary>
void Clear()
{
ForEach(m_Params, [&](ParamWithName<T>& param) { *(param.Param()) = 0; });
this->Precalc();
}
/// <summary>
/// Return a vector of all parameter names, optionally including precalcs.
/// </summary>
/// <param name="includePrecalcs">Whether to include the names of precalcs in the returned vector</param>
/// <returns>A vector of all parameter names</returns>
vector<string> ParamNames(bool includePrecalcs = false)
{
vector<string> vec;
vec.reserve(m_Params.size());
ForEach(m_Params, [&](const ParamWithName<T>& param)
{
if ((includePrecalcs && param.IsPrecalc()) || !param.IsPrecalc())
vec.push_back(param.Name());
});
return vec;
}
/// <summary>
/// Return the name, weight and parameters of the variation as a string.
/// </summary>
/// <returns>The name, weight and parameters of the variation</returns>
virtual string ToString() const
{
ostringstream ss;
ss << Variation<T>::ToString() << endl;
ForEach(m_Params, [&](const ParamWithName<T>& param) { ss << param.ToString() << endl; });
return ss.str();
}
/// <summary>
/// Accessors.
/// </summary>
ParamWithName<T>* Params() { return &m_Params[0]; }
0.4.1.3 Beta 10/14/2014 --User Changes Size is no longer fixed to the window size. Size scaling is done differently in the final render dialog. This fixes several bugs. Remove Xml saving size from settings and options dialog, it no longer applies. Final render can be broken into strips. Set default save path to the desktop if none is found in the settings file. Set default output size to 1920x1080 if none is found in the settings file. --Bug Fixes Better memory size reporting in final render dialog. --Code Changes Migrate to C++11, Qt 5.3.1, and Visual Studio 2013. Change most instances of unsigned int to size_t, and int to intmax_t. Add m_OrigPixPerUnit and m_ScaleType to Ember for scaling purposes. Replace some sprintf_s() calls in XmlToEmber with ostringstream. Move more non-templated members into RendererBase. Add CopyVec() overload that takes a per element function pointer. Add vector Memset(). Replace '&' with '+' instead of "&amp;" in XmlToEmber for much faster parsing. Break strips rendering out into EmberCommon and call from EmberRender and Fractorium. Make AddAndWriteBuffer() just call WriteBuffer(). Make AddAndWriteImage() delete the existing image first before replacing it. Add SetOutputTexture() to RendererCL to support making new textures in response to resize events. Remove multiple return statements in RendererCL, and replace with a bool that tracks results. Add ToDouble(), MakeEnd(), ToString() and Exists() wrappers in Fractorium. Add Size() wrapper in EmberFile. Make QString function arguments const QString&, and string with const string&. Make ShowCritical() wrapper for invoking a message box from another thread. Add combo box to TwoButtonWidget and rename.
2014-10-14 11:53:15 -04:00
size_t ParamCount() { return m_Params.size(); }
const vector<ParamWithName<T>>& ParamsVec() const { return m_Params; }
protected:
/// <summary>
/// Copy the non-precalc parameter values of type U to the pointer locations stored in the params vector of type T,
/// where T is usually the same type as U.
/// This will copy the values to the members of derived classes.
/// </summary>
/// <param name="params">The vector of parameters whose values will be copied</param>
template <typename U>
void CopyParamVals(const vector<ParamWithName<U>>& params)
{
if (m_Params.size() == params.size())
{
for (size_t i = 0; i < m_Params.size(); i++)
if (!m_Params[i].IsPrecalc())
m_Params[i].Set(T(params[i].ParamVal()));
this->Precalc();
}
}
vector<ParamWithName<T>> m_Params;//The params pointer vector which stores pointer to parameter members of derived classes.
};
/// <summary>
/// Macro to define a default copy constructor, a copy constructor for a different template type, and a virtual Copy() function
/// for classes derived directly from Variation.
/// Defining assignment operators isn't really needed because Variations are always held as pointers.
/// </summary>
#define VARUSINGS \
using Variation<T>::m_Weight; \
using Variation<T>::m_Xform; \
using Variation<T>::m_VariationId; \
using Variation<T>::m_Name; \
using Variation<T>::m_VarType; \
using Variation<T>::m_AssignType; \
using Variation<T>::SetType; \
using Variation<T>::IndexInXform; \
using Variation<T>::XformIndexInEmber; \
using Variation<T>::Prefix;
#ifdef DO_DOUBLE
#define VARCOPYDOUBLE(name) \
virtual void Copy(Variation<double>*& var) const override \
{ \
2014-09-10 01:41:26 -04:00
if (var != nullptr) \
delete var; \
\
var = new name<double>(*this); \
} \
#else
#define VARCOPYDOUBLE(name)
#endif // DO_DOUBLE
#define VARCOPY(name) \
VARUSINGS \
public: \
name(const name<T>& var) \
: Variation<T>(var) \
{ \
} \
\
template <typename U> \
name(const name<U>& var) \
: Variation<T>(var) \
{ \
} \
\
virtual Variation<T>* Copy() override \
{ \
return new name<T>(*this); \
} \
\
virtual void Copy(Variation<float>*& var) const override \
{ \
2014-09-10 01:41:26 -04:00
if (var != nullptr) \
delete var; \
\
var = new name<float>(*this); \
} \
\
VARCOPYDOUBLE(name) \
#define PREPOSTVARCOPY(name, base) \
name(const name<T>& var) \
: base<T>(var) \
{ \
} \
\
template <typename U> \
name(const name<U>& var) \
: base<T>(var) \
{ \
} \
\
virtual Variation<T>* Copy() override \
{ \
return new name<T>(*this); \
} \
\
virtual void Copy(Variation<float>*& var) const override \
{ \
2014-09-10 01:41:26 -04:00
if (var != nullptr) \
delete var; \
\
var = new name<float>(*this); \
} \
\
VARCOPYDOUBLE(name) \
/// <summary>
/// Macro to create pre and post counterparts to a variation.
/// Assign type defaults to set.
/// </summary>
#define MAKEPREPOSTVAR(varName, stringName, enumName) MAKEPREPOSTVARASSIGN(varName, stringName, enumName, ASSIGNTYPE_SET)
#define MAKEPREPOSTVARASSIGN(varName, stringName, enumName, assignType) \
template <typename T> \
class EMBER_API Pre##varName##Variation : public varName##Variation<T> \
{ \
VARUSINGS \
public: \
Pre##varName##Variation(T weight = 1.0) : varName##Variation<T>(weight) \
{ \
m_VariationId = VAR_PRE_##enumName; \
m_Name = "pre_"#stringName; \
m_AssignType = assignType; \
SetType(); \
} \
\
PREPOSTVARCOPY(Pre##varName##Variation, varName##Variation) \
}; \
\
template <typename T> \
class EMBER_API Post##varName##Variation : public varName##Variation<T> \
{ \
VARUSINGS \
public:\
Post##varName##Variation(T weight = 1.0) : varName##Variation<T>(weight) \
{ \
m_VariationId = VAR_POST_##enumName; \
m_Name = "post_"#stringName; \
m_AssignType = assignType; \
SetType(); \
} \
\
PREPOSTVARCOPY(Post##varName##Variation, varName##Variation) \
};
/// <summary>
/// Macro to define a copy constructor, a copy constructor for a different template type, and a virtual Copy() function
/// for classes derived from ParametricVariation.
/// Another major shortcoming of C++: Ideally, Init() should be a virtual function defined in ParametricVariation.
/// It would be called in that constructor, and defined in each derived class. However, that can't be done because the vtable
/// is not setup during construction.
/// Instead, every class must define it as a non-virtual function and explicitly call it in its constructor.
/// </summary>
#define PARVARUSINGS \
using ParametricVariation<T>::m_Params; \
using ParametricVariation<T>::CopyParamVals;
#define PARVARCOPY(name) \
VARUSINGS \
PARVARUSINGS \
public: \
name(const name<T>& var) \
: ParametricVariation<T>(var) \
{ \
Init(); /* Assign the addresses of the members to the vector. */ \
CopyParamVals(var.ParamsVec()); /* Copy values from var's vector and precalc. */ \
} \
\
template <typename U> \
name(const name<U>& var) \
: ParametricVariation<T>(var) \
{ \
Init(); /* Assign the addresses of the members to the vector. */ \
CopyParamVals(var.ParamsVec()); /* Copy values from var's vector and precalc. */ \
} \
\
virtual Variation<T>* Copy() override \
{ \
return new name<T>(*this); \
} \
\
virtual void Copy(Variation<float>*& var) const override \
{ \
2014-09-10 01:41:26 -04:00
if (var != nullptr) \
delete var; \
\
var = new name<float>(*this); \
} \
\
VARCOPYDOUBLE(name) \
#define PREPOSTPARVARCOPY(name, base) \
name(const name<T>& var) \
: base<T>(var) \
{ \
Init(); /* Assign the addresses of the members to the vector. */ \
CopyParamVals(var.ParamsVec()); /* Copy values from var's vector and precalc. */ \
} \
\
template <typename U> \
name(const name<U>& var) \
: base<T>(var) \
{ \
Init(); /* Assign the addresses of the members to the vector. */ \
CopyParamVals(var.ParamsVec()); /* Copy values from var's vector and precalc. */ \
} \
\
virtual Variation<T>* Copy() override \
{ \
return new name<T>(*this); \
} \
\
virtual void Copy(Variation<float>*& var) const override \
{ \
2014-09-10 01:41:26 -04:00
if (var != nullptr) \
delete var; \
\
var = new name<float>(*this); \
} \
\
VARCOPYDOUBLE(name)
/// <summary>
/// Macro to create pre and post counterparts to a parametric variation.
/// Assign type defaults to set.
/// This uses the severe hack of calling Init() again after the type has been set
/// avoid having to change the constructor arguments for about 300 variations.
/// </summary>
#define MAKEPREPOSTPARVAR(varName, stringName, enumName) MAKEPREPOSTPARVARASSIGN(varName, stringName, enumName, ASSIGNTYPE_SET)
#define MAKEPREPOSTPARVARASSIGN(varName, stringName, enumName, assignType) \
template <typename T> \
class EMBER_API Pre##varName##Variation : public varName##Variation <T> \
{ \
VARUSINGS \
PARVARUSINGS \
using varName##Variation<T>::Init; \
public:\
Pre##varName##Variation(T weight = 1.0) : varName##Variation<T>(weight) \
{ \
m_VariationId = VAR_PRE_##enumName; \
m_Name = "pre_"#stringName; \
m_AssignType = assignType; \
SetType(); \
Init(); \
} \
\
PREPOSTPARVARCOPY(Pre##varName##Variation, varName##Variation) \
}; \
\
template <typename T> \
class EMBER_API Post##varName##Variation : public varName##Variation<T> \
{ \
VARUSINGS \
PARVARUSINGS \
using varName##Variation<T>::Init; \
public:\
Post##varName##Variation(T weight = 1.0) : varName##Variation<T>(weight) \
{ \
m_VariationId = VAR_POST_##enumName; \
m_Name = "post_"#stringName; \
m_AssignType = assignType; \
SetType(); \
Init(); \
} \
\
PREPOSTPARVARCOPY(Post##varName##Variation, varName##Variation) \
};
}