mirror of
				https://github.com/stevenrobertson/cuburn.git
				synced 2025-11-03 18:00:55 -05:00 
			
		
		
		
	Generalize the sort.
This commit is contained in:
		@ -11,34 +11,56 @@ _CODE = tempita.Template(r"""
 | 
			
		||||
#define GRP_RDX_FACTOR (GRPSZ / RDXSZ)
 | 
			
		||||
#define GRP_BLK_FACTOR (GRPSZ / BLKSZ)
 | 
			
		||||
#define GRPSZ {{group_size}}
 | 
			
		||||
#define RBITS {{radix_bits}}
 | 
			
		||||
#define RDXSZ {{radix_size}}
 | 
			
		||||
#define BLKSZ 512
 | 
			
		||||
 | 
			
		||||
#define get_radix(r, k, l) \
 | 
			
		||||
        asm("bfe.u32 %0, %1, %2, {{radix_bits}};" : "=r"(r) : "r"(k), "r"(l))
 | 
			
		||||
 | 
			
		||||
// TODO: experiment with different block / group sizes
 | 
			
		||||
__global__
 | 
			
		||||
void prefix_scan_8_0(
 | 
			
		||||
void prefix_scan(
 | 
			
		||||
        int *offsets,
 | 
			
		||||
        int *pfxs,
 | 
			
		||||
        const unsigned int *keys
 | 
			
		||||
        const unsigned int *keys,
 | 
			
		||||
        const int lo_bit
 | 
			
		||||
) {
 | 
			
		||||
    const int tid = threadIdx.x;
 | 
			
		||||
    __shared__ int shr_pfxs[RDXSZ];
 | 
			
		||||
 | 
			
		||||
{{if radix_size <= 512}}
 | 
			
		||||
    if (tid < RDXSZ) shr_pfxs[tid] = 0;
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
    int i = tid + GRPSZ * blockIdx.x;
 | 
			
		||||
{{else}}
 | 
			
		||||
{{for i in range(0, radix_size, 512)}}
 | 
			
		||||
    shr_pfxs[tid+{{i}}] = 0;
 | 
			
		||||
{{endfor}}
 | 
			
		||||
{{endif}}
 | 
			
		||||
 | 
			
		||||
    for (int j = 0; j < GRP_BLK_FACTOR; j++) {
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
    int idx = tid + GRPSZ * blockIdx.x;
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < GRP_BLK_FACTOR; i++) {
 | 
			
		||||
        // TODO: load 2 at once, compute, use a BFI to pack the two offsets
 | 
			
		||||
        //       into an int to halve storage / bandwidth
 | 
			
		||||
        // TODO: separate or integrated loop vars? unrolling?
 | 
			
		||||
        int radix = keys[i] & 0xff;
 | 
			
		||||
        offsets[i] = atomicAdd(shr_pfxs + radix, 1);
 | 
			
		||||
        i += BLKSZ;
 | 
			
		||||
        int key = keys[idx];
 | 
			
		||||
        int radix;
 | 
			
		||||
        get_radix(radix, key, lo_bit);
 | 
			
		||||
        offsets[idx] = atomicAdd(shr_pfxs + radix, 1);
 | 
			
		||||
        idx += BLKSZ;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
 | 
			
		||||
{{if radix_size <= 512}}
 | 
			
		||||
    if (tid < RDXSZ) pfxs[tid + RDXSZ * blockIdx.x] = shr_pfxs[tid];
 | 
			
		||||
{{else}}
 | 
			
		||||
{{for i in range(0, radix_size, 512)}}
 | 
			
		||||
    pfxs[tid + {{i}} + RDXSZ * blockIdx.x] = shr_pfxs[tid + {{i}}];
 | 
			
		||||
{{endfor}}
 | 
			
		||||
{{endif}}
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Calculate group-local exclusive prefix sums (the number of keys in the
 | 
			
		||||
@ -67,10 +89,10 @@ void calc_local_pfxs(
 | 
			
		||||
    // might be better to halve the chunk size and lose some coalescing
 | 
			
		||||
    // efficiency; need to benchmark. It's a relatively cheap step, though.
 | 
			
		||||
 | 
			
		||||
    for (int j = 0; j < 8; j++) {
 | 
			
		||||
    for (int j = 0; j < RDXSZ / 32; j++) {
 | 
			
		||||
        int jj = j << 5;
 | 
			
		||||
        for (int i = 0; i < 32; i++) {
 | 
			
		||||
            int base_offset = (i << 8) + jj + base + tid;
 | 
			
		||||
            int base_offset = (i << RBITS) + jj + base + tid;
 | 
			
		||||
            int swap_offset = (i << 5) + ((i + tid) & 0x1f);
 | 
			
		||||
            swap[swap_offset] = pfxs[base_offset];
 | 
			
		||||
        }
 | 
			
		||||
@ -84,7 +106,7 @@ void calc_local_pfxs(
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for (int i = 0; i < 32; i++) {
 | 
			
		||||
            int base_offset = (i << 8) + jj + base + tid;
 | 
			
		||||
            int base_offset = (i << RBITS) + jj + base + tid;
 | 
			
		||||
            int swap_offset = (i << 5) + ((i + tid) & 0x1f);
 | 
			
		||||
            locals[base_offset] = swap[swap_offset];
 | 
			
		||||
        }
 | 
			
		||||
@ -194,14 +216,15 @@ void radix_sort_direct(
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#undef BLKSZ
 | 
			
		||||
#define BLKSZ 1024
 | 
			
		||||
#define BLKSZ {{group_size / 8}}
 | 
			
		||||
__global__
 | 
			
		||||
void radix_sort(
 | 
			
		||||
        int *sorted_keys,
 | 
			
		||||
        const int *keys,
 | 
			
		||||
        const int *offsets,
 | 
			
		||||
        const int *pfxs,
 | 
			
		||||
        const int *locals
 | 
			
		||||
        const int *locals,
 | 
			
		||||
        const int lo_bit
 | 
			
		||||
) {
 | 
			
		||||
    const int tid = threadIdx.x;
 | 
			
		||||
    const int blk_offset = GRPSZ * blockIdx.x;
 | 
			
		||||
@ -214,7 +237,8 @@ void radix_sort(
 | 
			
		||||
 | 
			
		||||
    for (int i = tid; i < GRPSZ; i += BLKSZ) {
 | 
			
		||||
        int key = keys[i+blk_offset];
 | 
			
		||||
        int radix = key & 0xff;
 | 
			
		||||
        int radix;
 | 
			
		||||
        get_radix(radix, key, lo_bit);
 | 
			
		||||
        int offset = offsets[i+blk_offset] + shr_offs[radix];
 | 
			
		||||
        defer[offset] = key;
 | 
			
		||||
    }
 | 
			
		||||
@ -227,7 +251,8 @@ void radix_sort(
 | 
			
		||||
#pragma unroll
 | 
			
		||||
    for (int j = 0; j < GRP_BLK_FACTOR; j++) {
 | 
			
		||||
        int key = defer[i];
 | 
			
		||||
        int radix = key & 0xff;
 | 
			
		||||
        int radix;
 | 
			
		||||
        get_radix(radix, key, lo_bit);
 | 
			
		||||
        int offset = shr_offs[radix] + i;
 | 
			
		||||
        sorted_keys[offset] = key;
 | 
			
		||||
        i += BLKSZ;
 | 
			
		||||
@ -238,15 +263,19 @@ void radix_sort(
 | 
			
		||||
class Sorter(object):
 | 
			
		||||
    mod = None
 | 
			
		||||
    group_size = 8192
 | 
			
		||||
    radix_size = 256
 | 
			
		||||
    radix_bits = 8
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def init_mod(cls):
 | 
			
		||||
        if cls.mod is None:
 | 
			
		||||
        if cls.__dict__.get('mod') is None:
 | 
			
		||||
            cls.radix_size = 1 << cls.radix_bits
 | 
			
		||||
            code = _CODE.substitute(group_size=cls.group_size,
 | 
			
		||||
                    radix_size=cls.radix_size)
 | 
			
		||||
            cls.mod = pycuda.compiler.SourceModule(code)
 | 
			
		||||
            for name in ['prefix_scan_8_0', 'prefix_sum_condense',
 | 
			
		||||
                    radix_bits=cls.radix_bits, radix_size=cls.radix_size)
 | 
			
		||||
            cubin = pycuda.compiler.compile(code)
 | 
			
		||||
            cls.mod = cuda.module_from_buffer(cubin)
 | 
			
		||||
            with open('/tmp/sort_kern.cubin', 'wb') as fp:
 | 
			
		||||
                fp.write(cubin)
 | 
			
		||||
            for name in ['prefix_scan', 'prefix_sum_condense',
 | 
			
		||||
                         'prefix_sum_inner', 'prefix_sum_distribute']:
 | 
			
		||||
                f = cls.mod.get_function(name)
 | 
			
		||||
                setattr(cls, name, f)
 | 
			
		||||
@ -254,16 +283,15 @@ class Sorter(object):
 | 
			
		||||
            cls.calc_local_pfxs = cls.mod.get_function('calc_local_pfxs')
 | 
			
		||||
            cls.radix_sort = cls.mod.get_function('radix_sort')
 | 
			
		||||
 | 
			
		||||
    def __init__(self, size, dst=None):
 | 
			
		||||
    def __init__(self, max_size):
 | 
			
		||||
        self.init_mod()
 | 
			
		||||
        assert size % self.group_size == 0, 'bad multiple'
 | 
			
		||||
        if dst is None:
 | 
			
		||||
            dst = cuda.mem_alloc(size * 4)
 | 
			
		||||
        self.size, self.dst = size, dst
 | 
			
		||||
        self.doffsets = cuda.mem_alloc(self.size * 4)
 | 
			
		||||
        self.grids = self.size / self.group_size
 | 
			
		||||
        self.dpfxs = cuda.mem_alloc(self.grids * self.radix_size * 4)
 | 
			
		||||
        self.dlocals = cuda.mem_alloc(self.grids * self.radix_size * 4)
 | 
			
		||||
        self.max_size = max_size
 | 
			
		||||
        assert max_size % self.group_size == 0
 | 
			
		||||
        max_grids = max_size / self.group_size
 | 
			
		||||
 | 
			
		||||
        self.doffsets = cuda.mem_alloc(self.max_size * 4)
 | 
			
		||||
        self.dpfxs = cuda.mem_alloc(max_grids * self.radix_size * 4)
 | 
			
		||||
        self.dlocals = cuda.mem_alloc(max_grids * self.radix_size * 4)
 | 
			
		||||
 | 
			
		||||
        # There are probably better ways to choose how many condensation
 | 
			
		||||
        # groups to launch. TODO: maybe pick one if I care
 | 
			
		||||
@ -271,15 +299,28 @@ class Sorter(object):
 | 
			
		||||
        self.dcond = cuda.mem_alloc(self.radix_size * self.ncond * 4)
 | 
			
		||||
        self.dglobal = cuda.mem_alloc(self.radix_size * 4)
 | 
			
		||||
 | 
			
		||||
    def sort(self, src, stream=None):
 | 
			
		||||
        self.prefix_scan_8_0(self.doffsets, self.dpfxs, src,
 | 
			
		||||
            block=(512, 1, 1), grid=(self.grids, 1), stream=stream)
 | 
			
		||||
    def sort(self, dst, src, size, lo_bit=0, stream=None):
 | 
			
		||||
        """
 | 
			
		||||
        Sort 'src' by the bits from lo_bit+radix_bits to lo_bit, where 0 is
 | 
			
		||||
        the LSB. Store the result in 'dst'.
 | 
			
		||||
 | 
			
		||||
        Note that this is *not* a stable sort! It won't jumble your data
 | 
			
		||||
        haphazardly, but one- or two-position swaps are very common. This will
 | 
			
		||||
        hopefully be resolved soon, but until then, it is unsuitable for
 | 
			
		||||
        implementing larger sorts from multiple passes of this sort.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
        assert size <= self.max_size and size % self.group_size == 0
 | 
			
		||||
        grids = size / self.group_size
 | 
			
		||||
 | 
			
		||||
        self.prefix_scan(self.doffsets, self.dpfxs, src, np.int32(lo_bit),
 | 
			
		||||
            block=(512, 1, 1), grid=(grids, 1), stream=stream)
 | 
			
		||||
 | 
			
		||||
        self.calc_local_pfxs(self.dlocals, self.dpfxs,
 | 
			
		||||
            block=(32, 1, 1), grid=(self.grids / 32, 1), stream=stream)
 | 
			
		||||
            block=(32, 1, 1), grid=(grids / 32, 1), stream=stream)
 | 
			
		||||
 | 
			
		||||
        ngrps = np.int32(self.grids)
 | 
			
		||||
        grpwidth = np.int32(np.ceil(float(self.grids) / self.ncond))
 | 
			
		||||
        ngrps = np.int32(grids)
 | 
			
		||||
        grpwidth = np.int32(np.ceil(float(grids) / self.ncond))
 | 
			
		||||
 | 
			
		||||
        self.prefix_sum_condense(self.dcond, self.dpfxs, ngrps, grpwidth,
 | 
			
		||||
            block=(self.radix_size, 1, 1), grid=(self.ncond, 1), stream=stream)
 | 
			
		||||
@ -288,35 +329,67 @@ class Sorter(object):
 | 
			
		||||
        self.prefix_sum_distribute(self.dpfxs, self.dcond, ngrps, grpwidth,
 | 
			
		||||
            block=(self.radix_size, 1, 1), grid=(self.ncond, 1), stream=stream)
 | 
			
		||||
 | 
			
		||||
        self.radix_sort(self.dst, src, self.doffsets, self.dpfxs, self.dlocals,
 | 
			
		||||
            block=(1024, 1, 1), grid=(self.grids, 1), stream=stream)
 | 
			
		||||
        self.radix_sort(dst, src,
 | 
			
		||||
            self.doffsets, self.dpfxs, self.dlocals, np.int32(lo_bit),
 | 
			
		||||
            block=(self.group_size / 8, 1, 1), grid=(grids, 1), stream=stream)
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def test(cls, count, correctness=False):
 | 
			
		||||
        keys = np.uint32(np.random.randint(0, 1<<cls.radix_bits, size=count))
 | 
			
		||||
        dkeys = cuda.to_device(keys)
 | 
			
		||||
        dout = cuda.mem_alloc(count * 4)
 | 
			
		||||
 | 
			
		||||
        sorter = cls(count)
 | 
			
		||||
        stream = cuda.Stream()
 | 
			
		||||
 | 
			
		||||
        def test_stub(shift):
 | 
			
		||||
            for i in range(10):
 | 
			
		||||
                evt_a = cuda.Event().record(stream)
 | 
			
		||||
                sorter.sort(dout, dkeys, count, shift, stream=stream)
 | 
			
		||||
                evt_b = cuda.Event().record(stream)
 | 
			
		||||
                evt_b.synchronize()
 | 
			
		||||
                dur = evt_b.time_since(evt_a) / 1000.
 | 
			
		||||
 | 
			
		||||
                print ( '  Overall time: %g secs'
 | 
			
		||||
                        '\t%g %d-bit keys/sec\t%g 32-bit keys/sec') % (
 | 
			
		||||
                        dur, count/dur, sorter.radix_bits,
 | 
			
		||||
                        count * sorter.radix_bits / (dur * 32) )
 | 
			
		||||
 | 
			
		||||
        print '\n\n%d bit sort' % cls.radix_bits
 | 
			
		||||
        print 'Testing speed'
 | 
			
		||||
        test_stub(0)
 | 
			
		||||
 | 
			
		||||
        if '-s' not in sys.argv:
 | 
			
		||||
            print '\nTesting correctness'
 | 
			
		||||
            out = cuda.from_device(dout, (count,), np.uint32)
 | 
			
		||||
            sort = np.sort(keys)
 | 
			
		||||
            if np.all(out == sort):
 | 
			
		||||
                print 'Correct'
 | 
			
		||||
            else:
 | 
			
		||||
                assert False, 'Oh no'
 | 
			
		||||
 | 
			
		||||
        print '\nTesting speed at shifts'
 | 
			
		||||
        for b in range(cls.radix_bits - 1):
 | 
			
		||||
            print 'Performance with %d sig bits' % (cls.radix_bits - b)
 | 
			
		||||
            test_stub(b)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    import sys
 | 
			
		||||
    import pycuda.autoinit
 | 
			
		||||
 | 
			
		||||
    np.set_printoptions(precision=5, edgeitems=20,
 | 
			
		||||
                        linewidth=100, threshold=90)
 | 
			
		||||
    count = 1 << 26
 | 
			
		||||
 | 
			
		||||
    keys = np.uint32(np.fromstring(np.random.bytes(count), dtype=np.uint8))
 | 
			
		||||
    dkeys = cuda.to_device(keys)
 | 
			
		||||
    np.random.seed(42)
 | 
			
		||||
 | 
			
		||||
    sorter = Sorter(count)
 | 
			
		||||
 | 
			
		||||
    print 'Testing speed'
 | 
			
		||||
    stream = cuda.Stream()
 | 
			
		||||
    for i in range(10):
 | 
			
		||||
        evt_a = cuda.Event().record(stream)
 | 
			
		||||
        sorter.sort(dkeys, stream)
 | 
			
		||||
        evt_b = cuda.Event().record(stream)
 | 
			
		||||
        evt_b.synchronize()
 | 
			
		||||
        dur = evt_b.time_since(evt_a)
 | 
			
		||||
        print 'Overall time: %g secs (%g 8-bit keys/sec)' % (
 | 
			
		||||
                dur / 1000., 1000 * count / dur)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    print 'Testing correctness'
 | 
			
		||||
    out = cuda.from_device(sorter.dst, (count,), np.uint32)
 | 
			
		||||
    sort = np.sort(keys)
 | 
			
		||||
    print 'Sorted correctly?', np.all(out == sort)
 | 
			
		||||
    correct = '-s' not in sys.argv
 | 
			
		||||
    for g in (8192, 4096):
 | 
			
		||||
        print '\n\n== GROUP SIZE %d ==' % g
 | 
			
		||||
        Sorter.group_size = g
 | 
			
		||||
        for b in [7,8,9,10]:
 | 
			
		||||
            if g == 4096 and b == 10: continue
 | 
			
		||||
            Sorter.radix_bits = b
 | 
			
		||||
            Sorter.test(count, correct)
 | 
			
		||||
            del Sorter.mod
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user