Promising performance here.

This commit is contained in:
Steven Robertson 2011-08-27 12:56:06 -04:00
parent 82344d7760
commit 638d068a00
2 changed files with 210 additions and 102 deletions

View File

@ -27,30 +27,51 @@ void prefix_scan_8_0_shmem(unsigned char *keys, int nitems, int *pfxs) {
} }
} }
#define GRP_RDX_FACTOR (GRPSZ / RDXSZ)
#define GRP_BLK_FACTOR (GRPSZ / BLKSZ)
#define GRPSZ 8192
#define RDXSZ 256
#define BLKSZ 512
__global__
void prefix_scan(unsigned short *keys, int *pfxs, const int shift) {
const int tid = threadIdx.y * 32 + threadIdx.x;
__shared__ int shr_pfxs[BLKSZ];
shr_pfxs[tid] = 0;
__syncthreads();
int i = tid + GRPSZ * blockIdx.x;
for (int j = 0; j < GRP_BLK_FACTOR; j++) {
int value = (keys[i] >> shift) && 0xff;
atomicAdd(shr_pfxs + value, 1);
i += BLKSZ;
}
__syncthreads();
pfxs[tid + BLKSZ * blockIdx.x] = shr_pfxs[tid];
}
__global__ __global__
void prefix_scan_8_0_shmem_shortseg(unsigned char *keys, int *pfxs) { void prefix_scan_8_0_shmem_shortseg(unsigned char *keys, int *pfxs) {
const int blksz = 256;
const int grpsz = 8192;
const int tid = threadIdx.y * 32 + threadIdx.x; const int tid = threadIdx.y * 32 + threadIdx.x;
__shared__ int shr_pfxs[blksz]; __shared__ int shr_pfxs[RDXSZ];
shr_pfxs[tid] = 0; if (tid < RDXSZ) shr_pfxs[tid] = 0;
__syncthreads(); __syncthreads();
// TODO: this introduces a hard upper limit of 512M keys (3GB) sorted in a // TODO: this introduces a hard upper limit of 512M keys (3GB) sorted in a
// pass. It'll be a while before we get the 8GB cards needed to do this. // pass. It'll be a while before we get the 8GB cards needed to do this.
int i = tid + grpsz * blockIdx.x; int i = tid + GRPSZ * blockIdx.x;
for (int j = 0; j < 32; j++) { for (int j = 0; j < GRP_BLK_FACTOR; j++) {
int value = keys[i]; int value = keys[i];
atomicAdd(shr_pfxs + value, 1); atomicAdd(shr_pfxs + value, 1);
i += blksz; i += BLKSZ;
} }
__syncthreads(); __syncthreads();
pfxs[tid + blksz * blockIdx.x] = shr_pfxs[tid]; if (tid < RDXSZ) pfxs[tid + RDXSZ * blockIdx.x] = shr_pfxs[tid];
} }
__global__ __global__
@ -66,10 +87,64 @@ void crappy_split(int *pfxs, int *pfxs_out) {
} }
} }
__global__
void better_split(int *pfxs_out, const int *pfxs) {
// This one must be launched as 32x1, regardless of BLKSZ.
const int tid = threadIdx.x;
const int tid5 = tid << 5;
__shared__ int swap[1024];
int base = RDXSZ * 32 * blockIdx.x;
int value = 0;
// Performs a fast "split" (don't know why I called it that, will rename
// soon). For each entry in pfxs (corresponding to the number of elements
// per radix in a group), this writes the exclusive prefix sum for that
// group. This is in fact a bunch of serial prefix sums in parallel, and
// not a parallel prefix sum.
//
// The contents of 32 group radix counts are loaded in 32-element chunks
// into shared memory, rotated by 1 unit each group to avoid bank
// conflicts. Each thread in the warp sums across each group serially,
// updating the values as it goes, then the results are written coherently
// to global memory.
//
// This leaves the processor extremely compute-starved, as this only allows
// 12 warps per SM. It might be better to halve the chunk size and lose
// some coalescing efficiency; need to benchmark. It's a relatively cheap
// step overall though.
for (int j = 0; j < 8; j++) {
int jj = j << 5;
for (int i = 0; i < 32; i++) {
int base_offset = (i << 8) + jj + base + tid;
int swap_offset = (i << 5) + ((i + tid) & 0x1f);
swap[swap_offset] = pfxs[base_offset];
}
#pragma unroll
for (int i = 0; i < 32; i++) {
int swap_offset = tid5 + ((i + tid) & 0x1f);
int tmp = swap[swap_offset];
swap[swap_offset] = value;
value += tmp;
}
for (int i = 0; i < 32; i++) {
int base_offset = (i << 8) + jj + base + tid;
int swap_offset = (i << 5) + ((i + tid) & 0x1f);
pfxs_out[base_offset] = swap[swap_offset];
}
}
}
__global__ __global__
void prefix_sum(int *pfxs, int nitems, int *out_pfxs, int *out_sums) { void prefix_sum(int *pfxs, int nitems, int *out_pfxs, int *out_sums) {
const int blksz = 256; // Needs optimizing (later). Should be rolled into split.
// Must launch 32x8.
const int tid = threadIdx.y * 32 + threadIdx.x; const int tid = threadIdx.y * 32 + threadIdx.x;
const int blksz = 256;
int val = 0; int val = 0;
for (int i = tid; i < nitems; i += blksz) val += pfxs[i]; for (int i = tid; i < nitems; i += blksz) val += pfxs[i];
@ -99,54 +174,73 @@ void prefix_sum(int *pfxs, int nitems, int *out_pfxs, int *out_sums) {
__global__ __global__
void sort_8(unsigned char *keys, int *sorted_keys, int *pfxs) { void sort_8(unsigned char *keys, int *sorted_keys, int *pfxs) {
const int grpsz = 8192;
const int blksz = 256;
const int tid = threadIdx.y * 32 + threadIdx.x; const int tid = threadIdx.y * 32 + threadIdx.x;
const int blk_offset = grpsz * blockIdx.x; const int blk_offset = GRPSZ * blockIdx.x;
__shared__ int shr_pfxs[blksz]; __shared__ int shr_pfxs[RDXSZ];
if (threadIdx.y < 8) { if (tid < RDXSZ) shr_pfxs[tid] = pfxs[RDXSZ * blockIdx.x + tid];
int pfx_i = blksz * blockIdx.x + tid;
shr_pfxs[tid] = pfxs[pfx_i];
}
__syncthreads(); __syncthreads();
int i = tid; int i = tid;
for (int j = 0; j < 32; j++) { for (int j = 0; j < GRP_BLK_FACTOR; j++) {
int value = keys[i+blk_offset]; int value = keys[i+blk_offset];
int offset = atomicAdd(shr_pfxs + value, 1); int offset = atomicAdd(shr_pfxs + value, 1);
sorted_keys[offset] = value; sorted_keys[offset] = value;
i += blksz; i += BLKSZ;
} }
} }
#undef BLKSZ
#define BLKSZ 1024
__global__ __global__
void sort_8_a(unsigned char *keys, int *sorted_keys, int *pfxs, int *split) { void sort_8_a(unsigned char *keys, int *sorted_keys,
const int grpsz = 8192; const int *pfxs, const int *split) {
const int blksz = 256;
const int tid = threadIdx.y * 32 + threadIdx.x; const int tid = threadIdx.y * 32 + threadIdx.x;
const int blk_offset = grpsz * blockIdx.x; const int blk_offset = GRPSZ * blockIdx.x;
__shared__ int shr_pfxs[blksz]; __shared__ int shr_offs[RDXSZ];
__shared__ int shr_offs[blksz]; __shared__ int defer[GRPSZ];
__shared__ int defer[grpsz];
const int pfx_i = blksz * blockIdx.x + tid; const int pfx_i = RDXSZ * blockIdx.x + tid;
shr_pfxs[tid] = pfxs[pfx_i]; if (tid < RDXSZ) shr_offs[tid] = split[pfx_i];
shr_offs[tid] = split[pfx_i];
__syncthreads(); __syncthreads();
for (int i = tid; i < grpsz; i += blksz) { for (int i = tid; i < GRPSZ; i += BLKSZ) {
int value = keys[i+blk_offset]; int value = keys[i+blk_offset];
int offset = atomicAdd(shr_offs + value, 1); int offset = atomicAdd(shr_offs + value, 1);
defer[offset] = value; defer[offset] = value;
} }
//shr_pfxs[tid] = pfxs[pfx_i];
__syncthreads(); __syncthreads();
for (int i = tid; i < grpsz; i += blksz) { // This calculation is a bit odd.
//
// For a given radix value 'r', shr_offs[r] currently holds the first index
// of the *next* radix in defer[] (i.e. if there are 28 '0'-radix values
// in defer[], shr_offs[0]==28). We want to get back to a normal exclusive
// prefix, so we subtract shr_offs[0] from everything.
//
// In the next block, we want to be able to find the correct position for a
// value in defer[], given that value's index 'i' and its radix 'r'. This
// requires two values: the destination index in sorted_keys[] of the first
// value in the group with radix 'r' (given by pfxs[BASE + r]), and the
// number of radix-'r' values before this one in defer[]. So, ultimately,
// we want an equation in the inner loop below that looks like this:
//
// int dst_offset = pfxs[r] + i - (shr_offs[r] - shr_offs[0]);
// sorted_keys[dst_offset] = defer[i];
//
// Of course, this generates tons of memory lookups and bank conflicts so
// we precombine some of this here.
int off0 = shr_offs[0];
if (tid < RDXSZ) shr_offs[tid] = pfxs[0] - (shr_offs[tid] - off0);
__syncthreads();
int i = tid;
#pragma unroll
for (int j = 0; j < GRP_BLK_FACTOR; j++) {
int value = defer[i]; int value = defer[i];
int offset = shr_pfxs[value] + i - (shr_offs[value] - shr_offs[0]); int offset = shr_offs[value] + i;
sorted_keys[offset] = value; sorted_keys[offset] = value;
i += BLKSZ;
} }
} }

View File

@ -6,10 +6,28 @@ import pycuda.driver as cuda
import numpy as np import numpy as np
import os import sys, os
os.environ['PATH'] = ('/usr/x86_64-pc-linux-gnu/gcc-bin/4.4.6:' os.environ['PATH'] = ('/usr/x86_64-pc-linux-gnu/gcc-bin/4.4.6:'
+ os.environ['PATH']) + os.environ['PATH'])
with open('sortbench.cu') as f: src = f.read()
mod = pycuda.compiler.SourceModule(src, keep=True)
def launch(name, *args, **kwargs):
fun = mod.get_function(name)
if kwargs.pop('l1', False):
fun.set_cache_config(cuda.func_cache.PREFER_L1)
if not kwargs.get('stream'):
kwargs['time_kernel'] = True
print 'launching %s with %sx%s... ' % (name, kwargs['block'],
kwargs['grid']),
t = fun(*args, **kwargs)
if t:
print 'done (%g secs).' % t
else:
print 'done.'
def go(scale, block, test_cpu): def go(scale, block, test_cpu):
data = np.fromstring(np.random.bytes(scale*block), dtype=np.uint8) data = np.fromstring(np.random.bytes(scale*block), dtype=np.uint8)
print 'Done seeding' print 'Done seeding'
@ -21,98 +39,94 @@ def go(scale, block, test_cpu):
print cpu_pfxs print cpu_pfxs
print 'took %g secs on CPU' % (b - a) print 'took %g secs on CPU' % (b - a)
with open('sortbench.cu') as f: src = f.read()
mod = pycuda.compiler.SourceModule(src, keep=True)
fun = mod.get_function('prefix_scan_8_0_shmem')
shmem_pfxs = np.zeros(256, dtype=np.int32) shmem_pfxs = np.zeros(256, dtype=np.int32)
t = fun(cuda.In(data), np.int32(block), cuda.InOut(shmem_pfxs), launch('prefix_scan_8_0_shmem',
block=(32, 16, 1), grid=(scale, 1), time_kernel=True) cuda.In(data), np.int32(block), cuda.InOut(shmem_pfxs),
print 'shmem took %g secs.' % t block=(32, 16, 1), grid=(scale, 1), l1=1)
if test_cpu: if test_cpu:
print 'it worked? %s' % (np.all(shmem_pfxs == cpu_pfxs)) print 'it worked? %s' % (np.all(shmem_pfxs == cpu_pfxs))
fun = mod.get_function('prefix_scan_8_0_shmem_lessconf')
shmeml_pfxs = np.zeros(256, dtype=np.int32) shmeml_pfxs = np.zeros(256, dtype=np.int32)
t = fun(cuda.In(data), np.int32(block), cuda.InOut(shmeml_pfxs), launch('prefix_scan_8_0_shmem_lessconf',
block=(32, 32, 1), grid=(scale, 1), time_kernel=True) cuda.In(data), np.int32(block), cuda.InOut(shmeml_pfxs),
print 'shmeml took %g secs.' % t block=(32, 32, 1), grid=(scale, 1), l1=1)
print 'it worked? %s' % (np.all(shmeml_pfxs == shmem_pfxs)) print 'it worked? %s' % (np.all(shmeml_pfxs == shmem_pfxs))
fun = mod.get_function('prefix_scan_8_0_popc')
popc_pfxs = np.zeros(256, dtype=np.int32) popc_pfxs = np.zeros(256, dtype=np.int32)
t = fun(cuda.In(data), np.int32(block), cuda.InOut(popc_pfxs), launch('prefix_scan_8_0_popc',
block=(32, 16, 1), grid=(scale, 1), time_kernel=True) cuda.In(data), np.int32(block), cuda.InOut(popc_pfxs),
print 'popc took %g secs.' % t block=(32, 16, 1), grid=(scale, 1), l1=1)
print 'it worked? %s' % (np.all(shmem_pfxs == popc_pfxs))
fun = mod.get_function('prefix_scan_5_0_popc')
popc5_pfxs = np.zeros(32, dtype=np.int32) popc5_pfxs = np.zeros(32, dtype=np.int32)
t = fun(cuda.In(data), np.int32(block), cuda.InOut(popc5_pfxs), launch('prefix_scan_5_0_popc',
block=(32, 16, 1), grid=(scale, 1), time_kernel=True) cuda.In(data), np.int32(block), cuda.InOut(popc5_pfxs),
print 'popc5 took %g secs.' % t block=(32, 16, 1), grid=(scale, 1), l1=1)
print popc5_pfxs
def rle(a):
pos, = np.where(np.diff(a))
lens = np.diff(np.concatenate((pos, [len(a)])))
return [(a[p], p, l) for p, l in zip(pos, lens)[:5000]]
grids = scale * block / 8192 def go_sort(count, stream=None):
print grids data = np.fromstring(np.random.bytes(count), dtype=np.uint8)
incr_pfxs = np.zeros((grids + 1, 256), dtype=np.int32) ddata = cuda.to_device(data)
shortseg_pfxs = np.zeros(256, dtype=np.int32) print 'Done seeding'
shortseg_sums = np.zeros(256, dtype=np.int32)
fun = mod.get_function('prefix_scan_8_0_shmem_shortseg')
fun.set_cache_config(cuda.func_cache.PREFER_L1)
t = fun(cuda.In(data), cuda.Out(incr_pfxs),
block=(32, 8, 1), grid=(grids, 1), time_kernel=True)
print 'shortseg took %g secs.' % t
print incr_pfxs[0]
print incr_pfxs[1]
split = np.zeros((grids, 256), dtype=np.int32) grids = count / 8192
fun = mod.get_function('crappy_split') pfxs = np.zeros((grids + 1, 256), dtype=np.int32)
fun.set_cache_config(cuda.func_cache.PREFER_L1) dpfxs = cuda.to_device(pfxs)
t = fun(cuda.In(incr_pfxs), cuda.Out(split),
block=(32, 8, 1), grid=(grids / 256, 1), time_kernel=True)
print 'crappy_split took %g secs.' % t
print split
fun = mod.get_function('prefix_sum') launch('prefix_scan_8_0_shmem_shortseg', ddata, dpfxs,
fun.set_cache_config(cuda.func_cache.PREFER_L1) block=(32, 16, 1), grid=(grids, 1), stream=stream, l1=1)
t = fun(cuda.InOut(incr_pfxs), np.int32(grids * 256),
cuda.Out(shortseg_pfxs), cuda.Out(shortseg_sums),
block=(32, 8, 1), grid=(1, 1), time_kernel=True)
print 'shortseg_sum took %g secs.' % t
print 'it worked? %s' % (np.all(shortseg_pfxs == popc_pfxs))
print shortseg_pfxs
print shortseg_sums
print incr_pfxs[1] - incr_pfxs[0]
sorted = np.zeros(scale * block, dtype=np.int32) #dsplit = cuda.to_device(pfxs)
fun = mod.get_function('sort_8') #launch('crappy_split', dpfxs, dsplit,
fun.set_cache_config(cuda.func_cache.PREFER_L1) #block=(32, 8, 1), grid=(grids / 256, 1), stream=stream, l1=1)
t = fun(cuda.In(data), cuda.Out(sorted), cuda.In(incr_pfxs),
block=(32, 8, 1), grid=(grids, 1), time_kernel=True)
print 'shortseg_sort took %g secs.' % t
print 'incr0', incr_pfxs[0]
print sorted[:100]
print sorted[-100:]
sorted = np.zeros(scale * block, dtype=np.int32) dsplit = cuda.mem_alloc(grids * 256 * 4)
fun = mod.get_function('sort_8_a') launch('better_split', dsplit, dpfxs,
t = fun(cuda.In(data), cuda.Out(sorted), cuda.In(incr_pfxs), cuda.In(split), block=(32, 1, 1), grid=(grids / 32, 1), stream=stream)
block=(32, 8, 1), grid=(grids, 1), time_kernel=True) #if not stream:
print 'shortseg_sort took %g secs.' % t #split = cuda.from_device_like(dsplit, pfxs)
print 'incr0', incr_pfxs[0] #split_ = cuda.from_device_like(dsplit_, pfxs)
print sorted[:100] #print np.all(split == split_)
print sorted[-100:]
dshortseg_pfxs = cuda.mem_alloc(256 * 4)
dshortseg_sums = cuda.mem_alloc(256 * 4)
launch('prefix_sum', dpfxs, np.int32(grids * 256),
dshortseg_pfxs, dshortseg_sums,
block=(32, 8, 1), grid=(1, 1), stream=stream, l1=1)
dsorted = cuda.mem_alloc(count * 4)
launch('sort_8', ddata, dsorted, dpfxs,
block=(32, 16, 1), grid=(grids, 1), stream=stream, l1=1)
launch('sort_8_a', ddata, dsorted, dpfxs, dsplit,
block=(32, 32, 1), grid=(grids, 1), stream=stream)
if not stream:
sorted = cuda.from_device(dsorted, (count,), np.int32)
f = lambda r: ''.join(['\n\t%3d %4d %4d' % v for v in r])
sort_stat = f(rle(sorted))
with open('dev.txt', 'w') as fp: fp.write(sort_stat)
sorted_np = np.sort(data)
np_stat = f(rle(sorted_np))
with open('cpu.txt', 'w') as fp: fp.write(np_stat)
print 'is_sorted?', np.all(sorted == sorted_np)
#data = np.fromstring(np.random.bytes(scale*block), dtype=np.uint16)
def main(): def main():
# shmem is known good; disable the CPU run to get better info from cuprof # shmem is known good; disable the CPU run to get better info from cuprof
#go(8, 512<<10, True) #go(8, 512<<10, True)
go(1024, 512<<8, False) #go(1024, 512<<8, False)
#go(32768, 8192, False) #go(32768, 8192, False)
stream = cuda.Stream() if '-s' in sys.argv else None
go_sort(128<<20, stream)
if stream:
stream.synchronize()
main() main()