apophysis7x/Plugin/expo.c
xyrus02 95a2f54683 ADMIN: migration complete
git-svn-id: https://svn.code.sf.net/p/apophysis7x/svn/trunk@1 a5d1c0f9-a0e9-45c6-87dd-9d276e40c949
2013-07-28 08:58:33 +00:00

93 lines
2.8 KiB
C

/*
Apophysis Plugin
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
typedef struct
{
// expo_real represents the real part of the base (a)
double expo_real;
// expo_imaginary represents the imaginary part of the base (b)
double expo_imaginary;
double expo_k;
double expo_t;
} Variables;
#include "apoplugin.h"
// Set the name of this plugin
APO_PLUGIN("expo");
// Define the Variables
APO_VARIABLES(
VAR_REAL(expo_real, -1.0),
VAR_REAL(expo_imaginary, 1.0)
);
// You must call the argument "vp".
int PluginVarPrepare(Variation* vp)
{
double ereal = VAR(expo_real);
double eimag = VAR(expo_imaginary);
VAR(expo_k) = 0.5 * log(ereal * ereal + eimag * eimag + 1e-300);
VAR(expo_t) = atan2(eimag,ereal);
// Always return TRUE.
return TRUE;
}
// You must call the argument "vp".
int PluginVarCalc(Variation* vp)
{
double expor = exp(FTx * VAR(expo_k) - FTy * VAR(expo_t));
double snv, csv;
fsincos(FTx * VAR(expo_t) + FTy * VAR(expo_k), &snv, &csv);
FPx += VVAR * expor * csv;
FPy += VVAR * expor * snv;
return TRUE;
}
// Given the equation (a + ib)^z, or c^z, where c = a + ib...
// We can rewrite it as e^(ln(c^z))...
// Using the laws of Logs, we get e^(z * ln(c))...
// The ln of a complex number is ln(r) + itheta, where
// r is the radius and theta is the angle. Thus, we need
// the radius and angle of our base number c.
// k is what I've used to represent the radius of the number
// c, or a + ib. t is used to represent the angle.
// Thus, expok is the radius of c and expot is the angle.
// Now we have e^(z * (ln(k) + it)), or e^((x + iy) * (ln(k) + it))
// Simplifying this down, we get...
// e^(xln(k) - yt) * e^i(xt + yln(k))
// Because a Complex Number can be presented as
// r * e^itheta, where r is the radius and theta is the angle,
// We can say that r' = e^(xln(k) - yt)
// And that theta' = xt + yln(k)
// For optimization (as recommended by Joel) we calculate k,
// the radius of our complex number, as the ln of k,
// because we never need k to be on its own (it is always
// logged before it is used).
// That's the equation!