93 lines
2.8 KiB
C
93 lines
2.8 KiB
C
|
/*
|
||
|
Apophysis Plugin
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, write to the Free Software
|
||
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
*/
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
// expo_real represents the real part of the base (a)
|
||
|
double expo_real;
|
||
|
// expo_imaginary represents the imaginary part of the base (b)
|
||
|
double expo_imaginary;
|
||
|
double expo_k;
|
||
|
double expo_t;
|
||
|
} Variables;
|
||
|
|
||
|
#include "apoplugin.h"
|
||
|
|
||
|
// Set the name of this plugin
|
||
|
APO_PLUGIN("expo");
|
||
|
|
||
|
// Define the Variables
|
||
|
APO_VARIABLES(
|
||
|
VAR_REAL(expo_real, -1.0),
|
||
|
VAR_REAL(expo_imaginary, 1.0)
|
||
|
);
|
||
|
|
||
|
// You must call the argument "vp".
|
||
|
int PluginVarPrepare(Variation* vp)
|
||
|
{
|
||
|
double ereal = VAR(expo_real);
|
||
|
double eimag = VAR(expo_imaginary);
|
||
|
VAR(expo_k) = 0.5 * log(ereal * ereal + eimag * eimag + 1e-300);
|
||
|
VAR(expo_t) = atan2(eimag,ereal);
|
||
|
// Always return TRUE.
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
// You must call the argument "vp".
|
||
|
int PluginVarCalc(Variation* vp)
|
||
|
{
|
||
|
double expor = exp(FTx * VAR(expo_k) - FTy * VAR(expo_t));
|
||
|
double snv, csv;
|
||
|
|
||
|
fsincos(FTx * VAR(expo_t) + FTy * VAR(expo_k), &snv, &csv);
|
||
|
|
||
|
FPx += VVAR * expor * csv;
|
||
|
FPy += VVAR * expor * snv;
|
||
|
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
// Given the equation (a + ib)^z, or c^z, where c = a + ib...
|
||
|
// We can rewrite it as e^(ln(c^z))...
|
||
|
// Using the laws of Logs, we get e^(z * ln(c))...
|
||
|
|
||
|
// The ln of a complex number is ln(r) + itheta, where
|
||
|
// r is the radius and theta is the angle. Thus, we need
|
||
|
// the radius and angle of our base number c.
|
||
|
|
||
|
// k is what I've used to represent the radius of the number
|
||
|
// c, or a + ib. t is used to represent the angle.
|
||
|
// Thus, expok is the radius of c and expot is the angle.
|
||
|
|
||
|
// Now we have e^(z * (ln(k) + it)), or e^((x + iy) * (ln(k) + it))
|
||
|
// Simplifying this down, we get...
|
||
|
|
||
|
// e^(xln(k) - yt) * e^i(xt + yln(k))
|
||
|
|
||
|
// Because a Complex Number can be presented as
|
||
|
// r * e^itheta, where r is the radius and theta is the angle,
|
||
|
// We can say that r' = e^(xln(k) - yt)
|
||
|
// And that theta' = xt + yln(k)
|
||
|
|
||
|
// For optimization (as recommended by Joel) we calculate k,
|
||
|
// the radius of our complex number, as the ln of k,
|
||
|
// because we never need k to be on its own (it is always
|
||
|
// logged before it is used).
|
||
|
|
||
|
// That's the equation!
|