Initial compute/vertex/fragment render system

This commit is contained in:
Bradlee Speice 2025-01-20 18:54:24 -05:00
commit 203435ca72
13 changed files with 3837 additions and 0 deletions

3
.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
.idea/
.vscode/
target/

2955
Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

30
Cargo.toml Normal file
View File

@ -0,0 +1,30 @@
[workspace]
resolver = "2"
members = [
"crates/flare",
"crates/flare-shader",
]
[workspace.package]
version = "0.1.0"
authors = []
edition = "2021"
license = "MIT OR Apache-2.0"
[workspace.lints.rust]
unexpected_cfgs = { level = "allow", check-cfg = ['cfg(target_arch, values("spirv"))'] }
[workspace.dependencies]
anyhow = "1.0"
bytemuck = { version = "1.21", features = ["derive"] }
env_logger = "0.11"
futures-executor = "0.3"
glam = { version = "0.29", features = ["bytemuck", "libm"], default-features = false }
spirv-std = { git = "https://github.com/rust-gpu/rust-gpu", rev = "854e9ba7da26d52ca0038ab2c7b252652e4d6b1e" }
#spirv-builder = { git = "https://github.com/rust-gpu/rust-gpu", rev = "854e9ba7da26d52ca0038ab2c7b252652e4d6b1e"}
spirv-builder = { git = "https://github.com/rust-gpu/rust-gpu", rev = "854e9ba7da26d52ca0038ab2c7b252652e4d6b1e", features = ["use-installed-tools"], default-features = false }
wgpu = { version = "24.0", features = ["spirv"] }
winit = "0.30"
[profile.release.build-override]
opt-level = 3

201
LICENSE-APACHE Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

23
LICENSE-MIT Normal file
View File

@ -0,0 +1,23 @@
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

1
clippy.toml Normal file
View File

@ -0,0 +1 @@
avoid-breaking-exported-api = false

View File

@ -0,0 +1,17 @@
[package]
name = "flare-shader"
version.workspace = true
authors.workspace = true
edition.workspace = true
license.workspace = true
[lib]
crate-type = ["dylib", "lib"]
[dependencies]
bytemuck.workspace = true
glam.workspace = true
spirv-std.workspace = true
[lints]
workspace = true

View File

@ -0,0 +1,141 @@
#![cfg_attr(target_arch = "spirv", no_std)]
use glam::{UVec2, Vec4, Vec4Swizzles, uvec2, vec2, vec4};
use spirv_std::spirv;
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
#[repr(C)]
pub struct IfsConstants {
accum_width: u32,
accum_height: u32,
viewport_width: u32,
viewport_height: u32,
background_color: Vec4,
}
impl IfsConstants {
pub fn new(
accum_width: u32,
accum_height: u32,
viewport_width: u32,
viewport_height: u32,
background_color: Vec4,
) -> Self {
Self {
accum_width,
accum_height,
viewport_width,
viewport_height,
background_color,
}
}
pub fn viewport_dimensions(&self) -> UVec2 {
uvec2(self.viewport_width, self.viewport_height)
}
pub fn with_accumulate(&mut self, width: u32, height: u32) {
self.accum_width = width;
self.accum_height = height;
}
pub fn with_viewport(&mut self, width: u32, height: u32) {
self.viewport_width = width;
self.viewport_height = height;
}
}
pub trait Color {
type Element;
const BLACK: Self;
const WHITE: Self;
}
impl Color for Vec4 {
type Element = f32;
const BLACK: Self = vec4(0., 0., 0., 1.);
const WHITE: Self = vec4(1., 1., 1., 1.);
}
pub(crate) fn image_index(pixel_x: usize, pixel_y: usize, image_width: u32) -> usize {
pixel_x + pixel_y * image_width as usize
}
#[spirv(compute(threads(1)))]
pub fn main_cs(
#[spirv(push_constant)] constants: &IfsConstants,
#[spirv(storage_buffer, descriptor_set = 0, binding = 0)] accum_image: &mut [Vec4],
) {
let block_size = 64;
for i_width in 0..constants.accum_width as usize {
for i_height in 0..constants.accum_height as usize {
let color = if (i_width / block_size % 2 == 1) != (i_height / block_size % 2 == 1) {
Vec4::BLACK
} else {
Vec4::WHITE
};
accum_image[image_index(i_width, i_height, constants.accum_width)] = color;
}
}
}
#[spirv(vertex)]
pub fn main_vs(
#[spirv(vertex_index)] vert_id: u32,
#[spirv(position, invariant)] position: &mut Vec4,
) {
// Create a "quad" that fills the viewport for the fragment shader.
// The `draw` call issued by the main application will be for three vertex ID's (0, 1, 2).
// This code maps them to the points (-1, -1), (3, -1), and (-1, 3) respectively.
// Because the interior of that triangle covers the entire viewport,
// the GPU clips to the viewport and invokes the fragment shader for each pixel.
// https://stackoverflow.com/a/59739538
// https://www.saschawillems.de/blog/2016/08/13/vulkan-tutorial-on-rendering-a-fullscreen-quad-without-buffers/
let output_uv = vec2(((vert_id << 1) & 2) as f32, (vert_id & 2) as f32);
*position = (output_uv * 2.0 - 1.0, 0.0, 1.0).into();
}
#[spirv(fragment)]
pub fn main_fs(
#[spirv(frag_coord)] frag_coord: Vec4,
#[spirv(push_constant)] ifs_constants: &IfsConstants,
#[spirv(storage_buffer, descriptor_set = 0, binding = 0)] accum_image: &[Vec4],
output: &mut Vec4,
) {
// Bootleg texture sampling; map from viewport image pixel coordinates to accumulator image
// pixel coordinates
let viewport_coordinate = frag_coord.xy().as_uvec2();
let a_width = ifs_constants.accum_width as f32;
let a_height = ifs_constants.accum_height as f32;
let v_width = ifs_constants.viewport_width as f32;
let v_height = ifs_constants.viewport_height as f32;
// Scale both width and height by the same factor; preserves aspect ratio
let scale_width = a_width / v_width;
let scale_height = a_height / v_height;
let scale = scale_width.max(scale_height);
// Re-center the image in the viewport after scale
let offset_x = (v_width * scale - a_width) / 2.0;
let offset_y = (v_height * scale - a_height) / 2.0;
let accum_coordinate = viewport_coordinate.as_vec2() * scale - vec2(offset_x, offset_y);
if accum_coordinate.x < 0.0
|| accum_coordinate.x >= ifs_constants.accum_width as f32
|| accum_coordinate.y < 0.0
|| accum_coordinate.y >= ifs_constants.accum_height as f32
{
*output = ifs_constants.background_color;
} else {
*output = accum_image[image_index(
accum_coordinate.x as usize,
accum_coordinate.y as usize,
ifs_constants.accum_width,
)];
}
}

22
crates/flare/Cargo.toml Normal file
View File

@ -0,0 +1,22 @@
[package]
name = "flare"
version.workspace = true
authors.workspace = true
edition.workspace = true
license.workspace = true
[dependencies]
anyhow.workspace = true
bytemuck.workspace = true
env_logger.workspace = true
flare-shader = { path = "../flare-shader" }
futures-executor.workspace = true
glam.workspace = true
wgpu.workspace = true
winit.workspace = true
[build-dependencies]
spirv-builder.workspace = true
[lints]
workspace = true

18
crates/flare/build.rs Normal file
View File

@ -0,0 +1,18 @@
use spirv_builder::{MetadataPrintout, SpirvBuilder};
use std::path::PathBuf;
use std::{env, fs};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let result = SpirvBuilder::new("../flare-shader", "spirv-unknown-vulkan1.1")
.print_metadata(MetadataPrintout::Full)
.release(false)
.build()?;
// Copy the SPIR-V to this crate's output directory
let shader_path = result.module.unwrap_single();
let output_path = PathBuf::from(env::var("OUT_DIR")?).join("flare.spv");
fs::copy(shader_path, &output_path)?;
println!("Generated shader; path={}", output_path.display());
Ok(())
}

421
crates/flare/src/main.rs Normal file
View File

@ -0,0 +1,421 @@
use flare_shader::{Color, IfsConstants};
use futures_executor::block_on;
use glam::Vec4;
use std::sync::Arc;
use wgpu::{
Adapter, Device, Features, Instance, Queue, ShaderModule, Surface, SurfaceConfiguration,
};
use winit::event::MouseButton;
use winit::{
application::ApplicationHandler,
dpi::LogicalSize,
event::WindowEvent,
event_loop::{ActiveEventLoop, EventLoop},
window::{Window, WindowAttributes, WindowId},
};
struct AccumulatePipeline {
pipeline: wgpu::ComputePipeline,
}
impl AccumulatePipeline {
pub fn new(device: &Device, module: &ShaderModule) -> Self {
let bindgroup_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("accumulate"),
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
count: None,
visibility: wgpu::ShaderStages::COMPUTE,
ty: wgpu::BindingType::Buffer {
has_dynamic_offset: false,
min_binding_size: None,
ty: wgpu::BufferBindingType::Storage { read_only: false },
},
}],
});
let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("accumulate"),
bind_group_layouts: &[&bindgroup_layout],
push_constant_ranges: &[wgpu::PushConstantRange {
stages: wgpu::ShaderStages::COMPUTE,
range: 0..size_of::<IfsConstants>() as u32,
}],
});
let pipeline = device.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
label: Some("accumulate"),
layout: Some(&pipeline_layout),
module,
entry_point: Some("main_cs"),
compilation_options: Default::default(),
cache: None,
});
Self { pipeline }
}
}
struct AccumulatePass {
accum_buffer: wgpu::Buffer,
bind_group: wgpu::BindGroup,
}
impl AccumulatePass {
pub fn new(device: &Device, pipeline: &AccumulatePipeline, dimensions: (u32, u32)) -> Self {
let pixels = dimensions.0 * dimensions.1;
let elements = pixels * 4;
let accum_buffer = device.create_buffer(&wgpu::BufferDescriptor {
label: Some("accumulate"),
size: elements as u64 * size_of::<f32>() as u64,
usage: wgpu::BufferUsages::STORAGE,
mapped_at_creation: false,
});
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
label: Some("accumulate"),
layout: &pipeline.pipeline.get_bind_group_layout(0),
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: accum_buffer.as_entire_binding(),
}],
});
Self {
accum_buffer,
bind_group,
}
}
}
struct RenderPipeline {
pipeline: wgpu::RenderPipeline,
}
impl RenderPipeline {
pub fn new(device: &Device, module: &ShaderModule, format: wgpu::TextureFormat) -> Self {
let bindgroup_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("render"),
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
count: None,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Buffer {
has_dynamic_offset: false,
min_binding_size: None,
ty: wgpu::BufferBindingType::Storage { read_only: true },
},
}],
});
let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("render"),
bind_group_layouts: &[&bindgroup_layout],
push_constant_ranges: &[wgpu::PushConstantRange {
stages: wgpu::ShaderStages::FRAGMENT,
range: 0..size_of::<IfsConstants>() as u32,
}],
});
let pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("render"),
layout: Some(&pipeline_layout),
vertex: wgpu::VertexState {
module,
entry_point: Some("main_vs"),
compilation_options: Default::default(),
buffers: &[],
},
primitive: Default::default(),
depth_stencil: None,
multisample: Default::default(),
fragment: Some(wgpu::FragmentState {
module,
entry_point: Some("main_fs"),
compilation_options: Default::default(),
targets: &[Some(wgpu::ColorTargetState {
format,
blend: None,
write_mask: Default::default(),
})],
}),
multiview: None,
cache: None,
});
Self { pipeline }
}
}
struct RenderPass {
bind_group: wgpu::BindGroup,
}
impl RenderPass {
pub fn new(device: &Device, pipeline: &RenderPipeline, accum_buffer: &wgpu::Buffer) -> Self {
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
label: Some("render"),
layout: &pipeline.pipeline.get_bind_group_layout(0),
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: accum_buffer.as_entire_binding(),
}],
});
Self { bind_group }
}
}
struct Flare {
instance: Instance,
adapter: Adapter,
device: Device,
queue: Queue,
module: ShaderModule,
}
impl Flare {
pub fn new() -> Self {
let backends = wgpu::Backends::from_env().unwrap_or_default();
let instance = Instance::new(&wgpu::InstanceDescriptor {
backends,
..Default::default()
});
let adapter = instance.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::HighPerformance,
force_fallback_adapter: false,
compatible_surface: None,
});
let adapter = block_on(adapter).expect("Failed to find GPU adapter");
let required_limits = wgpu::Limits {
max_push_constant_size: size_of::<IfsConstants>() as u32,
..Default::default()
};
let device = adapter.request_device(
&wgpu::DeviceDescriptor {
label: Some("flare"),
required_features: Features::TIMESTAMP_QUERY | Features::PUSH_CONSTANTS,
required_limits,
memory_hints: Default::default(),
},
None,
);
let (device, queue) = block_on(device).expect("Failed to find GPU device");
let module = device
.create_shader_module(wgpu::include_spirv!(concat!(env!("OUT_DIR"), "/flare.spv")));
Flare {
instance,
adapter,
device,
queue,
module,
}
}
}
struct FlareRender<'window> {
flare: Arc<Flare>,
surface: Surface<'window>,
surface_configuration: SurfaceConfiguration,
accumulate_pipeline: AccumulatePipeline,
accumulate_pass: AccumulatePass,
render_pipeline: RenderPipeline,
render_pass: RenderPass,
ifs_constants: IfsConstants,
}
impl FlareRender<'_> {
pub fn new(flare: Arc<Flare>, window: Arc<Window>) -> Self {
let window_size = window.inner_size();
let surface = flare
.instance
.create_surface(window.clone())
.expect("Unable to create surface");
let mut surface_configuration = surface
.get_default_config(&flare.adapter, window_size.width, window_size.height)
.expect("Unable to get surface config");
surface_configuration.present_mode = wgpu::PresentMode::AutoVsync;
surface.configure(&flare.device, &surface_configuration);
let accumulate_pipeline = AccumulatePipeline::new(&flare.device, &flare.module);
let accumulate_pass = AccumulatePass::new(
&flare.device,
&accumulate_pipeline,
(window_size.width, window_size.height),
);
let render_pipeline =
RenderPipeline::new(&flare.device, &flare.module, surface_configuration.format);
let render_pass = RenderPass::new(
&flare.device,
&render_pipeline,
&accumulate_pass.accum_buffer,
);
let ifs_constants = IfsConstants::new(
window_size.width,
window_size.height,
window_size.width,
window_size.height,
Vec4::BLACK,
);
Self {
flare,
surface,
surface_configuration,
accumulate_pipeline,
accumulate_pass,
render_pipeline,
render_pass,
ifs_constants,
}
}
fn begin_accumulate(&self, encoder: &mut wgpu::CommandEncoder) {
let mut pass = encoder.begin_compute_pass(&wgpu::ComputePassDescriptor {
label: Some("accumulate"),
timestamp_writes: None,
});
pass.set_pipeline(&self.accumulate_pipeline.pipeline);
pass.set_push_constants(0, bytemuck::cast_slice(&[self.ifs_constants]));
pass.set_bind_group(0, &self.accumulate_pass.bind_group, &[]);
pass.dispatch_workgroups(1, 1, 1);
}
fn begin_render(&self, encoder: &mut wgpu::CommandEncoder, output_view: &wgpu::TextureView) {
let mut pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("render"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: output_view,
resolve_target: None,
ops: Default::default(),
})],
depth_stencil_attachment: None,
timestamp_writes: None,
occlusion_query_set: None,
});
pass.set_pipeline(&self.render_pipeline.pipeline);
pass.set_push_constants(
wgpu::ShaderStages::FRAGMENT,
0,
bytemuck::cast_slice(&[self.ifs_constants]),
);
pass.set_bind_group(0, &self.render_pass.bind_group, &[]);
pass.draw(0..3, 0..1);
}
pub fn render(&self, run_accumulate: bool) {
let output = self
.surface
.get_current_texture()
.expect("Failed to get current texture");
let output_view = output.texture.create_view(&Default::default());
let mut encoder = self
.flare
.device
.create_command_encoder(&Default::default());
if run_accumulate {
self.begin_accumulate(&mut encoder);
}
self.begin_render(&mut encoder, &output_view);
self.flare.queue.submit(Some(encoder.finish()));
output.present();
}
pub fn resize_accumulate(&mut self) {
let vp_dimensions = self.ifs_constants.viewport_dimensions();
self.accumulate_pass = AccumulatePass::new(
&self.flare.device,
&self.accumulate_pipeline,
(vp_dimensions.x, vp_dimensions.y),
);
self.render_pass = RenderPass::new(
&self.flare.device,
&self.render_pipeline,
&self.accumulate_pass.accum_buffer,
);
self.ifs_constants
.with_accumulate(vp_dimensions.x, vp_dimensions.y);
}
pub fn resize_viewport(&mut self, width: u32, height: u32) {
self.surface_configuration.width = width;
self.surface_configuration.height = height;
self.surface
.configure(&self.flare.device, &self.surface_configuration);
self.ifs_constants.with_viewport(width, height);
}
}
struct Application<'window> {
flare: Arc<Flare>,
window: Option<Arc<Window>>,
flare_render: Option<FlareRender<'window>>,
}
impl Application<'_> {
pub fn new() -> Self {
Self {
flare: Arc::new(Flare::new()),
window: None,
flare_render: None,
}
}
}
impl ApplicationHandler for Application<'_> {
fn resumed(&mut self, event_loop: &ActiveEventLoop) {
let attributes = WindowAttributes::default()
.with_title("Flare")
.with_inner_size(LogicalSize::new(1024, 768));
let window = Arc::new(
event_loop
.create_window(attributes)
.expect("Failed to create window"),
);
self.window = Some(window.clone());
let flare_render = FlareRender::new(self.flare.clone(), window);
flare_render.render(true);
self.flare_render = Some(flare_render);
}
fn window_event(
&mut self,
event_loop: &ActiveEventLoop,
_window_id: WindowId,
event: WindowEvent,
) {
match event {
WindowEvent::Resized(size) => {
let flare_render = self.flare_render.as_mut().unwrap();
flare_render.resize_viewport(size.width, size.height);
flare_render.render(false);
}
WindowEvent::MouseInput {
button: MouseButton::Left,
..
} => {
let flare_render = self.flare_render.as_mut().unwrap();
flare_render.resize_accumulate();
flare_render.render(true);
}
WindowEvent::CloseRequested => event_loop.exit(),
_ => (),
}
}
}
pub fn main() -> anyhow::Result<()> {
env_logger::init();
let _module = wgpu::include_spirv!(concat!(env!("OUT_DIR"), "/flare.spv"));
let event_loop = EventLoop::new()?;
let mut application = Application::new();
event_loop.run_app(&mut application)?;
Ok(())
}

4
rust-toolchain.toml Normal file
View File

@ -0,0 +1,4 @@
[toolchain]
channel = "nightly-2024-11-22"
components = ["rust-src", "rustc-dev", "llvm-tools"]
# commit_hash = b19329a37cedf2027517ae22c87cf201f93d776e

1
rustfmt.toml Normal file
View File

@ -0,0 +1 @@
style_edition = "2024"