speice.io/blog/2016-06-08-event-studies-and-earnings-releases/_notebook.ipynb

995 lines
353 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Or, being suspicious of market insiders.\n",
"\n",
"---\n",
"\n",
"Use the button below to show the code I've used to generate this article. Because there is a significant amount more code involved than most other posts I've written, it's hidden by default to allow people to concentrate on the important bits."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<script>\n",
"code_show=true; \n",
"function code_toggle() {\n",
" if (code_show){\n",
" $('div.input').hide();\n",
" } else {\n",
" $('div.input').show();\n",
" }\n",
" code_show = !code_show\n",
"} \n",
"$( document ).ready(code_toggle);\n",
"</script>\n",
"<form action=\"javascript:code_toggle()\"><input type=\"submit\" value=\"Click here to toggle on/off the raw code.\"></form>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import HTML\n",
"\n",
"HTML('''<script>\n",
"code_show=true; \n",
"function code_toggle() {\n",
" if (code_show){\n",
" $('div.input').hide();\n",
" } else {\n",
" $('div.input').show();\n",
" }\n",
" code_show = !code_show\n",
"} \n",
"$( document ).ready(code_toggle);\n",
"</script>\n",
"<form action=\"javascript:code_toggle()\"><input type=\"submit\" value=\"Click here to toggle on/off the raw code.\"></form>''')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# The Market Just Knew\n",
"\n",
"I recently saw two examples of stock charts that have kept me thinking for a while. And now that the semester is complete, I finally have enough time to really look at them and give them the treatment they deserve. The first is good old Apple:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEKCAYAAAACS67iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8XHWd//HXu1D40bRJ0yJJtaUtClJQEFbkKgRdtsIu\nFwUR+CEg6HpDWDSr6PrbpojKJeKusAishYJSFcUtKIKAENyiqCsod+RiWygkwLaQNlwK6ef3xzmJ\n0+lMMrnMzMnk/Xw85pGZc75zvp85mfnMd77n+z1HEYGZmY19E6odgJmZjQ4ndDOzGuGEbmZWI5zQ\nzcxqhBO6mVmNcEI3M6sRTujjlKQTJf13her6tqR/qURdZuOZE/oYIKlD0mpJE0d508OahJDG87Kk\nbknPSrpWUlPRSiI+GRFfHX6YBWP4kKSHJb0oqVPSFZIm55WZIenJ9P6nJf1e0iuSLi+yzTMlnS1p\nT0k3S/pfSV2SfiipOa/suZKel/ScpHPy1p0l6V5Jr0n61wL1bC3pakkvpHV8dwT7YYGk9en/Ym36\nd05emb0k3VlKbGmZSyR9VNIhkv5b0hpJT0u6TFJdTrktJF2e/g+elnRG3nYuTf9HvZJOKFDPXEk/\nzXkfnZNfxobGCT3jJM0G9gM2AIdVOZw+AXwqIuqBHYCpwDcLFZRUrvfYncD+EdEAbAdMBM7OK3MI\ncGN6fxXwFWDRANv8e+DnQCNwKTA7va0DrugrJOnjJP+LtwO7AIdK+sec7TwK/DPwsyL1/AR4GpgJ\nbAO0DxBTKX4QEfURMSX9u7zA67qhxNgADibZDw0k+2wGMC+N9/yccguBNwOzgPcAn5f0dznr/wh8\nEvhDfgVp4+QW4FaSfTAT+N6gr9QG5ISefScAvwEWAyflrkhbpd9OW5Pdkm6XtG3O+g2SPiPp8bQF\ndF6xSiTtmNMqfUjSBweJSwAR8QJwLfC2nJgulnSDpLVAS7rsrJy6Dpd0T9qye7QvCUiql/SdtLX3\npKSvSFKhyiPiqYh4Nn04AegF3pJX7BCSxERELI2I64HVRV7/VGB74DcRcVNEXBsR6yLiFeAiYJ+c\n4icA34iIZyLiGZKEfFJObN+NiF+QfBHk13MQSfL6fLr93oj4U6GYRlHufigaWxrf24E1EfF0RHw/\nIm6OiFci4kXgP4F9c4qfAJwVEd0R8TBwGRvvh29HxO3AqwWqOglYFRH/nm5/fUTcP/KXOr45oWff\nCSQtlyXAfElvyFt/HElLaTrwJ+DqvPVHALunt8MlnZxfgaRJwM1pPVsDxwD/IWnHwYKTtDVwJHB3\nzuJjga9ExBSSlnRu+XcBVwKfS1vX+wPL09VXAutJWty7AQcBHx2g7n0lvQB0Ax8g51eCpM3Tbd8y\n2GtIzQd+GYXPhXEA8EDO451J9nWfP6XLSrEX8GfgqrTL5reS9i/xucUcmm7rPkmfyF2RdhVtExF/\nLHFbh/DX1ny+/v2QfgHOAO7NWT/U/bBC0s/TbqvbJL2txOdaEU7oGSZpP2Bb4JqIuBt4jCSB57oh\nIu6MiNeAfwH2lvSmnPXnRMSLEfEU8G8kyTbfPwB/iYirIvEnkm6BgVrpF0paDdxD0n3wuZx110XE\nXQARkd86OxlYFBG3peufiYg/S9qG5Kf+GWmL7fkB4iV97p0RMRV4E0lXwMqc1fsDf4yIngFeQ66+\n7paNSNoF+H9Aa87iycCLOY+702WlmEnyRfVLoAm4ALhO0rQSn5/vhyTdIW8A/hH4V0kfyll/CHDT\nELZXbD8cBHyYZF9A8nqDTffDlBLrmQl8iOR/PCOt87r0i9iGyQk9204Abo6INenj7wMn5pV5su9O\nmrxWA2/MWf9Uzv0Veev6zAb2UnLgdbWkNSRfHM0Fyvb5TERMi4hZEfHhiPjfQjEVMAt4vEgME4Fn\ncmK4hOQXw4DSbo9fAD/IWdzfzTCYtFvnIPISn6S3pNv4TET8OmfVOqA+53EDRbowCngZWB4Ri9Pu\nlh+S7K998wtKOi7nQGfBVnNEPBwRnekX8W+AfweOyikylP3QALwV+HXe8r1IfvkdGRF9/7u+15u/\nH9aWUhfJfliWdum8HhHtJL8y55X4fCvA34YZJen/AEcDEyQ9ky7eApgq6e0RcV+6bFbOcyYD00gO\nAJKz/qH0/rYkrel8TwIdETF/lMIfaPTMkyQH0gotfwWYXqTbYzATSbpq+hwCvL/E5+5BkmT7v5TS\ng9G3AAsjYkle+QeAXYH/SR+/g427ZAZyL8kvolwFX29ab37dgwnS4xtpa/cA8o69DGA+cFvu/pe0\nG7AUOCkiOnJieyF9X+5K8muD9P5Q9sM+g5ayIXELPbveD7xO0mLZNb3NA5aRtNz7HCJpH0lbkIxI\n+E1E5Cbtf5Y0VdIs4HQ2bsX2+Rmwg6TjJW0uaaKkd5bShz4Mi4CPSDpQiTdKemtEdJL0439T0pR0\n3XbF+pfT1uus9P5skhEut6aP5wBbRMQjOeU3S78kNwM2l7SlpM3S1Rv1G6ddVr8ELoyI/yxQ/VXA\nZ9PY3wR8lo1HwWye1jUBmJjW1fdZ+y+gUdKHJU2QdBRJl9GdDIOkw9L+7L7jE6eTJGBIRkf9KSLW\n5ZQfKLb8/fA2klFCn4mIQq387wJfTt9f84CP5e2HiWldArZI6+o7yP09kl+F70n3wxnAc/y18WHD\nERG+ZfBG8kE6r8DyD5K0sieQfHguJkmEa4EOYHZO2Q3AqSRdHM8B5wFK150I/Cqn7PYkif3ZtOyt\nwC5FYrsNOLnIustJRj4UXQYcTnIArZvkAOFB6fIp6et5ElhDMtzt6CL1nJ2WW0vSd/5toDFd92ng\nW3nlF6T7ozfn9q/put8Du+eU/dd0fXd6Wwt0523vHOB/geeBr+etu6JAXSfkrN+XpIXaDfwO2GcE\n75MlaQzdwIPAp3PWnQ98ttTYgGeArfP+b6/n7IO1wH0567cg+YJ+MX3u6Xl13V6grv1z1h9BMozy\nhfQ9Na/an7uxfuv7cBclaRHJT8SuiNglXXYU0EbSYtwjkgN2fS2lh4CH06ffFRGfGrACGzZJVwBP\nRkSxCSIbgLdExBOVjay60v7mCyNi0IOB6cHYuyNiZvkjqyxJD5D0ez9cQtk9SPbZXuWPzMqllC6X\nK0j61nLdR9IlcEeB8o9FxO7pzcncquH29FaKBjYeoVMTlEzcubKUZJ5jQbniscoY9KBoRCxLW965\nyx6B/tEB+QpOBLGyGOzg4bi8vmAkIyZKLfsoyc/+mhLJMNaiE8kKlP99GcOxCinHKJc5ku4m6Vf7\nfxGxrAx1GBARm0wSylu/2UDrzay2jHZCfxrYNiLWSNodWCppp8g5ym5mZuUxqgk9/Zm3Jr1/t6TH\nSU7edHd+WUnjsjvAzGykIqJg13ap49BF8b7x/uVKTgs6Ib2/HcnJkoqOsFiwYEHBoTeFlg+l7FC3\nccABB1S0vqEsLxRbNeIYyr6rRhy1/r/1vhv+vqvGPh0sPhh+HAMZtIUuaQnQAkyXtJLkSPga4EKS\nadk/k/THiDiY5PwZZ0laTzL+9OORnI2voJaWlpKXD6XsULcxZ86citY3lOWFYqtGHEPZd9WIo9b/\nt953g8dWjTiq8bkYUKFvgErckqqzYcGCBdUOoagsxxbh+EYiy7FFZDu+LMcWMXh8I0l/ae4smFc9\n9Z9hfhNWSJZjA8c3ElmODbIdX5Zjg+rFN+hM0bJVLEW16jYzqyYJhpv+JBEjPChqZmYZ54RuZlYj\nnNDNzGqEE7qZWY1wQjczqxFO6GZmNcIJ3cysRjihm5nVCCd0M7Ma4YRuZlYjnNDNzGqEE7qZWY1w\nQjczqxFO6GZmNcIJ3cysRjihm5nVCCd0M7Ma4YRuZiO2ePHiIS238nBCN7MRW758eenLneTLxgnd\nrEpqvfXa3NxMe3v7pitOPRWamysf0DjghG5WJcVatWNRe3s7zXlJuquri56enk0L9/RAV1eFIhtf\nNq92AGY29vX09BRO3lZRbqGbmdUIJ3QzsxrhhG5mZdHU1ERdXV21wxhXnNDNrCw6OztpbW2tdhjj\nihO6mZXNnDlzqh3CuOKEbmZlc9JJJ1U7hHFFEVGdiqWoVt1mWTB58mQmT55MZ2dntUMZMUkAlPSZ\nTssyjj//0vBfviQiQoXWuYVuViU9PT10lTjBptZnldrocAvdrEqG0qrNemveLfShKVcL3TNFzcaA\nrM/ErK+vZ6uttqp2GOOeu1zMMmYsdq+8+OKLmf31MJ44oZtlTFZO2jUWv1jGu0ETuqRFkrok3Zuz\n7ChJ90vqlbR7XvkvSnpU0kOS/q4cQZuVQ6UTWF1dHU1NTSPbSBljLvTF0tDQsMlZFS07SmmhXwHM\nz1t2H/B+4I7chZLmAUcD84CDgYvVd7TELOMq3TJubW0deTdFhWPu7u4ueWSOVd6gCT0ilgFr8pY9\nEhGPAvnJ+nDgBxHxekQsBx4F3jVKsZrVlKHMohyV1rzVvNHuQ38T8GTO41XpMjPLM5RZlKPSmrea\nV9Vhi21tbf33W1paaGlpqVosZkPR0NDAVltt5SRrZdfR0UFHR0dJZUc7oa8CZuU8npkuKyg3oZtl\n1uLFkNea7u7upru7uyrhbKS9HS65BPzFUrPyG7sLFy4sWrbULhexaX957ro+1wPHSNpC0lzgLcDv\nSqzDLJsqeOCx6IWViyl2fc4sDzmsqwMfDyiLUoYtLgF+DewgaaWkj0g6QtKTwF7AzyTdCBARDwLX\nAA8CPwc+5fn9NqY1Nyet4AopemHlocrIWPaCLrrIvyjKZNAul4g4rsiqpUXKfx34+kiCMqu05uZm\n1q1bt2k3oIfojT6fUrdsfC4XM8jM2OqmpiZefvnlaodhY5QTulmGZH3UTF1dHZMnT652GFaEz+Vi\nNgZk5VJuHg+fbU7oZmOAL+VmpXBCNxtIU1MyzG6caWtrK3kyi2WHE7rZQDo7k2F2Y8koDLVsa2vL\n9szthobkddpGfFDUbDAFujsyfXBwlEbsZKXfvqDu7uRmG3EL3YxkuGDdELpWMn1wcJS6iQr122c6\nyZtb6GaQDBcck1foqauD/F8KnZ1QpvMk+eBstrmFbpYak8mqtdXT6K2fE7qZWY1wQjcbBvclWxY5\noZsNQ2a6Z4p9sfgLZyNj8vjIMDihm41lxb5YsvKFU2lFEnelLwBeLU7oZlYbmpvhIx8Z1xOOnNBt\n3BkvP7/Hnb4JVRk5FXI1OKHbyIzB5HjqqafSPI5bcVa7PLHIRmYM9k329PSMzmXezDLGCd3Mxp5C\nM2TNXS5WHu6ntrLyDNmCnNCtLMbLMDGzLHFCt8pxq92qoLm5mfYRnh9+rHAfulWOW+1WBV3jaBij\nW+hmNvYUOrVBU9PGfwdTg1c9ckI3s7Gn0KkNOjthwYLSD5Z2d9fcJCQndBt146nP0rJvqFejGsuc\n0MezMh2k7Orq8sQdy4zOzk5aW1urHUZFOKGPA0XHhFf6IGV7e831WVrtGctzKJzQa0yhN2PBMeHN\nzbBwYWUTbE9PzfVZWu0Zy3MonNBrTMlvxgydma6sLaIx3NqyYRjnF/bwOHSrnCLn3yhri2gMt7Zs\nGIpc2GO8XDLQLfQakvnRJZU+/0Zzc9Jvb+NewUsG1tWVPmZ9jHBCryFDGl0y1EkYhbS1Jf3wbW2l\nla90K6mrK+m3NyukBk/w5YQ+DrS3t296QYehTsIopK0t2UapCX28XufSrEKc0MeBnp6ezJ7Porm5\nmYULF/oKQpYJo/V+rNbQx0ETuqRFkrok3ZuzrFHSzZIekfQLSQ3p8tmSXpJ0d3q7uJzBW2nq6upo\nymhfYd8XTVa/cKyGFegCHK33Y7WGPpbSQr8CmJ+37Ezg1oh4K3Ab8MWcdY9FxO7p7VOjFKeNQGtr\nK50Z7Svs+6LJ6heO1bAa7AIcNKFHxDJgTd7iw4Er0/tXAkfkrNPohGbjQWdnJwsWLMjsF47ZaCp3\nV8xw+9C3iYgugIjoBLbJWTcn7W65XdJ+I47QChqVN0aZRp00NTVRX19flm0PMZBkaJpZRpS7K2a0\nJhZF+vcZYNuIWCNpd2CppJ0iYt0o1WOpUXljjMZPzgJfCplpbXd2eqaoVVxzczNdXV1ccsklFf8s\nDDehd0lqioguSc3AswARsR5Yn96/W9LjwA7A3YU20pYz3K2lpYWWlpZhhmMDKessuaz3Q2Y9PsuU\npqYmurq6MnVMp6Ojg46OjpLKlprQxcZ949cDJwHnAicC1wFI2hpYHREbJG0HvAV4othG20odv2wj\nUnCWXIZUelp2fX09W221VUXrtLGhs7OTtra2EeWm0dhGrvzG7sKFC4uWHTShS1oCtADTJa0EFgDn\nAD+SdDKwAjg6Lb4/cJak9cAG4OMR8cKwXoWNG5X+wnnxxRcrWp9ZpQya0CPiuCKr/rZA2Z8APxlp\nUDY8TU1NrFvnwxVmIzGWT+TlmaJjVKHp/J2dnVx00UVVisisNozGL8ZqfSn49LljVE9PT8ETcWW9\nv9xsPKjW51ARMXipclQsRbXqrgVScoza+9BsbGhubmbdunWsW7cOCYb70ZVERBScwOmEPkY5oZuN\nLbmf2XIldPehm5nVCPehj1F1dXVMLnA5NzMbv9xCH6Muuuii7EyxN7NBVeIcR2O+D33x4sUe2WFm\nY4r70Iuo1onkzcyyZswndDMzSzihm5nVCCd0M7Ma4YRuZlYjnNDNzGrEmB62mHtuBDOzscLDFgvo\n6uoqeMbBIcvwdSfLfZVwM6sdYzqhj5oMj2X3OHszK5UTuplZjXBCz7hCVyYyMyvEB0Wbm2HduuSW\nQT7vuVnt8UHRAjo7O2ltbR3ZRrq6YDQOrBbQ0NDg1rWZVcyYTuiZUmA0Sm9vb+XjMLNxywl9tBQY\njdLa2upzlptZxfiKRRnnKxOZWancQm9qgrq6akdRlFv5ZlaqMZPQyzZjsrMTChxYzcoMzTlz5lQ7\nBDMbI8ZMQq/0jMmi9VU40fvyemZWqjGT0DMzwWYIXyxuXZtZJY2ZhN7T00NXV9cmyzORNJubob19\nk8VuXZtZJY2ZhF5MxZNme3uSwHOVcXKSmVmpPGxxqHp6Nk3eTU2ZPXWAmY0fY76FXi5F++zr6pIE\nnqvISBkzs0pyQgco0A9frM+e1tYkgZuZZUwmE3rFx4D74KWZ1YCqJvRCibu5uZlTTz218sHkqaur\noym/a8XMLMOqmtALTd4pdp3QSidYT7k3s7Fm0IQuaZGkLkn35ixrlHSzpEck/UJSQ866L0p6VNJD\nkv5uoG23Fxi73dTURF2Bc6s4wZqZDayUFvoVwPy8ZWcCt0bEW4HbgC8CSNoJOBqYBxwMXKy+S+4U\nUKglXuyiFZWeQJSJCUtmZkMwaEKPiGXAmrzFhwNXpvevBI5I7x8G/CAiXo+I5cCjwLtGI9BKTyAq\nWp8TvZll1HD70LeJiC6AiOgEtkmXvwl4MqfcqnRZ7XCiN7OMGq2Dor6CsYc+mlmVDXfqf5ekpojo\nktQMPJsuXwXMyik3M11WVFtbGwAtLS20tLQMMxwzs9rU0dFBR0dHSWUVMXjjWtIc4KcR8fb08bnA\n6og4V9IXgMaIODM9KHo1sCdJV8stwPZRoBJJAVCo/ra2tv5Eb2ZWayQoIfUWea6IiIKDTQZtoUta\nArQA0yWtBBYA5wA/knQysIJkZAsR8aCka4AHgdeATxVK5mZmNvoGTegRcVyRVX9bpPzXga+PJCgP\nGTQzG7qSulzKUvEAXS5mZrWsXF0umTw5l5mZDZ0TuplZjXBCNzOrEU7oZmY1wgndzKxGOKGbmdUI\nJ3QzsyoazUtuOqGbmVVRoSu3DZcTuplZjXBCNzOrEU7oZmY1wgndzKxGOKGbmdUIJ3QzsywaxnBG\nJ3Qzsypqb2+nubl50xXDGM443GuKmpnZKOjp6aGnp2dUtlXVC1zU1dWxbt26qtRvZlYtuRe4kJJr\nVWyUi5ubYd265LbJc0dwTdFyam1trWb1ZmbZ1NU1rKdVtQ/d1w41Mxs9Ve1y8fVEzWw8GrTLJV1W\n6MKjvqaomdk44IRuZlYjnNDNzGqEE7qZWY1wQjczqxFO6GZmNcIJ3cysRjihm5nVCCd0M7Ma4YRu\nZlYjfPpcM7MqqqurY/LkyaOyLbfQzcyqqLW1lc7OzlHZlhO6mVmNcEI3M6ui0TyNuE+fa2ZWYbmn\nzy1aACp7+lxJp0u6L72dli5bIOkpSXent/eNpA4zMyvNsEe5SNoZOAV4J/A6cKOkG9LVF0TEBaMQ\nn5mZlWgkwxbnAb+NiFcBJP0K+EC6ruDPATMzK5+RdLncD7xbUqOkScAhwEwggFMl/VHSdyQ1jEag\nZmY2sGG30CPiYUnnArcA64B7gF7g28BXIiIknQ1cQNI1s4m2trb++y0tLbS0tAw3HDOzmtTR0UFH\nR0dJZUdtlIukrwJPRsQlOctmAz+NiF0KlPcoFzMbl7I6yuUN6d9tgfcDSyQ15xT5AEnXjJmZlaqp\nCerqhvy0kZ7L5VpJ04DXgE9FRLekiyS9A9gALAc+PsI6zMzGl85OyOmSLtWIEnpE7F9g2Qkj2aaZ\nmQ2Pp/6bmdUIJ3QzsxrhhG5mlkXDOGmXT85lZlZhgw5bHPC5ZRq2aGZmFdTcPOBqt9DNzCps2C10\nCYFb6GZmY15T04Cr3UI3M6sw96GbmdmAnNDNzGqEE7qZWY0Y6cm5Rt2cOXNYsWJFtcOwGjF79myW\nL19e7TDMKiJzB0XTDv8qRGS1yO8nyyIfFDUzswE5oZuZ1QgndDOzGuGEbmZWI5zQM2zZsmXMmzev\n2mEMyYEHHsjll19e7TDMxiUn9CGaM2cOkyZNor6+nilTplBfX89pp51Wlrr2228/HnroobJsu5gr\nr7ySzTffnPr6eqZOncpuu+3GDTfcUNEYzGx4MjcOPeskccMNN3DggQeOaDu9vb1sttlmoxTV6Npn\nn3341a9+BcBll13GMcccw6pVq6ivr69yZGY2ELfQh6HYuOYnnniC9773vWy99dZss802HH/88XR3\nd/evnzt3Lueddx677rorkydPpre3l7lz5/KNb3yDXXfdlcbGRo499ljWr18PwB133MGsWbM2en6x\nsgDnnXceb3zjG5k5cyaLFi1iwoQJPPHEEwD8/Oc/Z+edd6a+vp5Zs2ZxwQUXlPRaP/zhD9PT08Oj\njz7av+yuu+5i3333pbGxkd1224077rij6PMvv/xydtppJ6ZPn87BBx/MypUr+9f90z/9E9tuuy0N\nDQ3sscceLFu2rH/d73//e/bYYw8aGhqYMWMGra2tw6rfbFyJiKrckqo3VWx5VsyZMyd++ctfFlz3\n2GOPxa233hqvvfZaPP/883HAAQfEGWecsdFzd9ttt1i1alW88sor/cv23HPP6OzsjDVr1sS8efPi\n0ksvjYiIjo6OmDVr1kbPL1b2xhtvjBkzZsRDDz0UL7/8chx//PExYcKEePzxxyMiYsaMGXHnnXdG\nRMQLL7wQ99xzT8HXsHjx4nj3u98dERGvv/56XHTRRbHlllvGc889FxERq1atiunTp8dNN90UERG3\n3nprTJ8+PZ5//vmIiGhpaYlFixZFRMTSpUtj++23j0ceeSR6e3vjq1/9auyzzz79dV199dWxZs2a\n6O3tjQsuuCCam5vj1VdfjYiIvffeO773ve9FRERPT0/89re/Lan+fFl/P9n4NJK3ZfqeLpxXi60o\n920kCT2ZYzXy23DMmTMnpkyZEo2NjTF16tRobGyM73znOwXLLl26NHbfffeNnrt48eJNtrdkyZL+\nx5///Ofjk5/8ZEQUTujFyp588snxpS99qX/dY489FpL6E/rs2bPjsssui+7u7gFf3+LFi2PzzTeP\nxsbGmDhxYkyaNCl+9KMf9a8/99xz44QTTtjoOfPnz4+rrroqIjZO6AcffHBcfvnl/eV6e3tj0qRJ\nsXLlyoJ1NzY2xr333hsREQcccEC0tbVtkqgHqz+fE7plUbkS+pjschmtlD5c1113HatXr2bNmjWs\nXr2aU045BYBnn32WY489lpkzZzJ16lSOP/54nn/++Y2eO3PmzE2215Rz0vpJkyaxbt26onUXK/v0\n009v1D2Tex/g2muv5YYbbmD27NkceOCB3HXXXUXr2HvvvVm9ejUvvPAChx12WH9/OsCKFSu45ppr\nmDZtGtOmTaOxsZE777yTzs7OTbazYsUKTj/99P6y06dPRxKrVq0CoL29nZ122onGxkYaGxvp7u7u\n31+LFi3ikUceYccdd2TPPffsPzBbrP5nnnmm6OsxGy98UHQYosi3wZe+9CUmTJjAAw88QENDA9dd\ndx2f+cxnNiojFTwFw4jNmDGDp556qv/xypUrN6rrb/7mb1i6dCm9vb1ceOGFHH300Rv1ZxcyadIk\nLr74YrbbbjtOOeUUdt11V2bNmsUJJ5zApZdeOmhMs2bN4stf/jLHHnvsJuuWLVvG+eefz+23385O\nO+0EwLRp0/r37Zvf/GaWLFkCJF9GRx11FKtXrx5S/WbjzZhsoWfV2rVrmTx5MlOmTGHVqlWcf/75\nFav76KOP5oorruDhhx/mpZde4uyzz+5f99prr7FkyRK6u7vZbLPNmDJlSskjbBobG/nYxz7GwoUL\nATj++OP56U9/ys0338yGDRt45ZVXuOOOO3j66ac3ee4nPvEJvva1r/Hggw8C8OKLL/LjH/8YSPbV\nxIkTmT59OuvXr+ess85i7dq1/c+9+uqr+1vrDQ0NSGLChAlDqt9svHFCH4ZDDz2U+vr6/tuRRx4J\nwIIFC/jDH/7A1KlTOfTQQ/uX9ynUOh9Ki32gsu973/s47bTTOPDAA9lhhx3Ye++9Adhyyy0B+O53\nv8vcuXOZOnUql112WX/rtxSnn346N954I/fffz8zZ87kuuuu42tf+xpveMMbmD17Nu3t7WzYsGGT\nGI844gjOPPNMjjnmGKZOncouu+zCTTfdBMD8+fOZP38+O+ywA3PnzmXSpEkbdRPddNNN/aNyzjjj\nDH74wx+y5ZZbDlq/2Xjm0+fWqIcffpi3v/3tvPrqq0yYMH6/t/1+sizy6XNtUEuXLmX9+vWsWbOG\nL3zhCxx4t7f9AAAH8ElEQVR22GHjOpmbjTf+tNeQSy+9lG222Ybtt9+eiRMncvHFF1c7JDOrIHe5\nWE3z+8myyF0uZmY2ICd0M7Ma4YRuZlYjMjdTdPbs2WWbTWnjz+zZs6sdglnFjOigqKTTgY+mD/8z\nIr4lqRH4ITAbWA4cHREvFnhuwYOiZma1LnMHRSXtDJwCvBN4B/APkt4MnAncGhFvBW4DvjjcOiql\no6Oj2iEUleXYwPGNRJZjg2zHl+XYoHrxjaQPfR7w24h4NSJ6gV8BHwAOA65My1wJHDGyEMsvy2+O\nLMcGjm8kshwbZDu+LMcGYzOh3w+8W1KjpEnAIcAsoCkiugAiohPYptgGir3oQsuHUnao21i+fHlF\n6xvK8kKxVSOOoey7asRR6/9b77vBY6tGHNX4XAxk2Ak9Ih4GzgVuAX4O3AP0FipabBtZ3vl+45ZW\n1klp+Mu974a/fDx/LgYyajNFJX0VeBI4HWiJiC5JzcDtETGvQHkfETUzG4ZiB0VHNGxR0hsi4jlJ\n2wLvB/YC5gInkbTeTwSuG0pAZmY2PCMdtvgrYBrwGnBGRHRImgZcQ9KfvoJk2OILoxGsmZkVV7WT\nc5mZ2ega81P/JW2QdFXO480kPSfp+hFu932SHpb0Z0lfyFn+A0l3p7e/SLq7SvEtktQl6d4i6z+X\n1j2t0vFJminpNkkPSLpP0mk5646SdL+kXkm7Zyy2XSX9RtI9kn4n6Z0lbvOINNYdhhtXzrYaJd0s\n6RFJv5DUkLd+W0lrJX22CrEV/N9Jmpbu07WSvjXEbVYivs0lLZZ0b/p/P7MKsZ0n6SFJf5R0raT6\ndPlsSS/l5JQRnfN6zCd0oAd4m6Qt08cHkRycLZmkzfIeTwAuAuYDOwPHStoRICKOiYjdI2J34Frg\nJ5WOL3VFGl+h8jPTelaUsPlyxPc68NmI2BnYG/h03/4D7iM53nJHBmM7D1gQEbsBC4BSLwp7DPDf\nwKZXwx48vvzP4GAT875BMqqsVKMZW7H/3SvAl4HPDbWOCsX3QWCLiNiFZCLkx9PjfpWM7WZg54h4\nB/AoG/9fH+vLKRHxqaHWlasWEjokb/C/T+8fC3y/b4WkPST9WtIfJC2TtH26/ERJ10n6JXBr3vbe\nBTwaESsi4jXgB8DhBeo9OreuCsZHRCwD1hSp75vAP5cQV1nii4jOiPhjen8d8BDwpvTxIxHxKFDq\nQfGKxQZsAPpaxFOBVYMFJ6kO2Jdk1vSxOcsPkHSHpJ8p+aV3cc66tZLaJd1DMpAg1+EUmZgn6XDg\nCeCBweIqR2zF/ncR8VJE/Bp4tZS4Kh0fydDpuvTLfVIaZ3eFY7s1IvoufHsXMDO3uoFiGZKIGNM3\nkn/M24AfAVuSjIffH7g+XT8ZmJDefy/w4/T+icBKoKHANo8ELst5fDzwrbwy7wZ+V434crY9G7g3\nb9lhwAXp/b8A06oVX1puDsk5fSbnLb8d2D1LsQE7kvyqWUnyS2BWCf/f40jOYwSwDNgtvX8A8FL6\nPxJJC+0D6boNwJFFtrc67/GanNd6J0lCWkDyK6OisQ32v0v3+7cGi6vS8ZGM5vs+8CywFvhotWJL\ny10PHJfzGV4L3J3GvV+p+6/QrSZa6BFxP8mH81jgBjb+xpsK/FjSfSQt151y1t0SBU4cVqKNWotZ\niE/SVsCXSD7w/YurFZ+kycCPgdMjaQ0PWYVj+2T6eFvgDODyEkI8luQXHCQnpTsuZ93vIvmVFyTv\nlf3S5b0M3lXXp69VtwD4ZkS81PcSMhDbSFUqvneRdLU1A9sBrZLmVCM2Sf8CvBYRS9JFTwPbRtKF\n+zlgSfreHJbMnT53BK4n6fNsAbbOWf4V4LaI+ICk2STfgn16imxrFZDbxzaTnJ/f6U+3DwADHtQr\nY3zFvJkk+f1JktK4/yDpXRHxbCXjk7Q5ScL8bkQUnIswBJWK7cSIOB0gIn4sadFAQSk5s+h7SPr5\nA9iM5Od9X3dX/hCyvscvp8mgkC5JTfHXiXl9/7c9gSMlnQc0Ar2SXo6IggfRyhTbqKlwfMcBN0XS\n5fGcpDtJ+tKXVzI2SSeRnCLlPf1PTLp016T375b0OLADSYt9yGqhhd7XUrkcWBgR+f2LDfw1GX+k\nxG3+HniLkiPQW5AcHMkdWXEQ8FBEPF2l+HK33d9Si4j7I6I5IraLiLnAUyQ/FQdK5uWK73LgwYj4\n9xLqzkpsqyQdACDpvcCfB9nOB4GrImJuus9nA3+R1Ndie1f6HpoAfIjkAFvu6yrkepKJeZAzMS8i\n9k/r2A74N+BrxZJ5GWPLVaxcqc+vZHwrSZNo2je+F/BwJWOT9D6SL4TDIuLVnOVbp9tB0nbAW0iO\nkwxLLST0AIiIVRFxUYH15wHnSPoDJb7eSM4eeSpJ/9gDwA8i4qGcIh+ixO6WcsQHIGkJ8GtgB0kr\nJRVKaMHgH4BRj0/SvsD/Bd6jZAjg3ekbum8o2JMkH6qfSboxK7EB/wh8Iz2odXb6eCAfAv4rb9m1\n/PUg2v+QjJZ6AHg8Ipbmvq4izgUOkvQIyXGBc0p4WRWJbaD/naS/kIzAOTF9P+5YbDtViO8/gCmS\n7gd+CyxKu/IqFhtwIclxkFu08fDE/YF7lQx/vgb4eIxgIqYnFpmVQdrS/1xEHFbtWPJlOTbIdnxZ\njg1qo4VuZma4hW5mVjPcQjczqxFO6GZmNcIJ3cysRjihm5nVCCd0M7Ma4YRuZlYj/j87ypbKS6Xw\nrgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1fae3a9b0f0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from secrets import QUANDL_KEY\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.dates import date2num\n",
"from matplotlib.finance import candlestick_ohlc\n",
"from matplotlib.dates import DateFormatter, WeekdayLocator,\\\n",
" DayLocator, MONDAY\n",
"import quandl\n",
"from datetime import datetime\n",
"import pandas as pd\n",
"%matplotlib inline\n",
"\n",
"def fetch_ticker(ticker, start, end):\n",
" # Quandl is currently giving me issues with returning\n",
" # the entire dataset and not slicing server-side.\n",
" # So instead, we'll do it client-side!\n",
" q_format = '%Y-%m-%d'\n",
" ticker_data = quandl.get('YAHOO/' + ticker,\n",
" start_date=start.strftime(q_format),\n",
" end_date=end.strftime(q_format),\n",
" authtoken=QUANDL_KEY)\n",
" return ticker_data\n",
"\n",
"def ohlc_dataframe(data, ax=None):\n",
" # Much of this code re-used from:\n",
" # http://matplotlib.org/examples/pylab_examples/finance_demo.html\n",
" if ax is None:\n",
" f, ax = plt.subplots()\n",
" \n",
" vals = [(date2num(date), *(data.loc[date]))\n",
" for date in data.index]\n",
" candlestick_ohlc(ax, vals)\n",
" \n",
" mondays = WeekdayLocator(MONDAY)\n",
" alldays = DayLocator()\n",
" weekFormatter = DateFormatter('%b %d')\n",
" ax.xaxis.set_major_locator(mondays)\n",
" ax.xaxis.set_minor_locator(alldays)\n",
" ax.xaxis.set_major_formatter(weekFormatter)\n",
" return ax\n",
"\n",
"AAPL = fetch_ticker('AAPL', datetime(2016, 3, 1), datetime(2016, 5, 1))\n",
"ax = ohlc_dataframe(AAPL)\n",
"plt.vlines(date2num(datetime(2016, 4, 26, 12)),\n",
" ax.get_ylim()[0], ax.get_ylim()[1],\n",
" color='b',\n",
" label='Earnings Release')\n",
"plt.legend(loc=3)\n",
"plt.title(\"Apple Price 3/1/2016 - 5/1/2016\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The second chart is from Facebook:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFPWd//HXGxCVAYZDndGAgEbiETUab00cj4jGn1c0\nRlgPjJtj/bm6xEmibjYM2WiMjia/jXGjmxG8iDGaFS88UAfFKzEeiAdBDYKYGTUMwoyKOHx+f1T1\nWNPTPd0z3T3dXf15Ph79mO5vXZ+qqf70t771rSqZGc455+JjULEDcM45l1+e2J1zLmY8sTvnXMx4\nYnfOuZjxxO6cczHjid0552LGE7tzzsWMJ/aYk/SYpNMLMN8bJf043/MN5/0/ki4oxLydqwSe2AeY\npOWSPpC0VtK68G9tseMqJEmLJH0YrmurpD9I2ird+Gb2LTO7NM8xTJP0qqT3Jf1dUpOkYUnjjJO0\nPEXM6yS9mGKeP5LUIGl/SQ9K+ke4fr+Lrp8CjeHwdyVdkjSfiyW9KGmDpItSLGdLSXMlrQnnMSeH\n7fCfkj5O2v/GJY1zkKTm8P1b4f6aGPeeFPP8raTpko6R9LikNkmrJP13dBtL2lTSnPB/sErSuSnm\ns1RSp6RpKZazvaR7wjjekXRxf7dD3HliH3gGHG1mI81sRPi3pdhBFZgB3zazkcCOwJZAY6oRJRVq\nn3wU+JKZVQOfBYYBP0ka52jg3vB9V8zh/2nXFPNMjD8auBrYFpgIrAeaIuOdDRwJ7AzsDnxN0jcj\nw5cC5wPz08Q+D3gT+AywFfCLTCubwU1J+99bScOPBhIJ3IApkXGPTjG/I8PYRwANQC2wC7AdEP2B\n/inBNhoHHAFcJOnQyPBnge8AzycvQNJQ4MFwOVsC44G52a9yZfHEXhzqURD4Q1ibXC3pYUk7RoZv\nLukXkt4Ma0TNkjYJhx0o6cmw/FlJX0qa/WRJfw6H3y6pOjLfEyQtCZe5QNLkyLCdw+W0SXpB0ldT\nrow0UtJCSVdkWmczawP+CHw+nPZGSVdJmi9pHXCQkpp5JH1N0nNhTe+vkg4Py6slXSfpbUkrJM1K\nt3Aze8vM3g0/DgI2EiT4qK/yaWLvijnNOo8FJprZn8zsXjP7XzPrMLMPgV8DB0RGPx1oNLNWM3sb\nuAKYHontBjN7AOhIsZyjgC3N7MJw/p1m9kK6uPKkL9thD6AlXLe5Zvagma03szXAb4EDI6OfBswy\ns3Vm9hLBj9/0xEAzu9rMmoGPUyzqLOBvZnZVOP/14TxcCp7YS8tdwPYENZ4lwI2RYb8kSIZ7A2OA\ni4CN4WH0POA/zGw0cAHwR0mjI9OeBpwKbEPwP/8lgKSdgBuA/0tQC3oIuFPS4PBH4+4wpi2A7wG/\nl7RdNOAwwT0MLDCz8zOtoKQtga8R1M4SpgIzzWwE8FTS+AcQJIAZYW37EILaK8BNBMlwEvBF4KuS\nzuxl2V+WtAZ4HziGSM03rBEeGG6DhMvDQ/5HU/xYHgk8kGZRBwPRpLMLEE3GL4Rl2dgP+KukmyW9\nJ+kpSQdmnKp3J4TzWizp29EB4f5UnZQ0b5HUEv74fj5pXl/l09p9sq7tIGkLgn1scWR4X7fDSkn3\nKWjOWiBp5yynrTxm5q8BfAF/A9YCq8PXH9OMtwVBrXJzgmT8EbBjivEuApqSyhYAU8P3jwE/iQzb\nFfggfN9AcFieGCbgbYLaZh2wMmm+twIXhe9vBP6H4It7boZ1fgxoD9d3JXA9MDoyn98mjX8j8OPw\n/W+Bn6eY5zbAB8AmkbJTgQey+B9sA/wY2D5SdgQwP/J5H4Lmmk2AM8P/2baR4XOBb6SY9x7AP4B9\nI2Ubge0in3cEPk4x7e8S2zdS1gR0hus2GJgWzn9UP/e/nYCa8H99INACnBgZ/m3gvyOfDwCGhvvh\nj4BVwIjI8Cei6xopPwp4j+CoBoImqk5gUGScI4G/ppj2SWBaUtlDBN+Bw4AhBBWYZcDggfrultPL\na+zFcZyZjQlfX4OgbVnSZZJeD2uVywjaN7cg+CJuAryRYl4TgGlhU8pqSW3AvsDWkXFWRt6/CWwa\n1ui34dPaLxZ8g1YRtOVuA6xIWlainTfhGIJk89ss1vlfwvUdb2ZnWNAkkyq+ZOOB11OUTwA2BVoj\n630VQa2wVxY0hzxE9zbabs0PFjSxfGBmG8xsNvA0QbJKnAc4DLg/Ot+wGetu4Gwzezoy6ANgZORz\nNbAuU5yhD4HXzOwmC5ph5gKtwP7JI0o6XZ+e5JyXZt1fsaDZxMzsceBXwEm9bIcnzOxjM/vQzH4a\nrssB4fLGAJOS1jVxlHU9cIKZLQ+L28O/uWyHhWb2kJl9AvycYB+f3PtklckTe3GkarM8naAGU2dm\nowjafxW+WgnaHbdPMd1K4LrID8VoC050XRkZZ3zk/QRgfZhY3w4/B0FJIjixtSoctm3SsrYNhyX8\nN/AIcK+kzfqxzgm93Tt6JenXuyNpvUeZ2R4Z4kjYhODkXkJyu3KqGBPrsB9BTXNNYqCkSQQn9/7D\nzH6fNO1LBCdNE75A96aa3iym5/ZJub0saKtPnOQ8Lsv5d61X2Px2EMERX8bxCfbXbuNK2ovgHMpp\nZvZYJLb3gHfpvh12pwDbwXliLyUjCHpTtEmqAi4h3HHNbCMwB/ilpJqwdn+ApMEEzRYnSDo8LN9M\nUp26d6E8XdLnwvk2AInEcytwbNj2PAT4AUGTw9MEh9gbJH1P0hAFvReOAm6JzNfM7F8IjiTukrRp\nAbZLE/DPkg5W4DOSJlvQk2OhpCskjQiHbZ+iLRwASf8Uth8jaSJBj5gF4efPAhvN7PXw82hJX1HQ\nPW+IgusA9uPTGnq3dmVJ4wmOAK4ws+tSLP4G4HxJW4cxzABmR6YfEv4wDgI2CZebSJ63AzWSpob/\n328QHJU82cftmFjWcQpPnkvaF/hX4I5w8MHAMxacAEbSBAVdOYeEMV1IsJ8mlp28HXYPP59tZt2O\nZkI3Av8RnvTeBfhm0nbYJNwOAoYm7U83EpxYrwuPmOoJKhlL+7MdYi9TWw3BF6sVWBwpuwx4haBb\n0u3AyLD8cOAZgpMifwYOKXZbU6m9CJLgoSnKhwN3EiTWNwhOeHYStusStHH+EngLaCOoKQ8Jh+0L\nLCRoe20J57NNOOxR4D/D/8cagtrUqMhyTwBeJmj/fgj4XGTYLuH0awhqTEdHht3Ap+3gIjiReQ+R\nNu/IuI8Cp6fZHl3zSVdGcLJ1cbhtlia2H8Gh/G8Iau9twF+Ak9Is59Jw260jaGL6NcFJQoDzgCsj\n424Vbq/3w+2yiOBIKjH8OWC3yOefhP+rteFrHbA6MlzA5eG83gMuTortRoJ2+M7Ia1pk+JeBF/n0\nR7dHm3Yf9r/fh/vJ2vD//t3IsF8QOV9CcLI+sd3fJfhh+0JknVoJz5VE/m8bIttgHfBcZPhmBBWU\ntQRHhOckxfZY0jboBA6IDD+RoFluDcG+2uOck7+Cl8INlpakgwjax24ws93CssOBh81so6RLCWpu\nF4a/2K1m1hL+It9vZuPSz9254pN0P3C5mfXWBJEYd2vgaTNLbqYqe5KWEvx4v5bFuPsTbLODCh+Z\n66uMTTFmtoigNhQtW2BB8wAE3dPGheUvWHixjQXdpTYL2+2cK2UPERzxZGMkwcVEsRI2e/w2m6Qe\n2gikvW7AFVfGGjsEbW3AXYkae9KwO4FbLDhbHy0/ieDKvSPyFaxzzrnMhuQysaR/BzakSOq7AD8D\nvpLL/J1zzvVdvxO7pOkEZ8UPTSofx6fdnZb3Mr13VXLOuX4ws966D2fd3THRnzr4IB0JfB841szW\nR8qrCS7Q+KGZPdVjLklmzpzZ42xuvsvSlR988MEFX3ZfYvR4+va/8njKK56+fDdLIR4ofjzpYsxG\nxsQuaS5Bn+bJCm60dCbB1WrDgQcV3HTq6nD0cwguJvmxgps2PRveIyKlurq6gpelK584cWJR4kkX\no8eTvixVLB5PecXTl++mx5O+LGupfhEG4hUsunhmzpxZ1OUn83jSK6VYzDyeTOIQTyHTU67bJ8yd\nvebXir3yNKdfwwLweNIrpVjA48nE4+ndQMSTVXfHgixYsmIt2znneiNBqaYnSViGk6c5dXcshIkT\nJ/Lmm29mHtG5LEyYMIHly5cXOwznBlTJ1djDX6MiROTiyPcn1x/lXmOv2DZ255yLK0/szjkXM57Y\nnXMuZjyxl7BFixax0047FTuMPjnkkEO47rpUz5pwzg0UT+x9NHHiRIYNG8bIkSMZMWIEI0eO5Nxz\nzy3Isg466CBeeeWVgsw7neuvv54hQ4YwcuRIRo0axR577ME996R7CL1zrhSVXHfHUieJe+65h0MO\nOSSn+XR2djJ48OA8RZVfBxxwAI8++igA1157LaeccgqrVq1i5MiRGaZ0zpUCr7H3Q7ruc2+88QaH\nHXYYW2yxBVtttRWnnnoqa9eu7Ro+adIkLrvsMnbffXeGDx9OZ2cnkyZN4oorrmD33Xdn9OjRTJ06\nlY8//hiAhQsXMn78+G7TpxsX4LLLLmObbbZh3LhxNDU1MWjQIN544w0A7r33XnbZZRdGjhzJ+PHj\nufLK6LOu0zvttNPo6Ohg2bJlXWVPPfUUBx54IKNHj2aPPfZg4cL0z6i47rrr2HnnnRk7dixHHXUU\nK1as6Br2b//2b2y77bZUV1ez9957s2jRoq5hf/7zn9l7772prq5m6623pr6+vl/Ld64iZbrnQKFe\npLkZQ7ryUjFx4kR76KGHUg577bXXbMGCBbZhwwZ777337OCDD7YZM2Z0m3aPPfawVatW2UcffdRV\ntu+++1pLS4u1tbXZTjvtZNdcc42ZmTU3N9v48eO7TZ9u3Pnz59vWW29tr7zyin344Yd26qmn2qBB\ng+z11183M7Ott97aHn/8cTMzW7NmjT333HMp12HOnDn2pS99yczMPvnkE7vqqqts0003tXfffdfM\nzFatWmVjx461++67z8zMFixYYGPHjrX33nvPzMzq6uqsqanJzMzuuOMO22GHHWzp0qXW2dlpF198\nsR1wwAFdy7r55putra3NOjs77corr7Ta2lpbv369mZntv//+dtNNN5mZWUdHhz399NNZLT9Zqe9P\nrjR1221mzy5WGCkR13vFSPl59dfxxx/PmDFjGD16NGPGjKGpqQmA7bffnsMOO4whQ4YwduxYZsyY\n0aM2ed5557HNNtuw6aabdiurqalh1KhRHHPMMTz//PNpl51u3D/84Q+ceeaZ7Ljjjmy22WY0NDR0\nO7IYOnQoL730EuvWraO6upovfOELaZfx5JNPMmbMGDbffHN+8IMfcNNNN7HFFsFNOm+66SaOPvpo\npkyZAsBhhx3GXnvtxb333ttjPtdccw0XXnghkydPZtCgQVxwwQU8//zzrFy5EoBp06YxatQoBg0a\nxIwZM1i/fj1Lly7tive1117jH//4B8OGDWOfffbp8/Kdy4syvHK5LBN78Hua+6u/5s2bx+rVq2lr\na2P16tWcddZZALzzzjtMnTqVcePGMWrUKE499VTee++9btOOG9fz2d41NTVd74cNG0Z7e3vaZacb\n9+233+7WbBN9D3D77bdzzz33MGHCBA455BCeeir97fL3339/Vq9ezZo1azj22GO72tsB3nzzTW69\n9VbGjBnT9eP2+OOP09LS0mM+b775Juedd17XuGPHjkUSq1atAqCxsZGdd96Z0aNHM3r0aNauXdu1\nvZqamli6dCk77rgj++67b9cJ3HTL//vf/552fZyrNH7ytB8sza/CRRddxKBBg3jppZeorq5m3rx5\n/Ou//mu3cZTLoUIvtt56a956662uzytWrOi2rC9+8YvccccddHZ28qtf/YqTTz65W3t3KsOGDePq\nq69mu+2246yzzmL33Xdn/PjxnH766VxzzTUZYxo/fjw/+tGPmDp1ao9hixYt4vLLL+eRRx5h5513\nBmDMmDFd23b77bdn7tzgiYu33347J510EqtXr+7T8p2rVGVZYy9V69atY/jw4YwYMYJVq1Zx+eWX\nD9iyTz75ZGbPns2rr77KBx98wE9/+tOuYRs2bGDu3LmsXbuWwYMHM2LEiKx75IwePZpvfetbzJoV\nPJD+1FNP5a677uKBBx5g48aNfPTRRyxcuJC33367x7Tf/e53ueSSS3j55ZcBeP/997ntttuAYFtt\nsskmjB07lo8//pif/OQnrFu3rmvam2++uav2Xl1djSQGDRrUp+U7V6myeYJSk6RWSYsjZZdJekXS\n85JulzQyMuxCScvC4UcUKvBiOuaYYxg5cmTX68QTTwSCR/395S9/6Wr/TpQnpKqt96UG39u4Rx55\nJOeeey6HHHIIkydPZv/99wfoasu/8cYbmTRpEqNGjeLaa6/tqg1n47zzzmP+/PksWbKEcePGMW/e\nPC655BK23HJLJkyYQGNjIxs3buwR4/HHH88FF1zAKaecwqhRo9htt9247777AJgyZQpTpkxh8uTJ\nTJo0iWHDhnVrPrrvvvu6evHMmDGD3//+92y66aYZl++cy+LujpIOAtqBG8xst7DscOBhM9so6VKC\ns7QXStoZuBnYGxgHLAB2sBQL8bs7Ftarr77Krrvuyvr16xk0qHIPzHx/cv3R7e6ODQ3Bq0Tk5e6O\nZrYIaEsqW2BmiSrSUwRJHOBY4BYz+8TMlgPLgH36GrjrnzvuuIOPP/6YtrY2fvjDH3LsscdWdFJ3\nrlLl41v/TSDR1+wzwMrIsFVhmRsA11xzDVtttRU77LADm2yyCVdffXXmiZxzsZNTrxhJ/w5sMLPf\n9Wf6hsjhTV1dXck9m7DczJ8/v9ghOOfyrLm5mebm5j5Nk9UTlCRNAO5KtLGHZdOBbwGHmtn6sOwC\ngvb2n4ef7wNmmtnTKebpbeyu4Hx/cv0R+zb2xLzCV2LGRwLfB45NJPXQncApkoZKmgR8FvhT38J2\nzjmXi4xNMZLmAnXAWEkrgJnARcBQ4MGwe9tTZna2mb0s6VbgZWADcHbKarlzzrmCyZjYzWxaiuLZ\nvYz/M+Bn/Q1owoQJBbs601WeCRMmFDsE5wZcyd1SYHkZ3nDHOedKSVYnTwuy4DQnT51zrti6Tp7W\n1kJ7e/AqEdmcPPXE7pxzSboSe6JZuIRyVT57xTjnnCsTntidcy5mPLE751zMeGJ3zrmY8cTunHMx\n44ndOedixhO7c87FjCd255yLGU/szjk3gObMmVPwZXhid865ATQQ98PyWwo451ySQt5SYPjw4Qwf\nPpyWlpZ+xub3inHOuT4rZGJP3Ja8v/nP7xXjnHMVKGNil9QkqVXS4kjZSZKWSOqUtGekfIikOZIW\nS3opfAaqc865PsrlJGs2NfbZwJSksheBE4CFSeVfB4aGD73eC/iOpG37HZ1zzlWoXE6yZkzsZrYI\naEsqW2pmy4g84DoxCKiSNBgYBqwH1vY7OuecqwR57gKZ7zb224APgL8Dy4FGM1uT52U451y8pKid\nNzY2Ultb26/Z5fuZp/sAnwC1wFjgMUkLzGx5qpEbGhq63tfV1VFXV5fncJxzrjx1dHTQ0dFBc3Mz\nzc3NQWFjY1bTZtXdUdIE4K6w7Txa/ghwvpk9G36+CnjSzG4OPzcB883sthTz9O6OzrmSNODdHRsa\nglem8SQUlOWlu6Po2Z4eHZawAjg0DKoK2A94NctlOOdcWcilx0pVVRU1NTX5CyaFbLo7zgWeACZL\nWiHpTEnHS1pJkLjvljQ/HP3XwAhJS4CngSYzW1Ko4J1zrhhy6bFSX1/f76tOyfIHIWMbu5lNSzPo\njhTjdgAnZ7Vk55xzfdPS8mnzUC/8ylPnnOuD2tpaGrM8iVksntidc64PWltb6ejoyO9MGxuhn10b\nU/HE7pxzMeOJ3Tnniq2+Pmg/zxNP7M45FzOe2J1zLmY8sTvnXMx4YnfOuWKbODGvs/PE7uJlAJ4A\n71zeTZ+e19l5YnfxMgBPgHeu1Hlid865PqipqaGqqqrYYfTKE7uLj9rarO9X7VxWamogKYm3tLRQ\nX19fpICyk+8HbThXPK2txY7AxU1LS4/7pA+Uqqoqhg8f3q9pvcbunHMDaGKWPWCuuuqqft/e1xO7\nc84NoOlZ9oDJdrxUPLE751zMZPMEpSZJrZIWR8pOkrREUqekPZPG303SE+HwFyQNLUTgzuXyeDLn\n4iybGvtsYEpS2YvACcDCaKGkwcCNwLfN7PNAHbAh9zCd6ymXx5M5l7U8XxU6EDImdjNbBLQllS01\ns2X0fMD1EcALieecmlmbWR4f7+1cKNen2Hht32Utz1eFDoR8t7FPBpB0n6RnJH0/z/N3Dsj9KTbn\nnHMOtXl8Yo1zpSTf/diHAAcCewEfAQ9JesbMHkk1ckOkf2hdXR11dXV5Dse51Do6OvL/eDPnCqC5\nuZnm5uY+TZPvxP4W8KiZtQFIuhfYE8iY2J1zzvWUXOmdNWtWxmmybYoRPdvTo8MS7gd2lbSZpCHA\nwcDLWS7DOefKQrYXGRWLMp3blDSXoHfLWKAVmElwMvVXwBbAGuB5MzsqHH8acBGwEbjHzC5MM18/\nr+r6TQrqE932obCMLParlNM7F5Ky2o2KQhJmlq6iHYxTrB3bE7vLhSd2V0jlntj9ylPnnIsZT+zO\nORczntidcy5mPLE751zMeGJ3zrmY8cTunHMx44ndOedixhO7iz+/k6OrMJ7YXfz5fdtdhfHE7txA\n8yMIV2Ce2J0baH4E4QrME7uLj5oaqKrqXlZbCzk8acm5cuSJ3ZW8rB9j19IC9fXdy1pbwR+o4SqM\nJ3ZX8kruodXeRu5KnCd25/qq1H5onEuSMbFLapLUKmlxpOwkSUskdUraM8U020paJ+l7+Q7YuV6V\n+JNtnBsI2dTYZwNTkspeBE4AFqaZ5grg3hzicq5/pk8vdgT94807Lo8yPszazBZJmpBUthRAicfQ\nREg6DngD8DNWzmWjthba28v3R8mVnLy2sUuqAn4AzCL9w6+dc1Hec8flWb5PnjYAvzCzD8LPntxd\ncaXq256rxsaglu0KIuvurS6tjE0xfbQvcKKky4DRQKekD83s6lQjNzQ0dL2vq6ujrq4uz+G4itfS\nApH9LC86OryGXUAl1721yJqbm2lubu7TNNkmdpG+9t1VbmZf7iqUZgLr0iV16J7YnXPO9ZRc6Z01\na1bGabLp7jgXeAKYLGmFpDMlHS9pJbAfcLek+f2O2rl+qKmpoSrfTSwF0KNZwW9x4AZANr1ipqUZ\ndEeG6TL/rDjXTy0tLdkf8aXo215VVcXw4cPzGlOy2tpa2tvbmR7t7dLaWtBlOgd+5akrA42NjdSm\nOFk5MduLkVJ0I6yvr6elpSW3wDJobW2lI7ktvhAnc51Lku+Tp87lXUdHR88ECd1rwuWiECdznUvi\nNXbnnIsZT+zOuZJRW1tLo59czpkndlfyqqqqqKmpyes8s26f7wO/sCZ3Kc9LuD7zxO5KXiFOdBai\nfd4vrOkH/zEsCE/sLideS3U58R/DgvDE7nKSqpbqyT4Dv2e8KzBP7C6vamtrOeecc4odRmkrx26a\nrqx4P3aXV60FuLKyECc6nYszr7G7rBWriaUsL0Ryrog8sbusea8P58qDJ/Y48JOVzrkIT+xx4DVp\nly2vBFQET+xlppS6Elbs5d9VVcFdGstRiVcCyuU++6XOE3uZybqdewB+ACr28u/6+uAujRnU1NQw\ncuTIAQio9KWskDQ0QNIj31paWqivrx+IkGItmycoNUlqlbQ4UnaSpCWSOiXtGSk/XNIzkl6Q9GdJ\nhxQqcJdBjjWzUjoyKFctLS28//77xQ6jJKSskDQ0gD/nuCCyqbHPBqYklb0InAAsTCp/F/g/ZrY7\nMB24MdcAXXEkfxErttnF5UW6h6Wk4tct5C5jYjezRUBbUtlSM1tG0gOuzewFM2sJ378EbCZpkzzG\nW9GKmVwrttklS2Xxw1fE5612dHRkffGaX7eQu4JdeSrpJOBZM9tQqGVUmpRfjNra4Dmav/lNVu2+\nhVZTU0N7e3uxw3Cp+PNWK0ZBTp5K2gX4GfDtQszfRSS+rEX40qbqwVCpJ7/Keb39fEr85L3GLmkc\n8EfgNDNb3tu40afM19XVUecnUspKS0uLJ4UY8CuKS1tzczPNSb2HMsk2sYuk9vSkYcEbqRq4G/ih\nmT2VaaYN/lDfklRbW0t7e3tW/x9vD/2Un/RzhZBc6Z01a1bGabLp7jgXeAKYLGmFpDMlHS9pJbAf\ncLek+eHo5wDbAz+W9JykZyVt0fdVccXkJ0r7x3/kXKnIWGM3s2lpBt2RYtyLgYtzDco557qZM8fv\nY98HfuWp6yHXy7pj3yQR9/UrRX4eoE88scdVY2PQFbIfcu3hEfsmibiv30DyH8mC8MTunCse/5Es\nCE/scZXljaqcc/Hjid1lxW+n6lz58MTuslLOV1a6MlfEe9yUK0/sLmux7+0SM7G5Kri1Ffy6ij4p\n2E3AXPzEvrdLzJTSrQKqqqoYPnx4scOoGF5jL3eJR7Tl+VFtXjuvcHmu7dfX19PiJ/MHjCf2ctfS\nAjNn5r0HjNfOy0ghmlxKqLbv+s4TewmLTRupK6wcknAhHhDi+23xeWIvYVm3kXqzieunlDd8y7EX\nSim17VcqT+wlqk81KW82qWw53D4ipZj1QqnEIwhP7CXKb51bQWpqIJeLvzo6ejxBK9uKQVlceJbj\n9qnEI4iSS+yV+OuarbL4Erq+a2kJbgGRRykrBikSZFlceFaA7UN1dX6PckpMySX2Svx1zVZZfAld\n6SpEgkyhsbGR2lJPmmvXxvrh3tk8QalJUqukxZGykyQtkdQpac+k8S+UtEzSK5KOKETQceRHKi4u\nOjo6aI1x0iwH2dTYZwNTkspeBE4AFkYLJe0EnAzsBBwFXC0p3bNSsxfzwyYowJGK95RxWfKL0eIn\nY2I3s0VAW1LZUjNbRs8HXB8H3GJmn5jZcmAZsE/OUcb8sKkgvKeMy5JfjBY/+W5j/wywMvJ5VVjm\n8sRrV871TVm0+edZUW8C1tDQ0PW+rq6Ourq67CeurobNN6+4h0l47cq5vuno6CjrrsPNzc00Nzf3\naZp8J/bzrcTQAAAOfUlEQVRVwPjI53FhWUrRxA5B39v29vYe5SmtXRu8nHMuxpIrvbNmzco4TbZN\nMaJne3p0WMKdwCmShkqaBHwW+FOWy6jYi3IKcb8OV2a8ia1gqqqqqMnz3U9LXTbdHecCTwCTJa2Q\ndKak4yWtBPYD7pY0H8DMXgZuBV4G7gXONjNLN+/q6up8rEPZq9QfNBfhTWwFU4m3DM7YFGNm09IM\nuiPN+D8DfpbNwtcmNaXU1NTQ3t6ezaTOuRLlD9UovpK68tSvrHSuBOR4b5ZKrCGXmpJK7GlVVeX9\nCUHOuTQG6NYDrnDKI7HX11dct0bnnOuv8kjsZaC6urriLoJwzpWmol6gFCdr167tcTI4W37S2OWb\n71OVzWvsJcBPGrt8y3mfyqFfvd/2ovg8sZcof6iGK6oc+tWnuu2FJ/uB5Ym9RHkt3sVJMe9xVIk/\nKt7G7ly5q6qCFBcExSqh5bAulXjjPK+xO1fu0nQHjlVCG4B1qa2tjc1tTrzGXsJiVeNyrsTF6XF+\nJZfYKzWZpVrvWNW4XOFU6HcmJ2mar+Ki5JpiyiKZFeDB02Wx3q40+b7TdzG/mr3kEntZyPeDp51z\nLo9KrikmpTI41PRblTrnSkV51NhTHWqW2B0f/ValzrlSkc0TlJoktUpaHCkbLekBSUsl3S+pOiwf\nImmOpMWSXpJ0QcEij3kbmXPO9Vc2NfbZwJSksguABWb2OeBh4MKw/OvAUDPbDdgL+I6kbfMVrHPO\nucwyJnYzWwS0JRUfB1wfvr8eOD4xOlAlaTAwDFgP9O+Wh845VyhlcN4uF/1tY9/KzFoBzKwFSDR2\n3wZ8APwdWA40mtmaXIPMu9paiMkVZs65foh5F9F89YrZGP7dF/gEqAXGAo9JWmBmy9NN2NDQAEBd\nXR11dXV5CieDGF1h5pyLt+bmZpqbm/s0TX8Te6ukGjNrlVQLvBOWTwXuM7ONwLuSHidoa1+ebkaJ\nxN5nxTyUamyE3/ym28nbSr1i1rm4KNWHkyRXemfNmpVxmmybYhS+Eu4EpofvpwPzwvcrgEMBJFUB\n+wGvpptpTvcbL+ahVEdHj1q/XznqXHmL062ys+nuOBd4ApgsaYWkM4FLga9IWkqQyC8NR/81MELS\nEuBpoMnMlqSbd1w2onPOlZKMTTFmNi3NoMNTjNsBnJxrUM455/qvqFeeeru0c87lX1ETe6m3S8fp\nxvvOucpRHjcBK5I43XjfOVc5yuMmYANkTgHus+6ccwPNa+wRy7O9z3rMn77inCtvXmPvD7+zpHOu\nhHlid865mPHE7pxzMeOJ3TnnYsYTu3POxYwnduecixlP7L2oqanJ7Q6UzjlXBJ7YexGn23g65yqH\nJ3bnnIsZT+zOVRK/o2pF8MTuXCUp8TuquvzI5glKTZJaJS2OlI2W9ICkpZLul1QdGbabpCckLZH0\ngqShhQreOefyKS7PiMimxj4bmJJUdgGwwMw+BzwMXAggaTBwI/BtM/s8UAdsyFu0zjlXQKX+jIhs\nZUzsZrYIaEsqPg64Pnx/PXB8+P4I4IXEc07NrM3MLE+xOuecy0J/29i3MrNWADNrAbYKyycDSLpP\n0jOSvp+HGJ1zzvVBvu7HnqiVDwEOBPYCPgIekvSMmT2SaqKGhoau93V1ddTV1eUpHOeci4fm5maa\nm5v7NE1/E3urpBoza5VUC7wTlr8FPGpmbQCS7gX2BDIm9mKrra2lvb29pGJyzrnkSu+sWbMyTpNt\nU4zCV8KdwPTw/RnAvPD9/cCukjaTNAQ4GHg5y2UUVWtrKx0dHcUOwznncpaxxi5pLkHvlrGSVgAz\ngUuBP0j6JvAmcDKAma2RdCXwDLARuMfM5hco9v6rqYH29v5PH5MuUc65eMqY2M1sWppBh6cZfy4w\nN5egCq6lBXJpcolJlyjnXDz5lafOORczntgziMuVaM65yuGJPYO4XInmnKscntidcy5mPLE751zM\neGJ3zrmY8cTunHMx44ndOedixhO7c87FjCd255yLGU/soZqaGqqqqoodhnPO5axyE3vSFaUtLS3U\n19cXJxbnnMujyk3sfkWpcy6mKjexO+dcTHlid865mMmY2CU1SWqVtDhSNlrSA5KWSrpfUnXSNNtK\nWifpe4UIulD8To7OuTjIpsY+G5iSVHYBsMDMPgc8DFyYNPwK4N7cwyucVA+HLeadHPv6sNpCK6V4\nSikW8Hgy8Xh6NxDxZEzsZrYIaEsqPg64Pnx/PXB8YoCk44A3gJfyFGNBVOI/uy9KKZ5SigU8nkw8\nnt6VRGJPYyszawUwsxagBkDScOAHwCy6P/w6pVQrmO+ydOXLly8vSjzpYvR40pelisXjKa94+vLd\n9HjSl2UrXydPN4Z/ZwK/MLMPws+9JndP7B5PNmXlkLg8nt7jKYdEWmrx5JLYZWaZR5ImAHeZ2W7h\n51eAOjNrlVQLPGJmO0l6FBgXTjYa6AR+bGZXp5hn5gU755zrwcx6rTQPyXI+onvt+05gOvBz4Axg\nXriwL3dNIM0E1qVK6tkE5pxzrn+y6e44F3gCmCxphaQzgUuBr0haChwWfnbOOVcCsmqKcc45Vz7K\n8spTSRsl3RD5PFjSu5LuzHG+R0p6VdJfJf0wUn6LpGfD198kPTtA8fS4OCxp+PnhsscUOh5J4yQ9\nLOklSS9KOjcy7CRJSyR1StozxbQDHc/ukp6U9JykP0naK808jg9jm9zfOCLzyvmivTzHk/J/ImlM\nuN3WSfqvDPMYiHiGSJojaXH4v7xggOK5TNIrkp6XdLukkWH5BEkfRL7vVydNV5DvemR+F0paFsZ2\nRFi2uaS7w7IXJV2SaT5lmdiBDuDzkjYNP38FWNmXGUganPR5EHAVwcVYuwBTJe0IYGanmNmeZrYn\ncDvwx0LHE0p1cVhi/HHhct5MMbgQ8XwCfM/MdgH2B/5vYvsALwInAAvTzG6g47kMmGlmexD01Lo8\nzWxPAR4DpvYlljCe5O9OPi7ay2c86f4nHwE/As7PYrYDEc/XgaFhx4y9gO9I2nYA4nkA2MXMvgAs\no/v/67XE993Mzk6aLud9uZcYdwJOBnYCjgKulpQ4F3m5me0E7AEcJCllXkgo18QOwZfk6PD9VOB3\niQGS9pb0hKS/SFokaYew/AxJ8yQ9BCxImt8+wDIze9PMNgC3EFyIlezk6LIKGE+6i8MSfgF8P82w\nvMdjZi1m9nz4vh14BfhM+HmpmS2j9+6tAxYPQffbRI15FLAqORhJVcCBwFlEEoWkgyUtDGtIr0Zr\nbGEtt1HSc8B+SbPM6aK9fMeT7n9iZh+Y2RPA+nSxDGQ8gAFV4Q/3sDCutQMQzwIzS3TTfopPe/OR\nIsZk/dmXF0raLTLeY5J2TZrvccAtZvaJmS0n+MHZx8w+NLOFYdyfAM8mxduTmZXdi+Af/3ngD8Cm\nwHPAl4E7w+HDgUHh+8OA28L3ZwArgOoU8zwRuDby+VTgv5LG+RLwp4GIJzLvCcDipLJjgSvD938D\nxgxUPOF4E4HlwPCk8keAPQdy+6SKB9iR4EhmBUFtanyKaaYB/xO+XwTsEb4/GPgg3O4iqNl9LRy2\nETgxTQyrkz63RdbtcYKkNZPgKCPV9HmNJ4v/yRkk7d/FiIegZ97vgHeAdcA/D2Q84Xh3AtMi37d1\nBMnzEeCgPO3LpxFc4wOwA6nzyK8ScYSff5tYl0jZKOB1YGJv61S2NXYzW0LwhZ4K3EP3X9lRwG2S\nXiSo2e4cGfagmb3fz8V2+3UuRjySNgcuIkgSXcUDFY+Cq4tvA86zoKaclQGO51/Cz9sCM4DrUkw6\nleCoDOD3BIkj4U8WHLkZwf/7oLC8k57NcOn09aK9QsfTVwMVzz4EzWq1wHZAvaSJAxWPpH8HNpjZ\n3LDobWBbC5pdzwfmhvtYl37uy7cBR4dHJt8E5vQWV5pYBwNzgV9aUKNPK9t+7KXqToL20zpgi0j5\nfwIPm9nXFFxc9UhkWEeaea0Com1744gcwocb9WtAj5ODBYonne0JdqoXwva3ccBfJO1jZu8UMh5J\nQwh20BvNbF4f4x7IeM4ws/MAzOw2SU1J040GDiVoKzVgMEGTQKJpK7mrWOLzh2HySKVVUo19etFe\n4n+xL3CipMsIL9qT9KFFru8oUDz9NsDxTAPus6BZ5F1JjxO0tS8vdDySpgNfDecdTBg0w7aF75+V\n9DowmaAGH9WnfdnMPpT0IEET3deBL6YIaRUwPvK5Ww4CrgWWmtmv0q1TQrnW2BO/kNcBs8wsue2y\nmk83yJlZzvPPwGcVnBUfSnCiJnqm+yvAK2b29gDFE513V43AzJaYWa2ZbWdmk4C3CA5L30maphDx\nXAe8bGb/L0O86coGKp5Vkg4GkHQY8Nek4V8HbjCzSeF2nAD8TVKiprdPuB8MAr5BcMIu3bolJC7a\ng6SL9sJlbAf8ErjEel60V4h4otKNl658IONZQZhYw3b0/YBXCx2PpCMJfhiONbP1kfItwvkgaTvg\nswTnR5Jj78++3AT8F8ERRqqj0DuBUyQNlTQpXPafwlh+Cow0sxnp1imqXBO7AZjZKjO7KsXwy4BL\nJf2FLNfRzDqBcwja6F4iOInxSmSUb5CmGaYQ8UDai8NSLTvVCam8xiPpQOCfgEMVdCN8NvxyJLqh\nrST4Ut4taX4x4wG+DVwRnjT7afg56hvA/yaV3c6nJ+WeIegh9RLwupndEV2PNH5O/y/ay3s8vf1P\nJP2NoJfOGeF+tWPS5AMZz6+BEZKWAE8DTWFTR0HjIWjPHg48qO7dGr8MLFbQpflW4DtmtiYyXb/3\nZTN7lqCNfnaqgMzs5XCZLxOcoD3bzEzSZwiaX3eO7Ovf7GXd/AIl56LCmv75ZnZssWMBjyeTUoun\nN5K2IWimSf4hzbtyrbE751zZkHQa8CRBzbvwy/Mau3POxYvX2J1zLmY8sTvnXMx4YnfOuZjxxO6c\nczHjid0552LGE7tzzsXM/wfgLII59KYqMQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1fae1b60f98>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"FB = fetch_ticker('FB', datetime(2016, 3, 1), datetime(2016, 5, 5))\n",
"ax = ohlc_dataframe(FB)\n",
"plt.vlines(date2num(datetime(2016, 4, 27, 12)),\n",
" ax.get_ylim()[0], ax.get_ylim()[1],\n",
" color='b', label='Earnings Release')\n",
"plt.title('Facebook Price 3/5/2016 - 5/5/2016')\n",
"plt.legend(loc=2);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These two charts demonstrate two very specific phonomena: how the market prepares for earnings releases. Let's look at those charts again, but with some extra information. As we're about the see, the market \"knew\" in advance that Apple was going to perform poorly. The market expected that Facebook was going to perform poorly, and instead shot the lights out. Let's see that trend in action:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAF6CAYAAABP8MBVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcjfX7x/HXZc++ZUaRUZE2soWIQUVJEam00V7fXyRa\n5Fto07ekfVF20kbRpj1KWixFSrI0iGbabJFtfH5/fM5ojNmdM/c5M+/n4zGP4b7vc9/XbZnzOdf9\n+VyXOecQEREREREREclJsaADEBEREREREZHYoCSCiIiIiIiIiOSKkggiIiIiIiIikitKIoiIiIiI\niIhIriiJICIiIiIiIiK5oiSCiIiIiIiIiOSKkggiRYCZPWNmQwK47mAze66grysiIiLBMLOlZtY2\ngOu+Y2aXFvR1RYoiJRFE8sHMZpvZX2ZWMov9w8xsr5k1z7D9cjPbY2ZbzGyTmS0ysy6hfe3MbF0e\nrv9P6Dy/mdl0M4vL6njn3PXOufvyco+5iGGomU3OZPteMzsydN0RzrlrcnGuT8zsinDGJyIiUlSZ\nWZKZbQ+NE7aGvsebWZ3Q+/SW0NevZvaUmRXP5lx7051jnZk9bGaW1fHOuROcc5+G+X4OGCdkHDc5\n585yzh0wLsnkXPvGKSKSP0oiiOSRmdUB2gB7gXOyOOxS4E/gskz2zXPOVXTOVQbGAa+YWaXQPpfL\nMBxwg3OuIlAfqAw8kkW8kfx/nlm8ub2HsMluMCMiIlIEOaBLaLxRIfQ9Od2+SqExxIlAK+A/OZyr\nYej4jkBv4OqMB2WXiIig/Iw58j1OCegeRaKOkggieXcZ8AUwAeiTcWdoCl880A+4yMxKZHOuccAh\nwFH5iMMAnHObgOnACaHrjzezp83sbTPbCiSGtt2dLsZzzewbM9tsZivM7IzQ9opmNsbMNoSeNtyT\njw/o+45PP1vBzEqb2WQz+8PMNprZV2Z2qJndC5wKPBl6yvF46PhTzOzrdMe2SnfeT8zsXjOba2bb\ngIFmtmC/IMxuNrPX8xi7iIhIYZHd+3faGOIP4APguByOTTv+J+Az/h1z/Gxmt5rZYuBvMyse2tYh\ntL+Ymd1hZitDY475ZnZ4aF8DM3vfzP40s2Vmdv5B3Wy62QpmdlRo1uam0IzNF0Pb54TuZUlozHF+\naPvVofHQH2Y2w8xqpjvvXjO7wcx+An4ysyfNbGSGa880s/4HE79ILFESQSTvLgOmAFOBTmZ2aCb7\n3wReDf2+a2YnCSUXrga2AivyG4yZVQd6AIvSbb4IuMc5VwH4PMPxJwMTgYHOuUpAWyAptHsisAs4\nEmgMnA5cld/YQtIy/pcDFYHDgarAdcA/zrn/4gck/xd6UtLPzKoAbwGPAtXwsyzeDm1Pc0kotgrA\n40CCmR2TYf/Eg4xdRESkMDIAMzsM6IR/OJLzi8yOwyf+0485LgTOBCo751IzvGQgcAHQOTTmuALY\nbmZlgffx46nqoXM8ZWYN8noPWbgHeC8067MW8ASAc65daP+JoTHHq6GEx/1AT6AmsBZ4KcP5zgWa\n45MtE0Px+iDMquFnaLyQh9hFYpqSCCJ5YGZtgCOAV5xzi4CV+Gl9afsPAc4HXnDO7QGmceCShlZm\n9hewAf/G2s05tzUf4TwROs83oXMNTLdvpnPuSwDn3M4Mr7sCGOuc+zi0/1fn3E9mVgM/CBjgnNsR\nejrxKD4hkZULzNeGSPvaSNbTBHfjEwL1nfeNc+7vLI7tAvzknJvqnNvrnHsJ+JH9EzITnHM/hvbv\nAl7GJw4ws+OBOsDb2cQuIiJSmM1I9/78WrrtBvwees9eB/yNn9GYnUVm9icwE3jOOTch3b7HnHMb\nMhlvAFwJDHHOrQRwzn3nnNsInA387JybFBoTLAZew4+hsvJE+jEH/oFNVnYDdczscOfcLufcvAz7\n0ycgeuPHRYudc7uBwfix2hHpjrnfObfZObfTOTcf2GxmHUP7LgRmh8ZNIkWCkggieXMZ8H7oDRDg\nRfwT9jTn4d+4ZoV+PxU4K5SlTvOFc66qc66Gc+4U59wn+YzlxtB5ajvnLnXO/ZluX3YFGmsDqzLZ\nXgcoCfyaLiHwLP4JQVZeDsWQ9lWFrJ8MTAbeA14ys1/M7H/ZrC08DFiTYdsa/CyGNBnvcRL/JnQu\nwSd6dmcTu4iISGF2brr35/PSbXdAtdB7dllgHn5WQHYaO+eqOefqOeeGZtj3Szavqw2szmR7HaBl\nhocQvfHLQbNyY/oxBz4RkZVb8J9zvjaz78ysbzbH7jfmcM5tw9e1Sj/myHiPkwg9uAh9z7Ggo0hh\nkt1abRFJx8zKAL2AYmb2a2hzKaCymZ3onPsOn2QoD6wN1RIw/P+z3oSm0hWQ7IoGrSPzGgzrgB34\ngUXYiyOGZmbcA9wTyu7Pws8uGM+B8W7AL9FIL+01+06Z4fxfmdkuMzsV/+ed3QwKERGRwi6nmgjO\nObfTzCYAg8ysqnPur3ycKzdjjh8y2T7bOdcpm9fmm3PuN+AaADNrDXxoZnOcc5klNDbgkxqEji+H\nnzmZPnGQ8R6nAN+ZWUOgATAjjOGLRD3NRBDJve7AHuBYoFHo61j8ev7LQusKO+Kn4p8U2t8QeJD9\nZytkx0IFCPd9hfkeAMYCfc2svXmHmdkxoarN7wOPmFmF0L4jLUy9ns0s0cxOMN8t4m/8jI20tZMp\n+DoMad4B6pnZhaEiTRfg/6yzm7oI/knAk0BmUxdFREQkXaHE0DjjMuDXbBIIB2MM/uHB0aHrnZiu\n7lF9M7vEzEqYWUkza5bHmghZMrOeaQUcgU34jlp7Q79PZv8xx4v4cVHD0J/H/cCXzrksZ3U659YD\nC/DjjulZLOUQKbSURBDJvcuAcc659c6539K+gKeAi/GdGr5xzn2UYf/jwImhYkQ5OQzYHvr6B198\nKLNextll/bNtuxhay9cXX+9gMzAb/5Q/7R5L4Z8Y/IUvDpnd1MLcXp/QeaaFrvk98Ak+kw/wGHB+\nqELzo6GBzNnAIOCP0Pcu6ZaRZHWNyfiK0ZpWKCIiRVlO44SNZrYF+BVoQdYtq3Nzruy2jQJeAd43\ns834pMIhoZpIZ+DrCWwIfT2AH4PkNYbMjmkOfBW6xxlAP+dcUmjfMGBSaBlFT+fcR8Cd+JoM64G6\npCucmM21J+LHHJNyEZtIoWI5zVo2s7H4wXyKc65haFtP/H/AY4HmoQJzmFkdYBl+ijL4LN4NkQld\nRGR/oSUnKUAT51xmdR9EJEZlMR55EF9wdSe+1ktf59wWMzsN/4GkJL7jzK0HUX9GROQAoeWTk51z\nCUHHIlLQcjMTYTy+9Ut63+Gnds/J5PiVzrkmoS8lEESkIN0AzFcCQaRQymw88j5wvHPuJHyr3MGh\n7b8DZzvnGuFniWl2koiEjZmVBPoDzwcdi0gQciys6JybG5phkH7bcvCLtzN5SXaFV0REIsLMfg79\nsluggYhIRGQxHvkw3W+/JFSQNdQuLu2Y782sjJmVVMcWETlYoboNC/Atth8LOByRQESiO0OCmS3C\nr3u+0zk3NwLXEBHZj3OubtAxiEigrgBeyrgxtARzkRIIIhIOzrkf8Z24RIqscCcRNgBHOOc2mlkT\nYIaZHRcqniIiIiISdmY2BNjtnJuaYfvxwAjg9EACExERKYTCmkQIZfk3hn69yMxWAfWBRRmPNbOw\n96EXEREpLJxzWh6YC2bWBzgL6JBhey18tfVL01Vlz+z1Go+IiIhkIbPxSG5bPO7rJ5vFPv8Ls+qh\nHvCE2tIdDazO6qRDhw7FOZfl18Hsj+S527VrF7FzF9b7imTcui/dl+5L9xX0fTGMsN6XZGm/8YiZ\ndQZuAc5x6fq0m1klfB/625xzX+Z00vz+fRX0vuz+XUZTnLqH6N+ne4iOfbqH6NgXrntIPxaI1XvI\nuC8rOSYRzGwqMA+ob2ZrzayvmXUzs3VAS+AtM5sVOrwtsCRUE+EV4Frn3Kaszp2YmJjttQ9mfyTP\nnZCQELFz57Q/Vu8rknHntF/3lff9uq/w79d95X2/7kvSy2w8AjyBX5v8gZktMrOnQ4f/H3AUcJeZ\nfRPaVz2rc+f376ug92X37zKa4tQ9RP8+3UN07NM9RMc+3UPe92WZeYj0l790bBo6dGjQIUSE7iu2\n6L5ii+4rtuT1vhgW3ve00HtkYO/RRekrlsYjheH/m+4hOugeooPuITqE6x7CPRbIi0j9PWQ1Hsnt\ncgZJp7A+JdJ9xRbdV2zRfcWWwnpfEtsKw79L3UN00D1EB91DdNA95J35BEPBMzMX1LVFRETCyYYb\nbmj43tPMDKfCigVC4xEREQmHcI8FokFW45Fwt3g8aAkJCaxZsyboMKSQqFOnDklJSUGHISIiMUbj\nEQknjUdEpDCJuiTCmjVr0BMBCRczPcgTEZG803hEwknjEREpTFQTQURERERERERyRUkEERERERER\nEckVJRFEREREREREJFeURIhic+fO5dhjjw06jDxp374948aNCzoMERERCRONR0REJD0lEfIoISGB\nsmXLUrFiRSpUqEDFihXp169fRK7Vpk0bli1bFpFzZ2XixImUKFGCihUrUrlyZRo3bszbb79doDGI\niIhI9jQeERGRoERdd4ZoZ2a8/fbbtG/f/qDOk5qaSvHixcMUVXidcsopfPrppwA899xzXHjhhaxf\nv56KFSsGHJmIiIiAxiMiIhIczUTIh6xaPq1evZqOHTtSvXp1atSowSWXXMKWLVv27a9bty4PPvgg\njRo1onz58qSmplK3bl0efvhhGjVqRJUqVbjooovYtWsXAHPmzKF27dr7vT6rYwEefPBBDjvsMGrV\nqsXYsWMpVqwYq1evBuCdd97h+OOPp2LFitSuXZtRo0bl6l4vvfRStm3bxooVK/Zt+/LLL2ndujVV\nqlShcePGzJkzJ8vXjxs3juOOO45q1apx5plnsnbt2n37brrpJo444ggqVapE8+bNmTt37r598+fP\np3nz5lSqVImaNWsyaNCgfF1fRESksNJ4ROMREZFAOOcC+fKXPlBW26NFQkKC++ijjzLdt3LlSvfh\nhx+63bt3uz/++MO1a9fODRgwYL/XNm7c2K1fv97t2LFj37YWLVq45ORkt3HjRnfssce60aNHO+ec\nmz17tqtdu/Z+r8/q2FmzZrmaNWu6ZcuWuX/++cddcsklrlixYm7VqlXOOedq1qzpPv/8c+ecc5s2\nbXLffPNNpvcwYcIEd+qppzrnnNuzZ4978sknXenSpd3vv//unHNu/fr1rlq1au7dd991zjn34Ycf\numrVqrk//vjDOedcYmKiGzt2rHPOuRkzZrh69eq55cuXu9TUVHffffe5U045Zd+1XnjhBbdx40aX\nmprqRo0a5eLj493OnTudc861atXKTZkyxTnn3LZt29xXX32Vq+tnFO3/nkSkcGBYeH/WhH52BfYe\nXZS+NB7ReETjEREJh3CPBaJBVuMRzUTIh27dulG1alWqVKlC1apVGTt2LABHHXUUHTt2pESJElSr\nVo0BAwYckJXu378/hx12GKVLl95vW1xcHJUrV6Zr1658++23WV47q2NfffVV+vbtS4MGDShTpgzD\nhg1LGxwBUKpUKb7//nu2bt1KpUqVOOmkk7K8xhdffEHVqlU55JBDuPXWW5kyZQrVq1cHYMqUKXTp\n0oVOnToB0LFjR5o1a8Y777xzwHlGjx7N4MGDqV+/PsWKFeP222/n22+/Zd26dQD07t2bypUrU6xY\nMQYMGMDOnTtZvnz5vnhXrlzJn3/+SdmyZTn55JPzfH0REZHCTOMRjUdERIIQkzURbLiF5TxuaObT\nAHMyc+bMTNcg/vbbb/Tv35/PPvuMv//+m9TUVKpWrbrfMbVq1TrgdXFxcft+XbZsWX799dcsr53V\nsRs2bKB58+b79qWfdggwffp07rnnHm677TYaNWrEiBEjaNmyZabXaNWqFZ9++inbt2/nyiuv5NNP\nP6Vnz54ArFmzhldeeYU333wT8DNZ9uzZQ8eOHQ84z5o1a+jfvz8DBw7cd6yZsX79emrXrs3IkSMZ\nN27cvnvYunUrf/zxBwBjx47lzjvvpEGDBhx55JHcdddddOnSJcvrd+jQIcs/MxERkUgIx3gkv2MR\n0HhE4xERkWDEZBLhYN5ww3J9l/n177jjDooVK8b3339PpUqVmDlzJjfeeON+x5iFJwGSUc2aNfnl\nl1/2/X7t2rX7Xatp06bMmDGD1NRUnnjiCXr16rXfesDMlC1blqeffpojjzySK6+8kkaNGlG7dm0u\nu+wyRo8enWNMtWvX5r///S8XXXTRAfvmzp3LQw89xCeffMJxxx0HQNWqVff92R511FFMnToV8AOO\nnj178tdff+Xp+iIiIpGk8ciBNB4RESn8tJwhjLZu3Ur58uWpUKEC69ev56GHHiqwa/fq1Yvx48fz\n448/sn37du699959+3bv3s3UqVPZsmULxYsXp0KFCrmuxFylShWuvvpqhg8fDsAll1zCm2++yfvv\nv8/evXvZsWMHc+bMYcOGDQe89rrrruP+++/nhx9+AGDz5s1MmzYN8H9WJUuWpFq1auzatYu7776b\nrVu37nvtCy+8sO8pQKVKlTAzihUrlqfri4iIFEUaj+xP4xERkfBSEiEfunbtSsWKFfd99ejRA4Ch\nQ4eycOHCfesD07anySzrn5cnAdkd27lzZ/r160f79u2pX78+rVq1Ati31nHy5MnUrVuXypUr89xz\nz+3LqudG//79mTVrFkuXLqVWrVrMnDmT+++/n0MPPZQ6deowcuRI9u7de0CM3bp14/bbb+fCCy+k\ncuXKNGzYkHfffReATp060alTJ+rXr0/dunUpW7bsflMe33333X3VmwcMGMDLL79M6dKlc7y+iIhI\nUaHxiMYjIiJBsKymwkX8wmYus2ubWZbT8yT3fvzxR0488UR27txJsWJFN1ekf08iUhBsuIV1anvo\nZ1dk5pvLfjQeiSyNRzz9exIp/NLGAjt2QMmSkMuJVlEtq/FI0f1pXgjNmDGDXbt2sXHjRm677TbO\nOeecIv2GLSIiIgVP4xERKcqefBI6dICffw46ksjRT/RCZPTo0dSoUYN69epRsmRJnn766aBDEhER\nkSJG4xERKcoGDICu8fM5+WQYOxYK4ySkmOzOIJmbNWtW0CGIiIhIEafxiIgUZcWLw6Bj36bznc25\n9FJ4/XUYMwbi44OOLHw0E0FEREREREQkjE44Ab76Cho3hpNOglBTmEJBSQQRERERERGRMCtVCu65\nB2bMgDvugEsugY0bg47q4CmJICIiIiIiIhIhLVvCt99ClSrQsCG8/37QER0cJRFEREREREREIqhs\nWXjiCRg/Hq66Cv7zH9i2Leio8ifqCivWqVMHM7XGlvCoU6dO0CGIiEgM0nhEwknjERFJc9ppsGQJ\n9OvnayVMmgStWgUdVd5EXRIhKSkp6BBERESkiNN4REREIqVyZZ88mD4duneHK6+EoUN9DYVYoOUM\nIiIiIiIiIgWsRw9YvBi++w5OPtl/jwVKIoiIiEjUM7OxZpZiZkvSbXvQzJaZ2bdmNt3MKqbbN9jM\nVoT2nxFM1CIiItmLi4OZM6F/f+jQAR58EFJTg44qe0oiiIiISCwYD3TKsO194Hjn3EnACmAwgJkd\nB/QCjgXOBJ42FTgQEZEoZQZ9+8L8+fDOO9CuHaxaFXRUWVMSQURERKKec24usDHDtg+dc3tDv/0S\nqBX69TnAS865Pc65JHyC4eSCilVERCQ/EhLg44/9MoeWLeG558C5oKM6kJIIIiIxbsKECVnuS0qC\nL78ssFBEgnQF8E7o14cD69LtWx/aJiIiEtWKFYMBA2DOHJ9E6NIFNmwIOqr9KYkgIhIDsk8UJB2w\n7csvoVcvaNYMvn7iq8gFJhIFzGwIsNs592LQsYiIiITDccfBF1/4gouNG8PLLwcd0b+irsWjiIgc\nKDft5vbsgRkzYNQoSEmBm26CsWOhwsOzgBYRj1EkCGbWBzgL6JBu83qgdrrf1wpty9SwYcP2/Tox\nMZHExMRwhigiIpIvJUvCsGF+NsKll/px3lNPQdWqkbne7NmzmT17do7HKYkgIlFlwoQJ9OnTJ+gw\nYsrOnaV59FF47DGoVQtuuQXOOQeKFw86MpGws9CX/41ZZ+AWoK1zbme6494AXjCzR/DLGI4Gvs7q\npOmTCCIiItGmeXP45hsYPBgaNoQxY6Bz5/BfJ2Miffjw4ZkepySCiESV3DxxF2/NGnj8cRg16hpK\nl36dTz/tzskZS8fFx/tpCc8+C8nJgcQpEg5mNhVIBKqZ2VpgKHAHUAr4INR84Uvn3A3OuR/M7BXg\nB2A3cINz0ViaSkREJHcOOQQefdQ/KOrbF848E0aOhPLlCz4W1UQQEYly8fHxjBw5ct/vv/oKLrgA\nmjTxxXegMTt3nndgAgF8AiH9d5EY5Zzr7Zw7zDlX2jl3hHNuvHOunnOujnOuSejrhnTHj3DOHe2c\nO9Y5936QsYuIiIRLhw6wZAns2AEnnQSff17wMSiJICIS5VJSUti27R+mT4fWreGii+CUU3znhYce\ngv2L0IuIiIhIYVapEkyY4Gci9OwJt98OO3fm+LKwURJBRCSKbd0K0A9YwSOPwMCBsGIF9O8PFSoE\nHJyIiIiIBKZbN1i8GJYv93UTFi8umOsqiSAiEoXWrvUFEhMSAFoBFzF3Lpx3ngomioiIiIhXowa8\n9pp/0HTaaTBihO/YFUlKIoiIRJGvv/bLFRo3Budg0SKAi8imsLyIiIiIFGFmcPnlsHAhfPghtG0L\nK1dG7npKIoiIBCw11WeQ27TxBRNbtICff/br3OrUyfn15cqVIy4uLvKBioiIiEj24uNh+HD/vYAd\ncQR88AFceCG0bAnPPOMfSoWbkggiIgHZutW3aKxXzycMbrrJ1zu46SaoWDH35xk0aBDJat8oIiIi\nEryAO2MVKwb9+sHcuTB+vG8FuX59mK8R3tOJiEhO1q2DW2+FunV9W56pU2HePF9dt0SJoKMTERER\nkVjXoIEfX55yil8mO3Vq+GYlKIkgIlJA5s+H3r19T9/UVFiwAF5+2U83ExEREREJpxIl4K67YNYs\nuPdev2z2zz8P/rxKIoiIRFBqKrz+Opx6Kpx/vm+/8/PP8PDDaZ0XDl5CuE4kIiIiIoVO06a+6GLt\n2tCwIbz99sGdTxNnRUQi4O+//Tq0Rx/1rXduvhm6d4/McoU+ffqE/6QiIiIiUmgccoh/iHXOOdCn\nD8yc6X9foULez6WZCCIiYfTLL3DbbX6WwWefwZQp8MUXfhaC6h2IiIiISJDatYPFi2HvXmjUCD79\nNO/nUBJBRKLKyJEjiQ+gJc7BWrAALr7Y/zDevdvXP3jlFWjVKujIRERERET+VbEijBkDjz3m20He\ncgvs2JH71yuJICJRZdu2baQE1BInr1JTYcYMn9Ht0cOvN1u9GkaN8p0XRERERESiVdeuflbC6tXQ\nrBl8803uXqfJtSJSaMTHx/PPP/+wefPmiF7n779hwgRf76BaNRg4EM47T8sVRERERCS2HHooTJsG\nL7wAnTpBv35w++3Zj2s1E0FECo2UlBS2bNkSsfP/8ov/oZqQALNnw6RJ8OWX0KuXEggiIiIiEpvM\n4JJLfAeHOXOgTRv46aesj1cSQUQkBwsX+h+sjRrBzp2+3sG0aXDKKf6HbqTFxcVRsWLFyF9IRERE\nRIqs2rXhvffg0kth7gNzszxOSQQRiSkTJkwokOvs3QtvvAGJib41Y+PGfr3YI48UfL2D5OTkiC/R\nEBEREREpVgz+8x+44ogPszxGE3BFJKYkJSVF9PzbtsHEiT5ZUKXKv/UOSpaM6GVFRERERGKCZiKI\niADr18Pgwb7ewUcf+cKJX30FF1wQngRCQc2gEBERERGJJCURRKRIW7TIr/s68UTYvt0XSpw+HVq3\nDm+9g5xmUCjJICIiIiKxQEkEkSIqWj+0litXjri4uMicPHTPe/fCm29C+/bQrRs0bOjrHTz2GBx1\nVGQunZ34+Hj69u1LfHx8wV9cRERERGJaQY/rc0wimNlYM0sxsyXptvU0s6VmlmpmTTIcP9jMVpjZ\nMjM7IxJBi8jBi3RtgfwaNGgQycnJETn3tp/W8/TT0KAB3H03XHstrFoFt9wClStH5JK5kpKSst93\nEREREZHcKuhxfW4KK44HngAmpdv2HdAdGJ3+QDM7FugFHAvUAj40s3rOOReecEWksEtISAj7OTds\ngCefhOcfu4lTO8G4ceFfriAiIiIiUhTkOBPBOTcX2Jhh23Ln3Aog4xD8XOAl59we51wSsAI4OUyx\nikgR0KdPn3y/Ni4ujnLlyu37/TffwGWXwQknwN9/w5dXjuG116BNGyUQRERERCT2xcfHM3z48AJd\nFhvumgiHA+vS/X59aJuISMQlJyczcOAtvPUWdOgA55zjCyauWgWPPw5HVd2Y80lERERERGJEEMti\nc7OcQUQk6m3fDpMmwVNP/YeEBBg4EHr2DE97RhERERER8cKdRFgP1E73+1qhbZkaNmzYvl8nJiaS\nmJgY5nBEJNzi4+NJSUkhLi4uYgUQ82LDBnjqKXj+eV/noGvXNxg37gotV5CYMnv2bGbPnh10GCIi\nIiI5ym0SwTiw/kH6fWneAF4ws0fwyxiOBr7O6qTpkwgiEkUmTIAsahNESyeBb7+FRx7xrRovvhjm\nzYOjj4Zhw9ZmnUAYORKefRaiIPkhkl7GRPrw4cODC0ZEREQkG7lp8TgVmAfUN7O1ZtbXzLqZ2Tqg\nJfCWmc0CcM79ALwC/AC8A9ygzgwiMShK2z/u3Qs//VSPjh3h7LPhuON8vYMnnvAJhBxt2wZFrY1i\nXBypFIO4uKAjEREREZEoMmHChHy9LseZCM653lnsmpHF8SOAEfmKRkQkE9u3w+TJ8J//rCA1tQEV\nK17PH388E/56B9nMwIhF8+fDiFOSOXTNAkYvbBZ0OCIHxczGAmcDKc65hqFtPYFh+NbSzZ1zi0Lb\nSwBjgCZAcWCyc+6BIOIWERGJVkn5fHAY7u4MIlIYjBwJBdgmJivJyXDnnZCQALNmQWrqlUAztmx5\nNjIFE6NDDbsDAAAgAElEQVR0BkZeOAeffAKnnw49ekD79vDINcuCDkskHMYDnTJs+w7oDszJsP18\noFQo2dAMuNbMjoh8iCIiIlEmn7MNsqPuDCJyoG3b/FdAlizx9Q5mzoTeveHzz6FePTD7LLCYot3e\nvfDWW3D//bBpE9x2m68VUaoUwKVBhydy0Jxzc82sToZtywHMDqiE4oByZlYcKAvsBLYUSKAiIiLR\nJAIPyZREECmC0josPPvss1HRYQH8h+B334VRo2DZMrjxRli5EqpWDTqy6LZnD7z8MowYAaVLw+DB\n0L07FC8edGQigZoGnAv8ChwCDHDObQo2JBERkehxMJ8HlEQQKYKipcMCwD//+HoHjzwChxwCN98M\nvXqlPUHfX1xc3L72kkXdjh0wcSL8739QuzY8/DCccQZqbSninQzsAeKBasBnZvahcy4ps4PVclpE\nRIqazD4P7Gs5PXJktrOSlUQQkUAkJ8PTT8Po0dCype+82LZt9h+Ck5OTmTBhAn0KUfHDvNq61f+Z\njRoFTZr4BEzr1kFHJRJ1egPvOuf2Ar+b2ef42ghJmR2sltMiIiLpEumhVtNZNZxWYUURKVBLlkDf\nvr49459/wmef+doH7drl7il6YUwgpM2syG6GxZ9/wtChcOSRsHChLzT51ltKIEiRY6GvrPalWQt0\nADCzcviW1D9GNjQREZGiQUkEEYm4vXv9h97TT4czz4T69WHFCnjqKf/roi45OZmhQ4dmuh5t/Xq/\nxKNePfj1V/jiC3jxRWjUKIBARQJkZlOBeUB9M1trZn3NrJuZrcMnCd4ys1mhw58CKpjZUuArYKxz\nbmkwkYuIiPxrQgS6JRQ0LWcQkYj55x+YMsXXOyhd2n8YvuCCzOsdhEtCQkLkTl6AVq709Q6mT/cz\nN777Dg4/POioRILjnOudxa4ZmRy7DegV2YhERETyLinM3RIiUjMsLg6yqZ2mmQgiEnYpKX7qfUIC\nvPmmn3GwaBFcemlkEwgQ+8sdFi+Giy6CVq180mDFCl80UQkEEREREckouxmtB3FSP5jPgpIIInKg\ncuV8BjKPli6FK6+EY4+F33+HTz+FN96A9u3VNWDkyJHEx8dnuX/t2tqcfTacdRY0bQqrV8OwYVCt\nWsHFmFe//w7PPQfOBR2JiIiIiBQUJRFE5ECDBvkMZC44B+++C506+RaDRx3ln54//TQcc0yE44xx\nzsF77/mikq+/fh5du8KqVf6Pv0KFoKPL2T//wDP3/cmll8L27UFHIyIiIiIFQUkEETlQruoKlGbM\nGDjhBLj9drj4Yvj5Z7jjjuh+ep6l+Hjfziab2QIHY9CgQfummaWmwrRpfsbBoEFw7bVw441PcO21\nUKZMRC4fEUecHM/na2tj01+ldWv/9y8iIiIimYuPj2f48OHZzk6NBUoiiMiBsqkrcOihxwNDKVZs\nLTNmwBNPwDffwGWX+eKJMSuteEw2RWQORkJCArt2wfjxvr3lyJF+ucLixdC7NxQrtjci142olBTK\n8g+TdvTiiiugZUt4//2ggxIRERGJTimhcWZKhMabB4jQQzJ1ZxCRXPn+e99lYc+epTRtOp8pU2rQ\noEHQUcWG7dthy5Y+HH00NGgAzz4LiYmFp06EATfe6NtOXnih//Xttxee+xMRERGJSRF6SKaZCCJF\nUFoLmJxawTjnnyx37gynnw5168JPP8HZZ79d+BIIaX8WYWyPs2kT3H8/HHkkzJ7t2zW+/37mhSYL\nQ2vKtm1h/nyYORN69ICtW4OOSERERKQIi8D4FpREECmSkpOTGT9+fJatYHbsgHHj4MQT4ZZbfMvB\nn3+GIUOgevUCDragpLWyCUN7nJQUGDzYF5lcvhw+/hheew2aN8/6NbHemjLN4YfDnDlw6KFw8sn+\n/kVEREQkAGEc36anJIJIEZXZh9bffvPLphIS/FPzxx6Db7+Fyy+P8XoHafLZujK31qyB//s/3+Jy\n61ZYuBAmTvQ1EIqS0qVh9GgYOBBOPdXPTBARERGR2LBtGyT/XT7L/UoiiAg//ABXX+3X62/YAJ98\nAm+/DR07FrJ17XloXZkXy5b5REuTJr4147Jl8OSTuWxyUYhddRW8+aavkXDnnb4rhYiIiIhEH+fg\n66/hmmugdm14aUPbLI9VEkGkiHIOPvgAzjzTJwvq1PH1DkaP9k/SJWfz58N55/kiicccA6tWwYgR\nEZ3sEHNatPB/Tp9+Cl27wsaNQUckIiIiIv+qxqOPQsOGvmNYQgJ89x3cNPXkLF+h7gwiRcyOHTB1\nqu+0YAY33wwzZhSS5QoFwDlfJHHECPjxR18zYsoUKFs26MiiV1wcfPgh3Hqrrwvx+uu+3oaIiIiI\nFDw/O/QM4ErgDBYu9G3b27aFYrmYZqAkgkgR8fvv8Mwz8PTTftr9I4/kf7lCYegkkKls7mvvXnjr\nLZ88+Osv38Lw4ouhVKmCCy+WlSzp/801bw4dOvg3qgsvDDoqERERkaIjKQnGj/dfcB8wFriGyZM3\n5ek8SiKIFHI//ACPPgqvvgrnn+87BRxsob+Y7SSQU/Ijk/vaswdeecUnD0qWhDvugO7doXjxiERY\n6PXuDccf75eBLFgADzwAJfROJCIS9ZYuhSpVfBceEYkdO/aUYMZLMHYsfPON77r2xhvQuHE2bcNy\noJoIIoWQc376+Fln+ae+tWr5egfPPVf0OgXsJw/Jjx07fH2IY47x30eO9N0WevZUAuFgNWrk6yQs\nXQonnvgrv/8edEQiIpKTzz+HZsdv54MPgo5ERHJj8WLo1w9qPTaIMWPgiivgl1/8bNCTTjq4cyuJ\nIFKI7NwJEyb4D2kDBviZB0lJcNddcOihQUcXG7Zu9QmDI4/0nQUmTYI5c6BTp0LWqaKgTJiQ6eaq\nVX0HkOrVV9CsmU8qiIhI9Lr2Wnjh3Fe5/HLfDlodd0Siz+bN8Oyzfvno2WdD5cowf0kZPvzQz0Ao\nUyY811ESQaQQ+P13uOceP1v/5Zfh4YdhyRLo2zd8PywKuz//hKFDffJg4UKYNcvXQGjdOujIYlh8\nvP9HGB+f6e7ixaFjx4959FE/a2bcuAKOT0RE8qRD3Z9ZsAA++sj/3NZMMpHgOQdJSXW47DLfbe2j\nj/zngqQkuPtuqFs3/NdUEkEkhi1b5p8M1K8Pa9f6JQyzZsHpp+upeW6tXw8DB0K9erBhA8ybBy++\n6GdzyEFKSdn/exa6d/ctIB98EK6/HnbtKoDYREQkXw47zNdXatwYmjb175sikjtxoT7gcWHoB75h\ng6/ZVb8+vPNOFxo3hhUrfB20zp0ju/xWSQSRGOOczzB26QLt2/s38+XL4fnnfcG6NBOymEYu3sqV\ncM01vtWgc37mxvPP+2SCFLxjj4Wvv4Zff4XERP/GKCIi0alECV8Y98knoVs3X8DZuaCjEol+ycnJ\nDB06lOTk5Hy9fvdu35q9a1c/7l+9GiZPhuuvf5oBAwpu+bKSCFL4FZIP0zt3wsSJvhBK//7Qo4ef\npjR0KNSosf+x8fHx9O3bl/gsppEXZUuW+DVhrVpBzZq+4OSoUb74pASrYkV47TU/RbZ5c5g7N+iI\nRERkn/h4Xwwh3djinHPgq69gyhRfh2nz5gDjE4kWabMMwjDbIM3y5XDrrVC7tq/ddd55sG6dfwDW\nsmXBz0BWEkEKv6SkoCM4KH/8Affd59czvfgiPPQQfPedr7CaVb2DlND08ZQcppEXJfPm+QIznTv7\n6ZerV/uxUPXqQUcm6RUrBv/9L4wZ4xNlTz2lp1siIlEhiyVqdev6pG+NGtCsGXz7bQCxiUST5GT/\nlC+fsw3SbNvmn4Weeiq0a+e3zZ7t/7/17Qvlyx90pPmmJIJIlPrxR7juOr/O6eef4f334d134Ywz\nVO8gt5yD997zP3gvucRP/Vq9GgYNggoVgo5OsnPmmT7xM3q0f6P855+gIxIRkayUKQNPP+2T86ef\nrkK5IvnlnJ/dc801ftbB9Om+dte6db52VIMG4bvWwdRnUBJBJIo454sVnX22/+AbH++LJ44ZAyec\nEHR0sSM1FaZN809EBg70xSd/+sl/V7eKMIrAdL30jjoKvvjCL+Vp0wbWrInIZUREJEx69/ZtkUeO\n9Ang7duDjkgkNvzxBzzyiK/VdfHFfobP0qW+3Xi3blCyZPavT0hIyPM1k5OTGT9+fL7qMyiJIBIF\ndu2CSZN8peMbb/Q/LJKSYNiwiH0+K5R27YLx432hmZEj/UyyJUv8oKZEiaCjK4TCNF0vO+XKwdSp\nfiZJixa+A4mIiESv447zhXJ37fJrtX/6KeiIRKJTaqqfMXv++XD00bBokV/GuWIFDB7si6fnVp8+\nffIVQ35fpySCFHlBdjH480+4/35ISIAXXoD//c9nHa+6Cg45JLCwYs727fDEE/4H8NSp8Mwz/gn2\nOef4NfYS28xgwABfE+TSS31dENVJEBGJXuXL+2KLN9wArVv7lnMi4m3aVJmhQ/1sgyFDoEMH//Bw\n8mQ/EzkWli3r2ZwUeUkBFF5cvty3Q3rpJV9d9b33/PQlyZtNm/wazMce84OU6dN9VX8pnNq390+3\nzjsP5s/3a26DLCokIiJZM/O1nZo3909a5871SeBSpYKOTKTg7djhWzOOHQuff34NV13llyo0ahR0\nZPmjZ3QiBcQ5+OQTX9yvbVtfxfjHH/0PEyUQ8iYlxU/zOuoon5D55BPfGlAJhNgSHx/PyJEj8/Sa\n2rXhs898YcyWLf2UPxERiV5Nm8LChb5IdNu2sHZt0BGJFJzFi6FfP99KfOxYuPJKuPnmUTz+eOwm\nEEBJBJGcHeRyh127/PSkJk3gP//xU+yTknwFY9U7yJs1a3zNiGOPha1b/aBk4kS//lJiT0pKCtu2\nbcvz68qU8cVG/+///AyUt96KQHAiIkVUJJZ5Vqnin8Kedx6cfLLvNiVSWG3aBM/Mb0azZr5YeuXK\nfgblBx/AhRdCiRJ7gg7xoCmJIJKTfC53+OsvGDHCr3eaNMnXPli6FK6+WvUO8mrZMujTxydiypWD\nH36AJ5/0tSQkOL/8AnfPacfOnQV/7bRpsjNn+u/Dh8PevQUfhxQcMxtrZilmtiTdtp5mttTMUs2s\nSYbjG5rZvND+xWamSdQiuRCpZZ7FisGtt8Irr/jaT3fe6QvLiRQ2EyfCx7+dwL33+o8Rd9/tPw8U\nJkoiiITZTz/5GQdHH+2nWs+a5TOPZ56pIn95tWAB9OgBiYlQrx6sWgUPPOBbX0rwSpSAhZuOomlT\nn2E/wMG2gKxUKce/7Fat/s3ud+sGmzfn71ISE8YDnTJs+w7oDsxJv9HMigOTgWuccycAicDuAohR\nRDKRfnZD27Z+JuHnn8MZZ/gliiKFSf/+8Or8BDp3huLFg44mMvSRRiQMnIPZs+Hcc30/+2rV/NPy\nceOgYcOgo4staX+WZ5zhpz22a+fXUQ4Z4qeDSfSIj4cZi45gyBA/Xe+22+Cff9IdcLAtILdsydXo\nsmZN+PhjqFPH18X4/vv8XU6im3NuLrAxw7blzrkVQMZa1mcAi51zS0PHbXROPT1EchIfH8/w4cOJ\nD3O2PuPshrg4n/xt1crXTPjss7BeTkQiTEkEkYOwa5dvYdS0KVx/PXTp4tft3323npbn1d69vkrt\nKafAtdfCRRfBypW+GE3ZskFHJ1kx839XS5b4ZE/jxv7pUkErVcq3+RwyxM9cmTat4GOQqFIfwMze\nNbMFZnZL0AGJxIKUUOI2JYzTA7JKTBQvDvfeC889Bz17qn2vSCxRi0cp0uLj40lJSeHZZ58lOQ9P\nS//6y7/pPfkkNGjg3wQ7d9ZyhfzYs8evjxwxAkqWhDvugO7dC+/0r8IqLs7/PU6f7geDF1wA990H\n5Qo4jssv991O0tpA3nefX3YhRU4JoDXQDNgBfGRmC5xznwQblkjRk1Ni4qyzfPveXr18EnrCBM08\nFIl2GlpJkZbXjPuKFfDYYzB1ql+68Pbbsd2eJUg7dvjCMw8+6NvePPQQdOrkn2xL7EqrYXHTTX4p\nz5g2CbTP4ti4uDj+/vvvsMfQpImvp3Hhhb4WyYsvQvXqYb+MRLdfgE+dcxsBzOwdoAmQaRJh2LBh\n+36dmJhIYmJi5CMUkX3q1PFLGgYN8rM7X3nFfxeRgjV79mxmz56d43FKIojkwDn47FMYNQrmzfNT\n7b//3q/DlrzbuhVGj4ZHHoGTTvKJhDZtgo5KwqlaNd/W9K234LKLu3P29T5ZVKHC/sclJyfv9+Et\nnKpX9y3EhgzxdRKmT/fJBYl5xoH1D9LvS/MecIuZlQH2AO2AUVmdNFL/DkUk90qVgscf92OCzp39\nLM9rrtHDBZGClDGRPnz48EyP0+RrKRA59hyOQE/ig7V7N7xQ6Qaa3d2Vazqs4MwzfZuWe+5RAiE/\n/vwThg2DI4/0T4nfftt/KYFQeJ19Nnx3/TPs3g0nnADvvRfe8+f0c6VECfjf/3wCo1Mn32pVYpeZ\nTQXmAfXNbK2Z9TWzbma2DmgJvGVmswCcc5vwSYMFwCJggXNuVlCxi0ju9eoFc+f6JaOXXQbbtgUd\nkYhkpCSCFIgcew5HqCdxfmzc6D941K0L47b04G7u4ofUY7j2WhX4y4/162HgQN+icf16P5vjpZf8\nLAQp/CqX2cGYMfD8834Wz5VXwqZN4Tl3bnuZn38+fPKJTwDeeKNPEErscc71ds4d5pwr7Zw7wjk3\n3jk3wzlX2zl3iHOupnPuzHTHT3XOneCca+icGxxk7CKSN8ccA1995WtNnXwyLFsWdEQi4ZOQkBB0\nCAdNSQQJmxxnG2QlPh6GDw+8ncHKlf4DxlFH+faMb70FH3EaXXiHYqhccF6tXOmnIZ54ol8SsmSJ\n/yBZr17QkUkQzjgDvvsOypTxsxLefLNgr3/CCb7QYlISdOiQ/66TIiJSMMqW9RNVBwyAtm19fRuR\nwqBPnz5Bh3DQlESQsMntU8EDpBU1DGM7obxpA7zGKadApUq+3sHEibl7Up7vxEkhtmQJ9O7tez/X\nrAk//eTrSdSqFXRkEoh02fYKFeCpp3xb1AED4OKLYfv2QwoslMqVYeZM6NjR10n44osCu7SIiOSD\nGVx1FXzwAdx5J9xwA+zcGXRUIqIkghRJu3f7DgswHxgDvEdSki/ik5d6B/lOnIRDlCUw5s2Drl19\nMaTGjWH1aj/BRFXxi7hMsu2JibB4MdSoAc88cwPTphVcOMWK+doczzzjO6yMHq2+5CIi0e6kk2Dh\nQj+LrE2bqFoFK1IkKYkgRcrGjb7I2pFHwpgxAMOAY4HRmdc7iIvb/3s0iYJ3UOd8sbzERLjkEujS\nxScPbrnlwEr8IumVK+c7dPTq9Qr//a+vW1CQk5HOPtv3I3/8cbj6at9yVEREolelSr7TzkUXQYsW\nftmpiARDSQQpElatgn79fL2DpUvhjTfg448B3obs6h0kJ8PQoVpAncHevf6NvFkzXzTx6qv9soXr\nrvNr3kVy69RTi/Ptt/7/ZsOG8MILBTczoF49X7hr82a/3nbduoK5roiI5I8Z3HwzvPYaXH89DB4M\ne/YEHZVI0aMkgoRFfHw8w4cPJz7g4ojpOedbBJ13bxNa1vuT8uV9YbdJk/x0+5g3cmSBF6Pcvduv\nojjuOD+j4667fA2Eiy/27fRE8qpPnz6UKQMPPOCfKj3wgF9msH49frpChGcBlS8Pr7wCPXv6CuCz\nZ0f0ciIiEgatW8OiRX6Jw2mnwa+/Bh2RSNGiJIKERUpoHnJKfuYjh3nJwO7dvoVgixZwxRVwevGP\nSTq0OfffD4cfno8TRmsblm3bCmz+9/bt8MQT/mnxCy/A00/Dl1/6D3vF9FNEwqR5cz8gbNzYf43v\nOAX3a+RnAZnBrbf6BOOFF/plFqqTICIS3Q49FGbNgvbtoWlT38pXRAqGhv9SIEaOHJn1LIUwLRnY\ntAkeesh/0B092lfx/fFHuH5wZcqlrM7/iQtBG5b82rQJ7r/f15D45BO/hOGDD3yLPLOgo5PCqFQp\nX5Dzgw/gia9b0LkzrF1bMNc+/XSfHJs82c+u2batYK4rIiL5U7y4H0JOmOBrJYwY4ZdcikhkKYkg\nBWLbtm35m6WQC6tXQ//+/oPukiUwY4b/wNu1q56S51dKil9nePTRPhHz0Ud+/WHz5kFHJkVFo0bw\n1VXP066df8L07LMFMzBMSPAFF0uUgFNO8fVUREQkup1xBixYAG++6cd/f/0VdEQihZs+YklMcs4P\n9Hv08MsWypb19Q4mT4YmTQoujmxnWMSgNWvgxhvh2GNhyxb/hjxpEhx/fNCRSVFUsvhe7rjD1ykY\nPx46dvz3Q30k67Accgi0bz+Bq6/2iYR33w37JUREJMxq1YI5c+CYY/xYcP78oCMSKbyURJCYsmcP\nvPwytGzpVxl07Og7HY4Ykc96BwcpkjMsCtKyZf7Ps0kTX8vuhx/gqaeitxyEFC3HHw/z5vm2jC1a\nwGOPQUrK70A+67Dkwpo1Sfzf/8G0aXDllXDffZoiKyIS7UqWhFGj/FeXLvDkk6pxIxIJSiJIgShX\nrhxxB1E4cfNmePhhX+/gmWdgyBA/zf6GG/yHXsmfBQv8bI7ERN/ubtUqXx2/EE2ukFiWLotVvLhv\nJ/rFF742B3wK1I94CKeeCl9/7TtH9OjhZ+iIiEh0O+88n3weM8bXSti6NeiIRAoXJRGkQAwaNIjk\nfBRO/PlnuOkmX+/gm2/8uvzZs+Gcc/yHiqAdbHIkCM75P8NOnaB7d2jXzteVGDIEKlcOOjqRdDIp\nalqvXlobxheBz4FbIt4j/PDD/TXj4/1MiB9/jOz1RETk4B19tE88ly/vazotXRp0RCKFR45JBDMb\na2YpZrYk3bYqZva+mS03s/fMrFJoex0z225mi0JfT0cyeCmcnPPZ4549/Q/9MmVg8WKYMsUXWIsm\n+U2OBME5X3CodWu49lq44AI/86BfP83mkNjiC6Y+BTQHOnHKKZEfHJYu7WdB3XKLn50wa1Zkryci\nIgfvkEP8bITbb/etICdPDjoikcIhNzMRxgOdMmy7HfjQOXcM8DEwON2+lc65JqGvG8IUpxQBe/bA\nK69Aq1Zw2WV+in1Skp9eX6tW0NHFrj17YOpUX+3+rrtgwABf8+CKK3w7PZHYlQScxtVX+8HhPffA\n7t2RveIVV8A778DChTMieyERkVgzYULQEWSpTx/4+GO491645hrYsSPoiERiW45JBOfcXGBjhs3n\nAhNDv54IdEu3T93jJU82b4ZRy8/i6KN9Mb/Bg2H5cvi///NT0CIpbSlCrC1JAPz0gWzjLgVczTHH\n+PZ4Dz4IixbB+edHx1IQkXC5+mr/b/uLL/zspW++iez1mjeHPXu+jexFRERiTVJS0BFk68QTfceG\nzZv9Ayu18BXJv/zWRKjhnEsBcM4lAzXS7UsILWX4xMzaHHSEEjUmhDnD/PPP/ql43bqwsNjJTJvm\nW/Oce26YP+Rm02IgOTkZ51zMLEnYz6BBkEncf/8NcDOwGjiXiRPh00+hc2cwpfikkKpdG95+2/9M\n6dQJ/vtf2Lkz6KhERCSaVKwIL73kZ5W1agUzMk4qi+LZFCLRJFyFFdOap/wKHOGcawIMBKaaWYSf\nJUtBSQpThvmLL/zT8ObN/XT6xYvhhRegWbOwnP5AmRRnKxQyJEf+/BOGDfNJGb9WvAtwNm2UypMi\nwgwuv9z/TFm61Lcs/eqrvJ8nPj6e4cOHE682JSIihY4Z3HijrxPVv79/JrNvKVyUz6YQiRYl8vm6\nFDOLc86lmFk88BuAc24XsCv060Vmtgrfg2tRZicZNmzYvl8nJiaSmJiYz3Ak2tWuXZdXX/V9e3/7\nzXdcGD8+8ssVCrVQcmT9ev/nOn68b0E3bx7Ur39RsLGJRFhcXBwpKSmZLkWqWRNefx1eftnPbLr0\nUrj7bl9gK1rNnj2b2b7thIiIFIAWLfxSuEsv9XV1Xn4ZDg86KJEYkdskgrF/rYM3gD7A/4DLgZkA\nZlYd+Ms5t9fMjgSOxs+pzlT6JIIUTlu2wNix8Nhjl1O7Ntx6a/S0ZwyHhGyWSkTaypW+zsG0af7p\n65Il/xagzO4DlkhhkJyczLBhw7J8HzGDCy+EDh18B5JGjWDcOHI1Myenc0dCxkT68OHDC+zaIiJF\nVbVq8NZbMGKEnxE7+fQjOS3ooERiQG5aPE4F5gH1zWytmfUFHgBON7PlQMfQ7wHaAkvMbBHwCnCt\nc25TZEKXaLZmDQwc6KfWz58Pr74Kn30G3bsXngQCQJ8AlkosWQK9e/u1fPHx8NNP8Mgj+3ewSE5O\nZvz48bFZ60EkjGrU8Otf//c/6NXLJxS2bQs6KhGRGJT2YCKzBxTx8TB8uP8eY4oVgyFD/NLay17v\nzt13w969QUclEt1y052ht3PuMOdcaefcEc658c65jc6505xzxzjnzkhLFDjnXnPOnRBq79jMOfdO\n5G9BoksLLrgAmjb1yYJvv/XtBZs3Dzqu2PfFF9C1qy+Q2Lixryp8991QvXrmxweR4BCJVt27+zoJ\nmzb5Ct0ffxx0RCIiMSY5GYYOzbSoMykp+3+PQR06wIJrnuPDD+Gss+CPP4KOSCR6hauwohRhe/YA\n9AA+B6bSurXvvPDgg75iuuSfc/D++5CYCBdfDF26wOrVcMstvsKwiORe1aowaRI88YRfAnTddX7J\nlYhIURPujluFxWEVtvLxx34JXJMm/gGOiBxISQTJty1b4NFHoV49KFnyFmAkNWq0oV8/qFAh6Ohi\n2969MH26n8Fx881w9dV+2cJ110GZMkFHJxId8luTpEsXPyshNRVOOAHefTe8cYmIRLtwddwKVIQS\nISVK+CVwTz7pi/M+9ph/qCMi/1ISQXIlfcuzNWt8O5y6dX37tJdfhl27WuDca6SkbAg61Ji2e7d/\nTzz+eD+T4847fQ2Eiy/2b2oi8q+DWbJTqRI8/7wv/Hr99dC3L2zc+O/+IIumiohILkQ4EXLOOX6c\nO7aqLUgAACAASURBVGmSb02+eXNELycSU5REkFxJSUkBmpOS8ihNmvjK5998Ay++CCefHHR0sW/7\ndj/F+uijYcoUeOop+PJLnwEvpv+lIhFz+unw3XdQrpyflfDGG367aoqIiOzvyy/hxz+yKMRUSNWt\nC59/Doce6rs3LF4cdEQi0UEfTyRbqal+Wj3MBV4GviApCR56CI44ItDQCoXNm31boSOP9IXeXn0V\nPvzQF/cxy/n1InLwypf301ZffNF3lendWwW1REQyWrUKTp14FS+9FHQkBatMGXjmGRg2DE47zbcL\nFinqlESQTG3d6teA1asHo0YBjAKOBh5XvYMw+O03uOMOnzxYtgw++ghef12zOkSC1Latf8pUs6bv\n4PDqq5mvg02/vEtEpKi4+GJ4b04ZhgyBG2+EnTuDjqhgXbx7AnPmwMiRcMUVfhapSFGlJILsZ+1a\nX/m/bl2YN8+3Z/z8c4DXADXNPVhr1vg33gYN/CyEBQv8Wrvjjw86MhEBKFsWHn4YXnsN7roLevY8\nsJtZSqiFWUoMtzKLRWY21sxSzGxJum09zWypmaWaWZNMXnOEmW01s5sLNlqRwqlJE1i4ENatg1NP\n9eOaIiE+Hvr25bgO8Xz9tU+gtGzpi16LFEVKIggAX38NF10EjRv7J28LF/qCiS1bBh1Z4bBsGfTp\n4998y5WDH37wdQ/q1g06MhHJTKtWvu7LMcf4Vl9Tpqg6dxQYD3TKsO07oDswJ4vXPAy8E8mgRIqa\nypX97MlevfwMyrffDjqiApCWNE5JoXx5/55www3QurWftSZS1CiJUISlpvqnbW3awAUXQIsW8PPP\nfppWnTpBR1c4LFgAPXpAYqIvmrhyJTzwgE9oi0h0K1MG7r8f3nnHd0s55xxYvz7oqIou59xcYGOG\nbcudcyuAA6rImNm5wGrg+4KJUKToMPOduqZP9+2n7+A+9lA86LAKjJm/71mz4NZb4aabYNeuoKMS\nKThKIhRBW7fC449D/fo+YXDTTbBihf9esWLQ0cU+52D2bOjUCbp39+usV6+G//4XqlQJOjoRyaum\nTX1CsFkzOOkkgCuCDklyYGblgFuB4WSSYBCR8GjTxs9e/bpUG07nA5Krn1AwF46Ph+HDA38q06wZ\nLFrki062a+eXBYsUBUoiFCHr1vlsad26MHeun4o1b55f81uiRPavjYuL2++7HMg5eOstP7Xtmmv8\n7I5Vq6B/f7+EQURiV6lSMHSoL4IKNwD/CTgiycEw4BHnXFrpMyUSRCKkRg14b3tbTm1bjKalvmNO\nVouLwind8oKgVakCM2dCt25+ece7/9/efcdHWWV/HP8cqsquyApmbBjAFbFTRETRCIpgQUQQwRZ0\nLau/tWIvAVcFlbUXLAisLvYCKiqgRkGk61IUBBRRdIKuWEBkKff3x51oyCZkkinPzDPf9+vFK8kz\nk5lzw5Q757n3nDeCjij7jRo1KugQpApVfHSUMJg1y3dYePNNOPNM/3N+fvVuIxqNMmrUKPVOr8CG\nDX4/3JAhULu277rQq5f/XkTCZb/9YIcderBy5fdKqma2g4CTzOx2oBGw0czWOucerOjKgwYN+u37\ngoICCgoK0hGjSGjUrg03HfEOHa85nL59/erWK6+EWjlyurJWLbjqKl9Pp18/OPtsn3jWXLBmli1b\nFnQIOau4uJji4uIqr6ckQkht3AivvOKTB8uX+7Phw4cntl1BCYTNrVsHo0f7vdI77eS/Hn203ycn\nIuFVUqLCCAEyKl9V8Ntx59xhvx00KwJ+riyBAJsnEUSk5rp1g5kzfdHF99/386RccthhfntH//5+\nTjhmjF+pIZItyifSBw8eXOH1QpsfzNVlMKtXw333+YriQ4f6doJLlsCll6reQbKsXu1bwDVvDi+/\nDCNHwnvv+TdOJRBERFLDzMYAU4E9zGy5mQ0ws55m9iXQAXjVzF4PNkoR2XVXePddX1C6bVuAtkGH\nlFaRCEyY4AuWt2njtxCLhE1okwi5tgzmq6/8Mqr8fP+B9oknYNo06NOn6noHEp///AcGDfLJgxkz\nfP2D8eN9n2QREUkt51x/59xOzrn6zrmmzrmRzrmXnXO7Oue2ds7t6JzrXsHvDXbO3RlEzCLZJlk1\nsOrVg7vugjvuAHgdOD/h2JIlHSca69SBW26BRx7xXbqGDVObYAmX0CYRcsWsWXDqqb6P+fr1fgnZ\nc8/5PVmSHF9/7dsY/fnPPlkzZQo88wy0bh10ZCIiIiLJE41GKSoqIhqNVv+XKyi41bs3bL/9CcD5\nbLXVC6xenXCICav0RGMKOj4cc4w/8fTcc75j1w8/JO2mRQKlJEIW2rjRV4E9/HCf3Wzb1rcQvPNO\n33lBkmPpUjjvPNhnH/83nzsXHnvMt8YUERERkTIqqZ313XdTufbaV+nXrxft28PHH6c3rLIikQiD\nBw8mUlGiIEUdH3bbDSZPhqZN/Zx9zpyk3rxIIJREyCJr1sADD8Cee8Ktt8KFF/oPupddBg0bBh1d\neMyd6wviHHQQ5OXBp5/6JXm77BJ0ZCIiIiKJ2eIHaSC/ui284lC37noefxyuuMKfBHvyyaTfRVxK\nYgmCkooSBaVbOFLQeadePbj3Xj9/P/pov81B2xskmymJkAW++gquvtqvEnvnHV/pdto0X/lW9Q6S\n54MP4PjjfYHE1q396o6bboLGjYOOTERERCQ5tvhBmtR24xowACZN8rsGzj8ffv01ZXdVfdGo78tY\nk60ccerb12+LvfdeOOMMf4JQJBspiZDB5syB007zfcl//RWmT4fnn4eOHdUFIFmc8xV0Cwr86oNj\njvHJgyuuUDcLERERkWTbf39f0+u77+CQQ/y8K5e0bOnn9LVq+VWvCxcGHZFI9SmJkGE2bYJx4/yH\n2p494YAD/Ivr3Xf7rgCSHJs2wYsvwoEH+u0gf/kLLF4Mf/0rbLVV0NGJiIiIhFfDhr7Y4BlnQIcO\nvtZXLmnQAEaNgksu8V2+nnoq6IhEqkeL4TPEmjV+m8Ldd8N228Hll0OvXlC3btCRhcv69TBmDAwd\n6lca3HCD38JQS+k0ERERkbQxg4svhvbt/TL/99/3bRFzZe5r5k9itW3rW7JPmeKLpNevH3RkwYpE\nIpSUlDB8+PCadQmRtNBHp4CtWAHXXOPrHbz1Fowc6Zc49e2bOy+i6bB2Ldx/P+y+OzzxhC9QOW0a\nnHCCEggiIiIiQTn4YL+Fd+5c6NzZt9bOJa1b++0dX38Nhx4KlXWgzBVV1eyQzBDKj09VVZ3NBB9+\nCKefDvvuC7/84j/QvvCC3xumegfJ8+OPMGSIb3351lt+6dykSf5NSn9nERERyTV5se4DeSnoQlCZ\nqjo+NG4M48dD167+zPxbbyV2f6NGjUrsBtJsu+38Ntt+/XydhFdfDToikS0LZRIhUzNYmzbBK6/A\nEUdAjx6+YOJnn8E990CLFkFHl30vuFuyciVce63/u378sX8zeuklv2ROREREJFdFo1GKiorSulQ8\nno4PtWr5baZPPOELi998s58718SyLDydb+brdL34oq/Rde21sGFD0FGlUIg+d+SiUCYRUq6aD/o1\na+Chh2DPPX3LwHPP/b0DwHbbpSbEmsjGF9zyvvgC/vY3/7f+4QeYOdO/Ge29d9CRiYiIiEhVjjzS\nL+9/4w049ljfxSGXHHKI394xa5b/W3zzTdARpUgIPnfkMiURaiLOB/3XX8N11/l6BxMnwogRMGOG\nX6qkegfJtXCh7z3cpg1ss41fffDgg34bg4iIiEjQwrTiM9V23hneeQf22cdvb5g2LeiI0qtJE3j9\ndd+trW1bKC4OOiKRzSmJkAIffQRnnulf+H7+2b/wvfiib+GiffjJNXs29O4Nhx3mty4sWQK33QYZ\nXA5DREREclAYVnymU926cMcdfttvjx5w773gXNBRpU/t2jBokF8AfcopvsZXTbd3iCSbkghJsmmT\nL4LSubNvGbj33rB0qX/By4R6B2HiHLz7Lhx9NPTs6ZMzn38O118PjRoFHZ2IiIhI/CKRCGaW0QXB\ng9SzJ3zwgf8w3bcv/PRTCu+sigKQQeja1W/PfeUVn0z5/vugIxJREiFhv/wCw4dDq1Y+W3jOOb7e\nwZVXZt8H2mHDhmX0G5hzPlFzyCH+79y3r0/UXHwxNGgQdHQiIiIi1ZepBcEzSYsWMHWqn1sfeCDM\nY5/U3FEcBSCDsOuu/gTaHnv47Q0zZwYdkeQ6JRFq6Jtv/Jnv/Hx480147DH/hM7megdr1qzJyDew\nDRvgqadg//191d5LLoFPPoGzzoJ69YKOTkRERCS7VNVyMRNttRU8/LCff3fmbUZxZtAhpVXdunDn\nnTBsGBxzDDzwQG5t75DMEsokQir73/7731B4y+7svfMqfvzRZ0Vfekn1DlJh3Tp49FHfaeGhh3yt\ngzlz4OST/T4xEREREam+eFouZqrTT4diChjK1ZzNY6xdG3RE6XXSSf7zxyOPQP/+vv6aSLqFMomQ\n7P63mzbBa69Bly6+1UyrDfNY6ppz332w++5JuYu45UJl39Wrfaa1eXOfoBk5Et57D7p3V6JGRERE\nMlcuzNMywd58zEwO5Be24eCDYfHioCNKrz//2Rdub9DAb+9YsCDoiCTXhDKJkCy//OKXTe21F9x4\no18+/9lncBW304gfUnfHlbwBDRo0iAEDBjBo0KDU3XeAvv8eBg/2yYPp0339g/Hj/SoPERERkUyn\nDgzp80dWM4b+nHMOdOzoO6Hlkq239tupr77at4J84omgI5JcUifoADJRNOr3GT38MBx8sP962GFp\nPAteyRtQafIgbEmEr7/2Kw9GjoQTT4QpU3zhGBERERGRyhhw4YX+bPzJJ8PkyX77ay4pLPTFFnv3\n9nPoe+7x9SNEUkkrEcqYOxcGDPArD1atgvffh7Fj4fDDtYw+FZYuhfPOg3328cUTP/rIZ1SVQBAR\nEZG4aQtBzmvf3tfNWrzYn5X/8cdtgw4prfbd1xd4X7XKr8pYujToiCTscj6JsGmTXzJ/5JF+z33L\nlrBkCdx/v99vJMk3b54vBHPQQbDDDrBoEdx9t29fIyIiIlIt2kIgwJ/+BOPGQY8e8Oij5/Lmm0FH\nlEIVJM623RaeecavTDj4YHj55bRHJTkkZ5MIa9f6qqZ77+1bxRQWwuef+31Ff/pT0NEFo0GDBinp\naFHqgw/8C3vXrnDAAb6+xN//Dk2apOwuRURERCRH1Krl5/K9ez/PgAEwaBBs3Bh0VClQSeLMDC66\nyCdTLr4YrrgC1q9Pb2iSG3IuiRCN+iKJ+fm+cN9DD8Hs2XDaaVCvXpw30qABpPDDdlAGDhyYtI4W\npZyDCRPgiCP86oPu3X3y4MorfcZUREREJOwikQiDBw8mEokEHUo4lM7DK5mP5+cvY/ZsKC6Gbt3g\n22/TF1om6NDBb++YPx86d4YVK4KOKH6lJzRTeWJTEpczSYR583x3hVat4LvvfOGVceP8vqlq1zsY\nONBnIyqRre198vPzk3Zbmzb5KrkHHgiXXgpnnw2ffgp//auvJisiIiISr2ydW5UqKSnZ7KskKBqF\noqItzsd33BEmTfJz0TZtfK2zXPqAuv32vkV9t27Qrp3/W2SDaDRKUVFR0k9sSnJldRKhqjeUTZvg\n9df98vlu3XyNgyVL4MEHU1u8L1vb+xQWFiZ8G+vXw+jRfpvIbbfBDTf4BM5pp0HduonHKCIiIrmn\nxnOrLE8+SGLq1IFbb/Urj3v1giuuiPL44yNz5gNqrVpw3XXw5JNw+ul+G/GmTem7/0o/qw0a5Pu6\nh6zjXC7J6haPlb2hrF0Ls2e3YZ99oH59uOwy6Nu3GtsVpNrWroURI+COO3yy5v77/fIpdbUQERGR\nwKTgxM6oUaOScuJF0ue442D6dOjTB3bdtZATT4Tttgs6qvTp0sVv3z7lFL8i48knoXHj1N9vpcm/\n0uSBkghZK6tXIpRXUuJXNuXnw6eftuSBB/x+oNNPz7AEQoiy4j/+CEOHQrNmfpnUs8/6r126KIEg\nIiIi4ZOtK05zXX4+TJnitzm0a+dbi+eSnXaCt9+G/feHtm1h2rSgI6pcMrdYS2pkbRIhEokwbNgw\nwBcNOftsX+/g22/hvfegX7+nOOKIDP0gm8CbT6Y8qVau9MujWrSABQt84uDll33bRhERkWQzsxFm\nVmJmc8sc621m881so5m1KXP8SDObZWb/NrOZZnZEMFFLLlHxxMxXvz488IBf1n/UUfDYY74IeK6o\nU8dvN77vPt8x7Z57Ujf+RJ4PWumT+bI2iVBSUsKaNYdw9NG+5kGLFrB4sa930LJl0NElIBKBWHKk\nIkE/qZYv961j9twTVq2CmTPhiSdgn30CDUtERMJvJHB0uWPzgBOBd8sd/xY4zjm3P1AIPJHy6CTn\nqXhiZojnw2u/fv6k4113+Tbva9akL76ERSK+nkACyaoePfxKhH/+02/x+OmnJMYXo+dDuGVdEuHX\nX/3ee5gP3Mapp8Lnn8O11/oqpKUy5Yz9/6jqiV9SkpGvZAsXwoAB0Lq1766wYIFP2DRrFnRkIiKS\nC5xzU4BV5Y4tcs4tBqzc8X8756Kx7xcAW5mZyvtmqS1+KEzCByoJl3g/vLZqBTNm+EKDBx0Eixal\nI7okKB1Xgh/Omzf39REaN/bbO+bOrfp3REplTRJh5UpfeyM/H156CeBvQGvOOMMvTSov6DP2lUrS\nEz9dZs+G3r3hsMP8i82SJX4Z1I47Bh2ZiIhI1cysNzDHObc+6FikZrb4oTDL5lUVyaW2g+lQnb9n\ngwb+bPxFF8Ghh8Izz6Q6usyy1VYwfDjceKOvZzZyZNARSbbI+CTCggXwl7/4LQrRKBQXw6uvArwT\ncGQpkpfnX9EC5By8+y4cfTT07OlfVD//3LdrbNQo0NBERETiZmZ7A0OAc4OORaQy0WiUoqKinGk7\nmGrV/Xuawbnnwptv+pXNf/sbrFuX4iBTqNK2iltw2ml+7n/77b7O3Nq1yY9LwiUjWzw6BxMnwp13\n+qU1F1zg6x2koxVJyuXl+Wx5ZdnRaDSwdifOwWuvwZAhfuXH1Vf7F5WKVnqIiIhkMjPbBXgRON05\nt2xL1x1U5n23oKCAgoKCVIYmOSgvL4+SkhKtNshgbdr4FbiFhX4F7rPPwm67BR1V9dW0e8hee/la\nZ+eeCx06wPPP+7btkluKi4spLi6u8noZlUT49VcYM8YnD2rXhssug7Fjs+tDbCQSoaSkhOHDh1ec\nAS1NEmRQX9QNG+C553yrRjOfhT3pJP9/ICIikkGMcvUPyl3mvzFrCLwKXOWcq7KR2aAMek+WcNIq\ng+yw3XZ+2/Q//gHt2/vl/cccE3RU6fOHP8C//uW3OHTsCA895Lc1S+4on0gfPHhwhdfLiCTCypX+\nQfrQQ75v6T33QOfOGdqeEXxhhkpkUyXSdev8PrDSGgdDh0K3bhn8dxcRkZxlZmOAAmB7M1sOFOEL\nLd4HNAZeNbOPnHPdgf8DWgA3mlkR4ICuzrnvAgleRNIqkQLrZjBwoC+22K8fnHkmDKY2ddiYvAAz\nmBn89a9w4IG+c8OUKX6bQ716QUcmmSTQmggffwznnOPrHXz9Nbzzjl9O36WLfwDXZE9PWmRq0cY4\nrV7tV3s0b+6zrSNHwuTJ0L27EggiIpKZnHP9nXM7OefqO+eaOudGOudeds7t6pzb2jm3YyyBgHPu\nFufcH51zbZxzrWNflUCQhMXTPlCCl4wC6506+e0N06ZBVyYQJbe2orRrB3PmwNKlcPjh8OWXQUck\nmSTQJEKXLtC0KXz6KTz8sG+1UlZN9/QEKZMr7H7/ve+C1KwZTJ/uC1SOH+9fJEVERERky7Jpxakk\nLi8PJkyAQ5lCW2bzHrk1aW7UyG8t79nTr0x4442gI5JMEWgS4aabnuCGG6BJk/+9LFszvZlYYfeb\nb+CKK2D33WH5cr8s6ZlnoHXroCMTEREREclctWvDTRQxgrM5mWe57TbYtCnoqNKnVi246ir/2eHs\ns307yI1B7uzI1JXqOSbQJMKKFUsrvUyZ3sR99hmcfz7svTesXw///jeMGOG3j4iIiIhI9aRqxWki\ne/glPbrxJjM5kJdfhhNOgFWrgo4ovQ4/3G/vmDzZt4FfuTKgQLJwpXoYBZpESEReXh4NGjQIOoyM\nNG8enHqqryrbpAksWgR33w277hp0ZCIiIiLZK1UrTpOxhz/nBJB42ZWvePddaNHCt4ScNSvtIQQq\nEoGJE33RybZt/epmyU2BJhG2tF2hqkxvNBpl4MCBKYstG02bBj16QNeusP/+fiXC3/9e8XYRERER\nkVCLRHwxqCzbGitxCijxUq+ePzl3++2+KPlDD4FzgYQSiDp14JZbfBvIk07y7TBrNH6tvslqga9E\nqGy7QjyZXi398k/aiRPhiCN8G5pu3Xzy4MorYdttg45OREREJCClc0xtjZUU6NMH3n/ff5g+7TTf\n/SyXHHsszJjhayX06gU//FDNG9Dqm6xWZRLBzEaYWYmZzS1zrJGZTTCzRWb2ppk1LHPZNWa22Mw+\nMbOuqQocMnfpVzqSG5s2wYsv+kqpl1wCZ53lu1xccAFsvXXK715EREQks5WuZs3AjlkSDnvsAR98\nAPXr+23EH38cdETptdtuvkbCLrv47Q1z5gQdkaRLPCsRRgJHlzt2NTDJOdcSeBu4BsDM9gJOBloB\n3YEHzcySF252qDK5kUCSYf16GD0a9tkHhg6F66/3NRBOPx3q1q3xzYqIiIiESzQKRUX+q0iKbLMN\nPP44DBzoiw/+619BR5Re9evDfffBrbf6gouPPJJb2ztyVZ2qruCcm2Jmu5U7fAJweOz70UAxPrHQ\nA3jaObcBWGZmi4H2wPSkRRwGNVhBsXat76wwbJgv5nLffdC5M+ReikZEREQk8+Tl5VFSUpL0zg2S\nHc46y5+N793bFxy86y7Yaqugo0qfvn3hgAN8nQRfcHEb4JeAo5JUqWlNhB2ccyUAzrkosEPs+M7A\nl2WutyJ2TKqjzEqFH3/0Kw6aNYNJk/y+o7fegi5dlEAQERERyRSp6twg2WP//X3Hhm+/hUMOgc8/\nDzqi9GrZEqb/dup4OqC+8mGVrMKKWrSSTIWFrFwJ113nVx0sWOATCC+/7FuqiIiIiIhI5mnYEJ57\nDs44w8/bx40LOqL0atDAb72Ge4DJQN9gA5KUqHI7QyVKzCzPOVdiZhFgZez4CmDXMtfbJXZsiwYN\nGkRBQQEFBQU1DCc8li/3WxaefNIvC5oxA5o3DzoqERFJpeLiYoqLi4MOQ0QSpM5hAn618MUX+2KL\nffv6Lg633OLbI+YCv1r6MWAW8Dz/93++FWT9+gnecCTiu60MH65aJwGLdyWCxf6VGgcUxr4/Exhb\n5vgpZlbPzJoBuwMzqrrx0iRCLlu0yO+lat3a759asMD3nVUCQUQk/AoKChg0aNBv/0QkO2Vq5zAJ\nxsEH+44FH33ka5l9/XX8vztq1KiUxZU+HwFtWbECOnWCZcsSvDm1bc0Y8bR4HANMBfYws+VmNgAY\nChxlZouALrGfcc59DDwLfAyMBy5wTvU5t2TOHN9ntlMnX/dgyRK4/XbYccegIxMRERERkUQ0bgzj\nx8ORR0K7dvD22/H93rKEP3EHq7TAaF7eVrz4Ipxyit/e8dprAQcmSVFlEsE51985t5Nzrr5zrqlz\nbqRzbpVz7kjnXEvnXFfn3A9lrj/EObe7c66Vc25CasPPTs7Be+9Bt27Qo8fvhVduuAEaNQo6OhER\nEZEsUdoJIY0dEbRlQaqrdm248Ub45z/h1FP91oZNm4KOKrXKFho1g8sugxdegPPPh2uvhQ0bgo5Q\nEpGswooSB+d89u3QQ+Hss/0KhKVL4ZJLfBESEREREamGaBSKitK6P1pbFqSmjjzSd294/XU47jj4\nz3/SHEDAWyQOPRRmz4aZM/3fQmUNsldGJxHCkunduBGeftr3Tr3uOrjoIli40CcSEi4wIiIiIiIi\nWWHnneGdd2CvvaBNy9VlWiKmQQZskdhhB3jjDTj8cGjbFt59N+iIpCYyOomQ7Znedevg0Ud9z9T7\n74chQ+DDD32V1tq1g45ORERERETSrW5d343t7i6vcvzxcN99fsVyrqhdGwYPhpEj/eeioUPDv70j\nbDI6iZCtVq+GO++EFi3gxRf9E2TKFDjmmNKWJyIiIiJSVjiq0YvE78RWC/ngg98/TP/0U2K3F4lE\nGDx4MJFIJDkBxiGR523Xrn5rw7hxcMIJ8P33yYtLUktJhCT6/nufVWveHKZNg1de8XueOnUKOjIR\nERGRzJbt1ehFaqJFC5g61RdXP/BAmDev5rdVEmt9WFJRC8RIxH9QSXKCIdHn7a67QnEx7L67394w\nc2ZSwpIUUxIhCb75Bq64wj/4ly+HyZPh2WehdeugIxMREREJuZDU0JIcU+ZD/VZbwcMP+9ppnTvD\n6NEpuL/SxEJFCYaA1asHd93lt3gccww8+GBube/IRkoiJOCzz3ybkr33hv/+Fz76CEaM8DUQRERE\nRCQ+CS3DzvIaWpIFUtFKtIIP9Wec4YsuDhkC48b1YO3a5N1dNjjpJL8q4+GHoX9/v0U8HbSVqvqU\nRKiBefN8j9f27aFxY1i0CO65B5o2DToyERERkeyzxWXYIkFLYyvRffaB779vwYcffsq2285nyZL4\nfzcvluTIS2ayI83+/Ge/LbxBA7+9Y8GC1N+ntlJVn5II1TBtmi/60bUr7LefX4lw883QpEnQkYmI\niEgq6AyViKTbt99+BvRjw4aH6NjRF2qPRzQapaioiGgakh2ptPXW8NhjcOWVUFAATz4ZuyAVK0Kk\nRpREqIJzMHGi3590yilw9NE+eXDVVbDttkFHJyIiIqmkM1TBC8PZVZGaeZBXX4XLLvP/1q8npz5I\nDxgAb70FN90E550Hvy5L34oQwNetMEt6McowUBKhEps2wUsv+S0LF1/sH8SLF8MFF/jsmIiIb90p\nBgAAIABJREFUiIikXljOrorURPv2MHu23z5dUABfzUrzB+ktSEdLyf32g1mzfBe8jh3hs1WNUnZf\n/yODi1EGTUmEctavh3/+0+9HGjLEV0mdPx9OPx3q1g06OhERERERySXbb+9bxx93HLRrBxOWtgg6\nJCB9tUy23dZ3visshA6P/YWxY1N6dxIHJRFi1q6FBx7wxTxGj4Z774Xp06FnT6ilv5KIiIhIwlRj\nQqRmatWCa66Bp56Cwpd7MmgQbNwYdFTpYwYXXQTj+j3FRRf5egnr1wcdVe7K+Y/HP/4IQ4dCs2a+\n9sEzz/i9N0ce6R+sIiIi1aUPSslnZiPMrMTM5pY51tvM5pvZRjNrU+7615jZYjP7xMy6piQo/T9X\nW9prTOTnp/f+RFLsiCNg9rkPU1wM3bvDt99ufnl+yB/zHXb5itmzYe5cX7NuxYqgI8pNOZtEWLnS\nb1Vo0cJvV5g0CV5+GQ46KOjIREQk26kYX0qMBI4ud2wecCLwbtmDZtYKOBloBXQHHjRL8qmBSMQX\nTFLBrcxWWBh0BCJJt+MfVzNpErRtC23awPvv/35ZYQ485hs3hvHjfcH7du38CWBJr5xLIixf7pfC\n7LmnL9AxY4ZvG7LPPkFHJiIiIpVxzk0BVpU7tsg5txgonyA4AXjaObfBObcMWAy0T2pAKrglIgGq\nU8fXb3voIejVC+6803eVyxW1asH11/vPcaedBjff7AvjS3rkTBJh0SI46yw44ADYaitYsMA/6Zo3\nDzoyERERSbKdgS/L/LwidkyyVNiXaIvU1HHHwbRpvlbCSSf5rdq5pEsX373izTfh2GPhu++q9/vp\n6DARRqFPIsyZA336QKdOflvckiVw++2w445BRyYiIiKhpN7iSZcLS7RFaqpZM5gyxX++adsWPvoo\n6IjSa6ed4O23Yd99/finTYv/d9PVYSJs6gQdQCo4B5Mnw623+noHl18OI0fCH/4QdGQiIiKSBiuA\nXcv8vEvsWIUGDRr02/cFBQUUFBQkdu/a6iAiaVa/vu8099RTcNRRfqvD2WfnTqH4unX9ieJDDoEe\nPXztu4suyp3xJ0txcTHFxcVVXi9USQTnfJGNIUP8+/ZVV8HYsf5JJSIiIlnP+N/6B2UvKzUO+JeZ\n3YXfxrA7MKOyGy2bRCgrEolQUlLC8OHDiUajNQpYRCSd+vXz27d79/arEx58ELbZJuio0ueEE/yK\nhNLxjxgB224bdFTZo3wiffDgwRVeLxTbGTZuhKefhtat4dpr4W9/g4UL4S9/UQJBREQkDMxsDDAV\n2MPMlpvZADPraWZfAh2AV83sdQDn3MfAs8DHwHjgAueqX3JMy1yTS3uPJatlUV2OVq188fgNG3zn\nuUWLgo4ovZo3h6lTYfvtffeGuXOr/h2pnqxeibBuHTzxBNx2G+Tl+e0L3btr2YqIiEjYOOf6V3LR\ny5VcfwgwJHURSXUpKSNZLcvqcjRo4D8nPfIIHHooPEAfTua5oMNKm622guHDffeGLl3gjjsq/i/M\ny8ujpKSEvLy8tMeYzbJyJcLq1XDXXdCiBbzwAjz+uF+ucswxSiCIiIhI9ZiZzo6LSOiYwXnn+c4F\n1zCEi7iH/1I36LDS6rTToLjYn3Q++2xYu3bzy6PRKEVFRdqyVk1ZlUT4/nu46Sa/ROWDD2DcOHj9\ndd95QURERKSmdHZcRMKqTRuYRTu+YDc6MZkvvkjO7Zaevc/0s/h77w0zZ8Ivv8DBB8PixUFHlP2y\nIonwzTdwxRWw++6wbJnvvPDss/4JISIiklVGjQo6AolTtkyQRUSq0ogfeJme9OZ52rf3J2ITlU1n\n8f/wBxgzBs49Fzp29KvZpeYyOonw2Wdw/vk+e/Tf//qep48/Di1bBh2ZiIhIxSKRCMOGDav8CsuW\npS0WSUw2TZBFRLYoLw8Drsh7guefh3POgeuv9wXqc4UZXHCBT6AMHAiXXuo/Y0r1ZWQSYd48OPVU\naN8eGjf2FUXvuQeaNg06MhERkS0rKSlhzZo1QYchqVa6OkGrFEQkG0SjUFQE0SidOsHs2X57eNeu\nkGu7udq18+NfsgQKCuDHH9UDsroCTyKUXSI4bZrv7XnUUbDffrB0Kdx8MzRpEmCAIiIiIuWVmZCL\niGSbvDyYMAEOOQTatoX33gs6ovT6059g7Fjo0QMeffRc3nwz6IiyS6BJhKKiIr75JsqkSdC5M5xy\nis+Gff45XHUVNGwYZHQiIiIpMGwYqBOAiIgErHZtX7T+0Ufh5JPh9tth06ago0qfWrXg6quhd+/n\nOOssnxfOpe0diQg0ifDJJ3vSvj1cdJHv27l4MVx4IWy9dZBRiYiIpNCaNbm3dlSyTiQSUetLkRzR\nvTvMmAEvvgg9e8KqVUFHlF75+V8we7ZfjdGtG6xcGXREmS/QJMKMGUdy7bUwfz6ccQbUza22pSIi\nIiIZqbTlpVpfiqRfEJ1hmjb1H6KbNfPbG2bPTttdZ4RIBCZO9DX52raF998POqLMFmgS4bPPGnPi\niX4piYiIiIiISK4LqjNMvXq+mP1tt/kz8sOHg3NpDSFQderALbf4cffqBf/gMnJo+NUS6Md3syDv\nXURERETSJYizqyJSfX36+DPxDz4Ip50Gq1cHHVF6HXssTJ8Oz9CXk3iBH1ChvvK0BkBEREREUi6o\ns6siEpOfH/dV99jDd86rV88v8f/448puMv7bzCb5+TCZTuzE17RjFh9+GHREmUVJBBERERERkbAr\nLKzW1bfZBkaOhIED4fDDYcyYim6y8tvM9gRDff7L/fyNW7iOrl19F4tc2t6xJUoiiIiIiEigtNVB\nJHOddRZMmuRbIF5wAaxbF9/vbSnBkEmqSnb05VkmT/b1IgoLfZOlXKckgoiIiIgESlsdRDLb/vvD\nrFm+/eEhh8DnnwcdUfLEk+zYc09fJ8E5OOggWLgw9XFlMiURRERERERE0ql01U0lq28ycStAw4bw\n3HO+2GKHDvDKKwEEEeDfpUEDGD0aLr4YOnWCsWMDCyVwSiKIiIiIiIikUzTq9wdUsvomU7cCmMEl\nl8BLL8GFF8JVV8GGDWkMIOC/ixmccw5MmACzZweRRckMSiKIiIiIiIhI3Dp2hNmz4aOPoEsX+Oab\noCNKr+7dI/z97z2IRCJBhxIIJRFEREREJHCZuHxbRCrXpAmMH++TCG3bwjvvBB1R+pSUlGz2Ndco\niSAiIiJSCX2wTa4t/T0zdfm2SMqE4PWldm248UZfK6B/f7jlFti0KeiokqSKuhW5TEkEERERkUro\ng21y6e8pUkaIng9HHQUzZ/qVCccdB//5T9ARJUEVdStymZIIIiIiIrlq1KigIxCRkNhlFyguhr32\n8tsbpk8POiJJFSURRERERHLVsmVBRyAiIVK3LgwbBnfdBccfD/ffD84FHZUkm5IIIiIiIjURgv3M\nIiKpcOKJ8MEHMGIEnHIK/Pxz0BFJMimJICIiIlITIdrPXF5erJBYngqKiUgNtWgBU6dCw4bQrh3M\nmxd0RJIsSiKIiIiIyGai0ShFRUVEVVBMRBKw9dbwyCNw3XXQubPv4iDZT0kEERERkWRSWzARkc2c\ncQa8/TYMGQLnnANr1wYdkSRCSQQREZEkysvLo0GDBkGHIUFSWzARkf+x776+DeTPP0PHjrB0adAR\nSU0piSAiIpJE0WiUgQMHBh2GiIhIxvnjH+Gpp+Avf4GDD4aXXgo6IqkJJRFEREQk45nZCDMrMbO5\nZY41MrMJZrbIzN40s4ax43XMbJSZzTWzBWZ2dXCRi4hIWWZw4YXw6qtw6aVw+eWwfn3QUUl1KIkg\nIiIi2WAkcHS5Y1cDk5xzLYG3gWtix/sA9Zxz+wHtgPPMrGnaIhURkSq1bw+zZ8PChVBQAF99FXRE\nEi8lEURERCTjOeemAKvKHT4BKK31PRroWXp1oIGZ1Qa2AdYBP6UjThERid/228Mrr8Bxx8GBB8LE\niUFHVE5+ftARZCQlEURERJIsX5OOdNnBOVcC4JyLAqXtEJ4HfgG+AZYBw5xzPwQSYbJEIn4NcCQS\ndCQiIklVqxZccw2MGQNnngmDB8PGjUFHFVNYGHQEGalO0AGIiIiETaEmHUHZFPt6ELABiADbA5PN\nbJJzbtmWfnnQoEEUFBRQUFCQ0iBrpKRk868iIiFzxBF+e8Mpp8DUqfDkk9CkSdBR5Zbi4mKKi4ur\nvJ6SCCIiIpKtSswszzlXYmYRYGXseD/gDefcJuBbM3sfXxth2ZZubNCgQamMVUREqrDjjvDWW3D9\n9dC2LTz9tG8HKelRPpE+ePDgCq+n7QwiIiKSLSz2r9Q4oDD2fSEwNvb9cqAzgJk1ADoAC9MSYals\n2NISifh1w5VskdC2HBEJQp06MHQoPPAAnHgi3HUXOBd0VJvLy8vb7GuuSSiJYGYXm9m82L+LYseK\nzOwrM5sT+9ctOaGKiIhIrjKzMcBUYA8zW25mA4ChwFFmtgifNBgau/oDwB/NbD4wHRjhnJuf1oCz\nYUtLFVsktC1HRIJ0/PEwbRr861/Quzf8+GPQEf0uGo1SVFRENBoNOpRA1Hg7g5ntDZyNXx64AXjd\nzF6LXXync+7OJMQnIiIignOufyUXHVnBddcAJ1fn9nP1bJKISCZr1gzefx8uuwzatYPnnoMDDgg6\nKklkJUIrYLpzbp1zbiPwHtArdplV/msiIiIimSOXzyaJiGS6+vX91obBg+Goo2DEiMzb3pBrEkki\nzAc6mVkjM9sGOAbYBd+b+f/M7CMze8zMGiYjUBEREREREclN/fvDe+/BnXfCgAHwyy9BR5S7apxE\ncM4tBG4DJgLjgQ+BjcBDQHPn3AFAFNC2BhEREREREUlIq1YwYwZs2AAdOsCnnwYdUW5KqMWjc24k\nMBLAzG4BvnTOfVvmKo8Cr1T2+2VbKWVsX2YREZEUi7cvs6SGuhCIiGSPBg3giSfgkUfgkEPgwQeh\nT5+go8otCSURzKyJc+5bM2sKnAh0MLOIc650Y2Ev/LaHCqkfs4iISPx9mSU11IVARCS7mMF55/li\ni336wJQpcMcdUK9e0JHlhoRaPAIvxNonjQUucM79BNxuZnPN7CPgcODSRIMUEREJjQYNQJ0AJE0i\nkQhmRiQSCToUEZGka9sWZs+GZcvgsMNg+fKgI8oNCSURnHOHOef2cc61ds4Vx46d4Zzbzzl3gHOu\np3Ou4ubDIiIiuWjgQFAnAEmTkpKSzb6KiIRNo0bw8stw0klw4IHw+utBRxR+ia5EEBERkWQaNSro\nCCQLjdLjRkRymBlccQU8/zyccw7ccANs3Bh0VOGlJIKIiEgmWbYs6AgkCy2ryeOmdFuNtteISEh0\n6uS3N0ydCl27ghZhpYaSCCIiIiK5KBqFoiJtrxGRUMnLgwkToGNHXzNh8uSgIwofJRFEREREREQk\nNGrXhr//HR591HdvuP12cC7oqMJDSQQREREREREJne7dYcYMePFF6NkTVq0KOqJwUBJBRERERERE\nQqlpU3jvPcjP/70lpCRGSQQREZF0ys8POgIREZGcUq8e3HMP3HYbdOsGDz+s7Q2JUBJBREQknQoL\ng45AREQkJ/XpA1OmwP33w+mnw+rVQUeUnZREEBERERERkZzQsiVMnw5160L79vDJJ0FHlH3qBB2A\niIiIxEQiamotIiKSYttsAyNHwuOPw2GH+a0O/fsHHVX20EoEERGRTKEEgoiISNqcdRZMnAhFRXDB\nBbBuXdARZQclEURERERERCQnHXAAzJrl8/iHHgqffx50RJlPSQQRERERERHJWQ0bwvPP+y0NHTrA\nK68EHVFmUxJBREQkU+TlBR2BhExe7DGVp8eWiMgWmcGll8JLL8GFF8LVV8OGDUFHlZmURBAREckU\n0ajfmCmSJNFolKKiIqLRaNChiIhkhY4dYfZs+PBD6NIFvvkm6Igyj5IIIiIiIiIiIjFNmsD48dC5\nM7RtC++8E3REmUVJBBERERERkWyRnx90BDmhdm2/OHD0aF8r4dZbYdOmoKPKDEoiiIiIiIiIZIvC\nwqAjyClHHQUzZ8Jrr8Hxx8N//hN0RMFTEkFERERERESkErvsAsXF0KqV394wY0bQEQWrTtABiIiI\niIiIiGSyunVh2DBfePG446BTp32DDikwWokgIiIiIiIiEodevWDqVGjbNnc/SufuyEVERCRrmNkI\nMysxs7lljjUyswlmtsjM3jSzhmUu28/MpprZfDP7t5nVCyZyEREJm913h2uvPTHoMAKjJIKIiIhk\ng5HA0eWOXQ1Mcs61BN4GrgEws9rAE8C5zrl9gAJgffpCFRERCS8lEURERCTjOeemAKvKHT4BGB37\nfjTQM/Z9V+Dfzrn5sd9d5ZxzaQlUREQk5JREEBERkWy1g3OuBMA5FwV2iB3fA8DM3jCzWWZ2RVAB\nioiIhI26M4iIiEhYlK42qAMcArQDfgXeMrNZzrl3AotMREQkJJREEBERkWxVYmZ5zrkSM4sAK2PH\nvwLec86tAjCz8UAboMIkwqBBg377vqCggIKCglTGLCIikpGKi4spLi6u8npKIoiIiEi2sNi/UuOA\nQuA24ExgbOz4m8AVZrYVsAE4HLizshstm0TIRpFIhJKSEoYPH040Gg06HBERyVLlE+mDBw+u8HpK\nIoiIiEjGM7Mx+C4L25vZcqAIGAo8Z2ZnAV8AJwM4534wszuBWcAm4DXn3OuBBJ4GJSUlm30VERFJ\nJSURREREMkl+ftARZCTnXP9KLjqykuuPAcakLiIREZHcpO4MIiIimaSwMOgIJJcoaSUiItWkJIKI\niIhIpsvL2/xrsihpJSIi1aQkgoiIiEimi0ahqMh/FRERCZCSCCIiIiIiIiISFyURRERERERERCQu\nSiKIiIiIhFi+iieKiEgSKYkgIiIiEmKFKp4oIiJJpCSCiIiIiIiIiMRFSQQRERERERERiYuSCCIi\nIiIiIiISFyURRERERERERCQuSiKIiIiIiIiISFyURBARERERERGRuCiJICIiIiIiIiJxURJBRERE\nREREROKiJIKIiIiIiIiIxEVJBBERERERERGJi5IIIiIiIiIiIhIXJRFEREREslheXt5mX0VERFJJ\nSQQRERGRbJCfX+HhaDRKUVER0Wg0vfGIiEhOUhJBREREJBsUFgYdgYiIiJIIIiIiIiIiIhIfJRFE\nREREREREJC5KIoiIiIiIiIhIXJREEBEREREREZG4KIkgIiIikuXyK+ncICIikmxKIoiIiIhkuUJ1\nbhARkTRREkFERERERERE4pJQEsHMLjazebF/F8WONTKzCWa2yMzeNLOGyQlVREREcpWZjTCzEjOb\nW+bYFuccZtbUzH42s8vSH7GIiEg41TiJYGZ7A2cD7YADgOPMrAVwNTDJOdcSeBu4JhmBZpLi4uKg\nQ0gJjSu7aFzZRePKLmEdV5YbCRxd7lhVc45/AOPTEFtahOFxqTFkBo0hM2gMmUFjqL5EViK0AqY7\n59Y55zYC7wG9gB7A6Nh1RgM9Ewsx84ThgVYRjSu7aFzZRePKLmEdVzZzzk0BVpU7fAKVzDnM7ATg\nM2BBWgJMgzA8LjWGzKAxZAaNITNoDNWXSBJhPtAptpRwG+AYYFcgzzlXAuCciwI7VHYDVQ02kctT\nedvLli1L2W1XdXm2jiuVcVd1ucZV/cs1ruRfrnFV/3KNS+KwQ7k5Rx6Amf0BuBIYDFhVN1LT/690\nX7alx2UmxakxZP5lGkNmXKYxZMZlGkP1L6txEsE5txC4DZiIXyr4IbCxoqvWJLBEL0/lbSuJUP3L\nUxl3VZdrXNW/XONK/uUaV/Uv17ikBjbFvhYBdznnfon9vMVEQiZNBDNpkqgxVExjyIzLNIbMuExj\nyIzL0j0Gc67Sz/jVYma3AF8CFwMFzrkSM4sA7zjnWlVw/eTcsYiISAg556o8g55rzGw34BXn3H6x\nnz+hgjmHmb0H7BL7tUb4kxw3OucerOA2NR8RERGpREXzkTqJ3KCZNXHOfWtmTYETgQ5AM6AQv0rh\nTGBsvMGIiIiIbIGx+aqCcVQw53DOHfbbL5gVAT9XlECIXVfzERERkWpIKIkAvGBmfwLWAxc4534y\ns9uAZ83sLOAL4OREgxQREZHcZmZjgAJgezNbjt+yMBR4TnMOERGR9EnadgYRERERERERCbdEujNk\nLTPbZGb/LPNzbTP71szGJXi73cxsoZl9amZXlTn+tJnNif373MzmJHI/W7j/VI1rhJmVmNncSi6/\nPHbff0rkfrZw/0kfl5ntYmZvm9kCM5tnZheVuay3mc03s41m1ibR+LcQQ7rHtb+ZfWBmH5rZDDNr\nl+gYqoilZ2yMeyThthqZ2QQzW2Rmb5pZw3KXNzWzn83sskTvK45YkjmuCh9rZvan2P/jz2Z2b6L3\nE2cs6RhXHTMbZWZzY4/RqxO9rzhiSea4bjezT8zsIzN7wcy2jR3fzcx+KfM6X+GyeZEwzD/CMNcI\nw7wiLHOIMMwVwjAvCMMcIJvf71P1ulrm9q4xs8WxMXWNHdvazF6NHZtnZrdW5zZzMokArAH2MbP6\nsZ+PwheFjJuZ1S73cy3gfuBoYG+gn5ntCeCcO8U518Y51wZ4AXgxwfgrk/RxxYzEj6ui6+8Su58v\nqnM/1ZSKcW0ALnPO7Q0cDFxY+v8FzMPX+Hi35iHHJd3juh0ocs61xi8DvqPGkcfnFGAy0K+6vxh7\nPpV1NTDJOdcSeBu4ptzl/8B3iUmHZI6rssfar8D1wOU1CbCG0jGuPkC9WFG8dsB55mvqpFIyxzUB\n2Ns5dwCwmM0fh0tKX+edcxfUOFoJuzDMP8Iw1wjDvCIsc4gwzBXCMC8Iwxwgm9/vE34+V8bMWuG3\n+rUCugMPmllpLaA7Yg0QWgOHmlmFr8EVydUkAvgXkWNj3/cDniq9wMwONLOpZjbbzKaY2Z9jx880\ns7Fm9hYwqdzttQcWO+e+cM6tB54GTqjgfk8ue18pkOxx4ZybAqyq5P7uAq5I6ggqltRxOeeizrmP\nYt+vBj4Bdo79vMg5t5g4eosnQdrGhW99VpqV3w5YkapBmVkD4BDgbMq8mJvZ4Wb2bizzubBsBjeW\nXR9mZh/ii7SWdQIwOvb9aKBnmd87AfgMWJCa0fwu2eOq7LHmnPvFOTcVWJfK8ZSJMS3jwrf8bRCb\nuG6DH99PqRlVSsY1yTlX2kJwGr9X/4f0vF5IOIRh/hGGuUYY5hVZPYcIw1whDPOCMMwBQvJ+X5Pn\n87tmtl+Z6002s33L3e4JwNPOuQ3OuWX4pEh759xa59y7AM65DcAcNh/nFuVqEsHh32T7mc/47AdM\nL3P5J8Chzrm2+GzrkDKXtQZ6OeeOKHebO7N5xugrfn/hBcDMOgFR59zSpIzif6ViXJUysx7Al865\neQlHvmUpHZeZ5QMHlLvNdEj3uC4FhpkvSHY7/5uhT6YTgDecc0uA78ysdZnLDgQuxGdEdzezXrHj\nDYAPnHOtY2+UZe3gnCsBP8kB8gDM7A/AlcBg0vMhLtnjyhTpGtfzwC/AN8AyYJhz7odkDKASqRzX\nWcDrZX7ON7+08R0zOzSJY5BwCcP8IwxzjTDMK8IwhwjDXCEM84IwzAGy/f2+ps/nx4ABALHEQv0K\nXivLv0es4H/fI7YDjgfeijfgXE0i4JybD+TjMz2vsfmLynbA82Y2D5/93qvMZROdcz/W8G43yyql\nQrrGZWZbA9fiH8i/Ha5h2FVK1bhibyzPAxfHsu5pleZx/TX2c1P8ZODxZI2jAv3wL4YAzwD9y1w2\nI3bGzOGfD6UvwBuJf6ltaXa4CLjLOfdL7OdUJxJSPa6gpGtc7fHLZSNAc2BgbKKaKikZl5ldB6x3\nzo2JHfoaaOr8kvHLgTGx56DI/wjD/CMMc40wzCtCMIcIw1whDPOCMMwBsv79vobP5+eBY2OrO84C\nRlX3fmO/Owa4O7ZSIS6JtnjMduPwe7oKgMZljv8deNs518vMdgPeKXPZmkpuawVQdl/PLpRZ6hX7\nD+oFpKxQXxnJHFdlWuAf6P82M8OPd7aZtXfOraxp4FVI6rjMrA7+yfeEc25s8sONW7rGdaZz7mIA\n59zzZjYiSfGXv/9GQGf83i4H1MZnWEuXopZvCVP689rYC3xFSswszzlXYmYRoPQxdhBwkpndDjQC\nNprZWldJP/hEpGhcgUvzuPrjzxRsAr41s/fx+yKX1ST2LUnVuMysEDgmdtv+F/0S8lWx7+eY2VJg\nD/zSQJGKhGH+EYa5RhjmFVk5hwjDXCEM84IwzAFC9n5freezc26tmU3Eb93pA7St4DZXALuW+Xmz\n9wjgEWCRc+6+6gSaqysRSjM7jwODnXPl90c15Pc/7oA4b3MmfonMbmZWD1/co2xFzaOAT5xzX9cw\n5nikYlxlb/u3jJhzbr5zLuKca+6ca4ZfPtk6RQmEVI3rceBj59w9cdx3KqR7XCvM7HAAM+sCfFrN\neOPVB/inc65Z7PGxG/B5mSVf7WPPk1pAX3wRHNjy33ocUBj7/kxgLIBz7rDYfTQH7gZuTUUCISYV\n4yqrsuulenVFOse1nNibsfn9ix2AhQmPoGJJH5eZdcNPSno459aVOd44djuYWXNgd/zeW5HywjD/\nCMNcIwzzimyfQ4RhrhCGeUEY5gBheL9P5Pk8ArgXv+KiohVG44BTzKyemTWLxTwDwMxuBrZ1zl1a\n3YBzNYngAJxzK5xz91dw+e3AUDObTZx/I+fcRuD/8NU8F+ALWHxS5ip9SfFWBlIwLgAzGwNMBfYw\ns+VmVtGbkSN1H3aSPi4zOwQ4Fehsvl3RnNgLRmmLmC/xL26vmtnrW7qtBKR1XMC5wD/MF5C5OfZz\nKvQFXip37AV+L3QzC19JfAGw1Dn3cuz4ljLatwFHmdkioAswNHnhxi3p49rSY83MPsdXkj4z9rzb\ns7LbSVA6x/UA8Eczm4/f6zcitnwvFVLxOLwP+AMw0TZv7XQYMNd8+7xngfNcams9SPZi6Hg6AAAA\n30lEQVQKw/wjDHONMMwrsn0OEYa5QhjmBWGYA4Th/b7Gz2fn3Bx8gcqRFd6wcx/HYv0YX7zxAuec\nM7Od8dvF9irzfD8r3oAtQ1bTiEgOiJ3FuNw51yPoWJJJ48ouYR2XiEgYhOE1WmPIDGEYQ1XMbCf8\nVodUnWyqUK6uRBARERERERHJSmZ2OvABfkVBeu9bKxFEREREREREJB5aiSAiIiIiIiIicVESQURE\nRERERETioiSCiIiIiIiIiMRFSQQRERERERERiYuSCCIiIiIiIiISFyURRERERERERCQu/w/8oEbX\ncAw4PwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1fae50d7630>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def plot_hilo(ax, start, end, data):\n",
" ax.plot([date2num(start), date2num(end)],\n",
" [data.loc[start]['High'], data.loc[end]['High']],\n",
" color='b')\n",
" ax.plot([date2num(start), date2num(end)],\n",
" [data.loc[start]['Low'], data.loc[end]['Low']],\n",
" color='b')\n",
"\n",
"f, axarr = plt.subplots(1, 2)\n",
"\n",
"ax_aapl = axarr[0]\n",
"ax_fb = axarr[1]\n",
"\n",
"# Plot the AAPL trend up and down\n",
"ohlc_dataframe(AAPL, ax=ax_aapl)\n",
"plot_hilo(ax_aapl, datetime(2016, 3, 1), datetime(2016, 4, 15), AAPL)\n",
"plot_hilo(ax_aapl, datetime(2016, 4, 18), datetime(2016, 4, 26), AAPL)\n",
"ax_aapl.vlines(date2num(datetime(2016, 4, 26, 12)),\n",
" ax_aapl.get_ylim()[0], ax_aapl.get_ylim()[1],\n",
" color='g', label='Earnings Release')\n",
"ax_aapl.legend(loc=2)\n",
"ax_aapl.set_title('AAPL Price History')\n",
"\n",
"# Plot the FB trend down and up\n",
"ohlc_dataframe(FB, ax=ax_fb)\n",
"plot_hilo(ax_fb, datetime(2016, 3, 30), datetime(2016, 4, 27), FB)\n",
"plot_hilo(ax_fb, datetime(2016, 4, 28), datetime(2016, 5, 5), FB)\n",
"ax_fb.vlines(date2num(datetime(2016, 4, 27, 12)),\n",
" ax_fb.get_ylim()[0], ax_fb.get_ylim()[1],\n",
" color='g', label='Earnings Release')\n",
"ax_fb.legend(loc=2)\n",
"ax_fb.set_title('FB Price History')\n",
"\n",
"f.set_size_inches(18, 6)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As we can see above, the market broke a prevailing trend on Apple in order to go down, and ultimately predict the earnings release. For Facebook, the opposite happened. While the trend was down, the earnings were fantastic and the market corrected itself much higher."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Formulating the Question\n",
"\n",
"While these are two specific examples, there are plenty of other examples you could cite one way or another. Even if the preponderance of evidence shows that the market correctly predicts earnings releases, we need not accuse people of collusion; for a company like Apple with many suppliers we can generally forecast how Apple has done based on those same suppliers.\n",
"\n",
"The question then, is this: **how well does the market predict the earnings releases?** It's an incredibly broad question that I want to disect in a couple of different ways:\n",
"\n",
"1. Given a stock that has been trending down over the past N days before an earnings release, how likely does it continue downward after the release?\n",
"2. Given a stock trending up, how likely does it continue up?\n",
"3. Is there a difference in accuracy between large- and small-cap stocks?\n",
"4. How often, and for how long, do markets trend before an earnings release?\n",
"\n",
"**I want to especially thank Alejandro Saltiel for helping me retrieve the data.** He's great. And now for all of the interesting bits."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Event Studies\n",
"\n",
"Before we go too much further, I want to introduce the actual event study. Each chart intends to capture a lot of information and present an easy-to-understand pattern:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAFwCAYAAAB+YSfRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9//HXdyaTSTLZSICwb+pFRAIJsi8GUNyxqIj7\nUlu1anvb/qoUr1VwudfeVlzaWltrrVqvooiIRSkoxn1BURaFgGjCGkhCyL7MZL6/PyYZs5OYwGR5\nPx+P85g53/mecz4zo+Gdb77nHGOtRUREREREWs4R6gJERERERDobhWgRERERkVZSiBYRERERaSWF\naBERERGRVlKIFhERERFpJYVoEREREZFWapcQbYw50xizzRiz3RizoJHXhxtjPjDGlBtjflnvtUxj\nzEZjzOfGmE/aox4RERERkaMprK07MMY4gD8Cs4B9wHpjzCvW2m21uuUBPwV+0Mgu/ECatTa/rbWI\niIiIiBwL7TESPR7YYa3NstZ6geeB82t3sNbmWms/A3yNbG/aqQ4RERERkWOiPcJrf2B3rfU91W0t\nZYG1xpj1xpgft0M9IiIiIiJHVZunc7SDKdba/caYXgTC9FZr7XuhLkpEREREpCntEaL3AoNqrQ+o\nbmsRa+3+6sccY8zLBKaHNAjRxhjbxjpFRERERFrEWmuae709pnOsB443xgw2xoQDlwArm+kfLMgY\nE2WMia5+7gFmA1ua2tBaq6WTLnfddVfIa9Ci7647Lvr+Ou+i765zL/r+OvfSEm0eibbWVhljbgHW\nEAjlT1hrtxpjbgi8bP9qjEkCPgViAL8x5j+Bk4BewMvVo8xhwLPW2jVtrUlERERE5GhqlznR1trV\nwPB6bX+p9fwAMLCRTYuBMe1Rg4iIiIjIsaJLy8kxkZaWFuoS5HvSd9e56fvrvPTddW76/ro+09J5\nH6FmjLGdpVYRERER6byMMdhjcGKhiIiIiEi3ohAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIi\nIiIiraQQLSIiIiLSSgrRIiIiIiKtpBAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQ\nLSIiIiLSSgrRIiIiIiKtpBAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQLSIiIiLS\nSgrRIiIiIiKtpBAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQLSIiIiLSSgrRIiIi\nIiKtpBAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQLSIiIiLSSgrRIiIiIiKtpBAt\nIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQLSIiIiLSSgrRIiIiIiKtpBAtIiIiItJK\nCtEiIiIiIq2kEC0iIiIi0kphoS5ARERERDq+9Mx00jPTg8/ThqQBkDYkLfi8OzHW2lDX0CLGGNtZ\nahURERHpysxig72r6+YyYwzWWtNcH03nEBERERFpJYVoEREREZFWUogWEREREWmldgnRxpgzjTHb\njDHbjTELGnl9uDHmA2NMuTHml63ZVkRERESko2lziDbGOIA/AmcAI4FLjTEn1uuWB/wU+N332FZE\nREREpENpj5Ho8cAOa22WtdYLPA+cX7uDtTbXWvsZ4GvttiIiIiIiHU17hOj+wO5a63uq2472tiIi\nIiIiIaGbrYiIiIi0A92MpHtpjxC9FxhUa31AdVu7b7to0aLg87S0NNLS0lpao4iIiMhRVTssm8WG\n9GvSQ1qPtFx6ejrp6emt2qbNdyw0xjiBDGAWsB/4BLjUWru1kb53AcXW2ge+x7a6Y6GIiIh0Cl3+\njn5d/f214I6FbR6JttZWGWNuAdYQmGP9hLV2qzHmhsDL9q/GmCTgUyAG8Btj/hM4yVpb3Ni2ba1J\nRERERORoapc50dba1cDwem1/qfX8ADCwpduKiIiIiHRkOrFQRESkg9CJaSKdh0K0iIhIB9HVT0zT\nLwnSlShEi4iIyDHR1X9JkO6lPW62IiIiIiLSrShEi4iIiIi0kkK0iIiItNp1111HUlISycnJrdqu\noKCAP//5z02+vnjxYpYsWdKqfX6fbY6FrKwsRo0a1ertOur7kboUokVERKSBPXv2UFxc3OTr1157\nLf/+979bvd/8/HweffTRtpTWqRjT7P06pBNTiBYREZEGdu7cyaFDh5p8ferUqfTo0aPZfZSWlnLu\nueeSkpJCcnIyL774IgsXLmTnzp3wGCxYsACA++67j+HDhzN9+nQyMjJaVF9T2zz77LNMmDCB1NRU\nfvKTn+D3+1m4cGGd4N7Skd76+6q5c/LcuXMZN24co0aN4m9/+1uw/9NPP83o0aNJSUmBlwNtPp+P\n66+/npNPPpkzzzyTioqKVr2fxo5111138fDDDwf73HHHHfzhD39owacm7cpa2ymWQKkiIiLdA4tC\n++9eenq6zczMbLZPZmamHTVqVJOvv/TSS/b6668PrhcWFga3qXl/n332mU1OTrbl5eW2sLDQHn/8\n8faBBx5o9rhNbbN161Z73nnnWZ/PZ6219qabbrLPPPOM/fzzz+2pp54a3P6kk06ye/bsafYYTe3L\nWmvz8/OttdaWlZXZk08+2R46dMh++eWXdvjw4fbQoUPWWmtZgM3MzLRhYWF206ZN1lprL774Yvvs\ns8+2+P00dazMzEybmppqrbXW7/fb4447LnjcYyXU/30ebdW5s9lsqkvciYiICAC7du3irbfeAmDb\ntm306tWLxMREjDHMmTOH+Pj4Vu1v1KhR/OpXv2LhwoWcc845TJ06tcHo9rvvvsvcuXNxu9243W7m\nzJlzxP02tc2bb77JZ599xrhx47DWUl5eTp8+fbjiiivIyckhOzubgwcPkpCQQP/+/Zs9xptvvsmG\nDRvq7CspKQmAhx56iBUrVgCBaS87duzgk08+Yd68ed+NzkcGHoYNGxacFz127FgyMzNb/H6aOtb4\n8ePp2bMnGzduJDs7m9TU1CP+VUDan0K0iIiIADBo0CCuvvpqAN555x2GDBnCoEGDvvf+TjjhBDZs\n2MBrr73GHXfcwWmnncaVV14ZnBZxNFxzzTXcd999DdrnzZvHiy++SHZ2NvPnzz/ifqy1XH311Q32\n9fbbb7Nu3To+/vhj3G43M2bMoLy8PLhNfW63O/jc6XQG+7ZEc8f60Y9+xJNPPkl2djY//OEPW7xP\naT+aEy0iIiIN2O+mU37vPvv37ycyMpLLLruMW2+9lQ0bNhATE0NRUVGwz/Tp01mxYgUVFRUUFRXx\n6quvHrG2praZOXMmy5YtIycnBwicxLhr1y4ALr74Yp5//nleeukl5s2bd8RjzJo1q9F9FRQU0KNH\nD9xuN9u2beOjjz6qc+zgSHvZd5/R930/TR0L4Ac/+AGrV6/m008/5YwzzjjiMaT9aSRaREREgMAl\n2d544w0Atm/fTs+ePUlISMAYw9y5c+tMGbjssstIT08nLy+PQYMGsXjxYq699to6+9u8eTO33nor\nDoeD8PBwHnvsMRISEpgyZQpZj2axoHQBv/3tb7n44otJTk4mKSmJ8ePHB7c/55xzeOKJJ+jTp0+d\n/aakpDB//vwG24wYMYJ7772X2bNn4/f7CQ8P509/+hODBg3ipJNOoqioiAEDBgSnZTR3jKb2deaZ\nZ/LYY48xcuRIhg8fzqRJkwA46aST+K//+i9OPfVUwsKq49VPWnZ1jqbez1lnndXosQBcLhczZsyg\nR48eugJIiJij+SeV9mSMsZ2lVhERkbYyiw32rq77757eX9v4/X7Gjh3LsmXLOO64447acZrS5b8/\nY7DWNvvbiaZziIiIiHQiW7du5YQTTuD0008PSYCWAE3nEBEREelERowYEbjWtoSURqJFRERERFpJ\nIVpEREREpJUUokVERES6sK1bt+L3+0NdRpejEC0iIiLSBVlrufvuuxk5ciS//OUvQ11Ol6MQLSIi\nItLFVFZWcskll/Db3/4Way2PP/44f/3rX0NdVpeiEC0iIiLSxZx99tmsXLmS0tJSAEpLS/n5z3/O\nW2+9FeLKug6FaBEREZEuZtq0aTgcdWNeWVkZ559/Ptu3bw9RVV2LQrSIiIhIF3PnnXdyzjnnEBkZ\nWae9uLiYGTNmkJeXF6LKug6FaBEREZEuxhjDM888w4gRI3C5XMF2ay05OTmcccYZVFRUhLDCzk8h\nWkRERKQLcrvd/Pvf/6Znz54YY4LtXq+Xr776iquuugprbQgr7NwUokVERES6qJ49e7Ju3To8Hk+d\n9rKyMv71r39xzz33hKiyzk8hWkRERKQLO/HEE3n55ZcbzI8uLS3l/vvv54UXXghRZZ2bQrSIiIhI\nF3faaaexZMkSoqKi6rSXlZVx7bXXsn79+hBV1nkpRIuIiIh0AzfeeCPXXXddgyBdWlrK7Nmz2bVr\nV4gq65zCQl2AiIhIa6RnppOemR58njYkDYC0IWnB5yLSuAcffJBt27bxzjvv1Lk6R2FhITNnzuTz\nzz8nJiYmhBV2HgrRIiLSqdQOy2axIf2a9JDWI9KZOJ1OXn75ZVJTU9m5cydVVVUA+P1+9uzZw5w5\nc3jjjTdwOp1Ya7n//vv517/+xfvvvx/iyjseTecQERER6UY8Hg/r1q0jLi6uTntFRQWffPIJN998\nM16vl6uuuop7772XTz/9lNzc3BBV23EpRIuIiIh0M/3792ft2rWNzo9+5plnGD58OC+99BKlpaVE\nRETw3nvvhajSjkshWkRERKQbSk1N5Z///Gejl7779ttvKSsrA6CoqIg1a9aEosQOTSFaREREpJua\nO3cud9xxR4MR6dqstQrRjVCIFhEREenGFi5cSEpKCmFhTV9vYvfu3RQUFBzDqjo+hWgRERGRbsrv\n93Pbbbfx+eef4/P5muynedENKUSLiIiIdEPl5eXMmTOHRx99lNLS0mb7FhcX8+abbx6jyjoHhWgR\nERGRbmjnzp2kp6e3qK/f7+f1118/ugV1MgrRIiIiIt3QyJEjOXjwIEuWLGHIkCF4PJ5m++/cuZPi\n4uJjVF3HpxAtIiIi0k1FRUVxww038M0337Bq1SrOOOMMIiIiCA8Pb9A3MjKSDz/8MARVdkwK0SIi\nIiLdnDGGU089ldWrV5ORkcEtt9xCdHR0ndHpkpISzYuuRSFaRERERIIGDRrEAw88wMGDB3n44Yc5\n7rjj8Hg8VFVV8dprr4W6vA5DIVpEREREGoiMjOS6665jx44drF69mrPPPpvc3NxQl9VhNH1VbRER\nERHp9owxTJ06lVWrVmGtDXU5HYZGokVERESkRYwxoS6hw2iXEG2MOdMYs80Ys90Ys6CJPo8YY3YY\nY74wxqTUas80xmw0xnxujPmkPeoRERERETma2jydwxjjAP4IzAL2AeuNMa9Ya7fV6nMWcJy19gRj\nzATgz8DE6pf9QJq1Nr+ttYiIiIiIHAvtMRI9Hthhrc2y1nqB54Hz6/U5H3gawFr7MRBnjEmqfs20\nUx0iIiIiIsdEe4TX/sDuWut7qtua67O3Vh8LrDXGrDfG/Lgd6hERERGRo0QnFwZ0hKtzTLHW7jfG\n9CIQprdaa98LdVEiIiIi3ZHf76ewsJCCggIOHz7M4cMF7N9/mP37D3PwYAG5uQUwINRVhl57hOi9\nwKBa6wOq2+r3GdhYH2vt/urHHGPMywSmhzQaohctWhR8npaWRlpaWtsqFxEREelmvF4vBQUFwZB8\n6FAB+/Yd5sCBAg4cOEx+fjHWejAmDojH748jPLwfbvcIIiLiiYjIB34T6rfRrtLT00lPT2/VNu0R\notcDxxtjBgP7gUuAS+v1WQncDCw1xkwEDltrDxhjogCHtbbYGOMBZgOLmzpQ7RAtIiIiIg2Vl5dz\n+PDhYEjOzQ2MJGdnF5CTc5jCwgqMiQXisDYea+OIiBiG2x1HREQ8AwbE4nA4m9y/11ty7N7MMVJ/\ncHbx4ibjaFCbQ7S1tsoYcwuwhsAc6yestVuNMTcEXrZ/tda+Zow52xjzNVACXFu9eRLwsjHGVtfy\nrLV2TVtrEhEREemKrLWUlJQEQ3J+fmCKRc1Ui4MHD1NWZnE6A+HY2niMiSMioh9udxxRUfHEx0fr\nes/toF3mRFtrVwPD67X9pd76LY1s9y0wpj1qEBEREensmpqPnJ0dmGqRm1uAzxeOw/FdSHY6E4Ij\nyQkJ8YSFRSgkHwMd4cRCERERkW6hpfORa0Ky3x9PeHg/IiJOwu2Oo0+fOJzO8FC/DUEhWkRERKTd\nVFVVkZ8fuH/cxx9/TG7udyH54MHDFBUF5iMbEzhhD+Jxu4cRERGP2x13xPnI0nEoRIuIiIi0grWW\noqIi8vLyyMvLY//+XLKy8ti9O4+cnEIgFgbDY4/lYkw8ERH9iIiIx+OJo0cPzUfuKhSiRURERBpR\nXl4eDMoHD+aRlZXLnj157Nt3iMrKcByOnlibiDGJREYOJSoqkQEDelSPJP8ngwefE+q3IEeRQrSI\niIh0Wz6fj/z8fPLy8sjNzWP37lx27cpj3748Cgq8OByJQCAsR0ScSFRUIr16JRIW5g516RJiCtEi\nIiLSpVlrKSwsrDX9Io/MzFz27s0jJ6cIiMOYnlRVJRIePoCoqNFERSXqUnDSLIVoERER6RLKysrq\nTL/YtSuPXbty2b//ED5fBJCItT1xOBKJihpGZGQiAwbE60Q++V4UokVERKTT8Pl8HDp0qNb0i8Cy\nZ08uxcVVOByJWBsIy5GRI4iMTKR37wRNv5B2pxAtIiIiHYq1loKCguCo8r59gVHl3btzycsrxph4\nIBG/vyfh4QOJjBxDTEwiCQkeTb+QY0YhWkREREKitLS03tUv8tizJ696+kUkxiTi9yfidPYkMvJ4\noqISGTgwHmMcoS5dRCFaRERE2p/f76eoqKjW3fkKyMkpIDu7kIMHC8DAzTc/Umv6RSKRkSOJikok\nKSlBd+WTDk8hWkRERFrFWktZWVkwIBcUFHDoUCH79xdw4EABubkF5OeXAB6MicPawOJ09iQi4jjc\n7jiI/QmDBi3Q9AvptBSiRUREpI7KykoKCwtrjSIXkp1dUH3r6gLy8grxesNwOOIwJo6qqliMicPt\n7kNERBxudxwDB8YccdqFArR0ZgrRIiIi3Uj9aRYFBYHpFTUBOSengOJiL05nICD7/bFYG0d4+EDc\n7pOJiIgjKSlW0y2k21OIFhER6SLqT7MI3GCkIDiKnJNTe5pFLBBHVVUcYWGJREQMw+2OJTY2jsTE\nKI0SixyBQrSIiEgn4fV66wTk/PxAOM7O/m6ahc8XFgzIfn9ccJqF2x1LREQcAwbE6OYiIu1AIbob\nczgcXHHFFTz99NMAVFVV0adPHyZNmsTKlStDXB189tlnPPPMMzz00ENt2k9GRgaXXHIJDoeDZcuW\nMXTo0Dbt7+233+b3v/89r776apv205SYmBiKioravJ+nnnqKzz77jEceeYS//OUveDwerrjiinao\n8PsrKCjg//7v//jJT35yzI/91FNP8emnn/KHP/zhmB+7to0bN7Jv3z7OOuuskNYhHUfN6HFpaWmd\nBeDll18LBuTc3EKKiysxJrbOyXou1wAiIkbidsfRu3esbioicowoRHdjHo+HLVu2UFFRgdvtZu3a\ntQwcODDUZQGBQD927FjGjh3b5n2tWLGCefPmcfvtt7d4G2tts3/KPJp/5jwa+77hhhvafZ/fR35+\nPo8++mhIQjR0jJOYvvjiCz799FOF6C7KWktlZWWDQFxaWkpRUSmHD5eSn1/C4cOlFBYGlpKScqx1\n43BEAYHF2igYDKtWJeB2DyUiIo6YmDgSEjTNQqSj0NXKu7mzzz6bVatWAfDcc89x6aWXBl8rLS3l\nuuuuY+LEiYwdOzY48pqVlcX06dM55ZRTOOWUU/joo4+AwAjtjBkzmDdvHiNGjODKK69s9JgzZszg\n5z//OSkpKSQnJ/Ppp58CsHjxYq666iqmTp3KVVddxdtvv815550HQElJCT/84Q9JTk5mzJgxvPzy\nywCsXbuWyZMnc8oppzB//vzg6E2N119/nYceeog///nPzJo1C4AlS5YwatQokpOTefjhh4Pv6cQT\nT+Tqq69m1KhR7Nmzp85+Vq9ezYgRIzjllFNYvnx5sH39+vVMnjyZsWPHMnXqVHbs2AHAqaeeyqZN\nm4L9pk2bxubNm3nnnXdISUkhNTWVsWPHUlJS0uz38/vf/57x48czZswYFi9eHGyfO3cu48aNY9So\nUfztb38Ltj/55JMMHz6ciRMn8v777wfbFy9ezJIlS4Kf/69//WsmTJjAiSeeGOxXVlbG/PnzOfnk\nk7nggguYOHEiGzZsaFDT0KFDOXToEBD4a8GMGTPqfH+TJ09m+PDhdeqqsXDhQr755htSU1NZsGAB\nALfeeiujRo1i9OjRvPDCC41+Ds8++ywTJkwgNTWVn/zkJ1hrAbjpppsYP348o0aNqvP5rF+/nilT\npjBmzBgmTpwY/Jz37t3LWWedxfDhw4PHr2/Dhg2kpaUxbtw4zjrrLA4cOEBGRgYTJkwI9snKyiI5\nOTn4GdTv39Tn7PV6ufPOO3nhhRdITU3lxRdfbLQG6Th8Ph+FhYVkZ2fzzTffsGXLFj755BPeeiud\n5ctf4+9/X8aDDz7NokWP8YtfPMCPf3wvN974AP/v/z3FnXeu4v77P+bhh3fy178W8NxzLt54oy+b\nNiWzf/8sKivnExNzMwMH3sHgwQsYOPCnDBx4HQMHXsqgQecDMGDARHr1GkFMTD/Cw3U3PpGORCPR\n3ZgxhksuuYTFixdzzjnnsGnTJq677jreffddAO677z5mzZrFE088QUFBAePHj+e0004jKSmJN954\ng/DwcL7++msuvfRS1q9fDwRG2b766iv69OnDlClT+OCDD5g8eXKDY5eVlfH555/z7rvvcu2117J5\n82YAtm7dyvvvv094eDhvv/128B+Me+65h/j4+GAwrbkd7L333subb75JZGQk//u//8sDDzzAb37z\nm+BxzjrrLG688UZiYmL45S9/yYYNG3jqqadYv349VVVVTJgwgbS0NOLj4/n666955plnGDduXJ1a\nKyoquP7660lPT2fYsGHMnz8/+NqIESN47733cDgcvPnmmyxcuJBly5bxox/9iCeffJIHH3yQ7du3\nU1FRwahRo5gzZw6PPvookyZNorS0lIiIiCa/n7Vr17Jjxw4++eQTrLXMmTOH9957j6lTp/Lkk08S\nHx9PeXk548aN48ILL6SiooJFixbx+eefExsbS1paGqmpqY3uu6qqio8//pjXX3+dRYsWsXbtWh59\n9FESEhLYsmULX375JSkpKU3+d9PU+ubNm/n4448pKioiJSWFc889lz59+gRfv//++/nyyy+D4Xz5\n8uVs2rSJzZs3c/DgQcaNG8epp55KUlJScJtt27axdOlSPvjgA5xOJzfffDPPPvssV1xxBf/93/9N\nfHw8fr+fWbNmceGFFzJ8+HAuueQSXnzxRVJTUykuLg5+zhs3buSLL77A5XIxfPhwfvazn9G/f//g\nsXw+Hz/96U9ZuXIliYmJvPDCC9x+++088cQTeL1esrKyGDx4MEuXLuWSSy7B5/Pxs5/9rNH+TX3O\nd999d3CajRxbfr+f8vLy4MhwSUlJ9WNgRDg/PzBSXFAQWC8qKqWszIvDEYUxHmpGif3+wEhxWFgi\nLtdAXK4oXK4o3O4ooqOjcDpdoX6rInIMKER3cyeffDKZmZk899xznHPOOcERPoA1a9bw6quv8rvf\n/Q4IXDd0165d9O3bl1tuuYUvvvgCp9MZHH0FGD9+PH379gVgzJgxZGZmNhqia0a8p02bRlFREYWF\nhQDMmTOH8PCGl0164403WLp0aXA9Li6OVatW8dVXXzFlyhSstXi9XiZNmtTs+33vvfeYO3duMFRd\ncMEFvPvuu5x33nkMHjy4QYCGQIgbNmwYw4YNA+CKK67g8ccfB+Dw4cNcddVV7NixA2MMPp8PgIsu\nuoh77rmH3//+9zz55JNcc801AEyZMoVf/OIXXH755VxwwQV1Alx9a9asYe3ataSmpmKtpaSkhB07\ndjB16lQeeughVqxYAcCePXvYsWMH+/fvZ8aMGSQkJAAwf/78Ot9NbRdccAEAY8eOJSsrK/jZ/Pzn\nPwdg5MiRwZHW+mr/N1Lf+eefT3h4OImJicycOZNPPvmEOXPmNNn/vffeC/630Lt3b9LS0li/fj3n\nnntusM+bb77Jhg0bGDduHNZaysvLgyH7+eef5/HHH8fn85Gdnc1XX30FQL9+/YK/QERHRwf3NWvW\nrOD6SSedRFZWVp3vICMjgy1btnD66adjrcXv99OvXz8A5s2bx9KlS7nttttYunQpL7zwQrP9m/qc\npf34/X4g8BeG+tMmDh0qCQbigoJAW3FxOVB72oQHawOh2OmMweVKCgZilyuKxMQonE63Rn9FpFEK\n0cKcOXO49dZbSU9PJzc3N9hureWll17ihBNOqNN/8eLF9OnTh02bNlFVVUVkZGTwNbf7uxNanE5n\nMFTW19RopsfjaXHd1lpmz57Ns88+2+JtmtPcsZsKjr/5zW+YOXMmy5cvJysrKzi1ITIyktNPP50V\nK1bw4osv8tlnnwGwYMECzj33XFatWsWUKVNYs2YN//Ef/9HkMRcuXMiPf/zjOu1vv/0269at4+OP\nP8btdjNjxgzKy8ubrbO+mu+pue+oqX2FhYUFw0vNcWvU/l6PNK+8pce01nL11Vdz33331WnPzMzk\ngQce4LPPPiM2NpZrr732iJ/Dkf77tNZy8skn15kKU2P+/PnMmzePuXPn4nA4OO6449iyZUuT/Wsf\nr7nPWVrPWsvWrdt47rk3IAzuvHMVNfOIrQ2EY5crvk4gjomJIiEh8og3/xARaSn9NOnGaoLGD3/4\nQ+666y5GjhxZ5/Uzzjijzp+cv/jiCyAwlaJmtPnpp5+mqqqq1ceuGVV+7733iIuLIyYmptn+p59+\nOn/605+C64cPHw7O+925cycQmMPd1MhrjWnTprFixQrKy8spKSnh5ZdfZtq0aUDTwevEE08kKyuL\nb7/9FgihQlUwAAAgAElEQVTMHa9RUFAQHMl88skn62x33XXX8bOf/Yzx48cTFxcHwDfffMPIkSO5\n7bbbGDduHNu2bWtwvJo6zjjjDP7+978H5/Pu27ePnJwcCgoK6NGjB263m23btgXnpE+YMIF33nmH\n/Px8vF5vq+fbTpkyJfi9fPXVV2zZsqXRfkOHDg3+UvDSSy/Vee2VV16hsrKSvLw83n777QYj+/Wv\nPDJt2jSWLl2K3+8nJyeHd999l/Hjx9fZZtasWSxbtoycnBwgcHLirl27KCwsJDo6mpiYGA4cOMDr\nr78OwPDhw8nOzg7WWFxc3OL/RocPH05OTk7wM/X5fMHR7WHDhuF0OrnnnnuCU3qa619fzfcaExMT\n/MuLtN6uXbt44IG/c//96RQUBE7OHDjwegYOvIJBgy5g8OAzGTx4Gv36jaVXrxHExw/G4+lVPZ9Y\n/+SJSPvRT5RurGaUsH///txyyy0NXv/Nb36D1+slOTmZUaNGceeddwKBk7n+8Y9/kJKSwvbt25sc\nwW1uFDIiIoLU1FRuuukm/v73vx+x1jvuuINDhw4xatQoUlJSSE9Pp2fPnvzjH//g0ksvZfTo0Uye\nPJmMjIxm95OSksI111zDuHHjmDRpEtdffz2jR49utl63281f//pXzj77bE455ZQ683Vvu+02fv3r\nXzN27Njg6GyN1NRUYmNjg1M5AB566CFGjRrFmDFjCA8Pb/QKDTV1nH766Vx22WVMmjSJ5ORk5s2b\nR3FxMWeeeSZer5eRI0dy++23B6ew9OnTh0WLFjFx4kSmTZvGSSed1Oj7aep93nTTTeTm5nLyySdz\n5513MnLkyGD4r+3OO+8M/nIQFlb3j1nJycmkpaUxefJk7rzzzjrzoQESEhKYMmUKycnJLFiwgLlz\n5wZPKjzttNP43e9+R+/evetsM2LECO69915mz57N6NGjmT17NtnZ2cGTTEeMGMEVV1zB1KlTAXC5\nXCxdupRbbrmFMWPGMHv2bCoqKlr0ObhcLpYtW8aCBQsYM2YMKSkpfPjhh8HX58+fz7PPPsvFF198\nxP5N/bVlxowZfPXVVzqxsJVyc3N54oml3HnnS3z99SkMHXoDCQnHh7osEenGTEv//BtqxhjbWWqV\n5s2YMYMHHnigyZPeuop9+/Yxc+bMRkebOyK/34/X68XtdvPNN99w+umnk5GR0SAoN2Xx4sXBEzhF\n2ktxcTFr1rzNqlVfYswU+vYdX+fEvcXGcFcX/behK7830PvrzA4fzuThHkOxd3XN9weBgQ9rbbNz\nEjUnWo657nCSzjPPPMMdd9zBgw8+GOpSWqy0tJQZM2bg9XoB+POf/9ziAC3S3iorK3n33Q958cWP\nqKgYQ79+t+ByRYW6LBGRIP0LKcfcunXrQl3CUXfllVc2eZ3sjio6Ojp4qcLv46677mrHaqS78vv9\nfPrpBp5//m0OHRpCUtL1REb2CHVZIiINKESLiBxjNTfwqLkcoQROvNy2LYPnnnuDzMwYevW6lCFD\n+h15QxGRENGJhV1YVVUVF154IUuWLGnxpc9E5Oi79tprGTBgQPDOm93dnj17ePDBJ/mf/1lHfv4Z\nDB16FTExCtAi0rFpJLoLu+uuu1i9ejX//ve/Wbt2Lc899xzx8fGhLkukW3vmmWdYvnw5ZWVlXH75\n5Vx11VU88sgjjd5kqKvLy8vjlVfe5J139uB2z2Do0NG6DJ2IdBr6adVFrVu3jiVLlgRvbfvWW28x\nYsSITnOlCJGuKCMjgxtvvJHS0lIAysrKePrpp0lJSQleh7w7KCkpYfny11iw4Anef78vAwf+lL59\nUxSgRaRT0U+sLig7O5sLL7yQsrKyYFtFRQX5+fkcPHgwhJWJdG+LFy+msrKyTltZWRnbtm0jOTm5\ny0/vqKysZN26d/jVr/7Iq68aeve+mYEDp9W5ZJ2ISGehEN3FVFVVcf7551NcXFynPSoqip///OdM\nnz49RJWJyB//+EfS0tKIiqp7qTa/309xcTGXX345N954Y4OgDbB58+Y6N37pTGquuLFw4R946qkD\nxMb+mMGDzyI8vPEbNYmIdAYK0V3MHXfcwZYtW/D5fMG2sLAwRo4cyX333RfCykQkISGBNWvWsGjR\nIiIjIxu83tT0jtzcXNLS0rjgggvq/L/d0Vlr2b59O3ff/WceeWQj1l7C0KHziIzUVUlEpPNTiO5C\n1qxZw8MPPxycb1kjOjqaV155BafTGaLKRKSGMYZbb72Vt956i969ezc4obD+9A6/389FF11EUVER\nRUVF/POf/wxR5a2zd+9eHn74Ke67by15eaczdOg1xMb2D3VZIiLtRiG6i9i3bx8XX3xxnXnQAJGR\nkSxbtoy+ffuGqDIRacyECRPYunUr06dPb3Z6x8SJE1m/fj1er5eSkhIWLlzYoUejDx06xFNPLeO/\n/ut5tm5NZsiQn5CY+B/d4k6lItK9KER3AT6fj/PPP5+SkpI67VFRUfziF79g1qxZIapMRJrTkukd\nGzZsqPPXpY46Gl1aWsorr6zmttv+xrvv9q6+4kaqrrghIl2Wfrp1AQsXLuSrr75qMA969OjR3H33\n3SGsTESO5EjTO6qqquqsd7TRaK/XS3r6u9x66x9ZscJP7943M2DAdJzO7nfdaxHpXhSiO7nVq1fz\npz/9qcE86JiYGF5++WXNgxbpJJqb3lFfRxiN9vv9bNjwOQsX/oEnn9yPx3MdgwefrStuiEi3oRDd\nie3du5f58+c3Og96+fLlJCUlhagyEfk+aqZ3TJ8+HZer6Wsnh3I02lrLjh07uPfex3jooc+pqprH\n0KEXExWVeMxrEREJJd32u5Py+XzMmTOn0XnQv/rVr0hLSwtNYSLSJh988AFvv/02Xq+32X41o9HX\nXHPNsSmMwAnMy5at5bPPioiJOY2hQ4frhEER6bYUojup2267jW3bttWZL+lyuUhJSeGuu+4KYWUi\n8n3l5uZy/vnnN/jrUmNqRqOvuOIKwsKO7o/y/Px8Xn11HW+9lYnLdSpDhuiEQRERhehOaNWqVTz2\n2GMN/qGNjo5m+fLlOBz6x02kM3rggQcoKCjA4/E0+CtTY472aHRpaSlvvvkur7zyBdZOYMCA83TC\noIhINYXoTmb37t1cdtlljc6DXrFiBb179w5RZSLSVosWLeKCCy5g48aNrF+/no8//pjt27cDgb80\nlZaW1pkHfbRGo71eLx988Akvvvg+JSUj6dv3ZsLDo9tt/yIiXYFCdCfi9Xo577zzGoxQeTwebrvt\nNqZPnx6iykSkPbjdbsaNG8e4ceP40Y9+BARO5Nu9ezcbN27kiy++4IMPPmDTpk0cPHiQqKgoDhw4\nwPPPP88VV1zR5uP7/X42bdrM//3fOg4c6EdS0g/p2bNnm/crItIVKUR3Ir/61a/YsWNHg3nQqamp\n3HHHHSGsTESOFmMMgwYNYtCgQZx33nnB9tLSUrZs2cLGjRsZPXp0m4+zc+dOnntuLdu3u0hMvJCh\nQwe1eZ8iIl2ZQnQn8eqrr/L44483mMYRGxuredAi3VBUVBTjx49n/PjxbdrP/v37Wb78DT755DDR\n0acxdOiJuuKGyDHitxa/9QO23nN/g3VbvW6x+Pluvc7rNN7fEtifrbUe3N40sT2N9K9+vbQsF9xx\nIfzkOoZ2CdHGmDOBhwhcd/oJa+1vG+nzCHAWUAJcY639oqXbdifWWoYPH84tt9zCT3/6U4wx7Nq1\ni8svv7zRedCvvPKK/twqIq12+PBhVq16izfe2InLdSqDB6ficHStmzMFQkgVlVVefP7A4g0++oJt\nPvvdY5WtXrdeqqwvuF5Vs1C9WC9+fFThxV/d5q9ZTGDdmkAfv6l+Xr3YOosP66h+7vAGn+Pwgkni\nHt/xOHzROKo8OKuicVZ5CPNHE2Y9uGw04Xhw4cFtonEbDxGOaNwOD5HOaCKdHqLCookM8+BxRRPl\niiKsi33H7aWyyktJZTGlvhJKfYHHsqpiyqqKqfCXUGGLKbfFVNoSKinGSzE+RwleU0yVs4QqRzFV\nzmL8YSX4w4qxrmJweliMB0wgqGICAfS7dQsGsCaw4ABjwDoIvFBv3Tiq+373umni9cAvwnW3N82t\nm+p16m3Pd+21X7cRFkp1DlabQ7QJXOfoj8AsYB+w3hjzirV2W60+ZwHHWWtPMMZMAB4DJrZk2+4m\nKyuL3bt3c/vtt7NmzRr+8Y9/cO655za4I2FUVBS33347U6ZMCVGlItIZlZWVVV9x43P8/vH07/9T\nwsLcx7wOvx+8XqiogMrK75ba6/Wf1+9/4AepED6Qux2DoDqA4vCCwwdOb2DxO8DhAusCE1hMzaMj\nDIML43dhHNWPuDC2+tGE4cCFg8C6AxcO6wq2BZZAHycuXEThxIXTunCaQF8nLpyE4cRFWHW/2o9h\nuHD6XYQ5wgjzV7c5XLisi79xCpf5X6fMllBmiymzJZTbYioooYLAYyXFlHCAw+zEZ0rwmWKqTAlV\npgS/KcZvSrCOYqwpAUcJ+NzgjcZ4PY2Hc38gnLtqwjmBUO42jYRzp4col4fo8GjCj9FVWxqG3WLK\nqkpaFHZ9zmL8jpKGYddVAo4qcERjTDTGeHCYaJzGg9NEE2YCv7SEEY2LwC8uHnrhttW/uNhoIqyH\nSBtNlI0m0nqI8nv4k2MI/4+DODA4CARch3HgwHz3vOavPqZ66SQOH87k4R5DQ11GyLXHSPR4YIe1\nNgvAGPM8cD5QOwifDzwNYK392BgTZ4xJAoa2YNtuZePGjYSHh1NYWMgbb7zBgAEDcDgcDeZBjx8/\nnoULF4awUhHpTHw+Hx9++AlLl75HcfEI+va9Cbc7psXbV1W1PPA2tl6/zecDlwvCwwOL2133ucv1\nXZvHAwkJ371e06fY8RzP29lcY98hzO/CVR1KXcZFmD+McOPCYRzgJLB0NuYAx9kT2m13fmspt2UU\n22JKbQmltphyW1InnJdTTGUwpBdQbPbio6ReQK8Vzh0lYIrBTzCcG180Dl/DcF4zel4TzjHTecb+\nTzuE3UDgbUnYjawOvDVh1+OPxmOjCScch9tAe/4+aUqItp523KF0NO0RovsDu2ut7yEQrI/Up38L\nt+1WPv/88+DVNyoqKhrtExcXx7JlyzQPWkQaZS2UlkJxMRQWWjZs2MHKlV9w4EBvIiNvxOGIJTu7\n+VHe+iHY2oZht7H18HCIj2+6T81zlyvwl+S2GQ5mF4Ps4Pb42Lo8hzFEuaKIckW1+74rqyop9hdT\n6g+E8tLqkfMyW0yFrQ7l1Y9eSigweQBUUBj6sCvyPYXqxMLv9aNz0aJFwedpaWld8tbW77//fp1R\n5/oiIyNZuXIliYmJx7AqETlaqqqgpCQQeI+0FBW1rF9pKUREQFSUxe8vxO9PIDJyDh5PRIPAGxEB\nsbFHDshH+aaI0smFO8NJiEwgITKhxdssNoYf2bePYlUiLZeenk56enqrtmmPH4t7gdrXQhpQ3Va/\nz8BG+oS3YNug2iG6q9q8eXOzr0dERBAV1f6jCCJyZJWVLQuxrVkqKgLTFaKj6y4xMQ3bYmOhX7+G\n7fWXqChwOsHnq+K11z7k9dc3UlZ2PImJk4mJ6Rvqj1FEpMOpPzi7ePHiI27THiF6PXC8MWYwsB+4\nBLi0Xp+VwM3AUmPMROCwtfaAMSa3Bdt2G0VFRRw6dKjZPvn5+UyaNIklS5Zwww036FJUItW8Xigv\nh7KyusuR2mqmPbRkxNfvrxtuGwu6NUvPnjBkyJEDb2Rke0xraFxYWBhz5pzJ7NlprF+/gVdeeY5v\nv00gNnYyCQkn6OeHiEgbtDlEW2urjDG3AGv47jJ1W40xNwRetn+11r5mjDnbGPM1gUvcXdvctm2t\nqbPavHkzkZGReL3eZvuVlZVx0003UVBQwIIFC45RdSIt5/U2HWBbEmy/T19rA4G0/hIR0Xybx9Oy\n0d3o6MC0hs6YOyMiIpg2bTKTJ0/gyy+/4l//eovt29cQHj6RpKTROJ2uUJcoItLptMssN2vtamB4\nvba/1Fu/paXbdlcbN248YoAOCwsjLCyMuXPnctlllx2jyqSrKy+H3NzAkpNT9/Hw4dYHW2h9mK1Z\nevQIhNrWbutSDjwip9NJcvIoRo06maysLNas+ZAPP3wLY06hT59xhIdHh7pEEZFOQ6eKdCAfffRR\ngxuq1KgJzxdeeCH33HMPQ4fq+ozSOL8/EHxrQnBjwbj+Y2VlYPpBr16Bx9rPjz++9UFYJ6F1bMYY\nhgwZwvXXD+GCC3JJT/+INWv+SGXlSfTqNQmPp1eoSxQR6fD0T10Hsn79+gZtNeH5oosu4p577mHI\nkCHHvjAJqfLypsNvY22HDn03J7cmCNc89u0Lo0Y1bI+J6ZzTFKTtevbsyUUXnctZZ83g448/ZeXK\np8jM7Etc3CTi44dq3rSISBMUojsIv9/PN998E1x3uVw4nU7mzZvH3XffrfDcRfj9kJ/fstHhmude\nb+OBuFevxgNxYqKmNkjreTweZs48lenTp7Bx4yZWrnydrCwnERGT6N375C53S3ARkbZSiO4gdu7c\nCXwXni+++GLuvvtuBg/WTQQ6qpobWuTltXzaxKFDgVHfxgJxv34wenTD6RQaJZZjKSwsjLFjU0lN\nTeHrr7/m9dc/ZMOGN3A6x9Onzym4XJGhLlFEpENQiO4gvv76a3w+H1deeSWLFy9m0KBBR95I2kVV\nFRQUBAJuzZKf3/x6TZvTGTgRrlevhvOJk5M1SiydlzGGE044gRNOOIHs7GzefPND3nrrEXy+USQl\nTSSyFTfVEBHpihSiO4jTTjuNAwcO6E6EbVBefuTw21gYLioKjPYmJAQCcULCd0uPHjBgQCAQ126r\neYzUoJx0A3369OHyy+cyZ04R77//CatW/Y3s7MEkJEwiNnag5k2LSLekEN1BuFwuBWgCUySKihof\n9T1SGPb5Ggbg2usnnVR3vaZPfHxgRFlEmhcTE8OZZ85i5sxpbNjwBStXriAzMwqPZxK9eo3AGEeo\nSxQROWYUojuApUth9+7AvNeaxeGou94eS3vvs6X7s/a76RItGSmOimp8RDghITAtYvjwhq8nJAS2\n04CYyNEXHh7OxInjGT/+FDIyMli16kO2bFlLWNhE+vRJISzMHeoSRUSOOoXoDiAvD/bvD4TN2ovf\n37CtrUso9mkMxMXVDcTHHQfjxjUcMe7RQ3OGRToLh8PBiBEjGDFiBHv27GHt2g959923sTaFpKQJ\nRETEhbpEEZGjRiG6A7jpplBXICLSNgMGDODaa+cxd+5h3nnnI15//TGys48nMXEyMTF9Q12eiEi7\nU4gWEZF2Ex8fz5w5ZzJ7dhrr12/glVee49tvE4iJmURi4n/oJEQR6TIUokVEpN1FREQwbdpkJk+e\nwJdffsW//pVORsYa3O5JJCWNxunUvC0R6dwUokVE5KhxOp0kJ49i1KiTycrKYs2aD/noo7eAU+jT\nZxzh4dGhLlFE5HtRiBYRkaPOGMOQIUO4/vohXHBBLunpH7FmzR+prDyJXr0m4vH0DnWJIiKtoot6\niojIMdWzZ08uuuhcHnzwp1x1VRxe79N8++0/yc//BmttqMsTEWkRjUSLiEhIeDweZs48lenTp7Bx\n4yZWrnydzEwHkZGT6N17FA6H7oIkIh2XQrSIiIRUWFgYY8emkpqawtdff83rr3/Ihg1v4nSOp0+f\nU3C5IkNdoohIAwrRIiLSIRhjOOGEEzjhhBPIzs5m3bqPWLfuYXy+ZJKSJhIZmRDqEkVEghSiRUSk\nw+nTpw+XXfYDzjuviPff/4RVq/5GdvZgEhImERs7UNebFpGQU4gWEZEOKyYmhjPPnMXMmdPYsOEL\nVq5cQWZmJB7PZHr1GgHK0iISIgrRIiLS4YWHhzNx4njGjz+FjIwMVq36kC1b1sJQyMxcC4TjdLpw\nOFy1Hptv02i2iLSFQrSIiHQaDoeDESNGMGLECPbu3ctTf/sFP/pRJBUVXsrKiigr81JeHljKyiop\nL/dSUfHdUlpaSUWFF6/Xh7VOHI5wwIUxLsBV/Twca11YG1i3Nhy/v3UB3el0YYxTQV2kC1OIFhGR\nTql///4ATJ06tdXbWmvx+Xx4vV4qKyvxer11lvptFRWVVFRUUFZWHAzpNYG8dlAvLw+0VVZ68fks\nxnwX0APPw4PhPBDQXUAgpEPdME5fKCrah8eTpMv9iXRACtEiItLtGGNwuVy4XC6ioqKOyjGqqqrw\n+XwNAnlTob2y0ktZWQnl5YcpK/Pyl53g8axgz558oDfW9iM8vB+xsf2JiuqJMbpfmkgoKUSLiIgc\nBU6nE6fTidvt/l7bX7kY7r77JiorK8nOzmbPnr1s3/4NGRnvsWtXEcb0we/vR2RkP2Ji+hMZmaDp\nIyLHkEK0iIhIBxYeHs6gQYMYNGgQkycH2srLy9m3bx979+4jI2MbGRnr2LWrHGP64vf3w+PpT0xM\nP9zuOAVrkaNEIVpERKSTiYiIYNiwYQwbNoxp0wJtJSUl7Nu3j92795GRsZGMjNc4cMCPMf2wtj8e\nT7/qYB0T2uJFugiFaBERkS7A4/EE7/g4c2agrbCwMBist25dz/bte8nODsOY/lgbCNUxMf1wuY7O\nvHCRrkwhWkREpIuKjY0lNjaWE088kdNPD1yV5PDhw+zbt4+srH1s3foeX3+9n/LySIzpD9QE676E\nhUWEunyRDk0hWkREpJswxtCjRw969OjByJEjOfvsQLDOy8tj3759ZGbu46uv1vHNNwfw+WKBfjgc\ngWAdHd03cOk9EQEUokVERLo1Yww9e/akZ8+eJCcnM2cO+P1+cnJy2LdvHzt37mXbtk1kZubg9ydg\nbT/CwgKX2vN4euNwKEpI96T/8kVERKQOh8NBUlISSUlJpKSkAODz+Th48CB79+5l5859bN36KXv2\nHMLaXsFrWMfE9Mfj6aVrWEu3oBAtIiIiRxQWFka/fv3o168f48YF2rxeL/v372fv3n3s2JFJRsYH\n7N5dCCRVX8M6cKm9yMhEXWpPuhyFaBEREfleXC5X8BrWkyYF2srLy4PBOiMjg+3b32LXrlKM6Yu1\n/atvDtMPdEEQ6eQUokVERKTdREREMHToUIYOHcrUqYG20tJS9u3bx549+8jI2ExGxmoAdu/+E+AG\nIgA31kbg97sxJgKn001YWET1Enj+XZtbU0Yk5BSiRURE5KiKiori+OOP5/jjjyctLdD24OJf8T//\nM4+KigrKy8uDj+Xl5ZSWVlBcXERRUQXFxeWUlFRQUhJoz88vp6ysAnBhTCBw1w/i1gae1w/eCuLS\nnhSiRUREJCR69+79vbaz1lJZWVkneNcP46WlFRQVFVFc3LIgbkwE1gbCuLVu/P4IjFEQl6YpRIuI\niEinYozB7XbjdruJjY39XvuoCeKNBfCmgnhxcaCtpKScoqKKYBB3OBqOhjMYsrLewe2OrbM4neHt\n+ElIKClEi4iISLdTO4h/X80F8SeXw6WXejl48FsOHiwkJ6eQgwcL8XqdGBOLMbH4/YGlYdB262om\nnYBCtIiIiMj30GwQXw6zZ8+q02Stpby8nMLCwuCSn1/IwYO7OXiwkNzcQnJzC6ioAIcjFojF2kDQ\nDg+vG7TDwiIVtENMIVpERETkGDDGEBkZSWRkJElJSU32q6ioqBO0Dx8uJCdnPwcOZFQH7UJKSrw4\nHIER7Zqg7XLVDdoul0dB+yhSiBYRERHpQNxuN7169aJXr15N9qmsrKSoqCgYtAsKCsnJyeHAgZ3k\n5BSSl1dIUVE5xsTUCdphYXWDdnh4tE6O/J4UokVEREQ6mfDwcBITE0lMTGyyj8/naxC0c3PzOXAg\ni4MHC8jLK+TAgTLAgzGB6SNVVbE4nfWDdgwOh/OYvbfOQiFaREREpAsKCwujR48e9OjRo8k+VVVV\ndYJ2YWFhdbjew8GDgec5OSVYGxkM2iUlFpreZbehEC0iIiLSTTmdTuLj44mPj2+yj9/vp7i4uE7Q\nXvrvY1hkB6UQLSIiIiJNcjgcxMbG1r0mt0I0bZpJbozpYYxZY4zJMMb82xgT10S/M40x24wx240x\nC2q132WM2WOM2VC9nNmWekREREREjoW2no75a+ANa+1wYB2wsH4HEzjl84/AGcBI4FJjzIm1uiyx\n1qZWL6vbWI+IiIiIyFHX1hB9PvBU9fOngB800mc8sMNam2Wt9QLPV29XQxcwFBEREZFOpa0hure1\n9gCAtTYb6N1In/7A7lrre6rbatxijPnCGPO3pqaDiIiIiIh0JEcM0caYtcaYTbWWzdWPcxrpblt5\n/EeBYdbaMUA2sKSV24uIiIiIHHNHvDqHtfb0pl4zxhwwxiRZaw8YY/oABxvpthcYVGt9QHUb1tqc\nWu2PA682V8uiRYuCz9PS0khLSztS+SIiIiIizUpPTyc9Pb1V27T1EncrgWuA3wJXA6800mc9cLwx\nZjCwH7gEuBTAGNOnehoIwAXAluYOVjtEi4iIiIi0h/qDs4sXLz7iNm0N0b8FXjDG/BDIAi4GMMb0\nBR631p5rra0yxtwCrCEwfeQJa+3W6u3/1xgzBvADmcANbaxHREREROSoa1OIttYeAk5rpH0/cG6t\n9dXA8Eb6XdWW44uIiIiIhEJbr84hIiIiItLtKESLiIiIiLSSQrSIiIiISCspRIuIiIiItJJCtIiI\niIhIKylEi4iIiIi0kkK0iIiIiEgrKUSLiIiIiLSSQrSIiIiISCspRIuIiPz/9u48uqry3v/4+5uQ\nQJhSSUUhkgTaVRuGi0QGGRNRVFAQqmi4TIZSW6vipbdllCEu6BLXT/EWsC61wchiKjblJ2JEEA5L\ncVEGGUQKUiChlxgsRZlKEpI894+EU0ISyEnIOTnh81qLxdn7efbe38MOnC/P+e7nERHxkZJoERER\nEREfKYkWEREREfGRkmgRERERER81CHQAIiIivvBkefBkeQBIjE1ktmc2AElxSSTFJQUsLhG5sSiJ\nFmQcQwgAABdESURBVBGRoKJkWUTqApVziIiIiIj4SEm0iIiIiIiPlESLiIiIiPhISbSIiIiIiI+U\nRIuISJ3knOOdd97h9ddfD3QoIiLlKIkWEZE658iRI/Tp04eUlBQ++OCDQIcjIlKOkmgREakzLl68\nyNy5c+nYsSNbt26luLiY1q1bBzosEZFyNE+0iIjUCdu3b2fEiBF8/fXXXLhwAQAzIzo6OsCRiYiU\np5FoEREJqLNnz/Lzn/+cxMREDh8+zL/+9S9vW6NGjbj55psDGJ2ISMU0Ei0iIgHz3nvvMW7cOM6f\nP09eXl659rCwMCXRIlInKYkWERG/+/rrrxk/fjwej6fMyPOVzIzvf//7foxMRKRqlESLiIhfrV69\nmlGjRpGfn09hYeFV+xYXFyuJFpE6STXRIiLiV82bNyc8PJwGDa49jnPx4kWVc4hInaQkWkRE/Kp/\n//5kZ2fzs5/9jIiICMys0r75+flERUX5MToRkapREi0iIn7XrFkzfve73/HQQw8RHh5eab/GjRsT\nGhrqx8hERKpGSbSIiATEjh07eP/998nPz6+0T2RkpB8jEhGpOiXRIiLid0VFRYwZM8a7qMolDRs2\nJCIiwrvdokULf4cmIlIlmp1DRET87s033+TYsWNl9jVp0oSZM2dy//33M2bMGPbv30/Lli0DFGFg\neLI8eLI8ACTGJjLbMxuApLgkkuKSAhaXiJSnJFpERPzq5MmTTJo0ifPnz5fZ37JlSyZOnEhYWBi7\ndu0iPT2dRo0aBSjKwFCyLBI8lESLiIhfPffcc+XqoBs3bkx6ejphYWEAhISEkJKSEojwRESqRDXR\nIiLiN1u3buXPf/4zBQUF3n1hYWEMHDiQvn37BjAyERHfKIkWERG/qOxhwvDwcBYtWhSgqEREqkdJ\ntIiI+MXChQvJyckps69x48bMnTuXW265JUBRiYhUj5JoERGpdSdOnGD69OnlHiaMjo7m6aefDlBU\nIiLVpyRaRERq3TfffENoaCgNGzb07ouIiCA9PZ0GDfSMu4gEHyXRIiJS6zp16sSRI0d47LHHiIiI\noEGDBgwbNoyePXsGOjQRkWpREi0iIn4RFRXFO++8g8fjYfDgwbz66quBDklEpNr0HZqIiPhV9+7d\nycjICHQYIiI1opFoEREREREfKYkWkRteSEgIY8aM8W4XFRVx8803M2TIEADWrFnDSy+9VKVzDRo0\niJycHJKSkoiLiyvTNnToUJo1a3bd4q6p9PR0nn32WZ+O2bx5M4MHD66liEREgoeSaBG54TVp0oR9\n+/Z5l6Jev349bdq08bYPHjyYSZMmXfM8eXl5nDp1itatW2NmfO973+Ozzz4D4PTp0+Tm5mJmtfMm\nqqk68dS19yAiEghKokVEKBlBXrt2LQDLly9nxIgR3rbLR2xTUlJ47rnn6N27Nz/84Q/L1PZ6PB6S\nkpK828nJySxfvhyAjIwMfvKTn3jbzp8/z7333kvXrl3p3Lkza9asAWDHjh107tyZgoICzp8/T8eO\nHdm/f3+5eJcuXUqPHj1ISEjgqaeewjkHwC9/+Uu6d+9Op06dSE1N9fbfvn07vXv35o477uCuu+7y\nztd8/PhxBg4cyO23387kyZMr/LP58MMPiY+Pp2vXrmXe7/bt2+nVqxd33nknffr04dChQwAkJiay\nd+9eb7++ffvyxRdfVPpnLyISjGqURJvZTWb2kZkdNLN1ZhZZSb8/mNkJM9tbneNFRGqTmXkT3vz8\nfPbu3UuPHj3K9bkkNzeXLVu2sGbNmjKJZ2ZmJg888IB3u3///nzyyScUFxezYsUKkpOTvW2NGjVi\n9erV7Nixg40bN/KrX/0KgK5du/Lwww8zffp0Jk+ezOjRo2nfvn2ZWA4cOMDKlSv57LPP+PzzzwkJ\nCWHp0qUA/Pa3v2Xbtm3s2bMHj8fDvn37uHjxIsnJySxYsIDdu3ezYcMGGjVqBMCePXtYtWoVe/fu\nZeXKlRw/frzMtfLz83nyySdZu3YtO3bsIDc319sWHx/Pp59+ys6dO0lNTWXq1KkAjB8/nsWLFwNw\n6NAh8vPz6dSpk493RUSkbqvpSPQUYINz7nZgIzC1kn6LgftrcLyISK3q2LEjWVlZLF++nAcffNA7\nsluRoUOHAiVJ5DfffOPdv2XLFvr06ePdbtCgAX369GHFihXk5eURExPjPa9zjqlTp9K5c2fuvfde\ncnJyvOeaMWMG69evZ+fOnRWWkXz88cd8/vnndOvWjS5durBx40aOHDkCwIoVK7jzzjvp0qUL+/fv\nZ//+/Rw8eJDWrVuTkJAAQNOmTQkNDQXgnnvuoWnTpjRs2JD27duTnZ1d5loHDhygXbt2tGvXDoBR\no0Z527777jseffRROnXqxMSJE70j5o8++ihr166lqKiItLQ0nnjiiSrcARGR4FLTKe4eBhJLX6cD\nHkoS4zKcc5+aWWx1jxcR8YchQ4bwm9/8Bo/Hw8mTJyvtd/mqe5eS4qNHjxITE1Nu9b3HH3+cYcOG\n8cILLwD/HtFeunQpJ0+eZNeuXYSEhNC2bVvy8vIAOHnyJOfOnaOwsJC8vDwiIiLKnNM5x9ixY5k7\nd26Z/VlZWbz88svs3LmT5s2bk5KS4j1nZf8puPy9hIaGUlhYWK5PZcfOmDGD/v37k5GRQXZ2Nnff\nfTdQshLhgAEDWL16NatWrWLnzp0VHi8iEsxqOhLd0jl3AsA5lwu09PPxIiI1dilJHDduHLNmzaJD\nhw4+H3tlKcclffv2Zdq0ad5Sjkv9T58+TcuWLQkJCWHTpk1lRoB/8YtfMGfOHEaOHFnhSPQ999zD\nu+++yz/+8Q8Avv32W44dO8aZM2do2rQpzZo148SJE2RmZgJw++23k5ub601mz507R1FRUZXe349/\n/GOys7M5evQogLfG+9J7iI6OBvCWb1zy05/+lAkTJtC9e3ciI1WpJyL1zzVHos1sPXDL5bsABzxf\nQffKv/+smpoeLyLis0ujw9HR0TzzzDNV6nvl9ocffsjChQsr7Hep3vny/SNHjmTw4MF07tyZrl27\nEh8fD8CSJUsIDw8nOTmZ4uJievfuXe6Bxfj4eObMmcN9991HcXEx4eHhLFq0iO7du3PHHXcQHx9P\nmzZtvKUlYWFhrFy5kmeeeYYLFy7QuHFjNmzYcM33BiUj1W+88QaDBg2iSZMm9O3bl3PnzgEwadIk\nxo4dy5w5c3jwwQfLHJeQkOAdDRcRqY/sanV/1zzY7K9AknPuhJndCmxyzsVX0jcWWOOc+49qHu9m\nzZrl3U5KSirzoSIiEigFBQX06dOHbdu2BTqUOiMnJ4f+/ftz4MCBQIcidZSlGm5W/R070/sLLh6P\nB4/H491OTU3FOXfV+TxrmkTPA0455+aZ2WTgJudchTXNZhZHSRLdqZrHu5rEKiIi/rFkyRKef/55\n5s+fX2ZaP5HL1bck7Ep6f8HNzK6ZRNe0JnoeMMDMDgL3AC+WXriVmb1/WSDLgM+AH5nZMTNLudrx\nIiISvEaPHk12drYSaBGp12o0O4dz7hRwbwX7vwYeumz7P305XkREROofT5YHT5YHgMTYRGZ7ZgOQ\nFJdEUlxSwOISqY6aTnEnIiIiUiVKlqU+0bLfIiIiIiI+0ki0iIiIyHWgcpUbS41m5/CnymbniIuL\nK7dMrdQ9sbGxZGVlBToMERERuQ40O0c9GInOzs6udElaqTsqWsRBREREJFipJlpERERExEdKokVE\nREREfKQkWkRERETER0qiRURERER8pCT6BpWSksLMmTMDHYaIiIhIUFISXQctWrSIbt260ahRI8aN\nGxfocERERETkCkE/xV1FZs58lWPHvqu188fEfI8XXvgvn4+bN28ekydPvma/6OhoZsyYwbp167hw\n4UJ1QhQRERGRWlQvk+hjx74jLm52rZ0/K6t6587Pz69Sv6FDhwKwfft2jh8/ftW+8+bNY8GCBZw5\nc4bo6Ghee+017r777nL9du3axfjx4/nb3/7GwIEDNW+ziIiISA2onMOPrveiMF999RWLFi1i586d\nnDlzhnXr1hEXF1eu38WLFxk2bBhjx47l1KlTDB8+nD/96U/XNRYRERGRG0m9HImuKw4fPsy77757\naelItmzZwksvvYRzDjOjR48eJCYmVvv8oaGhFBQUsG/fPqKiooiJiamw39atWyksLGTChAkAPPLI\nI3Tr1q3a1xURERG50SmJrkU/+MEPytRA5+fnM2nSpOt6/ldffZXZs2ezf/9+7r//fl5++WVatWpV\npl9OTg7R0dFl9sXGxl63OERERERuNCrnCHLJycl88sknZGdnAzBlypRyfVq1alWutvrYsWN+iU9E\nRESkPlIS7UdVrYkuKioiLy+PoqIiCgsLyc/Pp6ioqFy/r776ik2bNlFQUEB4eDgRERGEhJS/pT17\n9qRBgwYsWLCAwsJCMjIy2LZtW43fj4iIiMiNSuUctejgwYOsWLHCWxO9efNmXnjhBW9NdM+ePRkw\nYEC54+bMmUNqaqp3Bo2lS5cya9ascouj5OfnM2XKFA4cOEBYWBi9evXijTfeAGDQoEH069ePKVOm\nEBYWRkZGBuPHj+f5559n0KBBPPLII2XOdXl/EREREbk6u94zRtQWM3MVxXopQb1cXZ0n+kZW0X0S\nERGR4GSphptVfz/XS/OWq84HXC+TaKl7dJ9ERETqDyXRqokWEREREfGZkmgRERERER+pnEP8QvdJ\nREQkuHmyPHiyPN7XSXFJACTFJXlf1xeqiZY6Q/dJREREgoVqokVEREREaoGSaBERERERHymJFhER\nERHxUb1csfB6FL7fSMXzVfXUU09x2223MX369ECHIiIiIhJQ9f7BwusxGXh1zxEXF0dubi45OTm0\naNHCu79Lly7s2bOHrKwsYmJiahTblQoKChg/fjzvv/8+4eHhjBgxgvnz5wc8Tj1YKCIiIsFCDxYG\nmJnRtm1bli9f7t23b98+Lly4gNlV70u1vf322+zevZusrCyOHj3K0KFD62ScIiIiIsFMSXQtGz16\nNOnp6d7t9PR0xo4dW6bPBx98QEJCApGRkcTGxpKamupt++Mf/0i7du04d+4cAJmZmbRq1Yp//vOf\nFV4vLCyMyMhImjdvTkREBImJidctzpSUFGbOnAnA5s2badOmDa+88gq33HIL0dHRvP3221W6loiI\niEiwUxJdy+666y7Onj3LwYMHKS4uZuXKlYwaNapMaUPTpk1ZsmQJp0+fZu3atbz++uu89957ADz2\n2GP07t2bCRMmcOrUKcaPH09aWhpRUVEVXi8hIYGtW7cye/bs6x7nlXJzczl79iw5OTm89dZbPP30\n05w+fdqn64qIiIgEIyXRfnBplHf9+vXEx8fTunXrMu39+vWjQ4cOAHTs2JHk5GQ2b97sbV+4cCEf\nf/wxSUlJPPzwwwwcOLDC63z77bcMGTKEtWvXsm7dujIj2m3atOHLL7+sUZxXCg8PZ8aMGYSGhjJw\n4ECaNm3KwYMHr3qMiIiISH1QL2fnuJKlBraud9SoUfTr14+jR48yZsyYcu1/+ctfmDp1Kvv27aOg\noICCggKGDx/ubY+MjGT48OHMnz+fjIyMSq+zatUq2rdvz3333UfXrl3p168fZsbYsWMpKiryJurV\njfNKUVFRhIT8+/9hjRs39padiIiIiNRnN0QSfT1m56iJmJgY2rZtS2ZmJmlpaeXaR44cyYQJE1i3\nbh1hYWFMnDixTM3z7t27SUtLY8SIETz77LNkZmZWeJ3CwkIuXrwIQIsWLdiwYQO9evVi2bJl/PrX\nv65xnCIiIiJSQuUcfpKWlsbGjRuJiIgo13bu3DluuukmwsLC2LZtG8uWLfO25eXlMXr0aF588UXS\n0tLIycnh97//fYXXGDRoENu3b+fNN9+ksLCQ0NBQevXqxaFDh2jcuHGN4xQRERGREkqia9Hl08O1\nbduWhISECttee+01ZsyYQWRkJHPmzOHxxx/3tk2bNo3Y2FiefPJJwsPDWbJkCTNmzODw4cPlrhcX\nF0dmZibp6elERUXRpUsXbr31VjZt2sTkyZP56KOPahSnL+9XREREpD7TYitVufZ1OMeNToutiIiI\nSLDQYisiIiIiIrWgXo5Ee7I8eLI83tdJcUkAJMUleV9fy/U4h/ybRqJFREQkWFRlJLpeJtFS9+g+\niYiISLBQOYeIiIiISC1QEi0iIiIi4iMl0SIiIiIiPlISLSIiIiLio6Bf9js2NlaLfASB2NjYQIcg\nIiIict3UaHYOM7sJWAnEAlnAY8650xX0+wPwEHDCOfcfl+2fBfwM+KZ01zTn3IeVXKvC2TlERERE\nRK4nf8zOMQXY4Jy7HdgITK2k32Lg/kraXnHOJZT+qjCBluDn8XgCHYJUk+5dcNP9C166d8FN96/+\nq2kS/TCQXvo6HRhaUSfn3KfAt5WcQ7UYNwD9YxK8dO+Cm+5f8NK9C266f/VfTZPols65EwDOuVyg\nZTXO8YyZ7Tazt8wssobxiIiIiIjUumsm0Wa23sz2Xvbri9Lfh1TQ3dei5deAds65O4Bc4BUfjxcR\nERER8buaPlj4VyDJOXfCzG4FNjnn4ivpGwusufzBQh/b9VShiIiIiPjFtR4srOkUd+8BTwDzgLHA\n/79KX+OK+mczu7W0DATgJ8C+yg6+1hsREREREfGXmo5EtwD+CLQBsimZ4u47M2sFvOmce6i03zIg\nCYgCTgCznHOLzewd4A6gmJIp8n5+qcZaRERERKSuqlESLSIiIiJyIwq6Zb/N7Fkz+2vpA44vBjoe\n8Y2Z/beZFZd+iyFBwsxeKv17t9vM/mRmzQMdk1ydmT1gZgfM7CszmxzoeKTqzOw2M9toZl+WftZN\nCHRM4hszCzGzz83svUDHIr4xs0gzW1X6mfelmfWorG9QJdFmlgQMBjo55zoB/y+wEYkvzOw2YAAl\npT8SXD4COpTOpHOIyhdWkjrAzEKAhZQsctUBGGFmPw5sVOKDQuBXzrkOQE/gad2/oPMcsD/QQUi1\n/A/wQelEGZ2Bv1bWMaiSaOAp4EXnXCGAc+5kgOMR38wHfhPoIMR3zrkNzrni0s2twG2BjEeuqTtw\nyDmX7Zy7CKygZHEsCQLOuVzn3O7S1+co+RCPDmxUUlWlA0aDgLcCHYv4pvRb1r7OucUAzrlC59yZ\nyvoHWxL9I6CfmW01s01m1jXQAUnVlM4r/nfn3BeBjkVqbByQGegg5Kqigb9ftv2/KAkLSmYWR8kD\n+H8JbCTig0sDRnroLPi0BU6a2eLScpw3zCyiss41neLuujOz9cAtl++i5AfxeUrivck5d5eZdaNk\nZpB2/o9SKnKNezeNklKOy9ukDrnK/ZvunFtT2mc6cNE5tywAIYrcUMysKfAu8FzpiLTUcWb2IHDC\nObe7tARVn3XBpQGQADztnNthZq8CU4BZlXWuU5xzAyprM7NfABml/baXPqAW5Zz7p98ClEpVdu/M\nrCMQB+wxM6OkFGCnmXV3zn3jxxDlKq72dw/AzJ6g5CvK/n4JSGriOBBz2fZtpfskSJhZA0oS6CXO\nuautwSB1S29giJkNAiKAZmb2jnNuTIDjkqr5X0q+Nd9Ruv0uUOmD2cFWzrGa0g9wM/sREKYEuu5z\nzu1zzt3qnGvnnGtLyQ9pFyXQwcPMHqDk68khzrn8QMcj17Qd+KGZxZpZOJBMyeJYEjzSgP3Ouf8J\ndCBSdc65ac65GOdcO0r+3m1UAh08Stcq+XtpjglwD1d5QLTOjURfw2Igzcy+APIB/WAGJ4e+4go2\nC4BwYH3Jlwlsdc79MrAhSWWcc0Vm9gwls6qEAH9wzlX6hLnULWbWGxgJfGFmuyj5N3Oac+7DwEYm\nckOYACw1szDgCJBSWUcttiIiIiIi4qNgK+cQEREREQk4JdEiIiIiIj5SEi0iIiIi4iMl0SIiIiIi\nPlISLSIiIiLiIyXRIiIiIiI+UhItIiIiIuIjJdEiIiIiIj76P+bhd3LjvwIqAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1fae4ffddd8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from pandas.tseries.holiday import USFederalHolidayCalendar\n",
"from pandas.tseries.offsets import CustomBusinessDay\n",
"from datetime import datetime, timedelta\n",
"\n",
"# If you remove rules, it removes them from *all* calendars\n",
"# To ensure we don't pop rules we don't want to, first make\n",
"# sure to fully copy the object\n",
"trade_calendar = USFederalHolidayCalendar()\n",
"trade_calendar.rules.pop(6) # Remove Columbus day\n",
"trade_calendar.rules.pop(7) # Remove Veteran's day\n",
"TradeDay = lambda days: CustomBusinessDay(days, calendar=trade_calendar)\n",
"\n",
"def plot_study(array):\n",
" # Given a 2-d array, we assume the event happens at index `lookback`,\n",
" # and create all of our summary statistics from there.\n",
" lookback = int((array.shape[1] - 1) / 2)\n",
" norm_factor = np.repeat(array[:,lookback].reshape(-1, 1), array.shape[1], axis=1)\n",
" centered_data = array / norm_factor - 1\n",
" lookforward = centered_data.shape[1] - lookback\n",
" means = centered_data.mean(axis=0)\n",
" lookforward_data = centered_data[:,lookforward:]\n",
" std_dev = np.hstack([0, lookforward_data.std(axis=0)])\n",
" maxes = lookforward_data.max(axis=0)\n",
" mins = lookforward_data.min(axis=0)\n",
" \n",
" f, axarr = plt.subplots(1, 2)\n",
" range_begin = -lookback\n",
" range_end = lookforward\n",
" axarr[0].plot(range(range_begin, range_end), means)\n",
" axarr[1].plot(range(range_begin, range_end), means)\n",
" axarr[0].fill_between(range(0, range_end),\n",
" means[-lookforward:] + std_dev,\n",
" means[-lookforward:] - std_dev,\n",
" alpha=.5, label=\"$\\pm$ 1 s.d.\")\n",
" axarr[1].fill_between(range(0, range_end),\n",
" means[-lookforward:] + std_dev,\n",
" means[-lookforward:] - std_dev,\n",
" alpha=.5, label=\"$\\pm$ 1 s.d.\")\n",
" \n",
" max_err = maxes - means[-lookforward+1:]\n",
" min_err = means[-lookforward+1:] - mins\n",
" axarr[0].errorbar(range(1, range_end),\n",
" means[-lookforward+1:],\n",
" yerr=[min_err, max_err], label='Max & Min')\n",
" axarr[0].legend(loc=2)\n",
" axarr[1].legend(loc=2)\n",
" \n",
" axarr[0].set_xlim((-lookback-1, lookback+1))\n",
" axarr[1].set_xlim((-lookback-1, lookback+1))\n",
" \n",
"def plot_study_small(array):\n",
" # Given a 2-d array, we assume the event happens at index `lookback`,\n",
" # and create all of our summary statistics from there.\n",
" lookback = int((array.shape[1] - 1) / 2)\n",
" norm_factor = np.repeat(array[:,lookback].reshape(-1, 1), array.shape[1], axis=1)\n",
" centered_data = array / norm_factor - 1\n",
" lookforward = centered_data.shape[1] - lookback\n",
" means = centered_data.mean(axis=0)\n",
" lookforward_data = centered_data[:,lookforward:]\n",
" std_dev = np.hstack([0, lookforward_data.std(axis=0)])\n",
" maxes = lookforward_data.max(axis=0)\n",
" mins = lookforward_data.min(axis=0)\n",
" \n",
" range_begin = -lookback\n",
" range_end = lookforward\n",
" plt.plot(range(range_begin, range_end), means)\n",
" plt.fill_between(range(0, range_end),\n",
" means[-lookforward:] + std_dev,\n",
" means[-lookforward:] - std_dev,\n",
" alpha=.5, label=\"$\\pm$ 1 s.d.\")\n",
" \n",
" max_err = maxes - means[-lookforward+1:]\n",
" min_err = means[-lookforward+1:] - mins\n",
" plt.errorbar(range(1, range_end),\n",
" means[-lookforward+1:],\n",
" yerr=[min_err, max_err], label='Max & Min')\n",
" plt.legend(loc=2)\n",
" plt.xlim((-lookback-1, lookback+1))\n",
" \n",
"def fetch_event_data(ticker, events, horizon=5):\n",
" # Use horizon+1 to account for including the day of the event,\n",
" # and half-open interval - that is, for a horizon of 5,\n",
" # we should be including 11 events. Additionally, using the\n",
" # CustomBusinessDay means we automatically handle issues if\n",
" # for example a company reports Friday afternoon - the date\n",
" # calculator will turn this into a \"Saturday\" release, but\n",
" # we effectively shift that to Monday with the logic below.\n",
" td_back = TradeDay(horizon+1)\n",
" td_forward = TradeDay(horizon+1)\n",
" \n",
" start_date = min(events) - td_back\n",
" end_date = max(events) + td_forward\n",
" total_data = fetch_ticker(ticker, start_date, end_date)\n",
" event_data = [total_data.ix[event-td_back:event+td_forward]\\\n",
" [0:horizon*2+1]\\\n",
" ['Adjusted Close']\n",
" for event in events]\n",
" return np.array(event_data)\n",
"\n",
"# Generate a couple of random events\n",
"\n",
"event_dates = [datetime(2016, 5, 27) - timedelta(days=1) - TradeDay(x*20) for x in range(1, 40)]\n",
"data = fetch_event_data('CELG', event_dates)\n",
"plot_study_small(data)\n",
"plt.legend(loc=3)\n",
"plt.gcf().set_size_inches(12, 6);\n",
"\n",
"\n",
"plt.annotate('Mean price for days leading up to each event',\n",
" (-5, -.01), (-4.5, .025),\n",
" arrowprops=dict(facecolor='black', shrink=0.05))\n",
"plt.annotate('', (-.1, .005), (-.5, .02),\n",
" arrowprops={'facecolor': 'black', 'shrink': .05})\n",
"plt.annotate('$\\pm$ 1 std. dev. each day', (5, .055), (2.5, .085),\n",
" arrowprops={'facecolor': 'black', 'shrink': .05})\n",
"plt.annotate('Min/Max each day', (.9, -.07), (-1, -.1),\n",
" arrowprops={'facecolor': 'black', 'shrink': .05});"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And as a quick textual explanation as well:\n",
"\n",
"- The blue line represents the mean price for each day, represented as a percentage of the price on the '0-day'. For example, if we defined an 'event' as whenever the stock price dropped for three days, we would see a decreasing blue line to the left of the 0-day.\n",
"\n",
"- The blue shaded area represents one standard deviation above and below the mean price for each day following an event. This is intended to give us an idea of what the stock price does in general following an event.\n",
"\n",
"- The green bars are the minimum and maximum price for each day following an event. This instructs us as to how much it's possible for the stock to move."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Event Type 1: Trending down over the past N days\n",
"\n",
"The first type of event I want to study is how stocks perform when they've been trending down over the past couple of days prior to a release. However, we need to clarify what exactly is meant by \"trending down.\" To do so, we'll use the following metric: **the midpoint between each day's opening and closing price goes down over a period of N days**.\n",
"\n",
"It's probably helpful to have an example:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAF6CAYAAABP8MBVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4VNX5wPHvi6AVZbcQEARcUNSKWBdcG6RV625VqtQF\nrLbaxa3uVUlatS7UWrX0pxbEui+1WjfUWrEiWre6o4IaUTDRsghK6wLn98cdYggJCTDJZPl+nmee\nzJx75p53htG5895z3xMpJSRJkiRJkurSptABSJIkSZKk5sEkgiRJkiRJqheTCJIkSZIkqV5MIkiS\nJEmSpHoxiSBJkiRJkurFJIIkSZIkSaoXkwhSMxYR90fE4bVs6xsRiyNilf87j4hXImKXVd1PPcbJ\nW8ySJKnwIuLMiLh6OdvfiYhd8zDOHyPil6u6n3qOlZeYpebKA3UpTyKiLCIWRsT8iFiQ+1tU5Yfx\n/Nztg4j4Q0Sstpx9LY6I8qo/piOibUR8GBGLlrSllPZMKV2/nLBSPl5bSmnzlNI/69O3ri/WiPhW\nRCzKvRcfR8TUiBhZdbh6jjM6Iv5cn76SJLU0ETEpIuZERLtatpfkjie2qdZ+ZER8mfsenhcRz0fE\nXrlt34qI91Zg/MUR8Y1q7X/Nte8CkFL6TUrpRyv3KusvpXRcSun8+vSNiGsj4ld19Flc5XjuvYj4\nbUTEisS0Iu+n1JyYRJDyJwF7pZQ6ppQ65P6WV9nWKaXUEfgGsD3w0zr2Nxf4bpXH3wXm5DvoApmZ\ne386AWcA10TEJoUOSpKk5iAi+gI7AYuBfWvpdjgwGziihm1Tct/DnYHxwG0R0Sm3rb4nIBLwRtX9\nR0RXYAjwYT330ZQlYIvcsdswYARwzAruI8jTCR2pKTGJIOXX8jLUAZBS+g/wMLBpHfu6HjiyyuMj\ngOuW2mHEoxFxVO5+m4gYExEfRcR0YK8a+l4QEf/KzQD4a0R0rrJ939xlC3Mi4h9Vf9RXnV2QmwFw\na0Rcl8vOvxwRW+W2/RlYD7gnt+2UOl4jKaW7yRImy7wfEdEzIu6OiNkR8WZEHJ1r3x04C/h+7izB\nv+saR5KkFuQI4ElgAjCy+sbcLIAi4Hjg0Ihou5x9jQfWBDZYiThuJPsuXnL8cyhwJ/B5lVhGR8T1\nVR4fnpu9+VFEnFUt7tERcXtE3JI7jng2Iraosn2T3PHM3Nzxxz5VtlXOLlgyAyAiTo6IioiYuWTW\nY0QcA/wAOC03xt21vLbgq2O3N4HHgc2X6RSxekRclhvj/Yj4XUS0i4j2wP1AryozGorq+b5KTZpJ\nBKnxBEBE9AJ2J/vyr00C7gJ2iYiOuR/7OwG1fdEB/AjYExgEbA0cVEOfw8kONoqARcAVuZgGADeR\nHWx8HXiALBFQ20HHPrn+nYB7gD8ApJSOAGYAe+fOcIxZTrxE5oDcfl6qocutuf0VAQcDF0REcUrp\nQeAC4NbcrI/ByxtHkqQW5gjgBrLv4t0j4us1bL8HuD33eB9qkPuePwZYAExbiThmAa8Bu1UZ988s\ne1Il5cbbFBhL9iO+F9ANWLda333Jvv+7ADcDd0XEarlY7wEmkh2rHA/cGBEb1RJbEdAhN87RwB8i\nolNK6Rqy5MfFuWOV/ep6kbm4dwaer2Hz2cC2wBZkx2DbAmenlBaSzSKdVcMMValZM4kg5ddduTP5\ncyLizirtAXwUEXOB94BPgL/Usa//AX8DDgG+n7v/2XL6HwxcllKalVKaB/ymhj7Xp5SmppT+C5wD\nHJw7ezAcuDel9I+U0iJgDNlZiR1qGWtySunBlFIimzGxRbXtdV0zuG5EzAE+ysVxWEpp+lI7iOhD\ndtnH6SmlL1JKLwJ/ouZpmZIktQoRsRPZrL/bUkrPA9PJptov2b4m2THBjSmlL4E7WPa7c/vc9/As\nsmOM/VNKC1YypD8DR0bExmSXbv5rOX0PBO5JKT2RUvqC7Big+nT/51JKf80dj1wKrEF2icQQYK2U\n0kUppS9TSo8C95LNfqjJ58CvU0qLUkoPkB17bbyCr+35iJhNdhLn6pTShBr6jABKU0qzU0qzgVKy\nkzZSi7W8qU2SVtx+uS+16hLQLaWUImIN4NfAQ9T+I33Jj/Dr+SoZcHodY/ciS1As8W4Nfapvbwes\nk3tuZf9cnO+x7NmBJapm0hcCX4uINimlxXXEuMTMlNJ6dfTpCczJZfKrxvzNeo4hSVJLdATwUEpp\nbu7xzWSXP/4+9/h7wBdkswohm63wcER0y/3IBXgypZSvVZf+SvZjfzbZccvyLHWsklJamPuRXlXV\n7SkiZuaeFyx9HAPZcUFtxyqzqx2XLATWriO+6ganlN6po08vslmTVWPqtYLjSM2KSQQpv+qqiZBS\nSp9FxATglIjomlKqtVhiSunxiOgJLEopPRERy7te8QOgT5XHfWvoU337F8B/yM5EVL/Orw/w/nLG\nq02+CgjNArpGxFoppU9zbesBM/M8jiRJzUJEfI1s9mCbiPgg17w60DkivpFSepksybA2MCM32zDI\njvlHkLuMMZ9SSv+NiAeAY4H16+j+AVC15lJ7sksaqupTZXsAvcmOCYLsOKCq9ciKO65w2PXsV5/V\nGGaRHVNNzT3um2tbkXGkZsXLGaTGUVmcJzcT4Qjgg+UlEKrYG6h6vV5tX2i3AcdHxLoR0YWaZy4c\nlitK1J5sut3tuUsSbgP2ioihkS0leQrZ5RTLq9tQVdWYyqn7IKLOfaWU3gemAL+JiDVyhZV+yFdn\nOSqAflWKOUmS1NIdAHwJDCS7/n5Q7v7jwBG5ukvDyIorb5nbvgVwMUsXa16eyH3vVt7q8ZwzgW+l\nlOpazvAOYO+I2CGypSl/xbLHNd+MiP0jWwr7JLLjkaeAfwGfRsRpuWOVYrJjpJvr+bqqqmDVjlWq\nuhk4OyLWiYh1yC7RqHqs0i0iOuZpLKlJMIkg5c/yss0JmBsR88my8NtR+5JMS+0rV8Ngak3bqt2/\nBngQeBF4lpprLlxPtsLDLLIzFyfkxngTOAy4kqxOwV7APrlrKet6bdW3Xwick6sLcXIdz6trX4cC\n/XPx/gU4p8rlIreTHXjMjohnV2IcSZKamyOA8SmlmSmlD5fcyAoc/4CsePK/U0qPVNt+OfCNXIHA\nuvQim/q/EPgvsDAiavrBXfVYpTylNKWmbUs9IaXXyJa4vpnsu302y856vJusTsPc3Gs6IFfX4Auy\nApF7ks2ivBI4PKVU34KQVWMaB2xWQw2r2vovb9t5ZMddL/HVMdj5ACmlN8he69u5sVydQS1CZCch\nl9MhYhxZlq8ipbRFru1isv+IPwPeAkallOZHxLfJfkC0Iytmclot14dLamQR8ShZYcXxhY5FklZU\nLccjBwElZGdit8kVmSMilkwtfj339KdSSj9p9KAlrZCIGA1skFvtSVITVZ+ZCNeSLUdX1UPAZiml\nLcmWgzkz1/4R2dJug8gyoXUVV5EkSaqPmo5HXiab3v1YDf2np5S2yt1MIEiSlCd1JhFSSpPJphNV\nbft7lWqnT5EVPCGl9OKS9U9TSq+SVWxvl9+QJa0ki/tIarZqOR55IzeVuabaKNZLkSSpAeRjdYaj\ngFuqN+amGD6fu35JUoGllHYtdAyS1Ij6RcTzwMdk9VQmFzogScuXUiotdAyS6rZKSYSI+CXwRUrp\npmrtm5Gtbf+dVdm/JEnSSpgFrJdSmhsRWwF3RcSmKaVPCh2YJEnN3UonESJiJFl11F2rtfcG7iSr\nllq2nOc7tVqSpFqklJyOv5JysyDn5u4/HxFvAQOA56v39XhEkqTa1XQ8Ut8lHivXuAeIiD2AU4F9\nU0qfVWnvBNwLnJ5SeqoeAZFS4lvf+lbl/Ya+jR49ukWN42tqHuOk1Hif86b+70QJjTJOU3//WuJr\nSsnPeb7GUa2WOh6pYVt2J1uvvU3u/vrAhsDbte20MT+/jfF5cozWN4af3aY3jmPU/9ZUP78resza\nUv496nM8UmcSISJuAqYAAyJiRkSMAq4A1gYejojnI2JsrvvPgA2AcyPi37lt69Q1Rr9+/erqkjfF\nxcUtapzGHMvXtGoa63Puv1PzGKslvibwc94cxmmuajoeiYj9I+I9YAhwb0Q8kOu+C/BSribCbcCP\nU0rz6hqjMT6/jfHv7Bitbww/u01vHMeoPz+/zW+MWF6GoSFFRFoydklJCSUlJQWJQ2osfs4zURqk\n0Z5pban8nOdHRJC8nKFReDyilsDPrpqzpvr59Zi19uOR+l7O0KA8+6LWwM+5WgM/52rO/PyqufKz\nq+bMz2/z0yRmIkhqPczqSnVzJkLj8XhEklQTj1lrPx5ZpSUeG0K/fv149913Cx2GWoi+fftSVlZW\n6DAkSZIkqUVockmEd999d7mVIKUVEeGJPEmSJEnKlyZRE0GSJEmSJDV9JhEkSZIkSVK9mESQJEmS\nJEn1YhKhARx33HGcf/75tW5v06YNb7/99iqPs+eee3L99dev8n4kSZIkSaqPJldYsanr168f5eXl\nzJo1i65du1a2Dx48mBdffJGysjL++Mc/Lncf+Sr2d//999e779ChQzn88MM56qij8jK2JEmSJKn1\ncSbCCooI+vfvz80331zZ9sorr/Df//633skBV5+QJEmSJDVHJhFWwuGHH851111X+fi6667jyCOP\nrHw8atQozj333MrHl1xyCb169aJ3795ce+21SyUbRo0axXHHHcduu+1Gx44dGTp0KDNmzKjcPmXK\nFLbddlu6dOnCdtttx5NPPlm5bejQoYwfP74yhp133plTTz2Vrl27ssEGG/Dggw8CcPbZZ/P444/z\ns5/9jI4dO3L88cfn/02RJEmSJLV4JhFWwpAhQ1iwYAFvvPEGixcv5tZbb+Wwww6rse/EiRO59NJL\neeSRR5g2bRp///vfl+lz0003MXr0aGbPns2gQYP4wQ9+AMDcuXPZe++9OfHEE5k9ezYnnXQSe+21\nF3Pnzq1xrKeffpqBAwcye/ZsTj311MpLF8477zx23nlnrrzySubPn8/ll1+ep3dCkiRJktSamERY\nSUtmIzz88MMMHDiQXr161XiZwu23386oUaMYOHAga665JiUlJcv02Wuvvdhxxx1p164d559/Pk89\n9RQzZ87kvvvuY8CAAYwYMYI2bdpwyCGHsMkmm3DPPffUGFPfvn056qijiAiOPPJIPvjgAz788MN8\nv3RJkiRJUivVLAsr5qkuIatSmuCwww5jl1124Z133uGII47IxbVsYLNmzWLrrbeufNy3b99lkg19\n+vSpvL/WWmvRpUsXZs2axaxZs+jbt+9Sffv27cvMmTNrjKmoqKjy/pprrgnAJ598Qvfu3Vfw1UmS\nJEmStKxmORMhpfzcVsV6661H//79eeCBB/je975Xa7+ePXvy3nvvVT5+9913l0k2VN3+ySefMHfu\nXHr16kWvXr0oKytbqu+MGTNYd911VzjefK0IIUmSJElqvZplEqGpGD9+PP/4xz8qz/rXdDnD8OHD\nmTBhAlOnTmXhwoX86le/WqbP/fffz5QpU/j8888555xzGDJkCOuuuy577rkn06ZN45ZbbmHRokXc\neuutTJ06lX322WeFY+3Rowdvv/32ir9ISZIkSZJyTCKsoKpn9Pv3789WW21V47Yl9thjD0488UR2\n3XVXBgwYwLBhw5bpM2LECEpKSujWrRv//ve/ueGGGwDo2rUr9957L2PGjGGdddZhzJgx3HfffXTp\n0qXW8WqL9YQTTuD222+nW7dunHjiiSv2oiVJkiRJAqKms+eNMnBEqmnsiKjxjH5LNWrUKPr06VPj\nDAWtutb2eWoOojRIo/03kZYn9/8ur0NrBLUdj0iSWjePWWs/HnEmgiRJkiRJqheTCAVmwUOpHiZM\nKHQEkiRJkmimSzy2JOPHjy90CFLTV22VEkmSJEmF4UwESZIkSZJULyYRJEmSJElSvZhEkCRJkiRJ\n9WISQZIkSZIk1YtJBEmSJEmSVC8mEZqwyZMnM3DgwEKHsUKGDh3qihOSJEmS1EKZRFhB/fr1o337\n9nTs2JEOHTrQsWNHjj/++AYZa6eddmLq1KkNsu/aXHfddbRt25aOHTvSuXNnBg8ezH333deoMUiS\nJEmSmqY6kwgRMS4iKiLipSptF0fE1Ih4ISL+EhEdq2w7MyKm5bbv1lCBF0pEcN999zF//nwWLFjA\n/Pnzufzyy1d4P4sWLWqA6PJjhx12YP78+cybN4/jjjuOQw45hPnz5xc6LEmSJElSgdVnJsK1wO7V\n2h4CNkspbQlMA84EiIhNgeHAQOC7wNiIiPyF2zSklGpsf/vttxk2bBjrrLMO3bt357DDDlvqx3f/\n/v25+OKLGTRoEGuvvTaLFi2if//+/Pa3v2XQoEF06dKFQw89lM8//xyAxx57jD59+iz1/Nr6Alx8\n8cX06tWL3r17M27cONq0acPbb78NwP33389mm21Gx44d6dOnD5deemm9Xuvhhx/Op59+yrRp0yrb\nnnrqKXbccUe6dOnC4MGDeeyxx2p9/vjx49l0003p1q0b3/3ud5kxY0blthNPPJH11luPTp06sc02\n2zB58uTKbc888wzbbLMNnTp1omfPnpxyyikrNb4kSZIkKX/qTCKklCYDc6u1/T2ltDj38Cmgd+7+\nvsAtKaUvU0plZAmGbfMXbtOWUuKss86ivLycqVOn8v7771NSUrJUn1tuuYUHHniAefPmsdpqqwFw\n++2389BDD/HOO+/w4osvMmHChMr+1XMwtfWdOHEil112Gf/4xz+YPn06kyZNWuq5Rx99NNdccw3z\n58/nlVdeYdddd63z9SxatIjx48ez+uqr07dvXwBmzZrF3nvvzbnnnsvcuXMZM2YMBx54ILNnz17m\n+XfffTcXXnghd911Fx999BE777wzhx56aOX2bbfdlpdeeom5c+cyYsQIDj744MqkyAknnMCJJ57I\nxx9/zFtvvcXw4cNXeHxJkiRJUn7loybCUcD9ufvrAu9V2TYz19ai7L///nTt2pUuXbrQtWtXxo0b\nB8AGG2zAsGHDaNu2Ld26deOkk05a5iz5CSecQK9evVhjjTWWauvRowedO3dmn3324YUXXqh17Nr6\n3n777YwaNYpNNtmEr33ta5SUlCw1Y2L11Vfn1VdfZcGCBXTq1Iktt9yy1jGefPJJunbtypprrslp\np53GDTfcwDrrrAPADTfcwF577cXuu2eTU4YNG8bWW2/N/fffv8x+rrrqKs4880wGDBhAmzZtOOOM\nM3jhhRd4773sIzJixAg6d+5MmzZtOOmkk/jss8944403KuOdPn06s2fPpn379my77bYrPL4kSWoY\nVU94SJJal1VKIkTEL4EvUko35yme+o1bGnm5ray7776bOXPmMHfuXObMmcMPf/hDAD788EMOPfRQ\nevfuTefOnTnssMP4z3/+s9Rze/fuvcz+evToUXm/ffv2fPLJJ7WOXVvfWbNmLXXpQ9X7AH/5y1+4\n77776Nu3L0OHDuWpp56qdYztt9+eOXPmMG/ePPbdd1/++c9/Vm579913ue222+jatWtlIuWJJ56g\nvLx8mf28++67nHDCCZV9u3XrRkQwc+ZMAMaMGcOmm25Kly5d6NKlC/Pnz698v8aNG8cbb7zBJpts\nwnbbbVdZ3LG28T/44INaX48kSa1JY/zALysra/AxMFEhSU1S25V9YkSMBPYEqs6LnwlU/fXaO9dW\no6pT/YuLiykuLq7X2Gl0zTUJGkttNRHOOuss2rRpw6uvvkqnTp24++67+fnPf75Un4YqEdGzZ0/e\nf//9ysczZsxYaqxvfvOb3HXXXSxatIgrrriC4cOHL1WfoCbt27dn7NixrL/++vzwhz9k0KBB9OnT\nhyOOOIKrrrqqzpj69OnD2WefvdQlDEtMnjyZSy65hEcffZRNN90UgK5du1a+txtssAE33XQTkCVA\nDjroIObMmbNC40tSczFp0iQmTZpU6DDUQjTKD/zG0FJehyS1MPWdiRC5W/YgYg/gVGDflNJnVfr9\nDTgkIlaPiP7AhsDTte20pKSk8lbfBEJTtmDBAtZee206dOjAzJkzueSSSxpt7OHDh3Pttdfy+uuv\ns3DhQs4777zKbV988QU33XQT8+fPZ7XVVqNDhw6V9Rjq0qVLF4455hhKS0sBOOyww7jnnnt46KGH\nWLx4Mf/73/947LHHmDVr1jLPPfbYY7ngggt47bXXAPj444+54447gOy9ateuHd26dePzzz/nV7/6\nFQsWLKh87o033lg5K6FTp05EBG3atFmh8SWpuSguLl7qO1GSJKmpqs8SjzcBU4ABETEjIkYBVwBr\nAw9HxPMRMRYgpfQacBvwGlmdhJ+k2k7bN2P77LMPHTt2rLwdeOCBAIwePZrnnnuusl7BkvYlapqF\nsCIzE5bXd4899uD4449n6NChDBgwgO233x6gsvbC9ddfT//+/encuTNXX3115Vn++jjhhBN44IEH\neOWVV+jduzd33303F1xwAV//+tfp27cvY8aMYfHixcvEuP/++3PGGWdwyCGH0LlzZ7bYYgsmTpwI\nwO67787uu+/OgAED6N+/P+3bt1/qEoyJEydWriZx0kknceutt7LGGmvUOb4kSWoYRUVFRAQRQWlp\nKRFBUVFRQwwEEVBamv2NyNokSU1CFOo3fkTUmF+IiFovF1D9vf7663zjG9/gs88+o02bfNTPbJ78\nPDU9URorfklSSUl2k1qJ3P+7WtwSyU1RbccjzU1RUREVFRVLtfXo0aPGmkUrq7aTGXl//2o7adIC\n/p0kNR8rdczawtR2PNJ6f122QHfddReff/45c+fO5fTTT2ffffdt1QkESZJai+oJhNraVl0/4AfA\nTg2wb0lSc+AvzBbkqquuonv37my00Ua0a9eOsWPHFjokSZLUTC1aBC+8AFdeCYccAvA+2RWuBwDj\ngSeAffCKQklqXVZ6dQY1PQ888EChQ5AkSc3UwoXw9NMweXJ2e/JJ6NULdtoJvvtduPXWXYC3c73b\nAAcCJWyxBZx+epZoaNeucPFLkhqHMxEkSZJaof/8B+6+G049FbbfHr7+dTjjDJg3D449FqZPh6lT\n4Zpr4Mgj4asEAsBi4Hbgm/z2tzB+PGy0UTZrYeHCgrwcSVIjsbCiWjQ/T03PChWpKSqC6tf09ugB\neSwUJjVFFlZsPC2lsGJdRQ9TgnfeyWYYPP549nfWrCx5sNNO2W3bbaF9+9rHqKt441NPwUUXwZQp\n8POfw09/Cl26rNSLqbm9Bfw7SWo+LKxoYUVJzVFNRcEapFCYJLU0qwGDufxyGD4c1l03SxTcdx9s\nsQXcfDPMmQMTJ8LZZ0Nx8fITCADl5eWklEgpMXr0aFJKS63+MGQI/PWv8Oij2SyGDTbIZjnMmtWg\nL1SS1MhMIkiSJLUYRwATgdnA9bz6KuyzDzzxBMycCbfems0S2HJLWG21holg001hwoSsKOMXX8Dm\nm8Mxx8C0aQ0zniSpcTW5wop9+/atdUqetKL69u1b6BAkSWoE7YArgB2BXwIjgDlcdVXhpuKutx5c\ndlk20+GKK2CHHWDo0KzuwlZbFSwsSdIqanJJhLKyskKHIEmS1Gx8+CHA34G5wPbAJw0+Zr9+/erd\nd511oLQ0u7Thmmtg331hs82yZEJxce0lECRJTZOXM0iSJDVTL7yQFUSEx4ADaIwEAsDIkSNX+Dlr\nrw0nnQRvvQXf/362AsSQIXDXXbB4cf5jlCQ1DJMIkiRJzdBtt8F3vgOXXAJwLtA8qoivsQYcdRS8\n9hqcfjqcf342M2HCBPj880JHJ0mqi0kESZKkZmTx4qzOwKmnwkMPwcEHFzqilbPaavC978HTT8OV\nV8KNN8KGG8LvOZ5PqWOpCElSwZhEkCRJaiYWLMh+eD/2GDzzDAweXOiIVl0EDBsGDz8Md94Jj7Mz\n/XmHX3M2H9Ox0OFJkqoxiSBJktQMvPUWbL899OgBjzwC3bsXOqL823pruIODeZydmc6GbMh0SjmX\neXQqdGiSpByTCJIkSU3cI49kSyT+5Cfwf/8Hq69e6Iga1sa8yXWMZAo78A792ZDplJTAvHmFjkyS\nZBJBkqSmYMKEQkegJigluPxy+MEP4NZbsyRCTUsi9ujRo15tzc1GTGcCo3iKIcyYkdVMGD0a5s4t\ndGSS1HqZRJAkqSkoKyt0BGpiPvsMjj4a/vQnePJJKC6uvW95eTkppaVu5eXljRZrQ9uQtxg/Hv71\nL3j/fdhoIzjnHJgzp9CRSVLrYxJBkiSpiSkvh113zc64T5kC/fsXOqKmYYMNYNy4bEWHDz7Ikgln\nnw2zZxc6MklqPUwiSJIkAROayCUlzz0H224Lu+0Gd9wBa69d6IianvXXz2ZoPPssfPghDBgAv/yl\nyQRJagwmESRJkoCyRrikpK5Exc03wx57wO9+l13738YjteXq3x+uvjpLvPznP1ky4cwzs/uSpIbh\nV5MkKW+ayplcqSkpKioiIogIRo0aRURQVFS0VJ9Fi7Ifv2edla3EcOCBBQq2merXD666Cp5/PrsE\nZOON4Ywz4KOPCh2ZJLU8JhEkSXnTGGdy1TpFxLiIqIiIl6q0HRQRr0TEoojYqlr/MyNiWkRMjYjd\nGj/ir1RUVCy37eOPYb/9suKJzzwDW2zRmNG1LH37Zktg/vvfMH9+lkw4/XSTCZKUTyYRJElSc3At\nsHu1tpeBA4DHqjZGxEBgODAQ+C4wNqKmhRELb9o0GDIk+/H78MOwzjqFjqhlWG89GDsWXnwRPvkk\nSyacempWP0GStGpMIkiSVknVqdqlpaU1TtWWVlVKaTIwt1rbGymlaUD1BMF+wC0ppS9TSmXANGDb\nRgl0BTz0EOy0E5x0EvzhD9CuXaEjann69Mne25degv/+FzbZBE45BWqYHCJJqieTCJKkVVLXVG2p\nANYF3qvyeGaurQk5iSOPzFZf+NGPCh1Ly9e7N1x5ZZZM+OwzGDgQTj45W0pTkrRiTCJIkiQ1mjXI\nrsw4nKeegp13LnQ8rUvv3nDFFfDKK1kxy003zWaCfPBBoSOTpOajbaEDkCRJyrOZQJ8qj3vn2mpU\nUlICwKQWRYSFAAAgAElEQVRJk5g0aRLFxcUNFFZP4E5gBrATfft+2kDjqC69esHvf58VXbz4Yths\nMzjiiOxxz56Fjk6SCmPJ92BdnIkgSZKai2DZ+gdVty3xN+CQiFg9IvoDGwJP17bTkpISSkpKKC4u\nbqAEwjrAr4GXgHuB7wMLG2AcraheveCyy+DVVyEiSyYcfzzMrDXlJEktV3FxceV34pIEe01MIkiS\ntBwTJkwodAgCIuImYAowICJmRMSoiNg/It4DhgD3RsQDACml14DbgNeA+4GfpJRSY8f8/vvZVHl4\ngyyRsC1wfmOH0fz06FG/tjzq2RN+9zt47bWswOU3vgE//7nJBEmqSZ1JhBVZlzki2kbEhIh4KSJe\njYgzGipwSZIaQ1lZWaFDEJBSGpFS6pVSWiOltF5K6dqU0l0ppT4ppTVTSj1TSt+t0v83KaUNU0oD\nU0oPNWas06fDMcfAFlvAaqsBbA4cB7zTmGE0X+XlkBKMHp39TanRKiAWFcFvfwtTp8Iaa2TJhJ/9\nLEsISZIy9ZmJUO91mYGDgdVTSlsAWwM/joj1VjlKSZKqcnaAmqCXX4YRI2D77bNp8tOmwZgxAFbt\nWyn9+hVs6B49sn+7qVNhzTWzhNBPfgLvvVf3cyWppaszibCC6zInYK2IWA1oD3wGzM9TrJIkZZwd\noCbkX/+CffeF3XaDLbeEt96C0lLo1q3QkTVzI0cWOgJ69IBLLoHXX4cOHWDQIDjuOJgxo9CRSVLh\n5Lsmwh1klYI+AMqAMSmleXkeQ5KkBlVUVEREEBGUlpYSERQVFRU6LDUhKcEjj8CwYfD978Mee8Db\nb8Npp0HHjoWOTvnWvTtcdBG88QZ06gSDB8Oxx8K77xY6MklqfPle4nFb4EugCOgGPB4Rf08pldXU\nuWrFx4ariCxJ0oqpqKioV1teFBUxqaKCSZCdvlaTtngx3HsvXHABzJsHZ56ZXcLQrl2hI1Nj+PrX\n4cIL4ZRTstoJW20FBx2UfQ4KePWFJDWqfCcRRgATU0qLgY8i4gmy2ghlNXVe3rIRkiS1ChUVFAPF\nVZpMJTQ9X34Jt9+eJQ/atYOzzoIDDlhSOFGtzTrrwG9+kyUTLr0UvvlN+N73ss9F//6Fjk6SGlZ9\nL2eo77rMM4BdASJiLbIll15f6egkSZIK6LPP4JprYJNNYOzY7Pr4557Lzj7XN4HQo4blCWtqU/PT\nrRucfz68+WZWP2HrreHoo7NLWySpparPEo/1XpcZ+APQISJeAf4FjEspvdJQwUtSvk2w6r8k4NNP\n4bLLYIMN4M474dpr4fHHs9oHUdtplVqUl5eTUiKlxOjRo0kpUd5ISxaqcXTrBuedl63I0bMnbLMN\n/PCHJhMktUz1WZ2h3usyp5Q+TSkNTyltnrtd2vAvQZLyp8yq/yvMs6yryPeqSZk3LzuzvP76MHky\n3H03PPAA7LxzoSNTc9C1K/z61zB9OvTuDdtuC6NGZY8lqaXI9+oMkqRWxrOsq6i8PCv1P3p09jel\nQkfUKlVUwN//PowNNsimpk+aBHfckV3rLq2oLl2yOqnTpkHfvjBkSLZipckESS2BSQRJktSqZUt4\nPsYTT7zMnDn9ePDBIgYOLHRUagm6dIGSkix50L9/lkw48sgsuSBJzZVJBEmSJHYFfgq8W+hA1AJ1\n7pxNNnrrLdhwQ9hhBzj8cHjjjTwNYD0fSY3IJIKkVq+oqIiIICIoLS2tvF9UVFTo0CQ1guxynEVe\njqMG16kTnHNONjNh441hp53gsMPg9ZVdy6yoKKv0OWpU9jcia5OkBmQSQVKrV1FRsULtKpAlB8sR\n2cXGHjArz/r161foENRKdOoEZ5+dzUwYOBB22QV+8AOYOnUFd1TT95TfXZIamEkESVLzUNuBsQfM\nypORI0cWOgS1Mh07wi9/mSUTNt8cvvUtOPRQeO21QkcmSbUziSBJah5qWwrRJRLVjDjbQTXp0AHO\nPDNLJgwaBEOHwiGHwKuvFjoySVqWSQRJUvOwZCnE6sshev26mhFnO2h5OnSAM87IkgmDB8Ouu8Lw\n4fDKK4WOTJK+YhJBkiRJakLWXhtOPz1LJmyzDXz723DwwfDyy4WOTJJMIkiS1DQ4zV1SNWuvDaee\nmiUTttsOvvMdOOggeOmlQkcmqTUziSBJUlPgNHdJtVhrLTjllCyZsP32sPvu8L3vwQsMKnRokloh\nkwiSJElSM7DWWvCLX2TJhJ13hj25nwO4k+cZXOjQJLUiJhEkSZKkZqR9ezjpJJjOhnyLx9iPu9mZ\nf3Irw/mcdoUOT1ILZxJBkiRJaoba819O5Pe8Q39O5DL+j2PpRxklJTBrVqGjk9RSmUSQJDU/FiGU\npEptWcSB3Mmj7MpD7EZFBWy2GRxyCEyenK2G2xxMmDCh0CFIqgeTCJKk5scihJJUo815lT/+EcrK\nYIcd4KijYPBg+NOfYOHCVdhxI/zALysra/AxJK06kwiSJElSC9OpExx/PLz+Olx8Mfztb7Deel+t\n8lBvRUUQAaNGZX8jsjZJrZZJBEmtXo8ePVaoXZKk5qJNG9httyyJ8Mwz2eMhQ2DvvWHiRFi8uI4d\nVFTUr01Sq2ESQVKrV15eTkqJlBKjR4+uvF9eXl7o0CRJypv+/bNZCe++C9/7Hpx5Jmy8MVx2Gcyb\nV+joJDUXJhEkNV01zQRwdoAkSaukffusVsLzz2elDv71ryzBcOyx8PLLhY5OUlNnEkFS01VenpWU\nHj06+5tS1iZJklZZBOy4I9x8M7z2GvTqBbvvDsXFcMcd8MUXhY5QUlNkEkGSpGpqqodhjQxJLVnP\nnnDuudmlDj/5CVx+eTY74decTTn+/0/SV0wiSJLypl+/foUOIS+q1sm49tprrZEhqWlqgMv+2rWD\n4cPhn/+E++6D9+jDQKbyfW7hzxzOB7gyg9TamUSQJOXNyJEjCx1C3rXE1ySphWjgy/4GDYKr+TFv\nsz7DeIS/sS+b8Srf4CV+8Qt48EFYuDBvw0lqJkwiSJIkSapVF+bxI67hDg7mQ7rzJ46mc2c477xs\n4sO3v52t+vDCC/VYMlJSs2cSQZIkSVK9tGUR2/E055wDjz8OM2fC8cfDjBnZZRBFRfCDH8B118Gs\nWYWOVlJDMIkgSZIkaaV07Aj77gtXXglvvglPP52t7nDvvfCNb8Dmm8PJJ8PEibVf+lBUVEREUFpa\nSkQQERQVWXtBaqpMIkiSJEnKi3794Jhj4Pbb4cMPYfx46NoVLrggu/Rh2DC46CL497+/uvShoqJi\nmf3U1CapaagziRAR4yKiIiJeqtJ2UES8EhGLImKrav23iIgpue0vRsTqDRG4pFakhVT8lySpNVlt\nNdh2Wzj77Gy1h1mz4MQT4f334dBDs0sfRowAOBLoVeBoJdVXfWYiXAvsXq3tZeAA4LGqjRGxGnA9\n8KOU0uZAMfDFqocpqVWzOr4kSbVryGR7HpeR7NAB9tkHrrgCXn8dnnkGdt0V4LvAS8CrwP8BhwH9\nSWllg65BURFELH3zkglppdSZREgpTQbmVmt7I6U0DYhq3XcDXkwpvZLrNzelvP7nL0mSJKmqhky2\nN+Aykn37wtFHAxwCdAcOJ0sk7ANMZt114eCD4fe/h2efhS+/XIXBaro8wksmpJXSNs/7GwAQEROB\ndYBbU0qX5HkMSZIkSS3KYuD53O0KAJ54IvHEEzB5MvzpT/Duu7DNNrDTTrDjjjBkSFbYUVLjyncS\noS2wI7A18D/gkYh4NqX0aJ7HkSRJktSC9e+f3Q47LHs8dy48+WSWVDj/fHjuOdhooyyhsCSx0KdP\nYWOWWoN8JxHeB/6ZUpoLEBH3A1sBNSYRSkpKKu8XFxdTXFyc53AkSWr6Jk2axKRJkwodhiQVRI8e\nPZZZjaFHDXUXunSBPffMbgCffw7PP58lFW69FX7+c2jffumkwuabZwUeJeVPfZMIwbL1D6puW+JB\n4NSI+BrwJfAt4NLadlo1iSBJUmtVPZFeWlpauGAkqZGV52oslJSUrNDvg9VXzy5pGDIETjklK9cw\nbVqWVHjiiayWQkVFtn0nfsmOPMG2PM1aLGygVyK1DvVZ4vEmYAowICJmRMSoiNg/It4DhgD3RsQD\nACmleWRJg2fJLmh6NqX0QMOFL0mSJEnZggsDBsBRR8G4cfDGG1lS4bjj4GM68UvOpycfcDa/5lPa\nN2gsEyZMaND9S4VU50yElNKIWjbdVUv/m4CbViUoSSqUfg25TJYkSWpUX/867Lcf7MdpALxHb07l\nEgYylTGcwsEpSz7kW1lZWf53KjURdc5EkKTWZGRDLpMlSZIKqg/vcwuH8meO4DzOZtgweOWVQkcl\nNS8mESRJkiQtXwubqVfMYzzPVhxwAAwdCieeCPPmFToqqXkwiSBJkiRp+VrgTL22LOLnP4fXXoNP\nP4WBA2H8eFi8uNCRSU2bSQRJkiRJrdbXvw7XXAP33ANXXw3bbw9PP13oqKSmyySCJEmSpIIrdHHj\nrbeGKVOy1Rz22w9++EP48MOChiQ1SSYRJEmSJBVcgxY37tGjXm1t2mRXbrz+OnTqBJttBr//PXzx\nRcOFJjU3JhEkSZIktWzl5ZBSdhs9OvtbXl5r906d4NJL4bHHssscBg+GRx9txHilJswkgiRJkiTV\nYNNN4eGHobQURo2C4cNhxoxCRyUVlkkESZIkSapFBBx4YLaKw8CB2ayE886D//2v0JFJhWESQZIk\nSZLq0L59NiPh2Wfhueeyegl/+1t2ZQRAUVEREUFEUFpaSkRQVFRU2KCbgQkTJhQ6BK0gkwiSJEmS\nVE/9+8Nf/wp//COcdhrsuSe8+SZUVFQs07emNi2trKys0CFoBZlEkCRJktR65Gkpyd12g5degmHD\nYIcdAC4E1s7LvqWmzCSCJEmSpNYjj0tJrr46nHIKvPwyQE9gKnA4MAAoAtaqvNxBainaFjoASZKk\nukTEOGBvoCKltEWurQtwK9AXKAOGp5Q+joi+ZEfyr+ee/lRK6SeNH7Wk1qJnT4Ajge2BXwG/BDoC\nHWnbFjp0gI4da74tb1v1fm399aYmwI+hJElqDq4FrgD+XKXtDODvKaWLI+J04MxcG8D0lNJWjRyj\npFbvSeA7S7V89lliwQKYPz+7Vb1f9TZzJkyduvw+a6xRd6KhPgmJr30tW3WitZgwYQIj8zgDpbUz\niSBJkpq8lNLk3AyDqvYDvpW7fx0wia+SCK3o8FhSU9a2LXTpkt1WRUqwcGHdyYiPP4b33lt+ny++\nqP/sh+VtX3ttWG21/LxPDcnijfllEkGSJDVX3VNKFQAppfKI6F5lW7+IeB74GDgnpTS5IBFKUp5E\nwFprZbfs8omV9/nnXyUYaks0zJ8P7767/KTFJ5/AmmuuWkJi8WLL9DU3JhEkSVJLsaR82QfAeiml\nuRGxFXBXRGyaUvqkgLFJUpOx+urQrVt2WxWLF8Onn9Y9O+I//4G33/6qz4MPPskXX3wN6Aocyq9/\nfRTduz9MRcV7+Xh5amAmESRJUnNVERE9UkoVEVEEfAiQUvoc+Dx3//mIeIusVPrzNe2kpKSk8n5x\ncTHFxcUNHLaklqhHjx5UVFQs09aStWmTzTDo0AHWXbf+zysqOqDKe7UzcA7/+c+vGDsWjjoqq9mg\nxjdp0iQmTZpUZz+TCJIkqbkIlq518DdgJHARWVn0uwEiYh1gTkppcUSsD2wIvF3bTqsmESRpZZWX\nl1feLykp8f8ty7Hse/UdnnoKzj8/u51yCvzoR9mlG2o81RPppaWlNfbzAhRJktTkRcRNwBRgQETM\niIhRwIXAdyLiDWBY7jHALsBLuZoItwE/TinNK0TckqT6GTIE7rkH7r0XnngCNtgALrwwuwRCTYsz\nESRJUpOXUhpRy6Zv19D3TuDOho1IktQQBg+GO+6AV1+FCy7Ikgk/+xkcf/yqr3Ch/HAmgiRJkiSp\nSdlsM7jxRpgyJVslYsMN4cwz4aOPCh2ZTCJIkiRJUh7169ev0CG0GBttBOPHw3PPwccfw8Ybw8kn\nw6xZhY6s9TKJIEmSJEl5NHLkyEKH0GzUN+HSrx+MHQsvvwwpweabw09/ms1SUOMyiSBJkiRJKogV\nTbisuy787nfw+uvZ0pJbbQU//CFMn94w8WlZJhEkSZIkSc1K9+7Z6g3TpkGfPtnqDocdBq+9VujI\nWj6TCJIkSZKkZqlrVygpgbfeyooxDh0KBx8M3boNIyKICEpLS4kIioqKCh1ui1BnEiEixkVERUS8\nVKXtoIh4JSIWRcRWNTxnvYhYEBEn5ztgSZIkSZKq6tQpW73h7bdh++1hzpzrgbuBbSr7VFRUFCy+\nlqQ+MxGuBXav1vYycADwWC3P+S1w/yrEJUmSJEnSCllrrWz1BlgfeBC4A/hxQWNqadrW1SGlNDki\n+lZrewMgIqJ6/4jYD3gb+DRfQUqSJEmSVH+fAWOBa4A1ChxLy5LXmggRsRZwGlAKLJNgkCRJkiSp\n8XwBfFLoIFqUfBdWLAF+l1JamHtsIqERTJgwodAhSJIkSZJagTovZ1hB2wEHRsTFQBdgUUT8N6U0\ntqbOJSUllfeLi4spLi7OczitQ1lZWaFDkCStgkmTJjFp0qRChyFJUovRo0ePZQop9ujRo0DRtCz1\nTSIEtc8qqGxPKe1S2RgxGlhQWwIBlk4iSJLUWlVPpJeWlhYuGEmSWoDy8vJCh9Bi1WeJx5uAKcCA\niJgREaMiYv+IeA8YAtwbEQ80dKCSJEmSJKmw6rM6w4haNt1Vx/M8jSJJkiRJUguS78KKkiRJkiSp\nhTKJIEmSJEmS6sUkgiRJkiRJqheTCJIkSZIkqV5MIkiSJEmSpHoxiSBJkiRJkurFJEIzVVRUREQQ\nEZSWlhIRFBUVFTosSZIkSVILZhKhmaqoqKhXmyRJkiRJ+WISQZIkSZIk1YtJhIYyYUKhI5AkSZIk\nKa9MIjSUsrJCRyBJkiRJUl6ZRJAkSZIkSfViEkGSJEmSJNWLSQRJkiRJklQvJhGaoZQAtgauBj4C\ndihoPJIkSZKk1sEkQjMyfz783//BVlsB3Aq8DZwBTADaFzAySZIkSVJrYBKhiUsJnn4ajj4a+vaF\nRx6Biy8G2BC4EBgH/Av4TSHDlCRJkiS1Am0LHYBq9vHHcNNNcPXV2QyEY46BqVOhqGhJj1Sl98+B\nl4G/NnqckiRJkqTWwyRCE7Jk1sHVV8Odd8K3v53NOhg2DNosd87IPOAYYDwLFkCHDo0TryRJkiSp\ndfFyhibg449h7FgYPBhGjIABA+D11+H22+E736krgbDEROARfvGLBg5WkiRJktRqmUQokJTgX/+C\no47Kah1MmgRjxsC0aXD66dCjx8rs9WQeeggmTsxzsJIkSZIk4eUMjW7ePLjxxuyShU8/zWodvPHG\nyiYNqlvAuHEwciS8/DJ07pyPfUqSJEmSlHEmQiNICZ56Kpt10L8//POfcOml8OabqzLroGbDhsG+\n+8IJJ+Rvn5IkSZIkgTMRGtS8eXDDDdmsg4UL4Uc/ymYddO++6vvu0aMHFRUVy7QBXHQRbLkl/O1v\nWUJBkiRJkqR8cCZCA3jxRRh193706wePPw6XXZbNOjjttPwkEADKy8tJKZFSYvTo0aSUKC8vB2Dt\nteHaa+HYY2H27PyMJ0mSJElSq0siTJgwocH2/epP/sBBcQd7bPkBm7xwC29+3J1bbwt2/WdJPVdY\nyJ+dd4ZDD4Wf/rRxx5UkSZIktVytLolQVlaW932++Wa2NOOuf/kp2118ENM/6cnpo9eke/owK4hQ\nUpL3MevjvPOyWRG33VaQ4SVJkiRJLUyrSyLk09tvZysh7LgjbLYZTJ8Op54Ka63VuHH069evxvY1\n14QJE+D446Fa+QRJkiRJklZYnUmEiBgXERUR8VKVtoMi4pWIWBQRW1Vp/3ZEPBsRL0bEMxExtKEC\nXxFFRUVEBBFBaWkpEUFRUdFK72/GjKxI4jbbQN++MG0a/PKX0KFDHoNeASNHjqx123bbZatC/PjH\n2aQISZIkSZJWVn1mIlwL7F6t7WXgAOCxau0fAXunlAYBI4HrVzXAfKi+ikFtbXWZNQt+9jMYPBjW\nWSdLHpSWQufO+Yiy4Ywenc2auOGGQkciSZIkSWrO6kwipJQmA3Ortb2RUpoGRLX2F1NK5bn7rwJf\ni4h2eYy3ID78EE4+GTbfHL72NZg6FS64ALp2LXRk9bPGGnDddfCLX8DMmYWORpIkSZLUXDVYTYSI\nOAh4PqX0RUON0dBmz4YzzoCBA+HLL+HVV2HMmPwt09iYBg/OVmo4+mgva5AkSZIkrZwGSSJExGbA\nb4AfNcT+G9q8eXDuubDxxtn9F16Ayy+Hnj0LHdmqOeusbFbFuHGFjkSSJEmS1By1zfcOI6I3cCdw\neEqpbHl9S6osfVhcXExxcXG+w1khCxbA73+f3fbZB555Bvr3L2hIedWuXXZZw9Ch8J3vZEUhJUmF\nN2nSJCZNmlToMCRJkupU3yRCUK3+QbVt2Z2ITsC9wOkppafq2mnVJEIhffop/OEP8NvfZj+up0yB\njTYqdFQNY/PN4ZRTshUbHn4Y2rjIpyQVXPVEemlpaeGCkSRJWo76LPF4EzAFGBARMyJiVETsHxHv\nAUOAeyPigVz3nwEbAOdGxL8j4vmIWKfBol9F//0v/O53sOGG8Oyz8Oij2QoGLTWBsMQpp8DChTB2\nbKEjkSRJkiQ1J3XOREgpjahl01019D0fOH9Vg2p4qwNHs9FGsPXWMHEiDBpU6Jgaz2qrwYQJsOOO\nsMceWRJFkiRJkqS6tLLJ7G2Bo4E3gT25+264667WlUBYYuON4eyzYeRIWLSo0NFIkiRJkpqDVpRE\n6A28AgwHDgH25pvfLGxEhXb88dmshMsuq+cTJkxoyHAkSZIkSU1cK0kidAYeAP4E7AbUWfOxVWjT\nBq69Fi68EKZOrccTysoaOiRJkiRJUhPW4pMI//sfZOUbHgbGFDaYJmj99eFXv4Ijj4Qvvyx0NJIk\nSZKkpqxFJxEWL4bDDwcoB37RuIP369e4462CY4+Fzp3h4osLHYkkSZIkqSlrsUmElOCkk+CjjwCO\nBFLjBjByZOOOtwoiYNy4rDbCSy8VOhpJkiRJUlPVYpMIY8bAP/6Rrb4AnxU6nCavTx+46CI44gj4\n/PNCRyNJ0tIiYlxEVETES1XaukTEQxHxRkQ8GBGdqmw7MyKmRcTUiNitMFFLktTytMgkwo03wpVX\nwgMPZNP0VT8jR2bJhPPOK3QkkiQt41pg92ptZwB/TyltDPwDOBMgIjYlW45pIPBdYGxERCPGKklS\ni9Xikgh//zucfDLcfz/07l3oaJqXCLj6arjqKnj22UJHI0nSV1JKk4G51Zr3A67L3b8O2D93f1/g\nlpTSlymlMmAasG1jxClJUkvXopIIL7wAI0bAHXfAZpsVOprmqWdP+N3vstUaspUtJElqsrqnlCoA\nUkrlQPdc+7rAe1X6zcy1SZKkVdRikghlZbDXXjB2LOy8c6Gjad4OPRQ22QRGjy50JJIkrZBGrqIs\nSVLr07bQAeTD7Nmwxx5wxhlw0EGFjqb5i4A//hEGDYL9r9mL7efe/9XG0tLsb48eUF5emAAlScpU\nRESPlFJFRBQBH+baZwJ9qvTrnWurUUlJSeX94uJiiouL8x+pJElN3KRJk5g0aVKd/SKlwiTtIyLl\nY+yFC+Hb34ZddoELL6x1rBrbC/Xam4s774QzDnyTF9iS9vx32Q6+f1oJURqk0X52pOWJCFJKFgKs\nJiL6AfeklL6Re3wRMCeldFFE/H979x5nZVUvfvzzHRATFRhAZkRwQJNEj5IoqMfUQSrvlyw5iqig\nnUpPCXa01DwCHjVTtE6WHStuqaSSJSqX1HTIO94VRX6aAgZBBiiYHlRYvz/2nnEGZpg9sGf2XD7v\n1+t5sfd61rPXdw/PzKz57nX5PlCcUro4u7DibcCBZKYxPADsUVvHI1/9EUlS62Kfte7+SIuezvDJ\nJ5mh97vvDldfXXe9kpKSnMpU08knwyCe5lI288WVJKkJRMQ04HGgX0QsiYhRwDXAlyJiITA0+5yU\n0qvAncCrwCzgPDMFkiTlR4sdiZASnHsu/OUvMHMmdOiQ23Xjxo2rMWxRm7cqurIPL3Mbp1PO3Jon\n7Y9pC5jVlernSISm40gESVJt7LO2wpEIV10FTz0Fd92VewJBDdeV1fySbzCKyaxlh0KHI0mSJEkq\noBa5sOLkyTBpEjz+OHTqVOhoWr9jmcVdPMyXeIBjmclg5jGIp+la6MAkSZIkSU2qxSURZs+GSy6B\nuXOhtLTQ0bQdN3EesziGeQzmWr7HMxzATp+FwYM/PfbbD7bbrtCRSpIkSZIaS7NIIkyZMoWRI0fW\nW+/pp+Gss2DGDPjc5xo/Ln3qM6zjZP7AyfwBgA0EC+/dwLx5MG8e3HYbvPoq9OtXM7Gw117Qrl2B\ng5ckSZIk5UWzSCIsWrSo3jpvvAEnnAC//jUcfHDjx6TNKyLRvz/0759J7ACsWwcvvphJKsydC9dd\nB0uXZkYoVE8slJVBHbtuSpIkSZKasWaRRKjP3/8ORx0F48ZlEglqnrbd9tNEQaV334Vnn80kFn77\nW7jgAvj4Yxg06NO6gwZB9+6Fi1uSJEmSlJtmn0R4/3049lgYPhy++c1CR6OG6tIFhg7NHJWWLs1M\nTZk3D66/Hp55Brp1+zShMHgwDBwIHTsWLu7GkOu0HUmSJElqrpp1EuHjj2HYMNh3Xxg/vtDRKF92\n2SVznHRS5vmGDfD//l8mqfD003DHHTB/PuyxR83Ewt57Q/tmfcduXi7TdiRJkiSpOWu2f5KllBl5\nEAH/+7/OoS+YkhJYsaL28jwpKoI998wcZ56ZKVu3Dl56KZNYeOwx+PGPYcmSmusrDBoEfft6b0iS\nJElSU2m2SYTLL898Gv3ww7DNNoWOpg1bvvzTx+PGZY4msO22mSTBoEGflr333qfrK9x5J1x4IXz4\nYTayfeAAACAASURBVM1FGwcNgp12apIQm5/S0k0TPiUlNf8PJUmSJGkrFDSJENU+Qh6fna9QUlLC\nuHHLuf32zCfQ229fqOjU3HTuDEcckTkqLVv26foKP/5xZn2FLl1qJhYGDmwj91FtI0ZqK5MkSZKk\nLdTsRiKsWHEgV1wBjzwCPXoUOho1dz17woknZg7IrK/wxhuZpMK8eTB9Orz8Muy+e83Ewt57O8JF\nkiRJkhqqmSURDgZ+zT33ZP7okxqqqAj69cscI0Zkyj76KJNImDcPnngC/ud/YPFiGDCgZmJht91c\nX0GSJEmSNqeovgoRMTEiVkTES9XKvhYR8yNifUQM3Kj+JRHxekQsiIgv5x7K54DfA2dywAG5XyXV\np0MH2H9/OPdcmDwZXnklMw3iqqtg553hrrtgyBDo3h2OOiqzHsd99zkTQJIkSVJupkyZUugQmkwu\nIxEmAzcCv6lW9jLwFeDm6hUjoj8wDOgP9AIejIg9Ukpp802UArOBi4E5OYYubblOnaC8PHNUWr78\n0/UVbrwx87hTp0+3mBw8OJOM2GGHQkUtSZIkqTlqS9u515tESCk9GhFlG5UtBIjYZPD3icDtKaVP\ngEUR8TowGHiq7hZ2JJNA+DUwtSGxS3lVWgrHH585ILPNaOX6Ck8/DZdcAi++mJn2ULkTxODBsM8+\nrq8gSZIkqW3I95oIuwBPVHu+NFu2Gd/OXnJ1nkORtk4E7LFH5jj99EzZxx9/ur7C00/Dz38Ob70F\n++5bM7Hw2c9mri8tLWVFtXkR48ePp6SkhOVuuyhJkiSpBWoGCyv+qNABSDnbZpvMlpEDB8K3vpUp\nW7sWnnsuk1iYMQN+8ANYsyaTUFix4j+Ap4F5QCaZsMLFFiRJkiS1UPlOIiwFeld73itbthkb8hyC\n1LR23BEOPzxzVFqxIjNS4f77E3AemaVFVgEVwMMsW5bZnlKSACoqKqioqCh0GJIkSfXKNYkQ2aOu\nc5XuAW6LiB+TmcbwWTIfwUptSkkJHHccwNhsSQB7A+XA19hnn8xuEOXlmZ0hysszazJIapvKy8sp\nr7bS6/jx4wsXjCRJ0mbUm0SIiGlk/vLpFhFLyPxVtJrMjg3dgfsi4oWU0tEppVcj4k7gVeBj4Lz6\nd2aQ2oIEzM8eP+OddxIvvwwPPwy33w7nnZdJPFQmFMrLoUePggYsSZIkSZvIZXeG4XWcuruO+j8E\nfrg1QUmtRUlJySZrIJSUlFBUBAMGZI4xY2D9enjppUxS4ZZb4BvfgF12ySQVhgzJTJXo3r1Ab0KS\nJEmSsooKHYDUmi1fvpyUEiklxo4dS0qp1p0Z2rWD/faD734X7r0XVq6EqVOhTx+YNAl23z2zA8T5\n58Mf/gCrVjX9e5EkSZKkZrA7Q00lJSWFDkEquHbt4IADMseFF8Inn2R2gHj4Ybj5ZjjrLNhtt0+n\nPxx2GBQXOmhJkiRJrV5BRyJs/AltXZ/SSm1d+/YweDB8//swZ05mpMIvfpFZN+HnP4ddd4WBPMt/\nMoE/c2ihw5UkSZKUb1OmFDoCwOkMUou0zTZw8MFwySVw//2ZpMKNfIdiVjOCW/lvLsMVTSVJkqTG\nVVpaSkQwfvx4IoKIoLSxtl1btKhxXreBTCJIrUCHDnAIj3MZV/EUB3IPJ3Amv2EdHQodmiRJktRq\nbbyIel1lrYlJBKmV2ZnlzOVwPqAjQ/kT77xT6IgkSZIktRYmEaRWqCMfMp1TOJRHOOggWLCg0BFJ\nkiRJ2iKlpRAB48dn/o3IlBWISQSplSoi8UMu5bLL4PDD4cEHCx2RJEmSpAarbXpEAadMmESQWrlR\no2D6dDj99Mz2kJIkSZK0pUwiSG3A4YfDo4/C9dfDd78L69cXOiJJkiRJLZFJBKmN2GMPePJJeP55\n+MpX4P33Cx2RJEmSpJamWSQR+vTpU+gQpDaha1f44x9hp53gC1+At98udESSJEmSWpJmkUQYOXJk\nk7VlwkJtXYcO8Otfw/DhcPDB8MwzhY5IkiRJUkvRLJIITakpExZSdc0pgRUB3/se3HgjHH00/P73\nhY5IkiRJUkvQvtABSG1Fc0xgfeUrsOuucOKJ8PrrmcRCRKGjkiRJktRctbmRCNoKzeiTdOXP/vtn\nFly8/Xb4+tfho48KHZEkSZKk5sokgnLXDD9JV3706gWPPALvvANHHgmrVuV23ZQpUxo1LkmSJEnN\ni0kESQDssAP84Q8wcCAcdFBmekNtSktLiQgiglGjRlU9Li0tbdqAJUmSJDU5kwiSqrRrB9dfDxde\nmNkCsqJi0zorVqyo9dq6yiVJkiS1HiYRpNaipCS3shx84xtw220wbBhMnryVcUmSJElqNUwiSK3F\n8uWQEowdm/k3pUzZFvriF2HuXLjySrj4YtiwIY+xSpIkSWqRTCJIqlP//vDUU/DYY3DKKfDBB4WO\nSJIkSVIhmUSQtFndu8ODD0LHjnDYYQA7FzokSZIkSQViEkFSvbbdFn7zGzjpJIAngQEFjkiSJElS\nIZhEkJSTCLjsMoALgQeA4wobkCRJkqQmZxJBUgNNJ5NAuBk4tsCxSJIkSWpK7QsdgKSWaB5wEPCP\nQgciSZIkqQk5EkHSFnob+LDQQUiSJEkFU1JSklNZa2ISQZIkSZKkLbB8+XJSSowdO5aUEiklli9f\nXuiwGlW9SYSImBgRKyLipWplxRFxf0QsjIg/RkTnbHn7iJgSES9FxCsRcXFjBi9JkiRJkppOLiMR\nJgNHblR2MfBgSulzwEPAJdnyU4AOKaV9gQOAb0bErvkKVpIkSZIkFU69SYSU0qPA6o2KTwSmZh9P\nBU6qrA5sHxHtgI7AOmBNfkKVlJM+fQodgSRJkqRWakvXROiRUloBkFJaDlSuHPE74APgb8AiYEJK\n6d2tDVJSA4wcWegIJEmSpDalTxv6IC9fWzxuyP57IPAJUAp0Ax6JiAdTSotqu2jcuHFVj8vLyykv\nL89TOJIktRwVFRVUVFQUOgxJkrSFRrahD/IipVR/pYgy4N7sWgdExAKgPKW0IiJKgYdTSv0j4mfA\nEyml27L1JgKzU0q/q+U1Uy5tS2peIqLOczn9PBkfpLF+70ubExGklOr+ZlPe2B+RJNWmWfVZ6+p/\nN/Lvr7r6I7lOZ4jsUekeYGT28UhgRvbxEuCIbIPbAwcBrzU8XEnNVV373rb2/XAlSZIk5bbF4zTg\ncaBfRCyJiFHANcCXImIhmaTBNdnqPwd2jIj5wFPAxJTS/MYJXVIhVO6F29b2w5XUfEXE6Ih4OXuc\nny0bGxF/jYjnssdRhY5TkqTWoN41EVJKw+s49cVa6v4TGLa1QUmSJOUiIvYGziGztfQnwOyImJk9\nfUNK6YaCBSdJUiuUr4UVJUmSCqE/8FRKaR1ARPwZODl7znUlJEnKsy3d4lGSJKk5mA8cGhHFEdER\nOAboBSTg2xHxQkT8OiI6FzRKSZJaCZMIkiSpxUopvQb8CHgAmAU8D6wHfgHsllL6PLAccFqDJEl5\n4HQGSZLUoqWUJgOTASLiKuDtlNI71ar8Cri3ruvHjRtX9bi8vJzy8vJGiVOSpOasoqKCioqKeuuZ\nRJAkSS1aROyUUnonInYFvgIcFBGlKaXKbWNOJjPtoVbVkwiSJLVVGyfSx48fX2s9kwiSJKmluysi\nugIfA+ellNZExM8i4vPABmAR8M1CBihJ0hYrKYEVKzYtKxCTCJIkqUVLKR1WS9mZhYhFkqS8W54d\nWDduXOYoMBdWlCRJkiRJMGVKvVVMIkiSJEmSJFi0qN4qJhEkSZIkSVJOTCJIkiRJkqScmESQJEmS\nJEk5MYkgSZIkSZJyYhJBkiRJkqTmrk+fQkcAmESQJEmSJKn5Gzmy0BEAJhEkSZIkSVKOTCJIkiRJ\nktSWlZZCBIwfn/k3os6qJhEkSZIkSWrLVqzIuapJBEmSJEmSlBOTCJIkSZIkKScmESRJkiRJastK\nSnKuahJBkiRJkqS2bPlySAnGjs38m1KdVds3YViSJEktQp8+fVi8eHGhw1ArUVZWxqJFiwodhiTl\nhUkESZKkjSxevJi0mU9hpIaIzWyVJkktjdMZJEmSJElSTkwiSJIkSZKknJhEkCRJkiRJOTGJIGmL\n9enTp9AhSJLqcO6553LVVVfVeb6oqIg333xzq9s55phjuOWWW7b6dSRJLUO9SYSImBgRKyLipWpl\nxRFxf0QsjIg/RkTnauf2jYjHI2J+RLwYER0aK3hJhTVy5MhChyBJbVKfPn34zGc+w6pVq2qU77ff\nfhQVFbFkyRJ+8Ytf8IMf/KDO18jXYn+zZs3ijDPOyKnukCFDmDRpUl7alSQVRi4jESYDR25UdjHw\nYErpc8BDwCUAEdEOuAX4RkrpX4By4OO8RStJkiQigr59+/Lb3/62qmz+/Pl8+OGHOScH3H1CkrQl\n6k0ipJQeBVZvVHwiMDX7eCpwUvbxl4EXU0rzs9euTv6GkiRJyrszzjiDqVOnVj2fOnUqZ511VtXz\nUaNGcfnll1c9v+666+jZsye9evVi8uTJNZINo0aN4txzz+XLX/4ynTp1YsiQISxZsqTq/OOPP87g\nwYMpLi7mwAMP5Iknnqg6V310wdSpUzn00EO56KKL6Nq1K7vvvjt//OMfAbjssst45JFH+Pa3v02n\nTp04//zz8/9FkSQ1ui1dE6FHSmkFQEppOdAjW94PICLmRMQzEXFRHmKUJEnSRg466CDWrl3LwoUL\n2bBhA3fccQcjRoyote6cOXO44YYb+NOf/sTrr7/Ogw8+uEmdadOmMXbsWFauXMmAAQM4/fTTAVi9\nejXHHXccY8aMYeXKlVxwwQUce+yxrF698WdMGfPmzaN///6sXLmSiy66iLPPPhuAK6+8kkMPPZSf\n/exnrFmzhp/+9Kd5+kpIkppSvhZWrBxt0B44BDgNOBT4SkQMyVMbkiRJqqZyNMIDDzxA//796dmz\nZ63TFKZPn86oUaPo378/2223HePGjdukzrHHHsshhxzCNttsw1VXXcWTTz7J0qVLmTlzJv369WP4\n8OEUFRVx6qmnsueee3LvvffWGlNZWRlnn302EcFZZ53F3/72N/7+97/n+61Lkgqk/RZetyIiSlJK\nKyKiFKj8zfBX4M8ppdUAETELGAg8XNuLVP8FVl5eTnl5+RaGI0lSy1VRUUFFRUWhw1AD5WNdwq2d\n9DlixAgOO+ww3nrrLc4888xsXJsGtmzZMg444ICq52VlZZskG3r37l31ePvtt6e4uJhly5axbNky\nysrKatQtKytj6dKltcZUWlpa9Xi77bYD4P3336dHjx611pcktSy5JhEie1S6BxgJ/Ag4C5iRLf8j\ncFFEfAb4BDgcuKGuF60tCy5JUluzcSJ9/PjxhQtGOWsOqz7tuuuu9O3bl9mzZ29214Odd96Zt99+\nu+r54sWLN0k2VD///vvvs3r1anr27EnPnj256667atRdsmQJRx99dIPjzdeOEJKkwslli8dpwONA\nv4hYEhGjgGuAL0XEQmBo9jkppXfJJA2eAZ4DnkkpzW6s4CVJktq6SZMm8dBDD1V96l/bdIZhw4Yx\nZcoUFixYwAcffMAVV1yxSZ1Zs2bx+OOP89FHH/Ff//VfHHTQQeyyyy4cc8wxvP7669x+++2sX7+e\nO+64gwULFnD88cc3ONaSkhLefPPNhr9JSVKzkcvuDMNTSj1TStumlHZNKU3O7rrwxZTS51JKX84m\nDyrrT0sp/UtKad+U0iWNG74kSVLbU/0T/b59+zJw4MBaz1U66qijGDNmDEcccQT9+vVj6NChm9QZ\nPnw448aNo1u3bjz//PPceuutAHTt2pX77ruPCRMm0L17dyZMmMDMmTMpLi6us726Yh09ejTTp0+n\nW7dujBkzpmFvWpLU+Pr0qbdKFGoHxohw90epDYrxQRrr9760ORFBSslx302grv5I9v+gABEVxqhR\no+jdu3etIxS09dra/SS1BvZZ6+6P5Gt3BkmSJEmS1MqZRJAkSWrjXPBQkpSrLd3iUZIkSa3E5nZ2\nkCSpOkciSJIkSZKknJhEkCRJkiRJOTGJIEmSJEmScmISQZIkSZIk5cQkgiRJkiRJyolJBEmSJNXp\n0UcfpX///oUOo0GGDBnijhOS1EhMIkiSJLUwffr0oWPHjnTq1Ikdd9yRTp06cf755zdKW1/4whdY\nsGBBo7x2XaZOnUr79u3p1KkTXbp0Yb/99mPmzJlNGoMkqXbtCx2AJEmSGiYimDlzJkOGDNmq11m/\nfj3t2rXLU1T59a//+q/8+c9/BuCXv/wlp556KkuXLqVTp04FjkyS2jZHIkiSJLVAKaVay998802G\nDh1K9+7d6dGjByNGjGDNmjVV5/v27cu1117LgAED2GGHHVi/fj19+/bl+uuvZ8CAARQXF3Paaafx\n0UcfATB37lx69+5d4/q66gJce+219OzZk169ejFx4kSKiop48803AZg1axZ77703nTp1onfv3txw\nww05vdczzjiDf/7zn7z++utVZU8++SSHHHIIxcXF7LfffsydO7fO6ydNmsRee+1Ft27dOProo1my\nZEnVuTFjxrDrrrvSuXNnBg0axKOPPlp17umnn2bQoEF07tyZnXfemQsvvHCL2pek1sQkgiRJUiuS\nUuLSSy9l+fLlLFiwgL/+9a+MGzeuRp3bb7+d2bNn8+6771aNRJg+fTr3338/b731Fi+++CJTpkyp\nqh8RNa6vq+6cOXP4yU9+wkMPPcQbb7xBRUVFjWu//vWv86tf/Yo1a9Ywf/58jjjiiHrfz/r165k0\naRIdOnSgrKwMgGXLlnHcccdx+eWXs3r1aiZMmMBXv/pVVq5cucn1M2bM4JprruHuu+/mnXfe4dBD\nD+W0006rOj948GBeeuklVq9ezfDhwznllFOqkiKjR49mzJgxvPfee/zlL39h2LBhDW5fklobkwiS\nJEkt0EknnUTXrl0pLi6ma9euTJw4EYDdd9+doUOH0r59e7p168YFF1ywyafko0ePpmfPnmy77bY1\nykpKSujSpQvHH388L7zwQp1t11V3+vTpjBo1ij333JPPfOYzjBs3rsaIiQ4dOvDKK6+wdu1aOnfu\nzOc///k623jiiSfo2rUr2223Hd/73ve49dZb6d69OwC33norxx57LEceeSQAQ4cO5YADDmDWrFmb\nvM7NN9/MJZdcQr9+/SgqKuLiiy/mhRde4O233wZg+PDhdOnShaKiIi644ALWrVvHwoULq+J94403\nWLlyJR07dmTw4MENbl+SWhuTCJIkSVsgxsdWH1tjxowZrFq1itWrV7Nq1SrOOeccAP7+979z2mmn\n0atXL7p06cKIESP4xz/+UePaXr16bfJ6JSUlVY87duzI+++/X2fbddVdtmxZjakP1R8D3HXXXcyc\nOZOysjKGDBnCk08+WWcbBx98MKtWreLdd9/lhBNOqFofAWDx4sXceeeddO3atSqR8thjj7F8+fJN\nXmfx4sWMHj26qm63bt2ICJYuXQrAhAkT2GuvvSguLqa4uJg1a9ZUfb0mTpzIwoUL2XPPPTnwwAOr\nFnesq/2//e1vdb4fSWotXFhRkiRpC6Sxta9J0GTt17EmwqWXXkpRURGvvPIKnTt3ZsaMGXznO9+p\nUWfj6Qn5svPOO/PXv/616vmSJUtqtLX//vtz9913s379em688UaGDRtWY32C2nTs2JGbbrqJ3Xbb\njXPOOYcBAwbQu3dvzjzzTG6++eZ6Y+rduzeXXXZZjSkMlR599FGuu+46Hn74Yfbaay8AunbtWvW1\n3X333Zk2bRqQSYB87WtfY9WqVQ1qX5JaG0ciSJIktSJr165lhx12YMcdd2Tp0qVcd911Tdb2sGHD\nmDx5Mq+99hoffPABV155ZdW5jz/+mGnTprFmzRratWvHjjvumPPOEMXFxfz7v/8748ePB2DEiBHc\ne++93H///WzYsIH/+7//Y+7cuSxbtmyTa7/1rW9x9dVX8+qrrwLw3nvv8bvf/Q7IfK222WYbunXr\nxkcffcQVV1zB2rVrq6697bbbqkYldO7cmYigqKioQe1LUmtjEkGSJKkFOv744+nUqVPV8dWvfhWA\nsWPH8uyzz1atV1BZXqm2UQgNGZmwubpHHXUU559/PkOGDKFfv34cfPDBAFVrL9xyyy307duXLl26\n8Mtf/rLqU/5cjB49mtmzZzN//nx69erFjBkzuPrqq9lpp50oKytjwoQJbNiwYZMYTzrpJC6++GJO\nPfVUunTpwr777sucOXMAOPLIIznyyCPp168fffv2pWPHjjWmYMyZM6dqN4kLLriAO+64g2233bbe\n9iWpNYu6hsI1esMRqVBtSyqcGB8FHwIsNXcRQUqpccabq4a6+iPZ/4MCRNS6vPbaa+yzzz6sW7eO\noqK2+9mV95PU8thnrbs/0nZ/mkuSJCnv7r77bj766CNWr17N97//fU444YQ2nUCQpNbGn+iSJEnK\nm5tvvpkePXqwxx57sM0223DTTTcVOiRJUh65O4MkSZLyZvbs2YUOQZLUiByJIEmSJEmScmISQZIk\nSZIk5cQkgiRJkiRJyolJBEmSJEmSlBMXVpQkSdpIWVkZEZtsjS1tkbKyskKHIEl5U28SISImAscB\nK1JK+2bLioE7gDJgETAspfRetWt2BV4BxqaUbmiEuCVJkgCIiNHA17NPf5VS+ml9fZX6LFq0KN9h\nSpLUKuQynWEycORGZRcDD6aUPgc8BFyy0fnrgVm5BlFRUZFrVanF8j5XW+B9rqYWEXsD5wAHAJ8H\njouI3am/r7IJ71+1VN67asm8f1ueepMIKaVHgdUbFZ8ITM0+ngqcVHkiIk4E3iQzEiEn3jhqC7zP\n1RZ4n6sA+gNPpZTWpZTWA38GTgZOoI6+Sl28f9VSee+qJfP+bXm2dGHFHimlFQAppeVACUBE7AB8\nDxgP5DyRsCmHDDbVTdqU3wy+p+bfDjTdfe7/U8toqzW+J/A+bwnttELzgUMjojgiOgLHAL2Bko36\nKj3qe6GmuH+b4v/ZNtpeG967za8d28id92/LayNfuzNsyP47FvhxSumD7POcEgkmEVpGW76nreMf\nV82/naZsqzW+J/A+bwnttDYppdeAHwEPkJlK+Tywvraq9b2WHVnbaKlteO82v3ZsI3fevy2vjUip\n3t+pREQZcG+1hRUXAOUppRURUQo8nFLqHxF/BnplLysm80v88pTSTbW8Zv0NS5LURqWU3BpgC0TE\nVcDbwGhq6avUUt/+iCRJdaitP5LrFo9BzVEF9wAjyWT+zwJmZBs4rOqCiLHA2toSCHUFI0mS1FAR\nsVNK6Z3s7lBfAQ4C+lJLX2Vj9kckSWqYXLZ4nAaUA90iYgmZKQvXANMj4mxgMTCsMYOUJEnajLsi\noivwMXBeSmlNRPwIuNO+iiRJ+ZXTdAZJkiRJkqR8LaxIRJwUERsiol8eXutrETE/ItZHxMBq5e0j\nYkpEvBQRr0TExVvbltQQeb7Pr42IBRHxQkTcFRGdsuVlEfFBRDyXPWqdEiTlU/a+/k215+0i4p2I\nuCdPr39JRLyevee/nC3bLiLuy5a9HBFX56MttW1N1B/pGhEPRcTaiPjp1rYjVbI/rZbKPnLbkrck\nAnAq8AhwWkMvjIiN43iZzJzGuRuVnwJ0yC7weADwzez8R6mp5PM+vx/YO6X0eeB14JJq595IKQ3M\nHudtcbRS7v4J/EtEbJt9/iUyi9NttYjoT2YoeX/gaOCmiKich35ddrG7/YAvRMSR+WhTbVpT9Ef+\nD7gM+M8tCVDaDPvTaqnsI7cheUkiRMT2wCHAOVS7cSLi8IiYm/2k6bXq2aJs9n5CRDxPZgGkKiml\nhSml19l0i8gEbB8R7YCOwDpgTT7eg1SfRrjPH0wpVW6P+iSf7mwCOW6PKuXZLODY7OPTgN9WnoiI\nQRHxeEQ8GxGPRsQe2fK5EbFvtXqPRMQ+G73uicDtKaVPUkqLyHQIBqeUPkwpzQVIKX0CPEfN7wOp\nQZqqP5JS+iCl9DiZfoiUF/an1VLZR2578jUS4URgTkrpDeAfEbFftXODgP8g8wnUZyPi5Gz59sAT\nKaX9sr+Ic/E74APgb8AiYEJK6d18vAEpB415n58NzK72vE92mNbDEfGFPL4HqS4JuB04LTsaYV/g\nqWrnFwBfSCntT2aB3R9my38NjALIJha2TSm9vNFr70LNUQ1Ls2VVIqILcDzwp7y8G7VVTdUfkRqD\n/Wm1VPaR25h8JRFOI9P5BLgDGF7t3LyU0uKUWcHxt0Dlf/Z64PcNbGcw8AlQCuwGXBgRfbYwZqmh\nGuU+j4gfAB+nlKZli5YBu6aUBpIZKjstInbI03uQ6pRSmg/0IXOvz6Rmtr8L8LuIeBn4MbBXtvx3\nwLHZT7TOBqY0tN3stdOAn2RHKkhbqqn6I1JjsD+tlso+chtT7xaP9YmIYuAIMnNpE9COzCdaF2Wr\nbLz9Q+XzD1PDt4YYTibLtQF4JyIeIzOXa9GWxC7lqrHu84gYCRyTfe3MhSl9DKzOPn4uIv4C9CMz\n1FtqbPcA15HZ2rd7tfL/Bh5KKZ0cEWXAwwAppQ8j4gHgJDLzbPev5TWXAr2rPe+VLav0S2BhSunG\nfL0JtT1N3B+R8sr+tFoq+8htUz5GIpwC/Cal1DeltFtKqQx4q9rwksHZlTSLgH8js+AG5D6fpXq9\nJWRvpOzcm4OA17b6HUj1y/t9HhFHkfkBe0JKaV218u6VC8xExG7AZ4E38/+WpBoq79VJwPiU0isb\nne/Mp3/4j9ro3ETgp2Q+bXivlte+Bzg1IjpERF8y9/Q8gIi4EuiUUrogD+9BbVtT9kdyKZcawv60\nWir7yG1QPpII/wb8YaOyu/h0UY1ngJ8BrwB/SSndnS3fXObppIh4m8wPtfsionIezM+BHSNiPpm5\nuhOzw2+lxpb3+xy4EdgBeCBqblNzGPBSRDwH3Al807mKagIJIKW0NKX0s1rOXwtcExHPstHvpMnR\nhwAAANFJREFUjpTSc2QW5Zpc6wun9CqZe/lVMos3npdSShGxC3ApsFdEPJ/9Pjg7b+9IbU1T9keI\niLeA64GzImJJROyZn7ehNsr+tFoq+8htUDTmCL6IOBz4z5TSCY3WiFRg3udq6yKiJ5mpDv4RpWbJ\nn9Nqybx/1VJ577Ze+VpYUZLUBkXEGcATZEYUSJIkqZVr1JEIkiRJkiSp9XAkgiRJkiRJyolJBEmS\nJEmSlBOTCJIkSZIkKScmESRJkiRJUk5MIkiSJEmSpJyYRJAkSZIkSTn5/wNfq10SmMMcAAAAAElF\nTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1fae6c517b8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"f, axarr = plt.subplots(1, 2)\n",
"f.set_size_inches(18, 6)\n",
"\n",
"FB_plot = axarr[0]\n",
"ohlc_dataframe(FB[datetime(2016, 4, 18):], FB_plot)\n",
"\n",
"FB_truncated = FB[datetime(2016, 4, 18):datetime(2016, 4, 27)]\n",
"midpoint = FB_truncated['Open']/2 + FB_truncated['Close']/2\n",
"FB_plot.plot(FB_truncated.index, midpoint, label='Midpoint')\n",
"FB_plot.vlines(date2num(datetime(2016, 4, 27, 12)),\n",
" ax_fb.get_ylim()[0], ax_fb.get_ylim()[1],\n",
" color='g', label='Earnings Release')\n",
"FB_plot.legend(loc=2)\n",
"FB_plot.set_title('FB Midpoint Plot')\n",
"\n",
"AAPL_plot = axarr[1]\n",
"ohlc_dataframe(AAPL[datetime(2016, 4, 10):], AAPL_plot)\n",
"AAPL_truncated = AAPL[datetime(2016, 4, 10):datetime(2016, 4, 26)]\n",
"midpoint = AAPL_truncated['Open']/2 + AAPL_truncated['Close']/2\n",
"AAPL_plot.plot(AAPL_truncated.index, midpoint, label='Midpoint')\n",
"AAPL_plot.vlines(date2num(datetime(2016, 4, 26, 12)),\n",
" ax_aapl.get_ylim()[0], ax_aapl.get_ylim()[1],\n",
" color='g', label='Earnings Release')\n",
"AAPL_plot.legend(loc=3)\n",
"AAPL_plot.set_title('AAPL Midpoint Plot');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Given these charts, we can see that FB was trending down for the four days preceding the earnings release, and AAPL was trending down for a whopping 8 days (we don't count the peak day). This will define the methodology that we will use for the study.\n",
"\n",
"So what are the results? For a given horizon, how well does the market actually perform?"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100% (47578 of 47578) |###########################################################| Elapsed Time: 0:21:38 Time: 0:21:38\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBoAAAGNCAYAAAC/hxIDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmYHVWd//H393Z39qTJBglJOmGXRSDsgoONiiyOgIoK\nqAjjwiig4/xUcEESx1FxXFA2QUHQEZFRUBkWGZXGhC1hSSB0AiHQ2UNCEggBkt7O74+6nXSaTuiQ\nm65e3q/nqedW1T236tu3s9T93HNORUoJSZIkSZKkUijkXYAkSZIkSeo5DBokSZIkSVLJGDRIkiRJ\nkqSSMWiQJEmSJEklY9AgSZIkSZJKxqBBkiRJkiSVjEGDJKnHi4hTIqI5IvbsQNtPRMSoVtvXRMRb\ntm+FpRMRTRHxaEQ8FhF/7ED78RHxRCfVdmpEzCrWeFCr/eURcX1EPB4RT0bEha2e+3ZELIiINW2O\n9U8R8UhENETEBzqj/vZExMnd6c+HJEmdwaBBktQbnAZMAU7vQNuzgDEtGymlz6SU5mynurZJRJS1\ns/uVlNJBKaWJKaVTOnioVMq6tuAJ4P3AvW32fwjok1LaHzgEOCciqorP/Rk4tJ1jzQc+AfxmO9Xa\nUacA++ZcgyRJXYpBgySpR4uIgcBRwCdpEzRExAXFb9Efi4jvRMQHyT7o/nexV0C/iLin5dv3iDi9\n2P7xiPheq+O8XPzmfUZE3B8RI9upY2hE3BoRM4tt9ovMcxExpFW7pyNiZESMiIjfR8RDxeVtxecv\njohfRcRU4Fft/cgdeE8OLtb6GHBuq/3jI+IfEfFwcTmiuP+GiDipVbv/joj3RcQ+xdoeLR5vty2d\nN6X0VEppbjs1JmBgMTgZAKwH1hRfMy2l9Hw7x1qQUprFG4QkEfHRVjVeFRGFiDgnIr7fqs0nIuKn\nm2kfxf2v+x0XfycnAd8vtt8lIj5f7JUxIyJu3FJtkiT1VAYNkqSe7mTgrpTSM8ALETERICKOB94H\nHJpSmgh8P6X0B2A6cEaxV8C6loNExGjge0A1cCBwaKsP3wOB+1NKB5L1nPh0O3VMBh5NKR0AfB34\ndUopAX8k+5afiDgMqEsprQB+AvwopXQ4cCpwbatj7Q28M6X00XbO07cYEtwfESdv5j25Dji3+HO3\nthx4d0rpELJeIJcV918LnF2scQjwNuB24F+BS1NKB5EFNIuKbW5vPfykA34PvAosBeqAH6SUXtyK\n17erOKThI8CRxRqbgTOAP1B8z4s+Aty0mfYt7/HrfscppQfIelx8ufjn5TngAuDAYrt/3dafQZKk\n7qg87wIkSdrOTgcuLa7/rrj9GPBu4JcppfUArT7YBu33CjgUuCeltAogIn4DHE32QbM+pXRHsd0j\nxWO39XbgA8Vz3RMRwyJiEHAz8E3gBrIP978rtn83sHfLN+rAoIgYUFz/c0qpfjM/7/iU0tKI2AX4\ne0Q8XvwATLHuSqAypXRfcdevgeOL6xXA1RFxINAE7FGs9x8RcUVEDCcLPf6QUmqOiAeAr0fEWODW\nYphDSum9m6ltcw4DGoFRwHBgSkT8NaVUt5XHaetdwEHA9OL72A94PqX0QkTMKwY7zwB7pZTuj4hz\n22m/rHisjvyOAWYCN0Y2P8YbzpEhSVJPZNAgSeqxImIo8E5gv4hIQBlZV/uvvNlDbmZ/Q6v1Jtr/\n/7VtF/8ASCk9EBG7RcQIsvH+32r1/OEppYZNXpTlDq9srsCU0tLi43MRUQNMBJ7bXPs2vggsSynt\nXxzG8Fqr534FfJwsDDmreI7fRsSDwD8Dd0TEZ1JKNR08V2tnkPU6aQZWRMR9ZD0k6t7EsVoL4IaU\n0tfbee4mst4Lc4BbO9C+dbCzud8xwHvJAqiTyEKY/Yo/lyRJvYZDJyRJPdmHgF+llHZJKe2aUhoP\nPBcRbwf+Dzg7IvrDhlACsrkBhrRzrGnA0cWeCGVkPSNqtqKWKcDHiueqBlaklNYWn7sV+BFQ26pn\nxd3AF1peHBEHvNEJImKHiOhTXB8BHAnUtm6TUnoJeDEijizu+lirpyvJhi8AnEkWzLS4Afi37BDZ\n5JgRsUtK6bmU0mXAn4D936jG1uW2Wl9AFgi1zKlxBFkAsLn2WzpWa38DTo3inBmRzZPRMsnkH8mG\n1ZxGFjpsrv24NzjHyxT/vBR7QVSllO4FLizuH7SFuiVJ6pEMGiRJPdlH2PhtdYtbgNNTSn8BbgMe\njohHgf9XfP4G4GfFyf36UeyJkFJaRvbhsYZs6MXDKaX/Lb6mI3dtmAwcHBEzge+Q3TGhxc1kcwHc\n1GrfF4BDIps8chZwTgfOsXfx53mM7EPzdzdzx4x/Aa4s/tyta78SOKv4+j1p1XMipbQcmA38slX7\nD0d2u8rHyO688CvY/BwNkd1mdCFZkPC/EXFn8akrgMHFn/Mh4NriRI9ExCXF1/SP7DaX3yzuP6S4\n/1Sy39frbtGZUpoNfAO4u/i+3002PKNlqMxssmDg4S20H91yuHbeR8h+Z1+OiEeA3ckmEn2cbHjF\nT1JKazbzOkmSeqzI5qGSJEnavOL8EDOBg1JKL+ddjyRJ6rrs0SBJkrYoIt5FNgTjp4YMkiTpjdij\nQZIkSZIklYw9GiRJkiRJUskYNEiSJEmSpJIxaJAkSZIkSSVj0CBJkiRJkkrGoEGSJEmSJJWMQYMk\nSZIkSSoZgwZJkiRJklQyBg2SJEmSJKlkDBokSZIkSVLJGDRIkiRJkqSSMWiQJEmSJEklY9AgSZIk\nSZJKxqBBkiRJkiSVjEGDJEmSJEkqGYMGSZIkSZJUMgYNkiRJkiSpZAwaJEmSJElSyRg0SJIkSZKk\nkjFokCRJkiRJJVOSoCEiro2I5yPi8S20+WlEzI2IGRFxYCnOK0mSep+IOD4i5kTE0xFxQTvP7xUR\n90fEuoj49zbP1UXEzIh4LCKmdV7VkiT1HqXq0fBL4LjNPRkRJwC7pZT2AM4Bflai80qSpF4kIgrA\n5WTXHfsCp0fEW9o0WwmcD/xXO4doBqpTShNTSodt12IlSeqlShI0pJSmAqu30ORk4FfFtg8BlRGx\nUynOLUmSepXDgLkppfkppQbgJrLrjA1SSi+klB4BGtt5feDQUUmStqvO+o92DLCw1fbi4j5JkqSt\n0faaYhFbd02RgP+LiOkR8emSViZJkgAoz7uAtiIi5V2DJEldUUop8q6hBzgqpbQ0IkaSBQ6ziz0z\nN/BaRJKkzevI9Uhn9WhYDIxrtT22uK9dKSWXDi4XX3xx7jV0p8X3y/fL96vrLL5fW7dog8VAVavt\nLV5TtJVSWlp8XAHcSjYUo712Llux+PfZ98v3q+ssvl++X9tz6ahSBg1RXNrzZ+BMgIg4AngxpfR8\nCc8tSZJ6h+nA7hExPiL6AKeRXWdszoZrk4gYEBGDiusDgfcAs7ZnsZIk9UYlGToRETcC1cDwiFgA\nXAz0AVJK6ZqU0h0RcWJEPAO8ApxdivNKkqTeJaXUFBHnAXeTfWFybUppdkScQ/G6ozjh9MPAYKA5\nIr4A7AOMBG4tDo0oB36TUro7n59EkqSeqyRBQ0rpjA60Oa8U59Kmqqur8y6hW/H92jq+X1vH92vr\n+H7pzUop3QXs1Wbf1a3Wn2fTIZst1gIHbt/qeif/Pm8d36+t4/u1dXy/to7v1/YRWzPOojNEROpq\nNUmSlLeIIDkZZKfwWkSSpPZ19Hqky911YnMmTJjA/Pnz8y5Db2D8+PHU1dXlXYYkSSXntUjn8FpC\nkrq/btOjoZic5FCRtoa/J0naPuzR0Hm8FsmX77MkdV0dvR7prNtbSpIkSZKkXsCgQZIkSZIklYxB\ngyRJkiRJKhmDBkmSJEmSVDIGDZIkSZIkqWS6ze0t2/rmNy9lwYIXt9vxq6p24Fvf+rftdvzOcvbZ\nZzNu3Di+9a1v5V2KJEk9jtcjHeP1iCT1Lt02aFiw4EUmTJi03Y5fV7f9jt3iiiuu4Prrr+eJJ57g\njDPO4Lrrrtvu55QkSaXj9YgkSa/n0Int4JJLLulQuzFjxnDRRRfxyU9+cjtXJEmSehuvRyRJeTFo\n2A7Wr1/foXannHIKJ510EsOGDXvDtpdccgljx45lyJAh7L333txzzz3ttnvsscc4+OCDqays5LTT\nTmPdunVbVbskSeoZvB6RJOXFoGE7SCmV9HhPP/00V1xxBY888ghr1qzhL3/5CxMmTHhdu4aGBt7/\n/vfziU98glWrVvGhD32IP/zhDyWtRZIkdQ9ej0iS8tJt52joSubNm8fvf/97IoKUEvfddx/f//73\nSSkRERx++OG84x3veNPHLysro76+nlmzZjF8+HCqqqrabffggw/S2NjI5z//eQA++MEPcuihh77p\n80qSpO7D6xFJUldh0FACu+22GxdccMGG7fXr1/OVr3ylpMe/9NJLmTRpErW1tRx33HH88Ic/ZPTo\n0Zu0W7JkCWPGjNlk3/jx40tWhyRJ6rq8HpEkdRUOnegmTjvtNKZMmcL8+fMBuPDCC1/XZvTo0Sxe\nvHiTfQsWLOiU+iRJUs/n9YgkqSMMGraDjo6JbGpqYt26dTQ1NdHY2Mj69etpamp6Xbunn36ae+65\nh/r6evr06UP//v0pFF7/q3vb295GeXk5l112GY2Njdxyyy1MmzZtm38eSZLU/Xg9IknKS7cdOlFV\ntcN2vbd0VdUOHW771FNPcdNNN20YE3nvvffyrW99a8OYyLe97W0ce+yxr3vdt7/9bSZPnkxEAPCb\n3/yGiy++mG9+85ubtFu/fj0XXnghc+bMoaKigiOPPJJrrrkGgBNPPJGjjz6aCy+8kIqKCm655RY+\n9alP8Y1vfIMTTzyRD37wg5scq3V7SZK0bbwe8XpEkvR6UeoZibdVRKT2amr5T1Ndm78nSd1RTV0N\nNXU1G9arJ1QDUD2hesN63or/vkbedfQGXovky/dZkrqujl6PGDSopPw9SeruYnKQLu56/44ZNHQe\nr0Xy5fssSV1XR69HnKNBkiRJkiSVjEGDJEmSJEkqGYMGSZIkSZJUMgYNkiRJkiSpZAwaJEmSJElS\nyZTnXYAkSVJ3MH78eCK88cf2Nn78+LxLkCRto24dNJTivufd4d7pkiQpf3V1dXmXIElStxBd7T7F\nb/be1aW473lXvXd6Z/vsZz/L2LFj+frXv77Vr/Xe15K6u676f0FH71utbbe5axFJknq7jl6POEdD\nCUyYMIF+/fqxatWqTfZPnDiRQqHAggULSn7O+vp6zjzzTIYNG8aoUaP44he/WLI6r7rqqjcVMkiS\nJEmSZNBQAhHBLrvswm9/+9sN+2bNmsVrr7223cZyXn/99cyYMYO6ujqee+45TjnllC5ZpyRJkiSp\ndzFoKJGPf/zj3HDDDRu2b7jhBj7xiU9s0uaOO+7goIMOorKykvHjxzN58uQNz918883suuuurF27\nFoA777yT0aNHs3LlynbPV1FRQWVlJUOGDKF///684x3vKFmdZ599Nt/85jcBuPfeexk3bhw/+tGP\n2GmnnRgzZgzXX399h84lSZIkSep9DBpK5IgjjuDll1/mqaeeorm5md/97nd87GMf22S+gkGDBvHr\nX/+al156idtvv52f/exn/PnPfwbgwx/+MEcddRSf//znWbVqFZ/61Ke47rrrGD58eLvnO+igg3jw\nwQeZNGlSyetsa9myZbz88sssWbKEX/ziF5x77rm89NJLW3VeSZIkSVLv0K3vOtFWTM63+39Lb4F3\nvOMd7L333uy8886bPH/00UdvWN9vv/047bTTuPfeeznppJMAuPzyy9l///2prq7m5JNP5oQTTmj3\nPKtXr+akk07i9ttv5+KLLyYiuPjiiwEYN24cd911F/vuu++brrOtPn36cNFFF1EoFDjhhBMYNGgQ\nTz31FIcddliH3hdJkiRJUu9RkqAhIo4HLiXrIXFtSumSNs8PAf4bqALKgB+mlK4vxblbK8VdJ7bF\nxz72MY4++miee+45zjzzzNc9/9BDD/HVr36VWbNmUV9fT319PR/60Ic2PF9ZWcmHPvQhfvzjH3PL\nLbds9jz/8z//wz777MN73vMeDjnkEI4++mgigk984hM0NTVtMWToSJ1tDR8+nEJhY+eXAQMGbBji\nIUmSJElSa9s8dCIiCsDlwHHAvsDpEfGWNs3OBZ5MKR0IHAP8MCJ6VG8KgKqqKnbZZRfuvPNOPvCB\nD7zu+Y9+9KOccsopLF68mBdffJFzzjlnkyELM2bM4LrrruP000/n/PPP3+x5GhsbaWhoAGDYsGH8\n9a9/5frrr+e4447jS1/60jbXKUmSJEnSm1WKORoOA+amlOanlBqAm4CT27RJwODi+mBgZUqpsQTn\n7nKuu+46/v73v9O/f//XPbd27VqGDh1KRUUF06ZN48Ybb9zw3Lp16/j4xz/O9773Pa677jqWLFnC\nVVdd1e45TjzxRKZPn87Pf/5zGhsbKSsr48gjj2Tu3LkMGDBgm+uUJEmSJOnNKkXQMAZY2Gp7UXFf\na5cD+0TEEmAm8IUSnLfLaH1ryF122YWDDjqo3eeuvPJKLrroIiorK/n2t7/NRz7ykQ3Pfe1rX2P8\n+PF85jOfoU+fPvz617/moosuYt68ea8734QJE7jzzju54YYbGD58OBMnTmTUqFHcc889XHDBBdx9\n993bVOfW/LySJEmSJLUWW7rbQIcOEPFB4LiU0meK2x8DDkspfb5NmyNTSv8vInYD/g/YP6X0uoH+\nEZFaJjYEqK6uprq6mojY4p0RYnKUZI6GbT1Gb/dGvydJ6uq6yv8FNTU11NTUbNiePHkyKSWT3k4Q\nEcn/yyRJer3i5703vB4pRdBwBDAppXR8cftCILWeEDIi/hf4bkrpvuL234ALUkoPt3O8dv9zb+8D\nbE1dDTV1NRvWqydUA1A9oXrD+hspxTG0kUGDpO6uqwQNbXX0P3ZtO4MGSZLa15lBQxnwFPAuYCkw\nDTg9pTS7VZsrgOUppckRsRPwMHBASmlVO8frcNCgrsffk6TuzqBBBg2SJLWvo9cj23znh5RSU0Sc\nB9zNxttbzo6Ic7Kn0zXAt4HrI+Lx4su+0l7IIEmSJEmSurdt7tFQavZo6N78PUnq7uzRIHs0SJLU\nvk7r0SBJUkc5L44kSVLPZ48GlZS/J0kd1WV7DnTVuuzR0Gns0SBJUvt6XI+G8ePHE+H1VVc3fvz4\nvEuQJEmSJOWo2wQNdXV1eZcgSZIkSZLeQCHvAiRJkiRJUs/RbXo0SJIkSZLUU6WUWLt2LcuWLaO+\nvp59990375LeNIMGSZIkSZI6UXNzMytXrmTZsmUsWrSMp59exrPPLmPNmgSMZNCg5Vx2mUGDJEmS\nJElqo6Ghgeeff55ly5ZRV5eFCvPnL6ehYRARo2huHsWgQYczaNAodthhMI2N63jxxZ/mXfY2MWiQ\nJEmSJKkEXnnlFZYtW8bSpct45pmlzJ27jKVLXwJGkNIoyspGMWjQWxk5chTl5X3zLne7MWiQJEmS\nJGkrpJRYvXo1S5cuZfHiZcydu4xnnlnG6tUNFAqjSGkUffvuwaBB/8TYsSMoFMryLrlTGTRIkiRJ\nkrQZjY2NLF++nGXLljF/fjb0oa7uedav70fEaJqbRzFw4MEMGjSK8eMriYi8S86dQYMkSZIkScBr\nr722YejDs89mPRUWLVoJDKe5eRSFwigGDdqbYcNGUVHRP+9yuyyDBkmSJElSr9LQ0MCLL77ICy+8\nwJIlzzN37lKeeWYZK1euI2InmptH0bfveAYNOpwxY3akUPCj89bw3ZIkSZIk9Tjr1q1j9erVrFq1\nipUrV7F48SoWL17N0qWrWLXqVSIqiRhOU9NODBx4AIMGHUdV1VCHPpSAQYMkSZIkqdtJKfHKK69s\nCBNeeGEVCxeuYsmSLExYu7aRiKFEDKOpaRh9+oyhf/+30r//MKqqhhBRyPtH6LEMGiRJkiRJXVJz\nczNr1qxh1apVrF69muXLN4YJy5atYv36ciKGAsNIaRh9++5O//5DGTx4GMOGDbR3Qk4MGiRJUrcS\nEccDlwIF4NqU0iVtnt8L+CVwEPC1lNKPOvpaSVLna2xs5MUXX9wQJixbtjFMWL78RZqbBwAbw4T+\n/fejf/+hjBgxjPLyfnmXr3YYNEiSpG4jsn6ulwPvApYA0yPiTymlOa2arQTOB055E6+VJG0H9fX1\nrFq1qrisZsmSVSxatIqlS1ezcuXLQCUwlJSGUSgMo3//XenffyijRw+lrKwi7/K1lQwaJElSd3IY\nMDelNB8gIm4CTgY2hAUppReAFyLin7f2tZKkbZdSYuXKlSxcuJCnn17I448vYMmSlygUsl4Jzc1D\nKS8fRf/++9C//1DGjq2kUCjLu2yVkEGDJEnqTsYAC1ttLyILELb3ayVJm9HY2MiSJUuoq1tAbe1C\nnnxyIa+80gcYR1nZOCorD6OqakcnX+xFDBokSZLamDRp0ob16upqqqurc6tFkrqatWvXsnDhQubN\nW8gTTyxg3rznaW4eSUpV9O+/P5WV72X48CF5l6kSqKmpoaamZqtfZ9AgSZK6k8VAVavtscV9JX1t\n66BBknqzlBIrVqxgwYIFzJmzkFmzFrJs2asUCuNIaRyVle9m9OidKSvrk3ep2g7ahu2TJ0/u0OsM\nGiRJUncyHdg9IsYDS4HTgNO30L71fc229rWS1OvU19ezePFi5s/PeivMmbOIV18dAFRRUVFFZeVR\njB8/0ttGaosMGiRJUreRUmqKiPOAu9l4i8rZEXFO9nS6JiJ2Ah4GBgPNEfEFYJ+U0tr2XpvTjyJJ\nXcKaNWtYsGBBcRjEQp57bgUpjaK5eRwDBx5MZeUpjBw5KO8y1c0YNEiSpG4lpXQXsFebfVe3Wn8e\nGNfR10pSb9Hc3Mzzzz/PggULmT17AbNmLWTlygYixhFRxZAhxzNmzM4UCn5M1LbxT5AkSZIk9UDr\n1q1j0aJF1NVlcyvMmbOY+vohpDSOPn12o7LyGKqqhjkMQiVn0CBJkiRJPcCaNWuoq6tj7twFPPHE\nQhYsWA2MJqUqBg06guHDx1JRMSDvMtULGDRIkiRJUjdUX1/P/PnzmTNnHtOmzWPRorXABAqFKior\nJzJ27CgKhbK8y1QvZNAgSZIkSd1ASomlS5cyd+48HnlkHrW1S2hu3hnYlR12OIWqqtFEFPIuUzJo\nkCRJkqSu6qWXXmLevHnMnDmPRx99jldeGUhKuzJo0JGMHj2BsrI+eZcovY5BgyRJkiR1EevXr6eu\nro7a2nk8/PA8Fi9+jYhd6dNnd4YOfQ/Dh1fmXaL0hgwaJEmSJCknzc3NLFmyhKefzoZDzJmzjJTG\nALsxdOipjB8/yrtCqNspSdAQEccDlwIF4NqU0iXttKkGfgxUACtSSseU4tySJEmS1J2sXr2aZ56Z\nx4wZ85gxo47XXhtMSrsxePDR7LzzeMrKKvIuUdom2xw0RDbbyOXAu4AlwPSI+FNKaU6rNpXAFcB7\nUkqLI2LEtp5XkrR5NXU11NTVbFivnlANQPWE6g3rkiSpc6xbt47nnnuuOBziWZYtqwd2pW/ftzB0\n6ImMHDk47xKlkipFj4bDgLkppfkAEXETcDIwp1WbM4A/pJQWA6SUXijBeSVJm9E6UIjJQc1ZNbnW\nI0lSb9LU1MTixYt5+uksWHj66eeBcUTsxtChh1JVtaPDIdSjlSJoGAMsbLW9iCx8aG1PoCIi7gEG\nAT9NKf26BOeWJEmSpFyllFi1alVxOMSzzJhRx/r1O5DSbgwZcgxjx1ZRKDg9nnqPzvrTXg4cBLwT\nGAg8EBEPpJSe6aTzS5IkSVLJvPbaazz77LM8+eSzPPzwPFasaAJ2o1+/fRk69H306TMw7xKl3JQi\naFgMVLXaHlvc19oi4IWU0jpgXUT8AzgAaDdomDRp0ob16upqqqurS1CmJEndR01NDTU1NXmXIUlq\nx4IFC/jP//wNDQ1VFAq7MXToEVRVjXA4hFRUiqBhOrB7RIwHlgKnAae3afMn4LKIKAP6AocDP9rc\nAVsHDZIk9UZtg/bJkyfnV4wkaRMPPTSTxsajqao6Ku9SpC5pm4OGlFJTRJwH3M3G21vOjohzsqfT\nNSmlORHxF+BxoAm4JqVUu63nliRJkqTO1NzczNSpcxgx4lN5lyJ1WSWZoyGldBewV5t9V7fZ/gHw\ng1KcT5IkSZLysGDBAtasGczQoUPzLkXqsgp5FyBJkqQtW78evvQlWL4870okPfZYLRH75F2G1KUZ\nNEiSJHVxKUFZGey/P9x8c7YtqfOllJgyZTYjRhg0SFvizVwlaRvU1NVQU1ezYb16QjUA1ROqN6xL\n0rbq1w8uuQQ+8AE4++wsbLjiCthpp7wrk3qXRYsWsXp1f8aPH5F3KVKXZtAgSdugdaAQk4Oas2py\nrUdSz3b44fDoozB5cta74Sc/gY98BLyjntQ5Zs6sBfbOuwypy3PohCRJUjfSrx9897tw223wH/8B\nH/wgLFuWd1VSz5dS4h//mM3w4Q6bkN6IQYMkSVI3dNhhWe+GvfeGAw6AG2907gZpe1q6dCkrVpQx\ncOCOeZcidXkGDZIkSd1U377wn/8Jt9+e9XJ4//th6dK8q5J6ppZhE+FYJekNGTRIkiR1c4ccAg8/\nDG99Kxx4IPz3f9u7QSqllBJTp85m2DCHTUgdYdAgSZLUA/Ttm83ZcMcd8P3vw8knw5IleVcl9QzL\nly9nyZImBg0anXcpUrdg0CBJktSDHHxw1rth4sSsd8OvfmXvBmlbPfGEwyakrWHQIEmS1MP06ZPd\nAvMvf4Ef/Qje9z5YvDjvqqTua8qU2eywg8MmpI4yaJAkSeqhJk6EadPg0EOz9euvt3eDtLVeeOEF\n5s9/jSFDxuZditRtGDRIkiT1YH36wMUXw913w09+Au99LyxalHdVUvfhsAlp6xk0SJIk9QIHHpj1\nbnjb27LeDdddZ+8GqSOmTnXYhLS1DBokSZJ6iYoKuOgi+Nvf4PLL4YQTYOHCvKuSuq7Vq1czb94a\nKiur8i5F6lYMGiRJknqZ/feHhx6Ct78dDjoIfvELezdI7Zk1qxZ4CxF+bJK2hn9jJEmSeqGKCvjG\nN+Dvf4cYddoFAAAgAElEQVSrroLjjoMFC/KuSupa7rtvNkOGOGxC2loGDZIkSb3YW98KDz4I1dVw\n8MFwzTX2bpAAXnrpJZ56ahU77DAh71KkbsegQZIkqZerqICvfQ3uuQd+/nN4z3tg/vy8q5LyVVs7\nm5T2pFAoy7sUqdsxaJAkSRIA++0HDzwA73oXHHII/Oxn0Nycd1VSPu67bzaDBztsQnozDBokSZK0\nQXk5XHgh3Hsv/PKXcOyx8NxzeVclda61a9dSW/s8Q4fumncpUrdk0CBJkqTX2WcfuO++bJLIww6D\nK6+0d4N6j9ra2TQ370GhUJ53KVK3ZNAgSZKkdpWXw1e+Av/4B/zqV9mQimefzbsqaft74IHZDBzo\nsAnpzTJokCRJ0hbtvXfWu+G97816N1x+ub0b1HO9+uqrzJy5mGHDds+7FKnbsi+QpG6hpq6Gmrqa\nDevVE6oBqJ5QvWFdkrT9lJXBl74E73sfnH02/P73cO21sNtueVcmldbs2XNobt6NsrKKvEuRui2D\nBkndQutAISYHNWfV5FqPJPVWe+0FU6bAT34Chx8OF10En/tcdotMqSd48MHZDBhwQN5lSN2aQyck\nSZK0VcrK4N//He6/H267LRta8etfQ1NT3pVJ22bdunU89tgChg3bI+9SpG7NoEGSJElvyp57wl//\nCj//OVx9Ney3H/zud87foO7rqaeeorFxAuXlffMuRerWDBokSZK0TY45JhtOceml8MMfwsSJ8Mc/\nQkp5VyZtnQcfrKVfP+82IW0rgwZJkiRtswg47jh46CH49rdh8mQ49FC44w4DB3UP69ev55FH6hgx\nYq+8S5G6PYMGSZIklUxEdmeKRx6Br34VvvxlOPLIbIiFgYO6srlz59LQUEV5eb+8S5G6PYMGSZIk\nlVyhAB/8IDz+OJx/fnZnipYhFlJX9NBDtfTps3feZUg9gkGDJEmStpuyMjjjDKithbPOgjPPhPe8\nJxtiIXUVDQ0NTJs2jxEj3pJ3KVKPUJKgISKOj4g5EfF0RFywhXaHRkRDRHygFOeVJElS91BengUN\nTz2V9XQ49VT453+GRx/NuzIJnnnmGerrx1BRMSDvUqQeYZuDhogoAJcDxwH7AqdHxOuiwGK77wF/\n2dZzSpIkqXvq0wfOOQfmzs0mj/znf86Ch1mz8q5Mvdn06bWUlztsQiqVUvRoOAyYm1Kan1JqAG4C\nTm6n3fnA74HlJTinJEmSurF+/bK5G555Jpss8l3vgtNPz3o8SJ2psbGRBx6Yy8iRBg1SqZQiaBgD\nLGy1vai4b4OI2Bk4JaV0FRAlOKckSZJ6gAED4P/9vyxweOtb4e1vz4ZYPPts3pWpt3j22WdZt24n\n+vQZlHcpUo/RWZNBXgq0nrvBsEGSJEkbDB4MX/taFjhMmACHHQaf+QwsWJB3ZerpHn64lrIyezNI\npVRegmMsBqpabY8t7mvtEOCmiAhgBHBCRDSklP7c3gEnTZq0Yb26uprq6uoSlClJUvdRU1NDTU1N\n3mVIna6yEiZNyoZV/OAHMHFiNqTia1+DnXfOuzr1NE1NTTzwwNOMGHFM3qVIPUopgobpwO4RMR5Y\nCpwGnN66QUpp15b1iPglcNvmQgbYNGiQJKk3ahu0T548Ob9ipBwMHw7f/S588YtwySXZsIqzzoIL\nLoAdd8y7OvUUdXV1rF07jOHDK/MuRepRtnnoREqpCTgPuBt4ErgppTQ7Is6JiM+095JtPackSZJ6\nhx13hB/+EJ54AurrYe+94atfhVWr8q5MPcGjj9ZSKDhsQiq1kszRkFK6K6W0V0ppj5TS94r7rk4p\nXdNO239JKd1SivNKkiSpd9h5Z7jsMnjsMVi5EvbcMxti8dJLeVem7qq5uZmpU+cwYsQ+eZci9Tid\nNRmkJElSSUTE8RExJyKejogLNtPmpxExNyJmRMTEVvvrImJmRDwWEdM6r2qVSlUVXHMNTJsGdXWw\n++7wne/A2rV5V6buZsGCBaxZM4T+/YfmXYrU4xg0SJKkbiMiCsDlwHHAvsDpEfGWNm1OAHZLKe0B\nnANc1erpZqA6pTQxpXRYJ5Wt7WDXXeH662HqVJg1C3bbLZs88tVX865M3cVjj9US4bAJaXswaJAk\nSd3JYcDclNL8lFIDcBNwcps2JwO/AkgpPQRURsROxecCr396lL32ghtvhL/9DR54IOvh8NOfwrp1\neVemriylxJQpsx02IW0n/kcrSZK6kzHAwlbbi4r7ttRmcas2Cfi/iJgeEZ/eblWq0+23H/zhD3D7\n7fB//5fN4XDTTZCchlztWLRoEatX92fAgBF5lyL1SKW4vaUkSVJ3cVRKaWlEjCQLHGanlKa2bdT6\nVtttbzWqrm3iRLjttmxIxXnnZfM5XHYZ7Ltv3pWpK5k5sxZw2IT0Rmpqaqipqdnq1xk0SJKk7mQx\nUNVqe2xxX9s249prk1JaWnxcERG3kg3F2GLQoO7p7W+Hhx+Gq66C6mr4xCfg4oth8OC8K1PeUkr8\n4x+zGT789LxLkbq8tmH75MmTO/Q6h05IkqTuZDqwe0SMj4g+wGnAn9u0+TNwJkBEHAG8mFJ6PiIG\nRMSg4v6BwHuAWZ1XujpbeTmcf342WeTKlbD33vDb3zqcordbunQpK1aUMXDgjnmXIvVYBg2SJKnb\nSCk1AecBdwNPAjellGZHxDkR8ZlimzuA5yLiGeBq4HPFl+8ETI2Ix4AHgdtSSnd3+g+hTrfTTvDL\nX8LNN8P3vw/HHJOFD+qdWoZNRETepUg9lkMnJElSt5JSugvYq82+q9tsn9fO654DDty+1akrO/LI\nbDjFz34G73wnfOxjMGkSDBmSd2XqLNndJmoZNuzUvEuRejR7NEiSJKnXKCuDc8/NejS89FI2nOI3\nv3E4RW+xfPlyli5tZtCg0XmXIvVoBg2SJEnqdXbcEa69Nrsl5o9+lE0Y+cQTeVel7e2JJxw2IXUG\ngwZJkiT1WkccAdOmwWmnwbveBf/2b1lPB/VMU6bMZocd9sm7DKnHM2iQJElSr1ZWBp/9LDz5JLzy\nSjac4te/djhFT/PCCy8wf/5rDBkyNu9SpB7PoEGSJEkCRo6En/8cbr0VfvITOPpomDkz76pUKg6b\nkDqPQYMkSZLUyuGHw0MPZXelOPZY+Pzn4cUX865K22rqVIdNSJ3FoEGSJElqo6wMzjkHamth3bps\nOMUNN0Bzc96V6c1YvXo18+atobKyKu9SpF7BoEGSJEnajBEj4Jpr4M9/hiuugH/6J5gxI++qtLVm\nzaolYm8i/PgjdQb/pkmSJElv4NBD4cEH4ayz4Ljj4PzzHU7RnUydWsvgwXvnXYbUaxg0SJIkSR1Q\nKMCnP50Np2hoyIZT/PKXDqfo6l566SWefno1O+wwIe9SpF7DoEGSJEnaCsOHw89+Brfdlj0edRQ8\n+mjeVWlzamtnk9JeFApleZci9RoGDZIkSdKbcMgh8MAD8KlPwQknwLnnwurVeVelthw2IXU+gwZJ\nkiTpTSoU4JOfhNmzIaVsOMW11zqcoqtYu3Yts2cvZ+jQXfMuRepVDBokSZKkbTRsGFx5JdxxB/zi\nF3DkkfDII3lXpWzYxJ4UCuV5lyL1KgYNkiRJUokcdBDcdx+ccw68973w2c/CqlV5V9V73X9/LQMG\nOGxC6mwGDZIkSVIJFQpw9tnZcIqysmw4xc9/7nCKzvbqq6/y+ONLGDZs97xLkXodgwZJkiRpOxg6\nFC6/HO66K7sN5hFHwPTpeVfVe8yePYeUdqesrCLvUqRex6BBkiRJ2o4mToSpU+Fzn4OTTsruTvHS\nS3lX1fM98EAt/fs7bELKg0GDJEmStJ0VCnDWWVBbC42NsM8+cPPN2Z0qVHrr1q1jxoyFDBu2R96l\nSL2SQYMkSZLUSYYOhauvzkKGb30rmzDyuefyrqrneeqpp2hq2oXy8r55lyL1SgYNkiRJUic76ih4\n9FE4+mg49FC45BJoaMi7qp7jwQdr6dvXYRNSXgwaJEmSpBz06QMXXgjTpsE992S3xnzggbyr6v7W\nr1/PI4/UMWLEXnmXIvVaBg2SJElSjnbdFe68E77xDTj1VPjXf4XVq/OuqvuaO3cuDQ1VlJf3y7sU\nqdcyaJAkSZJyFgEf+Qg8+WQ2ceS++8Jvf+tkkW/GQw/V0qePwyakPJUkaIiI4yNiTkQ8HREXtPP8\nGRExs7hMjYi3luK8kiRJUk+yww5w5ZVwyy3wve/B8cfDvHl5V9V9NDQ0MG3aPEaMeEvepUi92jYH\nDRFRAC4HjgP2BU6PiLZ/s58Fjk4pHQB8G/j5tp5XkiRJ6qmOOAIefhje/W44/HD4znegvj7vqrq+\nZ555hvr6MVRUDMi7FKlXK0WPhsOAuSml+SmlBuAm4OTWDVJKD6aUXipuPgiMKcF5JUmSpB6rogK+\n/OUscLjvPpg4EaZMybuqrm369FrKyx02IeWtFEHDGGBhq+1FbDlI+BRwZwnOK0mSJPV4EybA//4v\nTJ4Mp58On/40rFqVd1VdT2NjIw88MJeRIw0apLyVd+bJIuIY4Gzg7VtqN2nSpA3r1dXVVFdXb9e6\nJEnqampqaqipqcm7DEldRER2R4pjj83uTrHPPvCDH8BHP5o9J3j22WdZt24n+vQZlHcpUq9XiqBh\nMVDVantscd8mImJ/4Brg+JTSFm/Y0zpokCSpN2obtE+ePDm/YiR1GZWVcNll8PGPwznnwPXXw1VX\nwR575F1Z/h5+uJayMnszSF1BKYZOTAd2j4jxEdEHOA34c+sGEVEF/AH4eErJeXMlSZKkbXDYYTB9\nOpx4IrztbfAf/wHr1+ddVX6ampq4//6nGDHCoEHqCrY5aEgpNQHnAXcDTwI3pZRmR8Q5EfGZYrOL\ngGHAlRHxWERM29bzSpIkSb1ZeTn8+7/Do49mocMBB8C99+ZdVT7q6up45ZXh9OtXmXcpkijRHA0p\npbuAvdrsu7rV+qeBT5fiXJIkSZI2qqqCP/0J/vhH+NjHslti/td/wYgReVfWeR59tJZCYZ+8y5BU\nVIqhE5IkSZJyFAHvfz/U1mbzOOy7L9xwA6SUd2XbX3NzM1OnznHYhNSFGDRIkiRJPcTgwXDppXDH\nHfDTn8I73wlz5uRd1fa1YMEC1qwZQv/+Q/MuRVKRQYMkSZLUwxx8MDz0EJxyCrz97XDxxbBuXd5V\nbR+PPeawCamrMWiQJEmSeqDycvjCF2DGDHjiCdh/f/j73/OuqrRSSkyZMpvhwx02IXUlBg2SJElS\nDzZ2LNxyC/zgB3D22XDmmbBiRd5VlcaiRYtYvbo/Awb0opkvpW7AoEGSJEnqBU46CZ58EkaOhP32\ng2uvhebmvKvaNjNn1hLhsAmpqzFokCRJknqJQYPghz+Eu+6Cq6+G6ursThXdUUqJf/xjNsOGOWxC\n6moMGiRJkqReZuJEeOAB+PCH4eij4RvfgFdeybuqrbN06VJWrChj4MAd8y5FUhsGDZIkSVIvVFYG\n550HM2fCM8/AnnvCz38OjY15V9YxLcMmIiLvUiS1YdAgSZIk9WJjxsBNN8Gtt8JvfpPdneJPf4KU\n8q5s87K7TdQydKjDJqSuyKBBkiRJEocdBvfcA//1X/D1r2dDKh58MO+q2rd8+XKWLm1m0KDReZci\nqR0GDZIkSZIAiID3vjcbTnH22fChD8Gpp8LTT+dd2aaeeKIWcNiE1FUZNEiSJEnaRFkZ/Mu/wFNP\nwSGHwJFHwuc+B88/n3dlmX/8o5YddnDYhNRVGTRIkiRJateAAXDhhTBnDvTtC/vsA5Mnw9q1+dX0\nwgsvsHDheoYMGZtfEZK2qDzvAiRJaqu5uZnGxkYaGxtpamrasN6R7ZZ99fWNrF+fLY2NTaxf37hh\nX2Nj9nzrpbGxiYaGRtgBGhoaqKioyPttkKQuY8QI+PGP4fzzs1th7rEHXHwxfPKT0Nn/XGbDJvZ2\n2ITUhRk0SFIv0NzcTHNzM01NTRuWUm1nH9CbaGxspqGhacPS2LhxX7aebbe0B/jGN66gvr6RhoZN\nP+w3NyegnEKhnOy/qjIisvWIclIqK+7fuKRURkot61m7iL4UCuWtlrI22+VEbNzXr1858CWDBkna\njF13hRtvhEcega98JQsfvvtdeP/7s/kdOsOUKbVUVh7fOSeT9KYYNEhSJ0sp0dzcTENDA42NjZs8\ntrev5bG+voH6+kbWrWtg/frscd26jfuyb+sbWL++ofgtffbIzvAv//IfQIGIMrIP7WVko+fKNuxr\n2W5ZIspIKduX0sbt7EN+WXF/yzH6UiiUEVEofnDP2kcUNqy3fZ5KWL/+wxQKZfTrV86AARs/+Gft\n/KZKkrqqgw+Gv/4V/vIXuOAC+MEPsrtVHHXU9j3v6tWree65tVRVVW3fE0naJgYNktRKSqnVB/v6\nDR/+W9Zf/9jAq6/Ws25dAwDXXvs/bT78NxS77zfQ0LDxsbkZIiqK39JvfMz+Wa7YsJ5SRfFb+gqa\nmysoFCooFAZQKJRTVtay3bJevmG7oqKCvn0rij0Cvs748d/skh/cBw4cmXcJkqQ3KQKOPx6OPRZ+\n8xs44wyYOBG+9z14y1u2zzlnzaoF3kKEU81JXZlBg6Ruad26de1+8G9v32uv1fPaa9m3/y2hwGuv\n1bN+fQPr1tUXewhk6/X1DcVv7yuKSx+yD/0bH7MP/xWklK2XlQ2krKwCxsIjj+zd7of/7IN/OUOG\nVGzowt+ZumLIIEnqGcrK4Mwz4cMfhssug3/6J/jAB2DSJBg9urTnmjq1lsGD31nag0oqOYOGDjjt\nNEgJxozJlp133vSxf/+8K5R6hxUrVvCXv0wB4LOf/TER2Tf/bcOAlLLH5uZsX0QfysoGUShUUFbW\nh7Ky7DHbztYHDKhg8ODsuW35lmTHHffb9h9UkqRuqF8/+PKXswkiv/td2G8/OPfcbN/gwdt+/Jde\neomnn17NuHETtv1g26ixMevRUda53xtI3YZBQwecfz7Mnw9LlsCiRTBtGixenC1LlmS3/dlcCNGy\nvtNO/kMkvVlLlizhzjunMHXqAgqFI6AKxo//at5lSZKkdgwbls3XcN55cNFF2R0qvvEN+MxnoE+f\nN3/c2trZpLRXp/cKTAlWr84+B7QsK1ZAU1N2x43+/bd+Ke/Gn8Kam2Hduo3La6+1v952u7kZCoXs\nM1Gh0P6ypefeTPuOPA/Z77hlabudx76mpnJGjBi1/X+Z21E3/iPeeY46avMT26QEK1dmgUNL8LB4\nMcycCXfeuXHfqlUwcuSWw4gxY6CysvNm7JW6uvnz53P77VOYNm055eVHMnbsB7IhCpIkqcsbPx5+\n9SuYMSObMPLSS7OeDqee+uaud7NhE28vfaFt1Ndv/IKxZSkUYNy47Hr9rW/NhoSUlcH69dmH6faW\nl1/OAom2+199NTvemwkoKipK81mhsXHLIcGWAoP6eujbN+vB0r9/9tiytGxXVm5cb3ksFLJwprl5\n88uWnt/Sc42Nb3zszR0Psve05X1tWd/WfW+0vaV9WeDQvechMWjYRhHZfYVHjID99998u4YGWLZs\n0zBi8WL4+9833dfUlIUO7YUQrR/79u28n1HqTCkl5s2bx223TWHGjDX07ft2qqpOK05qKEmSupsD\nD8zuTvHXv2a3xPzBD+D734d3vKPjx1i7di2zZy9n7NhdS1pb694KCxdmjytXZr2RW0KFE07IPji3\np+UD9tChW3fOhobNBxSvvZZ9SdnyAb/10tS05SCiX7+szRv1OGhu3jQkaBsYDB6cfUna9rn+/bPP\nIX4xun01NDTy4otL8i5jm3jl3kkqKrIUdNy4Lbd7+eXX946oq4P77tu4vXQpDBmSBQ477pj9IzBi\nxOYfR4zo3t2z1DuklJgzZw5//OMU5sxpYMCAf2LChP2cVVqSpB7i3e+Ghx+G3/4Wzjorm8Phe9+D\nffd949dmwyb23OYvHlp6K7SECosWZT0Txo2DsWOzLw5Hj96+184R2RCSPn02H2BsTmPjlgOKNWuy\nn6d//yz82FyYUKqeEdLm+PGzixk8GPbaK1s2p7kZXnghCx1WrMjWWx4ff3zT7RUrskR0yJAthxGt\nQ4mRI2HQIP/xUedobm7miSdmccstU6irq2Dw4KOZMGEv75IgSVIPVCjARz+aDZ+48ko45hh43/vg\nW9/KehBszv331zJgwGFbda6W3gqtQ4WW3gotocJ735tdJ3cX5eXZ54VSTK4pbU8GDd1QoZD1ZNhx\nx461b27O/pFtG0C0hBUzZ75+f2Njx4KJlsfhw+01oa3T2NjIjBkz+cMfprJkyRAqK49nwoRdDRgk\nvaGIOB64FCgA16aULmmnzU+BE4BXgLNSSjM6+lpJ21/fvvDFL8LZZ2e9GvbfH845J5vLoe23/K+8\n8gpPPLGUnXfefYvHrK/Prm1bz61QXp6FCmPHwgEHwKhRXrNKncG/Zr1AoZAFAcOHb7mnRGuvvdZ+\nMLFiRfvBREuviZbgYaedsn/I21t22sk5Jnqz+vp6pk9/lFtvvZ8VK3Zk2LD3s8suVXmXJambiGw8\n1eXAu4AlwPSI+FNKaU6rNicAu6WU9oiIw4GfAUd05LWSOtcOO2RBw7nnwsUXw557wte+Bv/6rxuv\nF+fMeYrm5t02mRA6pez6s2VuhcWLN+2tcMAB3a+3gtSTGDSoXf37d2xOiRZNTfDii1nwsGIFLF+e\nTX65bBlMn75xfdkyeP75bGjG5oKIljBi1KgstPC2oD3DunXrePDB6dx664O8+OJ4Row4nV12GZ13\nWZK6n8OAuSml+QARcRNwMtA6LDgZ+BVASumhiKiMiJ2AXTrwWkk5GDcOrrsOnngCLrwQfvIT+M53\n4MMfhgceqKW8/GCee+71vRVa5lY48EB7K0hdiX8VVRJlZRt7TbzlLVtu2zKUo3X40BJAzJq16b7V\nq7OwYUuhRMsyZIjzSnRFr7zyClOmPMhttz3CK6/swciRZ7HLLiPzLktS9zUGWNhqexFZ+PBGbcZ0\n8LWScvTWt8Ltt8M992R3qPjOd5pZvPhYXn55R0aNsreC1F0YNKjTtR7K8UazDDc0ZD0k2oYS8+bB\n/fdvuq++vv1eEW2X0aMdutEZ1qxZQ03N/dxxx0zWr9+XHXf8NCNHbsW9nySpdLY6hp40adKG9erq\naqqrq0tYjqQ3cswx8NBDcOONK7nppikceOCp9laQclBTU0NNTc1Wv86/rurSKiqy23juvPMbt331\n1axXRNtQ4rHHNq4vXZq1GTgwCxy2tIwalc3oay+JrbNq1Sr+9rf7+MtfamlqOpBRoz5L375+5SCp\nZBYDrSd2GVvc17bNuHba9OnAa4FNgwZJ+SgU4IwzhvPoo/NZv34F5eX2iJQ6W9uwffLkyR16nUGD\neowBA2CXXbJlS1LKJgtaunRj+LB0KcyfDw8+uHF76dKs7RsFEqNHZ70zensgsXz5cu6+eyp///sz\nwCGMHn0+FRUD8i5LUs8zHdg9IsYDS4HTgNPbtPkzcC7wu4g4AngxpfR8RLzQgddK6kIKhQLHHnsA\nN9/8GAMHvifvciR1kEGDep2IbN6HESOycYBb8vLLmwYPLcuTT25cX7YM1q7Nhmq09ITYXCCx0049\nb5KiJUuWcOedU5gyZQFlZUew884nUl7eL++yJPVQKaWmiDgPuJuNt6icHRHnZE+na1JKd0TEiRHx\nDNntLc/e0mtz+lEkddChhx7IzTdfT3PzuygUnCVc6g5K8pFnW+5nLXVlgwdny557brnd+vWb9o5o\nWaZN23T7hRdg2LBNh2e0PI4cCTvuuHEZPrxrhxLz58/n9tunMG3acv5/e/ceHeV933n8852RNLog\nhLhIEEBAAgZbCEtcjG+AbC7xxt64dU83cbO5dPecbhunTePe4mzOCezZs+tenTRps+4lrtOzbU7r\n7KndHrDBwbITWlKwAWNsY1tc5YBGIAwSQkKa+e4fMwIh6zaM0DOX9+ucOXrm9/wePV8NQvrNR8/z\n+xUU3Km5cx+6ZtkpALhR3P15SYsHtT056PmXxnosgMw2ffp03XxzpU6ceE/Tp/PfF8gGab+NSWc9\n63TPDWSKSESaNy/xGEksllj6c3Ag8e670q5dV5cGjUYTK25UVFwbPgwOIwa2TZmSuJfxRnJ3NTc3\n69lnX9HBg52KRO5WTc2nFQplcCICAACy3vr1Dfr2t/cRNABZYjzeHVz3etbu3joO5weyRjh89WqG\n0cRiibkkBoYP/Y8DB6593tYmXbyYuB1kqEBiqICirGzs80q4u95662390z/9WIcP96m0dI3mzatV\nImdMjbvU15dYUWSojyPt6+2VTs/4e2nKWj2pR2UeVkhhmUIy9W+Hk9tX2/rbQzaozRL9Qna1LWRX\n+4Xt2rar28l9g9pkC/RW/A254orFY4orprjHFfeY4kp+HLDtiivmMfk1/RLt/f0S+65uX92X3E5+\ndMWu2b66LyZpnf5Sv6v+ifdNliHba/X3+pPE94V88HfKoGfjuX+UYyPLBQDILEuX1qq4eLsuX76o\noqKyoMsBMIrxCBquZz3r95NtBA3AMMLhq6HAaMuASonbN86cuTZ86N9+991r21pbE2/4RwojZsyQ\npLjefvuEfvKTwzp9OqKCgk8qEqlWX5/pjTc+HBCMFhL09SUClIKCxKOwcOiPw21HItKUwirJpck2\ne9Cb7cQjpp4PtbkN6mfJh8eT+xLPlew3sM0Vkyw+YLu/b/zK57nS5qYfhj4leVgWCiU+KiwlQw9T\nSLoShiT3W/++a/vZgH6msMwHbFso8dzCMr96zMCgJayiK/0lV4mmJb9TfMAb61S2E4/4dR2rK8dL\nktvVN/YX1HJl23xw8jXyc0tj/4jHxrn/FwAyTSQS0bp1S/SjH72uOXPuCLocAKPIyOudWbsaSF0k\nIs2enXiMxcWLQ18tcepU4oqJ1ta4jhxp0cWLvZo06U6VlU1SQYHp8uWrb/5LSoYOBEYKEAoK0l2h\nY8zF4ZkAAB6GSURBVL1etQ162F9O55PcEFvM9HUf/Jf14G2xr+o/Z+jr9d8ysq7/FXQJkq5/3WoA\nyFV33FGvF17YKvfbZfm+3BeQ4cYjaEhnPeshsXY1cOOVlSUe8+cP1yOkgwcv6IUX/l2HDn2gUGi5\nqqqWKxKZPIFVAvnretetBoBcNW/ePM2a1auOjp9p8uQx/mUFQCDGI2i47vWsx+HcAG6gurqlqqtb\nqtbWVu3atVc7dnxXly7N1+TJK1VZ+VH+mgAAACaMmWnTpgZ9//v7CRqADJf2HPXuHpPUvyb1IUk/\n6F/P2sx+Jdlnq6SjyfWsn5T0xXTPC2DiVFdX66GH7tc3v/mbeuSRj2natO06fvw7amn5N/X2Xgq6\nPAAAkCeWL79VZm8oFusNuhQAIxiXORrSWc8aQPaIRCJatWqlVq5coZaWFjU17dErr7ys3t4lmjp1\npcrLZ3OVAwAAuGEqKirU0PARvfnm26qurgu6HADDyMjJIAFkNjPT3Llz9dnPztUv/EKX9u7dp23b\nfqjjx4tVVLRS1dV1CoeLgi4TAADkoHvuadBrr+2TRNAAZCqCBgBpKS0t1dq1d2nNmjvV3NysnTv3\naPfuFxWP12nGjFUqK5sRdIkAACCHLFmyRGVlW9XdfV7FxRVBlwNgCGnP0QAAUuIqh4ULF+pXfuVh\nPfHEr+qXfqlYfX1P6+jRpxSNvqF4PBZ0iQAAIAcUFBTo3ntrFY3uD7oUAMMgaAAw7ioqKrRp0736\noz/6in73d2/TTTe9qpMnn9CJEz9Sd/cHQZcHAACy3O23N8h9v9w96FIADIFbJwDcMOFwWLW1taqt\nrdWZM2e0a9debd/+pE6fnqvy8lWaOvVjMiPvBAAAqZk1a5bmzy/SuXPHNWXK/KDLATAII3wAE2L6\n9Ol68MH79MQTX9Gv//oSzZr1ko4f/1OdPPkTXb58MejyAABAFjEzbdhQr/Pn9wVdCoAhcEUDgAlV\nVFSkFSuWa8WK5Xr//ff14x/v1UsvfVs9PYtUWblKkyfPZYlMAAAwqvr6ZQqHX1ZfX48KCiJBlwNg\nAIIGAIGZPXu2Pv3p2XrwwU3at++Atm59VsePh1VYuErV1csYNAAAgGGVlZXp9tsXaM+eQ5o1a3nQ\n5QAYgKABQOBKSkp055236447VuvYsWN66aU92rXrR4rHl2ratJWaNGlm0CUCAIAMtHZtg3bt+rEk\nggYgkxA0AMgYZqYFCxZowYIF+sVf7NCePa9p69a/07FjFSouXqmqqlqFQvzYAgAACQsXLtSUKc+p\nq+uMSkunB10OgCRG7AAyUnl5ue69d50aG9fonXfe0Ysv7tGrr74gqV6aL/X1dSscjjCfAwAAeSwU\nCmnDhlv1wx/uU03NxqDLAZBE0AAgo4VCIS1ZskRLlixRe3u7/vVf9+pvXpXOnn1C3d2XJUVkVqxQ\nqERSsdyvPqQSFRQUD3hc+zwcLgz4qwMAAOlavbpBzzzztNzXs2w2kCEIGgBkjalTp+qBBzZJr0rf\n/e5jisfj6unpUXd3t7q7u3Xp0qUr293d3ersvKSOjg51dHQnH5fU2dmtixe7dfHiJcViJrNimRVL\nKpZZieLxq0FFKFSswsLhwooIgxkAADLA9OnTtWRJhVpa3tO0aTcFXQ4AETQAyGKhUEglJSUqKSm5\nruN7e3uvCSYGBhWXLnWrs/Oizp8/o46ObnV29j8u6dy5bl261COp6MqVFFKxVCOdPPkPcg9J+vBj\nYHv/ttnID8lG7TPq5yiRenu7FAoVyCycbOeWEwBA7li/vkHf+c4+ggYgQxA0AMhbhYWFKiwsVHl5\necrHurt6enquCSe+933p0UdrFY/HP/Rw9w+1xWJxxWJ9isXi6uuLX/Ox/zH4eSqP/nOoRPrgg2+r\nt7dPfX0xxeMuKZwMHQokhSUlQojEr4VEu3v4yr7E9oc/Jj5HWKFQgUKh8JUw48PPP7xPxVJfX0+y\nnfADAHD96uqWKhLZocuXL6qoqCzocoC8R9AAANfBzFRcXKzi4uJr2mtrawOqaHhPbPkt/dmf/d6V\n54kAIqZYLKa+vr4hP45lX19fTJcv96q3t1s9PYnnvb0x9fT0qbc3psuX+/sknvdv9/XF1N3dJxVL\nbW1/nPx88WTQcTX8GPixP9joDz6ksNw//NG9P8gYLfgY/rmYugMAsk4kEtHatYv10ksHNWfO7UGX\nA+Q9ggYAyDOhUEihUEiFhcG+o/7mlt/Wk09+TVLiCpHhwo3hAo+h+8Z0+XKPenu71NPTd03oMVT4\n0dt7bXtvb580Uyoo4NcjAGSbO++s144dz8t9NVfJAQFjJAUACJyZqaCgICPe4P+fLV9TUVFR0GUA\nAFI0f/58zZx5WZ2dp1Re/pGgywHyGlOmAwAAAMh6ZqZNm+rV3r4/6FKAvEfQAAAAACAnLF9+q8ze\nUDzeF3QpQF4jaAAAAACQE6ZMmaL6+pk6c+btoEsB8hpBAwAAAICc0djYoEuX9gVdBpDXCBoAAAAA\n5Iybb16i0tKfqbv7fNClAHmLoAEAAABAzigsLNS999aqre1A0KUAeYugAQAAAEBOuf32BsXj++Xu\nQZcC5CWCBgAAAAA55SMf+Yhqagp0/vyJoEsB8hJBAwAAAICcYmbatKlB588zKSQQBIIGAAAAADmn\nvn6ZwuG31dfXE3QpQN4haAAAAACQc8rKyrR69Xy1tR0KuhQg7xA0AAAAAMhJa9c26PLl/UGXAeQd\nggYAAAAAOWnhwoWqqGhXV9fZoEsB8gpBAwAAAICcFA6HtWHDMrW1MSkkMJEIGgAAAADkrNWrG+R+\nQO7xoEsB8kZaQYOZVZrZdjM7bGYvmFnFEH3mmNlOMztkZgfN7DfSOScAAAAAjNWMGTO0ZEmF2tub\ngy4FyBvpXtHwVUkvuvtiSTslPTZEnz5Jj7p7raQ7JD1iZkvSPC8AAAAAjMn69fXq6OD2CWCipBs0\nPCjp6eT205J+bnAHdz/t7vuT252S3pI0O83zAgAAAMCY1NUtVSRyRL29XUGXAuSFdIOGKndvlRKB\ngqSqkTqb2XxJ9ZJ+muZ5AQAAAGBMiouLdffdNykaPRh0KUBeKBitg5ntkFQ9sEmSS/r6EN19hM8z\nSdIzkr6cvLJhWJs3b76y3djYqMbGxtHKBAAgpzQ1NampqSnoMgAgZ9x1V7127twuaXXQpQA5b9Sg\nwd03DrfPzFrNrNrdW81spqToMP0KlAgZ/tbdnx3tnAODBgAA8tHgoH3Lli3BFQMAOWDBggWqqupW\nR8cplZfPCrocIKele+vEc5K+kNz+vKThQoTvSXrT3b+V5vkAAAAAIGVmpk2b6tXevj/oUoCcl27Q\n8PuSNprZYUnrJT0uSWY2y8z+Jbl9l6TPSLrXzPaZ2Wtmdl+a5wUAAACAlKxYUS/poOLxvqBLAXLa\nqLdOjMTd2yVtGKL9lKQHktu7JIXTOQ8AAAAApGvKlCm69dZqvfPOYVVV1QZdDpCz0r2iAQAAAACy\nxj33NKira1/QZQA5jaABAAAAQN645ZabVVr6vnp6LgRdCpCzCBoAAAAA5I3CwkLdc88tikYPBF0K\nkLMIGgAAAADklTvuaFAstk/uHnQpQE4iaAAAAACQV2bPnq2amrAuXDgZdClATiJoAAAAAJBXzEyb\nNjXo3DkmhQRuBIIGAAAAAHmnvn6ZwuG3FItdDroUIOcQNAAAAADIO5MmTdJtt81TNHoo6FKAnEPQ\nAAAAsoKZVZrZdjM7bGYvmFnFMP3uM7O3zewdM/u9Ae3fMLMWM3st+bhv4qoHkInWrWvQ5cv7gy4D\nyDkEDQAAIFt8VdKL7r5Y0k5Jjw3uYGYhSd+R9HFJtZIeNrMlA7r8ibsvTz6en4iiAWSuRYsWafLk\nM+rqOht0KUBOIWgAAADZ4kFJTye3n5b0c0P0uU3Su+5+3N17Jf0geVw/u7ElAsgm4XBYGzYs05kz\nXNUAjCeCBgAAkC2q3L1Vktz9tKSqIfrMljRwvbqWZFu/L5nZfjP7q+FuvQCQX1avblA8fkDu8aBL\nAXJGQdAFAAAA9DOzHZKqBzZJcklfH6K7p/jp/1zS/3B3N7P/KelPJP3XoTpu3rz5ynZjY6MaGxtT\nPBWAbFFVVaXFi8t16tQRTZ26MOhygIzS1NSkpqamlI8jaAAAABnD3TcOt8/MWs2s2t1bzWympOgQ\n3d6XVDPg+Zxkm9y9bUD7X0r65+HONTBoAJD71q+v15//+T6CBmCQwWH7li1bxnQct04AAIBs8Zyk\nLyS3Py/p2SH67JG00MzmmVmRpE8nj1MynOj3kKQ3blypALLJsmV1KipqVm/vpaBLAXICQQMAAMgW\nvy9po5kdlrRe0uOSZGazzOxfJMndY5K+JGm7pEOSfuDubyWP/wMze93M9ktaJ+krE/0FAMhMxcXF\nuvvuRYpGDwZdCpATuHUCAABkBXdvl7RhiPZTkh4Y8Px5SYuH6Pe5G1oggKx2990NeumlHUosXgMg\nHVzRAAAAACDvLViwQDNmdKmz83TQpQBZj6ABAAAAQN4zM23cWK+zZ/cFXQqQ9QgaAAAAAEDSypX1\nkg4qHo8FXQqQ1QgaAAAAAEBSZWWlli2r0tmzh4MuBchqBA0AAAAAkHTPPQ26eJHbJ4B0EDQAAAAA\nQFJt7S0qLW1RT09H0KUAWYugAQAAAACSCgsL1dh4i6LRA0GXAmQtggYAAAAAGOCOO+oVi+2Tuwdd\nCpCVCBoAAAAAYIA5c+Zo7lzThQsngy4FyEoEDQAAAAAwgJlp48YGnTu3P+hSgKxE0AAAAAAAgzQ0\nLFM4/KZisctBlwJkHYIGAAAAABikvLxcK1fWqK3tzaBLAbIOQQMAAAAADKGxsUE9Pdw+AaSKoAEA\nAAAAhnDTTTdp8uQ2XbrUHnQpQFYhaAAAAACAIYTDYa1fX6e2Nq5qAFJB0AAAAAAAw1i9ukHx+H65\nx4MuBcgaaQUNZlZpZtvN7LCZvWBmFSP0DZnZa2b2XDrnBAAAAICJUl1drUWLJuncuaNBlwJkjXSv\naPiqpBfdfbGknZIeG6HvlyUxZSsAAACArLJhQ70uXNgXdBlA1kg3aHhQ0tPJ7acl/dxQncxsjqRP\nSPqrNM8HAAAAABNq2bI6FRW9p97eS0GXAmSFgjSPr3L3Vkly99NmVjVMvyck/Y6kYW+tAADkvqZj\nTWo61iRJWjdvnTY3bZYkNc5vVOP8xsDqAgBgJCUlJbrzzoXatesNzZ69KuhygIw3atBgZjskVQ9s\nkuSSvj5Edx/i+Psltbr7fjNrTB4/os2bN1/ZbmxsVGNj42iHAACyAIHC2DU1NampqSnoMgAASWvW\nNOjll38kiaABGM2oQYO7bxxun5m1mlm1u7ea2UxJ0SG63SXpk2b2CUklksrN7Pvu/rnhPu/AoAEA\ngHw0OGjfsmVLcMUAALRgwQJNm9apzs5WTZpUPfoBQB5Ld46G5yR9Ibn9eUnPDu7g7l9z9xp3/6ik\nT0vaOVLIAAAAAACZJhQKadOmep09y6SQwGjSDRp+X9JGMzssab2kxyXJzGaZ2b+kWxwAAAAAZIqV\nK+slHVQ8Hgu6FCCjpTUZpLu3S9owRPspSQ8M0f6ypJfTOScAAAAABGHq1Kmqq5uh5uZ3NGPGzUGX\nA2SsdFedAABkIFZ3AADgxrjnnnq9/vo+ggZgBAQNAJCDCBRSQzADABir2tpbVFz8vHp6OhSJlAdd\nDpCRCBoAAHmPQAEAMFZFRUW6555btH37Ac2de3fQ5QAZKd3JIAEAAAAgr6xdu0qlpbt07NgP1N7e\nLHcPuiQgo3BFAwAAAACkYNasWfrjP/6KXn/9oLZt26Hm5ssKh1dq5sx6FRaWBl0eEDiCBgAAAABI\nUVFRkVauXKEVK5arpaVFr7yyV01Nf6re3iWaOnWlystny8yCLhMIBEEDAAAAAFwnM9PcuXP1mc/M\n1c//fJf27t2nbdt+qOPHixWJrFJV1VKFw0VBlwlMKIIGAAAAABgHpaWlWrv2Lq1Zc6eam5u1c+ce\n7d69Q+7LNGPGKpWWTg+6RGBCEDQAAAAAwDgyMy1cuFALFy7Upz51Xrt3v6pt2/5G0egMlZWt0rRp\nixUKhYMuE7hhCBoAAAAA4AapqKjQxz9+rzZsWKc333xL27f/VG+8sU1my1VdvUKRyOSgSwTGHUED\nAAAAANxg4XBYdXVLVVe3VNFoVD/5yV69+OJ31dU1T5Mnr1Jl5UeZPBI5g6ABAAAAACZQVVWVHnro\nE3rggQ06cOB1bdu2XUeO9KqgYJWqq+tVWFgSdIlAWggaAAAAACAARUVFWrVqpVauXKGWlhY1Ne3R\nK6+8nFwic5XKyz/CVQ7ISgQNAAAAABCg/iUyP/vZuXrooYt69dX92rr1GR07Vqzi4lWqqqpTOFwY\ndJnAmBE0AAAAAECGKCsru7JE5nvvvaedO/fqpz/dIfdbNWPGSpbIRFYgaAAAAACADGNmWrRokRYt\nWqRPfeoD7d79qp5/niUykR0IGgAAAAAgg02ZMkX33bdeGzc2Xlki8+DBbQqFWCITmYmgAQAAAACy\nwIeXyNyjF1/8ri5enK8pU1ZpypQFTB6JjEDQAAAAAABZJrFE5v26//4Nev31g9q69QUdPdonqU7F\nxVNUVFSuoqJJikTKVVBQQgCBCUXQAAAAAABZKhKJXFki8+TJkzp06LDa2o7o7NlOnT3boXPnOnXx\n4mWFQpNkVi73SXIvl5QIIgYGEoWFZQQSGBcEDQAAAACQ5cxMNTU1qqmp+dC+3t5edXZ2qrOzUx0d\nHero6ND5851qaztxJZBob+9QZ2ePpFKFQokgIh5PhBL9gUQk0r89SWahCf8akT0IGgAAAAAghxUW\nFqqyslKVlZUj9ovFYlfCiP6P58936syZn+nMmQ6dPdup9vYOnT7dJbNSmU3SwECisPDq1RH9V0qw\nMkZ+ImgAAAAAACgcDquiokIVFRUj9ovH47p48eKgQKJDZ8+2qq3tPbW3JwKJtraLiscjyUCiQvH4\nDBUXV6msrEqlpTMUDhdOzBeGCUfQAAAAAAAYs1AopPLycpWXl4/Yz93V1dWVDCLOKxpt05EjR3Ts\n2G6dPHlG8fhkmVUpHq9SSUkigCgpmcZVEDmAoAEAAAAAMO7MTGVlZSorK9PMmTO1ePFirVmT2BeP\nx9Xe3q5oNKpTp6I6evRNHT3apJaWD2Q2Ve5Vck+ED2VlVSounsK8EFmEoAEAAAAAMKFCoZCmT5+u\n6dOn65ZbbrnS3tfXpzNnzigajepnP4uqufk1HTsW1YkTF2U2Xe5VMrsaQEQik1kpIwMRNADICk3H\nmtR0rEmStG7eOm1u2ixJapzfqMb5jYHVBQAAgPFTUFCgmTNnaubMmVq27Gp7T0+P2traFI1G1dIS\nVXNzs44fj+r06V6FQomrH8LhqwFEUVFZcF8ECBoAZAcCBQAAgPwViUQ0Z84czZkzR8uXX23v6upS\nNBpVNBrViRNRHTnypo4fb1VXV1hmiQCisLA/gJihgoLi4L6IPELQAAAAAADISqWlpZo/f77mz5+v\n225LtLm7Ojs7FY1G1doa1fHjLTpy5DWdONGm3t6SKxNQRiL9K2BMZwWMcUbQAAAAAADIGWZ2ZVWM\nj33sY7rzzkS7u+uDDz5QNBrV6dNRHT36no4e/Ve1tJyVNCU5AWW1SkurNGlStYqLK5n/4ToRNAAA\nAAAAcp6ZqbKyUpWVlVq8eLHWrUu0x2IxnT17Vq2trXr//VY1N+/T0aOtOnHiksxmJOd/qFZZWTXz\nP4wRQQMAAAAAIG+Fw2FVVVWpqqpKdXV1V9q7u7sHzP/Qqubmt3TsWKu6ugqS8z9Uq6gocfVDaekM\nbr8YgKABAAAAAIBBiouLVVNTo5qaGq1cmWhzd3V0dKi1tVWnT7fq6NGjam7erfffP6t4vELS1dsv\nysqqVVJSKbNQoF9HENL6is2s0sy2m9lhM3vBzCqG6VdhZv9oZm+Z2SEzW53OeXFVU1NT0CVkFV6v\n1PB6peho0AVkF76/kKoUxh1/bWatZvb69RyP1PH/OTW8Xqnh9UoNr1dqUn29zEyTJ0/WokWLtGbN\n3frc5x7Sli2/pieffEyPP/4pPfporR5+OKba2gNy/1sdP/6/deLEX+j48Wd18uS/6dy5I7p8ufPG\nfDEZJN1o5auSXnT3xZJ2SnpsmH7fkrTV3W+WdKukt9I8L5L4QZIaXq/U8Hql6FjQBWQXvr9wHcY6\n7nhK0sfTOB4p4v9zani9UsPrlRper9SM1+vVf/vF0qVLtWnTen3xiw/rD//wN/Xkk7+tLVv+gx55\nZLbuv/+c5sx5WRcu/JmOH/9DnTjxtI4de16nTr2mCxfeVyzWOy61ZIJ0b514UFJyCg09LalJiV/i\nV5jZZElr3P0LkuTufZIupHleAACQf0Ydd0iSu//EzOZd7/EAAIyXSCSiuXPnau7cuR+6/SKx+kWr\njhw5pqNH/10nT55RPD5Z8fg0TZoUbN3pSjdoqHL3Vkly99NmVjVEnwWSzpjZU0pczbBX0pfd/VKa\n5wYAAPllLOOOG3k8AABp67/9YvLkyVq4cKHuvjvRHovF1N7ertbWVsViS4MtMk3m7iN3MNshqXpg\nkySX9HVJf+PuUwf0Pevu0wYdv0LSbkl3uPteM/umpPPu/o1hzjdyQQAA5Cl3z/nFvNMddwzYN0/S\nP7v7sgFt7WM5nrEIAADDG8t4ZNQrGtx943D7khMtVbt7q5nNlBQdoluLpJPuvjf5/BlJvzfC+XJ+\nEAUAAIY2DuOOkYzpeMYiAACkJ93JIJ+T9IXk9uclPTu4Q/ISxZNmdlOyab2kN9M8LwAAyD+jjjsG\nsOTjeo8HAADXadRbJ0Y82GyqpH+QNFfScUn/yd0/MLNZkv7S3R9I9rtV0l9JKpR0RNIvu/v5dIsH\nAAD5I4Vxx99JapQ0TVKrpG+4+1PDHT/xXwkAALktraABAAAAAABgoHRvnbghzOzXzewtMztoZo8H\nXU82MLPfMrN48q81GIaZ/UHye2u/mf0wufwqBjGz+8zsbTN7x8yGnVMFCWY2x8x2mtmh5M+t3wi6\npkxnZiEze83Mngu6lmxgZhVm9o/Jn1+HzGx10DXlA8YjqWM8MjaMR8aG8cjYMRa5PoxHUpPKeCTj\nggYza5T0HyXVuXudpD8KtqLMZ2ZzJG1U4jJQjGy7pFp3r5f0rqTHAq4n45hZSNJ3JH1cUq2kh81s\nSbBVZbw+SY+6e62kOyQ9wms2qi+L+XpS8S1JW939ZiWWin4r4HpyHuOR1DEeSQnjkVEwHkkZY5Hr\nw3gkNWMej2Rc0CDp1yQ97u59kuTuZwKuJxs8Iel3gi4iG7j7i+4eTz7dLWlOkPVkqNskvevux929\nV9IPJD0YcE0Zzd1Pu/v+5HanEj90ZwdbVeZKvhn5hBJz92AUyb90rnH3pyTJ3fvc/ULAZeUDxiOp\nYzwyRoxHxoTxSAoYi6SO8UhqUh2PZGLQcJOktWa228xeMrOVQReUyczsk0osH3ow6Fqy0H+RtC3o\nIjLQbEknBzxvEb+oxszM5kuql/TTYCvJaP1vRpgkaGwWSDpjZk8lL+/8CzMrCbqoPMB4JAWMR9LC\neGRojEeuE2ORMWM8kpqUxiMFE1jYFWa2Q1L1wCYl/oG/nqyp0t1vN7NVSswO/dGJrzJzjPJ6fU2J\nyxQH7strI7xe/93d/znZ579L6nX3vwugROQoM5sk6RlJX07+NQGDmNn9klrdfX/y0vS8/5k1BgWS\nlkt6xN33mtk3JX1V0jeCLSv7MR5JDeOR1DAeQRAYi4wN45HrktJ4JJCgwd03DrfPzH5V0v9L9tuT\nnFBomrufnbACM8xwr5eZLZU0X9IBMzMlLrt71cxuc/foBJaYUUb6/pIkM/uCEpdJ3TshBWWf9yXV\nDHg+J9mGEZhZgRK/2P/W3Z8Nup4MdpekT5rZJySVSCo3s++7++cCriuTtSjxl+K9yefPSGJStHHA\neCQ1jEdSw3gkbYxHUsRYJCWMR1KX0ngkE2+d+Cclf+Ca2U2SCvP5l/pI3P0Nd5/p7h919wVK/OM3\n5PMv9dGY2X1KXCL1SXfvCbqeDLVH0kIzm2dmRZI+LYmZeEf3PUlvuvu3gi4kk7n719y9xt0/qsT3\n1k5+qY/M3VslnUz+TpSk9WLiqonAeGSMGI+kjvHImDAeSR1jkTFiPJK6VMcjgVzRMIqnJH3PzA5K\n6pHEP/jYubjsZzTfllQkaUfijy7a7e5fDLakzOLuMTP7khIzYock/bW7M8P9CMzsLkmfkXTQzPYp\n8X/xa+7+fLCVIYf8hqT/a2aFko5I+uWA68kHjEeuH+OR0TEeGQXjkdQwFsEEGfN4xNyZ+wIAAAAA\nAIyPTLx1AgAAAAAAZCmCBgAAAAAAMG4IGgAAAAAAwLghaAAAAAAAAOOGoAEAAAAAAIwbggYAAAAA\nADBuCBoAAAAAAMC4+f+DLBbJVWQG2gAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1fae7308128>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Read in the events for each stock;\n",
"# The file was created using the first code block in the Appendix\n",
"import yaml\n",
"from dateutil.parser import parse\n",
"from progressbar import ProgressBar\n",
"\n",
"data_str = open('earnings_dates.yaml', 'r').read()\n",
"# Need to remove invalid lines\n",
"filtered = filter(lambda x: '{' not in x, data_str.split('\\n'))\n",
"earnings_data = yaml.load('\\n'.join(filtered))\n",
"\n",
"# Convert our earnings data into a list of (ticker, date) pairs\n",
"# to make it easy to work with.\n",
"# This is horribly inefficient, but should get us what we need\n",
"ticker_dates = []\n",
"for ticker, date_list in earnings_data.items():\n",
" for iso_str in date_list:\n",
" ticker_dates.append((ticker, parse(iso_str)))\n",
"\n",
"def does_trend_down(ticker, event, horizon):\n",
" # Figure out if the `event` has a downtrend for\n",
" # the `horizon` days preceding it\n",
" # As an interpretation note: it is assumed that\n",
" # the closing price of day `event` is the reference\n",
" # point, and we want `horizon` days before that.\n",
" # The price_data.hdf was created in the second appendix code block\n",
" try:\n",
" ticker_data = pd.read_hdf('price_data.hdf', ticker)\n",
" data = ticker_data[event-TradeDay(horizon):event]\n",
" midpoints = data['Open']/2 + data['Close']/2\n",
"\n",
" # Shift dates one forward into the future and subtract\n",
" # Effectively: do we trend down over all days?\n",
" elems = midpoints - midpoints.shift(1)\n",
" return len(elems)-1 == len(elems.dropna()[elems <= 0])\n",
" except KeyError:\n",
" # If the stock doesn't exist, it doesn't qualify as trending down\n",
" # Mostly this is here to make sure the entire analysis doesn't \n",
" # blow up if there were issues in data retrieval\n",
" return False\n",
"\n",
"def study_trend(horizon, trend_function):\n",
" five_day_events = np.zeros((1, horizon*2 + 1))\n",
" invalid_events = []\n",
" for ticker, event in ProgressBar()(ticker_dates):\n",
" if trend_function(ticker, event, horizon):\n",
" ticker_data = pd.read_hdf('price_data.hdf', ticker)\n",
" event_data = ticker_data[event-TradeDay(horizon):event+TradeDay(horizon)]['Close']\n",
"\n",
" try:\n",
" five_day_events = np.vstack([five_day_events, event_data])\n",
" except ValueError:\n",
" # Sometimes we don't get exactly the right number of values due to calendar\n",
" # issues. I've fixed most everything I can, and the few issues that are left\n",
" # I assume don't systemically bias the results (i.e. data could be missing\n",
" # because it doesn't exist, etc.). After running through, ~1% of events get\n",
" # discarded this way\n",
" invalid_events.append((ticker, event))\n",
" \n",
"\n",
" # Remove our initial zero row\n",
" five_day_events = five_day_events[1:,:]\n",
" plot_study(five_day_events)\n",
" plt.gcf().suptitle('Action over {} days: {} events'\n",
" .format(horizon,five_day_events.shape[0]))\n",
" plt.gcf().set_size_inches(18, 6)\n",
" \n",
"# Start with a 5 day study\n",
"study_trend(5, does_trend_down)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When a stock has been trending down for 5 days, once the earnings are announced it really doesn't move on average. However, the variability is *incredible*. This implies two important things:\n",
"\n",
"1. The market is just as often wrong about an earnings announcement before it happens as it is correct\n",
"2. The incredible width of the min/max bars and standard deviation area tell us that the market reacts *violently* after the earnings are released.\n",
"\n",
"Let's repeat the same study, but over a time horizon of 8 days and 3 days. Presumably if a stock has been going down for 8 days at a time before the earnings, the market should be more accurate."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100% (47578 of 47578) |###########################################################| Elapsed Time: 0:20:29 Time: 0:20:29\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBcAAAGNCAYAAABKeZmzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9//HXZ7KShCRsspOgVgURBfelmNZdK+KOWkSq\n1ttatb2/XrWu4PVWsa16XeuGW+uOWm9VtFbjgiK7EFmFhGgCgiwBQiDLfH9/fCcwgQAJmeQkmffz\n8TiPOXPmzDmfSWDynfd8v99jzjlERERERERERPZUKOgCRERERERERKRtU7ggIiIiIiIiIk2icEFE\nREREREREmkThgoiIiIiIiIg0icIFEREREREREWkShQsiIiIiIiIi0iQKF0REJK6Y2QgzC5vZfg3Y\nd7SZ9Yi6/7iZHdC8FcaOmY03swIz+9rM7m/A/jlmNreFarvDzL4ys1lmNmm7n/MfzGyxmc03s5Oj\ntt9pZsVmtr4latwZM/tDkOcXERFpjRQuiIhIvBkJfApc1IB9LwN6195xzv3SObegmepqEjNL2O7+\n0cAxzrlBwCDgCDMb1oBDueaorx73OOcOds4NAd4Gbgcws4HABcAA4DTgETOzyHPeAg5vofp25aag\nCxAREWltFC6IiEjcMLN04FjgcrYLF8zsBjObE/km/Y9mdi5wGPA3M5tpZqlm9pGZDY3sf1Fk/zlm\ndnfUcTZEvmGfbWafm1m3euroZGZvRL65/9zMBplXaGaZUfstMrNuZtbVzF4zsy8jy9GRx283s+fM\n7DPgue1O44BUM0sFOgCJwPf11HJopNZZwNVR23PM7BMzmx5Zjopsf9bMhkft9zczO9PMBkZqmxk5\n3j67+l045zZG3U0HwpH14cBLzrlq51wRsBg4IvKcqc65HV7Ddq8nzcyeMrMpZjbDzM6MbP/CzAZE\n7feRmQ3dxf6jzWyimb1rZgtrf8dmdhfQIfI6n488/5+RfzdzzOz8XdUnIiLSXilcEBGReHIWMMk5\n9w3wg5kNATCzU4EzgcMj36Tf45ybCEwDLnbODXXOba49iJn1BO4G8oBDgMOjPnCnA5875w7B95C4\nsp46xgEznXMHAzcDzzvnHPAmcHbkHEcARc65VcD/Avc6544EzgOeijrWAOCnzrlLok/gnJsC5APL\ngRLgPefcwnpqmQBcHXnd0VYCJzrnDsP39ngwsv0pYEykxkzgaHzPg/8A7nfODcWHMt9F9nk7eshD\ntNphDsDFwG2Rzb2Bb6N2KyGq90gD3Az82zl3FPBT4M9m1gF4Cbgwct4eQA/n3Mxd7A9wMHA+MBgY\naWa9nXN/ADZF/k2MAk4FSpxzQ5xzg4FJjahVRESk3VC4ICIi8eQi/IdMgJfZ1nvhROBp59wWAOfc\nush2iyzbOxz4yDm3xjkXBv4O1A45qHTOvRNZnwHk1vP844DnI+f6COhsZhnAK/gP8kRuX46q76FI\n74K3gAwzS4s89pZzrnL7E0R6DhwA9MJ/OD/BzI7dbp8sIMs5Nzmy6fmoh5OAJ81sDvAqPsTAOfcJ\nsK+ZdcH//CZGfgZfADeb2X8BuVE/yzOccyvq+RngnLvFOdcP//O7pr599sDJwI2Rn1U+kAz0i7yG\n8yL7XAC8tpv9wYcOGyOvZR6QU8/55gInmdldZnacc25DjF6HiIhIm5IYdAEiIiItwcw64b+ZHmRm\nDkjADx24fk8PuZPtVVHrNdT/t3b7eQ0MwDn3hZntY2ZdgRHAHVGPH+mcq6rzJD8VQflO6jgbmOKc\nq4js+y6+l8Hkney/vd8BK5xzgyPzOVREPfYcMAofgFwWqf1FM5sC/Ax4x8x+6ZzLb+C5XsD3fhiL\n76nQN+qxPpFtjXGuc27x9hvN7AczOwjfg+GqXe0fGQayJWpT9O9y6+/eObc4MlTmdOBOM/vAOXdn\nI+sVERFp89RzQURE4sX5wHPOuf7Oub2dczlAoZkdB/wLGFPbHT4SRACsBzLrOdZUYJiZdY588L4I\n/613Q30K/DxyrjxgVdQcBG8A9wLzonpQvA9cV/tkMzu4AecoBo43swQzSwKOB+ZH7+CcKwPWmdkx\nkU0/j3o4Cz+kAuBSfBhT61ngt/4QfoJLM+vvnCt0zj0I/AM/lGCnzGzfqLsjgNqJMt/CD0FINrP+\nwL74n3edp+/i0O8B10ad55Cox17Gh0mZzrmCBuy/M5WR33vtEJkK59wLwJ+AoQ14voiISLujcEFE\nROLFhfgP7tFeBy5yzr0H/B8w3cxmAv8v8vizwF8jk/elEulxEOnmfyM+UJgFTHfO/TPynIZcbWEc\ncKiZfQX8ERgd9dgrwCVsG74BPlg4zPwEkAXU/dZ9Z14DluK77c8CZjnn3q5nv1/gr8gwc7vaHwEu\niwwX2I+oHhLOuZX4oOLpqP0vMH/Zy1nAgUQmmNzFnAt3RyZAnI0f9nFd5NjzIj+DecA7wK8j81HU\nXlrzW/yEisVmdls9x70TSIocey7ben8ATMT/O3h5J/sXbLd/tOifzePAXDN7HjgImBp53bdFjici\nIhJ3LPL3WkRERKRBIvM9fAUM1RwDIiIiAuq5ICIiIo1gZifgexU8oGBBREREaqnngoiIiIiIiIg0\niXouiIiIiIiIiEiTKFwQERERERERkSZRuCAiIiIiIiIiTaJwQURERERERESaROGCiIiIiIiIiDSJ\nwgURERERERERaRKFCyIiIiIiIiLSJAoXRERERERERKRJFC6IiIiIiIiISJMoXBARERERERGRJlG4\nICIiIiIiIiJNonBBRERERERERJpE4YKIiIiIiIiINInCBRERERERERFpEoULIiIiIiIiItIkChdE\nREREREREpEkULoiIiIiIiIhIkyhcEBEREREREZEmUbggIiIiIiIiIk0Sk3DBzE41swVmtsjMbqjn\n8Uwze8vMZpvZXDO7LBbnFRERkfjTgHbHxWb2VWT5zMwGN/S5IiIismfMOde0A5iFgEXACUApMA0Y\n6ZxbELXPH4BM59wfzKwrsBDo7pyrbtLJRUREJK40sN1xFDDfOVdmZqcCY51zRzXkuSIiIrJnYtFz\n4QhgsXNumXOuCngJOGu7fRzQMbLeEVitYEFERET2wG7bHc65Kc65ssjdKUDvhj5XRERE9kwswoXe\nwLdR979j2x/xWg8BA82sFPgKuC4G5xUREZH405B2R7QrgHf38LkiIiLSQIktdJ5TgFnOuZ+a2T7A\nv8xssHNu4/Y7mlnTxmmIiIi0U845C7qGtsTMfgKMAY5r5PPUFhEREdmJnbVHYhEulAD9ou73iWyL\nNga4K1LIEjMrBA4Aptd3wKbOAyGxNXbsWMaOHRt0GRIA/e7jl373rY+ZcoWIhrQ7iEzi+DhwqnNu\nbWOeC2qLtEZ6X4pf+t3HL/3uW59dtUdiMSxiGrCvmeWYWTIwEnhru32WASdGiukO7AcsjcG5RURE\nJL7stt1hZv2AicAo59ySxjxXRERE9kyTey4452rM7DfA+/iw4inn3Hwzu8o/7B4H7gSeMbM5kadd\n75xb09Rzi4iISHxpYLvjVqAz8Ij5r1iqnHNH7Oy5Ab0UERGRdiUmcy445yYB+2+37bGo9eX4eRek\nDcrLywu6BAmIfvfxS797ac0a0O64Eriyoc+VtkHvS/FLv/v4pd9922KtbUyhmbnWVpOIiEjQzEwT\nOrYQtUVERETqt6v2SEtdLaLJcnNzWbZsWdBlyG7k5ORQVFQUdBkiIiIxp7ZIy1BbQkSkbWozPRci\nCUkAFUlj6PckItI81HOh5agtEiz9nEVEWq9dtUdicbUIEREREREREYljChdEREREREREpEkULoiI\niIiIiIhIkyhcEBEREREREZEmUbggIiIiIiIiIk3SZi5Fub3bbruf4uJ1zXb8fv2yueOO3zbb8VvK\nmDFj6Nu3L3fccUfQpYiIiLQ7ao80jNojIiLtX5sNF4qL15GbO7bZjl9U1HzHrvXwww/zzDPPMHfu\nXC6++GImTJjQ7OcUERGR2FF7RERExNOwiGYwfvz4Bu3Xu3dvbr31Vi6//PJmrkhERETijdojIiLS\nkhQuNIMtW7Y0aL8RI0YwfPhwOnfuvNt9x48fT58+fcjMzGTAgAF89NFH9e43a9YsDj30ULKyshg5\nciSbN29uVO0iIiLSPqg9IiIiLUnhQjNwzsX0eIsWLeLhhx9mxowZrF+/nvfee4/c3Nwd9quqquLs\ns89m9OjRrFmzhvPPP5+JEyfGtBYRERFpG9QeERGRltRm51xoTZYsWcJrr72GmeGcY/Lkydxzzz04\n5zAzjjzySI4//vg9Pn5CQgKVlZUUFBTQpUsX+vXrV+9+U6ZMobq6mmuvvRaAc889l8MPP3yPzysi\nIiJth9ojIiISJIULMbDPPvtwww03bL2/ZcsWrr/++pge//7772fs2LHMmzePU045hb/85S/07Nmz\nzn6lpaX07t27zracnJyY1SEiIiKtl9ojIiISJA2LaCNGjhzJp59+yrJlywC48cYbd9inZ8+elJSU\n1NlWXFzcIvWJiIhI+6f2iIiI7IzChWbQ0DGONTU1bN68mZqaGqqrq9myZQs1NTU77Ldo0SI++ugj\nKisrSU5OpkOHDoRCO/7qjj76aBITE3nwwQeprq7m9ddfZ+rUqU1+PSIiItL2qD0iIiItqc0Oi+jX\nL7tZr/3cr192g/dduHAhL7300tYxjh9//DF33HHH1jGORx99NCeddNIOz7vzzjsZN24cZgbA3//+\nd26//XZuu+22Ovtt2bKFG2+8kQULFpCUlMQxxxzD448/DsDpp5/OsGHDuPHGG0lKSuL111/niiuu\n4JZbbuH000/n3HPPrXOs6P1FRESkadQeUXtEREQ8i/VMwk1lZq6+mmr/UErrpt+TiEjziLy/WtB1\nxAO1RYKln7OISOu1q/aIhkWIiIiIiIiISJMoXBARERERERGRJlG4ICIiIiIiIiJNonBBRERERERE\nRJpE4YKIiIiIiIiINInCBRERERERERFpksSgCxARERFpC3JycjDT1UCbW05OTtAliIjIHrDWdh3h\nxlxbOr8on/yi/K3rebl5AOTl5m1d351YHEO20bWpRUSax66uKy2xtbO2iIiISLzbVXukTYcLdR4f\nZ7jbm/ZaYnGM9uBXv/oVffr04eabb270cxUuiIg0D4ULLUfhgoiISP121R7RnAsxkJubS2pqKmvW\nrKmzfciQIYRCIYqLi2N+zsrKSi699FI6d+5Mjx49+N3vfhezOh999NE9ChZEREREREQkPilciAEz\no3///rz44otbtxUUFFBRUdFsYzOfeeYZZs+eTVFREYWFhYwYMaJV1ikiIiIiIiLtn8KFGBk1ahTP\nPvvs1vvPPvsso0ePrrPPO++8w9ChQ8nKyiInJ4dx48ZtfeyVV15h7733ZuPGjQC8++679OzZk9Wr\nV9d7vqSkJLKyssjMzKRDhw4cf/zxMatzzJgx3HbbbQB8/PHH9O3bl3vvvZfu3bvTu3dvnnnmmQad\nS0REREREROKDwoUYOeqoo9iwYQMLFy4kHA7z8ssv8/Of/7zO/AMZGRk8//zzlJWV8fbbb/PXv/6V\nt956C4ALLriAY489lmuvvZY1a9ZwxRVXMGHCBLp06VLv+YYOHcqUKVMYO3ZszOvc3ooVK9iwYQOl\npaU8+eSTXH311ZSVlTXqvCIiIiIiItJ+tatLUdq4YLv21/YKOP744xkwYAC9evWq8/iwYcO2rg8a\nNIiRI0fy8ccfM3z4cAAeeughBg8eTF5eHmeddRannXZavedZu3Ytw4cP5+233+b222/HzLj99tsB\n6Nu3L5MmTeLAAw/c4zq3l5yczK233kooFOK0004jIyODhQsXcsQRRzTo5yIiIiIiIiLtW7sKF2Jx\ntYim+PnPf86wYcMoLCzk0ksv3eHxL7/8kj/84Q8UFBRQWVlJZWUl559//tbHs7KyOP/887nvvvt4\n/fXXd3qeV199lYEDB3LyySdz2GGHMWzYMMyM0aNHU1NTs8tgoSF1bq9Lly6EQts6uaSlpW0dviEi\nIiIiIiKiYREx1K9fP/r378+7777LOeecs8Pjl1xyCSNGjKCkpIR169Zx1VVX1RmOMHv2bCZMmMBF\nF13ENddcs9PzVFdXU1VVBUDnzp354IMPeOaZZzjllFP4/e9/3+Q6RURERERERBpD4UKMTZgwgQ8/\n/JAOHTrs8NjGjRvp1KkTSUlJTJ06lRdeeGHrY5s3b2bUqFHcfffdTJgwgdLSUh599NF6z3H66acz\nbdo0nnjiCaqrq0lISOCYY45h8eLFpKWlNblOERERERERkcZQuBAD0Zdx7N+/P0OHDq33sUceeYRb\nb72VrKws7rzzTi688MKtj910003k5OTwy1/+kuTkZJ5//nluvfVWlixZssP5cnNzeffdd3n22Wfp\n0qULQ4YMoUePHnz00UfccMMNvP/++02qszGvV0RERERERMR2dZWAIJiZq68mM9vlFQ1snMVkzoWm\nHiPe7e73JCIieyby/qp0twXsrC0iIiIS73bVHmnT4UJ+UT75Rflb1/Ny8wDIy83bur47sTiGbKNw\nQeKN3kOkpShcaDkKF0REROrX7OGCmZ0K3I8fZvGUc258PfvkAfcBScAq59xPdnKsPeq5IK2Dfk8S\nz9T7SZqTwoVtdtfuMLP9gaeBocBNzrl7ox4rAsqAMFDlnNvhusoKF0REROq3q/ZIky9FaWYh4CHg\nBKAUmGZm/3DOLYjaJwt4GDjZOVdiZl2bel4RERGJPw1pdwCrgWuAEfUcIgzkOefWNnuxIiIicSQW\nEzoeASx2zi1zzlUBLwFnbbfPxcBE51wJgHPuhxicV0REROLPbtsdzrkfnHMzgOp6nm9oQmsREZGY\ni8Uf197At1H3v4tsi7Yf0NnMPjKzaWY2KgbnFRERkfjTkHbHrjjgX5H2yJUxrawRrrwSnnkmqLOL\niIjEXpOHRTTiPEOBnwLpwBdm9oVz7pv6dh47duzW9by8PPLy8lqgRBERkdYjPz+f/Pz8oMtoj451\nzi03s274kGG+c+6z7Xdq7rbI734HZ58N06fDvfdCcnJMDy8iIhITjWmPNHlCRzM7ChjrnDs1cv9G\nwEVPrmRmNwCpzrlxkftPAu865ybWc7x6J1HKzc1l2bJlTapVml9OTg5FRUVBlyESCE3oKM1JEzp6\nDWl3RO17O7AhekLHhjzeUhM6lpXBqFGwdi28+ir06NHspxQREWmSXbVHYjEsYhqwr5nlmFkyMBJ4\na7t9/gEcZ2YJZpYGHAnMb8xJioqKcM5paeWLggUREWlmDWl3RNvaADKzNDPLiKynAycDBc1Z7K5k\nZcGbb8KJJ8Lhh8OUKUFVIiIi0nRNHhbhnKsxs98A77PtklDzzewq/7B73Dm3wMzeA+YANcDjzrl5\nTT23iIiIxJeGtDvMrDswHegIhM3sOmAg0A14w8wcvg30d+fc+8G8Ei8UgttvhyFDYPhw+OMf4Yor\ngqxIRERkzzR5WESs6drSItJWaViENCcNi2g5QbVFFi6EESNg2DB44AFISWnxEkRERHapuYdFiIiI\niEgT7b8/fPklrFwJeXlQWhp0RSIiIg2ncEFERESklcjMhIkT4Wc/8/MwTJ4cdEUiIiINo3BBRERE\npBUJheDmm+GJJ+Ccc+DRR0EjRkVEpLVr8oSOIiKtVX5RPvlF+VvX83LzAMjLzdu6LiLSWp1+uu+5\nMGIETJ8ODz8MqalBVyUiIlI/TegoInGhJSZb1ISO0pw0oWPLaW1tkY0bYcwYWLYMXn8d+vQJuiIR\nEYlXmtBRREREpI3KyIBXXoHzzoMjjoBPPgm6IhERkR0pXBARERFp5czg+uvhmWfg/PPhwQc1D4OI\niLQuChdERERE2oiTT4YvvoAnn4TLLoOKiqArEhER8RQuiIiIiLQhe+8Nn38OVVVw3HF+LgYREZGg\nKVwQERERaWPS0+Hvf4dLLoGjjoKPPgq6IhERiXcKF0RERETaIDP4z/+Ev/0NLroI7r1X8zCIiEhw\nFC6IiIiItGEnnABffulDhksugU2bgq5IRERaSk1NDRs2bGDFihWUl5cHWktioGcXERERkSbLyYHJ\nk+Gqq+CYY+CNN6B//6CrEhGRxgqHw1RUVFBeXr512bRpExs2lLNmjV/WrfPL+vXllJdXEgqlUVlp\nnHXWfpx//pmB1a5wQURERKQd6NABnn3WX6by6KPh+efhpJOCrkpERCorK9mwYUOdwGDjRh8UrF1b\nzrp1m1i3rpyysnI2bKgAUgmF0jFLx7l0wuE0nEsnKak7ycnpJCWlk5ycTnZ2Ol27pmJmLF8+k6qq\nbwN9nQoXRERERNoJM7j2Wjj4YBg5Eq65Bm64ARISgq5MRCQ+VFdXs2LFCkpKSlm8uIQFC0opKVmH\nWUfM0oHawCCdxMQuJCf3IykpjaSkdDIy0unUKQ2ztjl7gcIFERERkXbm+ONh6lQYPRreftv3aNh3\n36CrEhFpX8LhMKtWraKkpISlS0uZN6+E4uIfCIe74FxvkpL6kZl5NH37diMUav8pr8IFERERkXao\nb1/44AN46CF/ucpx4+BXv4JQ2/xCTETiTDgcBiDUSt60nHOsXbuWkpISiopKmDevlKVLV1BVlQn0\nIhTqTceOB9OzZw8SEpKCLjcQChdERERE2qlQyA+TOOUUuPRSePNNmDDBBw8iIkGqrKxk/fr1rFu3\njrKyMtasKWPFijK+/76MlSvLWL16PeGwIyMjlawsP79A584ZdO6cTqdOfghBeno6GRkZpKf79eTk\n5JjVt379ekpLSykuLmH+/FIWLSqloiIZ6A30omPHn9CtW08SE1Njds62TuGCiIiISDu3//7+ahLj\nx8Ohh8Kf/wyjRvk5GkREYs05R3l5OWVlZVuXlSvXbQ0PVq0qY8OGShISsoAsnMvCuWxSUvqTkpJF\namoWvXtnYhaiqqqCLVvK+fbbjSxZUk5VVTnV1eWEQiWYbQTKca6ccHgjKSlGVlYG2dm1YYRfsrK2\nBRC1S1paGhZ5E6yoqKCkpITvvitl/vwSFi0qZe3aGkKh3jjXi4yMI8nK6kW3bhmB/lxbO4ULIiIC\nQH5RPvlF+VvX83LzAMjLzdu6LiJtV2Ii3HwznHGGDxbeeAMeewz22ivoykSkLXDO4ZwjHA4TDofZ\nuHHj1l4Ha9fW7XXwww9lVFcnEwplA1mEw1mEQtmkpuaQmppNx45ZdO687cP9riQn+ysjpKfv+s3K\nOUdNTSVVVeWsWlVOaWk5lZXlVFZuxGw1oVAxPojYiHPlmG2hY8c0kpISWL16M2Y9ca43HToMJjPz\nNHJyshpUn2yjcEFERIC6IYKNM/Ivyw+0HhFpHoccAtOnw+23+6tKPPIInH120FWJSFOtXr2ar74q\nYM6cYqqra6ipCRMOO2pqwpEP3ttut9/uAwNX7230c8EiS4hQqCNmvtdBOJxFSkpfUlIGkZqaRY8e\nWS0+74CZkZiYQmJiCh06dN7t/uFwDVVVmwiHq+jXr5OChBhQuCAi0sqpR4GIxFpKCtx9Nwwf7q8o\n8cYb8MADkJ0ddGUi0hhlZWXMmVPAxx8XsGTJBuBAMjKOJBRKwiyEmUUua2g7vZ+UFNrtPtvut58P\n4KFQAikpHYMuo11RuCAi0sqpR4GINJdjjoHZs+H662HwYHjqKTjppKCrEpFd2bhxIwUFX/PJJwXM\nn78aGEBm5sn065cTCQFEgqFwQURERCSOpafDww/DiBFw+eVw5plwzz1+u4i0DhUVFcybN5/PPivg\nq69KCYf3o2PHH9O37z6EQglBlycCKFwQEZF2RsNIRPbMSSfBnDn+0pWHHALPPut7NohIMLZs2cLC\nhQuZPLmA6dOXUVOzD+nph9G7949afD4DkYZQuCAiIu2KhpGI7LnsbHjuOT8Hw7nn+vkYxo3zczSI\nSPOrqqpi8eLFfPFFAV9+uYSqqhxSUwfRs+e5JCbqP6K0bgoXRERERKSOs8+GY4+Fq66Cww/3gcMh\nhwRdlUj7VFNTw5IlS/jyywI+/3wRmzf3Ijl5EN26nUlSUoegyxNpMIULItLi1G1d2gP9O5b2bq+9\n4PXX4fnn4eST4brr4IYbIFGtR5EmC4fDFBUVMW1aAZ9+Op/y8m4kJg6iW7eTSU7OCLo8kT2iPw8i\n0uLUbV3aA/07lnhgBpdeCj/5CfziF/DWW74Xw/77B12ZSNvjnOO7775jxowC8vO/pqysI6HQILp1\n+w+6ds0KujyRJlO4ICIiLUbf9ou0TX37wnvvwV//6odL3HYb/OY3ENJV70R2q6amhjlz5vLGG59R\nXGyEQoPo2nUMOTldgi5NJKYULoiISIvRt/0ibVcoBL/+tb+qxOjR8Oab8PTTkJMTdGUirVN1dTUz\nZszi9dcns2JFJ7KzTycnpz9mFnRpIs1C4YKIiIiINNiPfgSffgp//jMcdhiMHw9jxvghFCLiLyH5\n5ZfTefPNKaxe3ZMuXc6jf/8+QZcl0uwULoiIiIhIoyQk+MkdTz/dz8nw6qvw2GPQr1/QlYkEp6Ki\ngsmTv+TNN6eycePedO16Cf379wi6LJEWo3BBRERERPbIQQfB1Knwpz/BoYfCuHHwH/+huRgkvmzc\nuJGPP/6Cf/5zJhUVB7DXXpfTtavmU5D4o3BBRERERPZYUhLcdBOcfTZcfjm8/DI8+aQfPiHSnq1b\nt44PP5zMpEkFVFUNpnv3/6B7d131QeKXwgURERERabIBA/xcDA89BEcf7YdN/O53kKjWprQzP/zw\nA//612d88MFCnDuUHj2uJjk5I+iyRAKnt3sRERERiYmEBLjuOjjzTLjySnjlFZgwwQ+fEGnrli9f\nzrvvfspnny0DjqBnz2tJSuoQdFkirYbCBRERERGJqb33hg8+gKeegp/+FK6+2g+dSE4OujKRxisu\nLubttz/lyy9XkJR0DL17jyAhQf+YRbYXk+l2zOxUM1tgZovM7IZd7He4mVWZ2TmxOK+IiIjEn921\nO8xsfzP73Mw2m9l/Nua5EjtmcMUVMHs2zJzpJ3ycNi3oqkQaxjnHkiVLuO++Z7j11jeYNWt/+vW7\njt69j1ZS+BDzAAAgAElEQVSwILITTe65YGYh4CHgBKAUmGZm/3DOLahnv7uB95p6ThEREYlPDWx3\nrAauAUbswXMlxnr3hn/8A156yQ+XGDXKX1UiLS3oykR25Jxj4cKFvPnmp8yfX0la2o/JzR2Ef/sQ\nkV2Jxf+SI4DFzrllzrkq4CXgrHr2uwZ4DVgZg3OKiIhIfNptu8M594NzbgZQ3djnSvMwg4sugrlz\n4bvv4OCD4eOPg65KZJtwOMxXX83hjjse5a67PuHbb48jN/fXdO8+WMGCSAPFYs6F3sC3Ufe/w//x\n3srMegEjnHM/MbM6j4mIiIg0wm7bHc30XImBbt3gxRfhrbfgkktg+HC4+27IzAy6MolnzjnGj3+c\nBQtSyMo6mdzcfTCzoMsSaXNaKoa7H4ge16j/rSIiIiJxavhwKCiAykp/JYl33w26IolnK1euZNGi\nLfTvP4bOnfdVsCCyh2LRc6EE6Bd1v09kW7TDgJfM/0/tCpxmZlXOubfqO+DYsWO3rufl5ZGXlxeD\nMkVERNqO/Px88vPzgy6jNWpIu6PJz1VbpPllZ8OTT/qrSlx5Jfz4x3D//dC5c9CVSbxZurQQ5/YO\nugyRVqkx7ZFYhAvTgH3NLAdYDowELorewUX9bzWzp4H/21mwAHX/oIuIiMSj7T/Qjhs3LrhiWpfd\ntju2E/0VZIOfq7ZIyznxRD8Xw803w6BB8MADcN55QVcl8WT27KWkpQ0OugyRVqkx7ZEmD4twztUA\nvwHeB74GXnLOzTezq8zsl/U9pannFBERkfjUkHaHmXU3s2+B3wE3m1mxmWXs7LnBvBKJlpEB//u/\n8OqrcMstcO65sGJF0FVJPAiHw8yZs4zs7P5BlyLS5sWi5wLOuUnA/ttte2wn+/4iFucUERGR+LS7\ndodz7nugb0OfK63HscfC7Nlwxx0weDD86U9w6aX+ahMizaG0tJQtW7JJTk4PuhSRNk/XVRERERGR\nViM1Ff74R5g0yc/BcPrpUFwcdFXSXi1evFTzLYjEiMIFEREREWl1hg6FqVPhuOPg0EPhscfAaXCt\nxNisWYVkZGhIhEgsKFwQERERkVYpKclP9Pjxx/DEE3DaaVDS0GuDiOxGVVUV8+eXkJWVE3QpIu2C\nwgURERERadUGDoQvvoBjjoEhQ+Bvf1MvBmm6b7/9lpqa7iQmpgRdiki7oHBBRERERFq9pCS47TY/\nF8Pdd/vLVa5cGXRV0pYtWrQU5zQkQiRWFC6IiIiISJsxdCjMmAH77gsHHwxvvBF0RdJWzZhRSFaW\nJnMUiRWFCyIiIiLSpqSkwPjxMHEiXH89jBoFa9cGXZW0JZs3b2bJklVkZvYJuhSRdkPhgoiIiIi0\nScccA7NnQ3Y2DB4M770XdEXSVhQVFeFcH0KhxKBLEWk3FC6IiIiISJuVng4PPghPPw2//CX86lew\ncWPQVUlrt2BBIWYaEiESSwoXRERERKTNO/FEmDMHNm/2czF8+mnQFUlrNmPGUrKzNZmjSCwpXBAR\nERGRdiEry/dguO8+uPBC+P3vfdggEm3Dhg18++0GOnbsGXQpIu2KwgURERERaVeGD/e9GJYt81eX\nmD496IqkNSkqKsIsFzN9FBKJJf2PEhEREZF2p2tXeOUVuO02OOMMuP12qKwMuippDb7+eimJiZpv\nQSTWFC6IiIiISLtkBiNHwqxZvvfCUUdBQUHQVUmQnHPMnFmo+RZEmoHCBRERERFp13r1gn/+E66+\nGn7yE7jnHqipCboqCcLatWtZtaqGtLSuQZci0u4oXBARERGRds8MLr8cpk2Dd9+FYcPgm2+Crkpa\n2tKlhUB/zCzoUkTaHYULIiIiIhI3cnPh3/+GCy7wwyQefhjC4aCrkpZSUFBIcrKGRIg0B4ULIiIi\nIhJXQiG47jqYPBmefx5OOQWKi4OuSpqbc45Zswrp1EnhgkhzULggIiIiInFp//3hs8/8PAyHHgoT\nJoBzQVclzWXlypWsX59Camp20KWItEsKF0REREQkbiUmwk03wQcfwCOP+KBh/vygq5LmsGTJUpxT\nrwWR5qJwQURERETi3sEHw5dfwnnn+ckeb7kFKiqCrkpiafbsQtLS9g66DJF2S+GCiIiIiAiQkAC/\n+Q189RUsXgyDBsGkSUFXJbFQU1PD3LnLyM7ODboUkXZL4YKIiIiISJReveDll/2VJK6+Gi68EEpL\ng65KmqK0tJQtWzqRnJwedCki7ZbCBRERERGRepx6KhQUwI9+5IdNPPQQ1NQEXZXsiW++KdR8CyLN\nTOGCiIiIiMhOdOgAd94Jn3wCr74KRx4JM2YEXZU01syZS8nIULgg0pwULoiIiIiI7MaAAZCfD9dc\nA2ecAdddB+vXB12VNERVVRULFpSSlZUTdCki7ZrCBRERERGRBjCD0aPh66+hvBwGDvS9GZwLujLZ\nleLiYmpqupOYmBJ0KSLtmsIFEREREZFG6NIFnnwSXnoJxo3zPRmWLg26KtmZxYsLcU6XoBRpbgoX\nRERERET2wHHHwcyZcPzxcMQRcNddUFkZdFWyvRkzCsnK0nwLIs1N4YKIiIiIyB5KToYbboBp0+Cz\nz+CQQ/zkj9I6bN68mSVLVpGZ2SfoUkTaPYULIiIiIiJN1L8//POf8N//DZdcAr/4BfzwQ9BVSVFR\nEdCXUCgx6FJE2j2FCyIiIiIiMWAG554L8+ZBVhYceCA8/bQmfAzS/PlLAQ2JEGkJChdERERERGKo\nY0e47z6YNAkefdTPyfD110FXFZ9mziykUydN5ijSEhQuiIiIiIg0gyFD4IsvYORIyMuDm26CTZuC\nrip+bNiwge++20hGRo+gSxGJCwoXRERERESaSUIC/PrXMGcOFBbCoEEwdWrQVcWHwsJCIBczfeQR\naQn6nyYiIiIi0sx69oQXX4S//AXOOAOeeSboitq/r78uJDFR8y2ItBSFCyIiIiIiLeTss+Hjj+GP\nf4Rrr4WqqqArap+cc8yYsZTsbIULIi1F4YKIiIiISAsaONAPjViyBE46CVauDLqi9mft2rWsXh0m\nLa1r0KWIxA2FCyIiIiIiLSw7G956C447Dg4/HGbMCLqi9mXJEn8JSjMLuhSRuBGTcMHMTjWzBWa2\nyMxuqOfxi83sq8jymZkdFIvzioiISPzZXbsjss8DZrbYzGab2ZCo7UWR9sgsM9O0ehKohAS4804/\nD8Opp8LzzwddUfsxd24hKSm6BKVIS0ps6gHMT7/6EHACUApMM7N/OOcWRO22FBjmnCszs1OBJ4Cj\nmnpuERERiS8NaXeY2WnAPs65H5nZkcCjbGt3hIE859zaFi5dZKfOOw8OOABGjICZM+FPf4LEJrfS\n45dzjtmzC8nOPjnoUkTiSix6LhwBLHbOLXPOVQEvAWdF7+Ccm+KcK4vcnQL0jsF5RUREJP7stt0R\nuf8cgHPuSyDLzLpHHjM0LFRaodpLVM6bB6ecAj/8EHRFbdf333/Phg2ppKZmBV2KSFyJxR/X3sC3\nUfe/Y9fhwRXAuzE4r4iIiMSfhrQ7tt+nJGofB/zLzKaZ2ZXNVqXIHujcGd55x8/BcPjhMHt20BW1\nTUuXFgIaEiHS0lq0w5WZ/QQYAxy3q/3Gjh27dT0vL4+8vLxmrUtERKS1yc/PJz8/P+gy2qNjnXPL\nzawbPmSY75z7bPud1BaRoCQkwN13w5Ah/koSDzwAF10UdFVty6xZS+nQ4ZCgyxBpFxrTHolFuFAC\n9Iu63yeyrQ4zGww8Dpy6u3GO0X/QRURE4tH2H2jHjRsXXDGtS0PaHSVA3/r2cc4tj9yuMrM38MMs\ndhkuiAThwgv9PAxnn+3nYbjrLs3D0BA1NTXMnVtMly5nB12KSLvQmPZILIZFTAP2NbMcM0sGRgJv\nRe9gZv2AicAo59ySGJxTRERE4tNu2x2R+5cCmNlRwDrn3PdmlmZmGZHt6cDJQEHLlS7SOAcfDNOm\nwaxZcPrpsGZN0BW1fqWlpVRWdiIpKS3oUkTiTpPDBedcDfAb4H3ga+Al59x8M7vKzH4Z2e1WoDPw\niC79JCIiInuqIe0O59w7QKGZfQM8Bvw68vTuwGdmNgs/wfT/Oefeb/EXIdIIXbrApEkweLCfh2HO\nnKArat0WL16Kc5pvQSQIMelc5ZybBOy/3bbHotavBDRpkoiIiDTZ7todkfu/qed5hYAGYkubk5gI\nf/4zDB0KJ5wADz8MF1wQdFWt06xZhWRkHBt0GSJxSSO3RERERETagIsv9vMwnHOOn4fhf/7HTwAp\nXlVVFfPnl9KzZ07QpYjEJV3nWURERESkjRg61M/DMHUqnHEGrN3lNOnxpbi4mHC4BwkJyUGXIhKX\nFC6IiIiIiLQh3brBe+/5XgxHHAFffx10Ra3DwoVLca5/0GWIxC2FCyIiIiIibUxSEtx/P9x6K+Tl\nweuvB11R8GbOLCQrS5M5igRF4YKIiIiISBt16aXw7rvw29/CLbdAOBx0RcGoqKhg6dIfyMzsE3Qp\nInFL4YKIiIiISBt22GF+HoZPPoHhw2HduqAranlFRUU415dQSDNcigQl7sKFdeugqiroKkRERERE\nYqd7d/j3v6F/fz8PQ0FB0BW1rAULCgmFNCRCJEhxFy7cfz9kZ/s33V/9Cp54wl/Kp7Iy6MpERERE\nRPZcUhI8+CDcdJOfh+HOO+PnS7UZM5aSna3JHEWCFHfhwtix8P33cO+9fobdTz+FUaN84HDYYXDV\nVfD44zBjhgIHEREREWl7LrvMf3k2eTIcfrhfb8/Wr19PSUk5GRk9gi5FJK4lBl1AEDIy4Ljj/FKr\nvBxmz/Zvvp9/7lPfJUtgwAA49NBty0EHQUpKcLWLiIiIiOxOv37wzjvw3HNw6qlwxRVw222Qmhp0\nZbFXVFQE5GIWd9+birQqcRku1Cc9HY491i+1Nm2Cr77yvRimTIGHH4ZvvvE9HrYPHNrjG7WIiIiI\ntF1mMHo0nHIK/PrXMGQITJgARx8ddGWxVVCwlMREDYkQCZrChV1IS/NvvtFvwJs2wZw5PnCYOhUe\nfRQWL4b9998xcOjQIbjaRUSk4ZxzOOeoqakhHA5TU1OzddnV/dp1EZHWrEcPmDgRXnsNzjkHRo70\n8zGkpwddWdM555g5s5BOnY7b/c4i0qwULjRSWhocdZRfalVUbAscpk+Hxx6DhQshJwcGDYIDD/S3\ngwbBvvv6yXZERFqrcOQi6c45zCzganwdVVVVVFZWsmXLFrZs2VLv+ubNlZSXb2Hjxi1UVPh1gHHj\nHqO6uoaamjDV1TX1rPv7zgEkYJYAhCK3ddfNEnAuFNnuH6us3AL7BvOzERFpKDM4/3z4yU/gt7+F\nwYPhySf9/bZszZo1rF4dpl+/LkGXIhL3FC7EQIcOcOSRfqlVWQmLFvnLABUUwAsv+NvvvoMf/Whb\n2FAbPPTvDyENExNpk6qqqti0aRMApaWlOP8pFaDe9aZsA1i0aBHV1dV1lpqaGqqrq6mqqmbLlmoq\nK6uprKyhstLfr91eVVUTecxv80sNVVV+mz9eGPaGMWPGkZiYQEJCKHKbQGJiwtZtSUl+W1KS3+bv\nh7au1y6JifVt89chf//9f28NAzZu3MKmTX590ya/vnlzJZs3VxIOJxAKJQMphEIpOOfXa2/D4RQg\nmYSELBITU0hISCYhIQW6wvr1Z2KWgFmIUCiB5OQEQiF/3yx6fc/ehNetW7ZHzxMRCULXrvC3v8E/\n/wmXXgpnnAH33AOZmUFXtmeWLi0E9m4VYbhIvFO40EySk7cFCNE2bYL58+Hrr33Y8Nhj/nb1ahg4\nsG4vh0GDoHdvnzSLSMsJh8NUVFRQXl5eZ1m/vpy1a8tZs8bfrlvnt1VUVBMKpUMO3Hrr/wHR/2n9\nupmxLR9o3LY66/3gnnum41wCziXi38YT69wPhToQCiVGPjgnbrfU3WaWQHJyIqmp0dtCwDhycm7H\nuRqcCxMO1+BczdbbmpowVVV1t9W33862OVcD/eHFF5NISMioEwgkJCSTmJhCcnIKHTr49aZM0tWx\nY689fq6ISHv1s5/5yc3/6798m/Oxx+C004KuqvHmzi0kJeVHQZchIihcaHFpadvmZYhWVgbz5m3r\n6TBpkr/dvLlu4FC7vtdewdQv0hbVfuu/Zs2aOmHBxo07hgVlZeVs2FABpPrAAL+Ew+k4l05yck+S\nktJJTk4nKSmdLl3SSUhIiXxj8v/o2/eqZn41o+nT5+JmPodnZpj5PxMJCc1zjpycYc1zYBER2a3s\nbHjiCfjgA7jyShg2DO67Dzp3DrqyhnHOMWtWIdnZJwddioigcKHVyMracfJIgFWrfC+H2p4Or7zi\nb5OSfNBw4IH+cpkDB/plr73U00HiTzgcZsOGDZSVlbFu3TrWrSvj++/LWL58HStXlrFqVRn0gt//\n/nnMfFjgnA8MEhM7kZTUZ2tYkJGRTqdOabqclYiIxI0TT4S5c+Gmm/yXWA895Cd+bO2+//57Nm7s\nQJcuWUGXIiIoXGj1unWDvDy/1HIOli/3IcO8ef5ymS+95AMIMx8yRAcOAwZAnz4KHaTtqqqq2hoc\nlJWVsWaNDw5WrPDBwZo1GwiH0zDLArIJh7NIStqL1NT9SEnJolu3LOBm+vW7LuiXIiIi0iplZMAD\nD8CFF8IvfuHblg8+CN27B13Zzi1ZshTndAlKkdZC4UIbZAa9evnl5KheYM7BypU+cJg/39++9Za/\n3bRpx8Bh4EDIzdVEkhK8TZs2bQ0OysrKWLVqHcuX+94HK1euY8OGSkKhTMx8cOBcFqmpe5OSkkVq\naha9e2cSCuntTEREpKmOPRZmz4Zx4/wVJe69Fy6+uHV+STV7diHp6UOCLkNEItQab0fMfLrcvfuO\nlxVas2Zb4DBvnh9bN3++n0hy//3rBg8DB8I++0Ci/nVIM1u7di0Av/71AyQkZANZ1NRkkZCQTUpK\nX1JTs+jYMZvOndM1C7SIiEgL6dAB7r4bzjtvWy+Gv/7VTzTeWtTU1DB3bjFdupwddCkiEqGPj3Gi\nc2efRB97bN3t69fDggXbejtMmODXS0t9wFAbNtROJvmjHyl0kNhYvXo199zzHKRBbu6NQZcjIiIi\n2znsMJg+He66Cw45xN9efnnr6MVQUlJCZWVnkpLSgi5FRCL0MTHOZWbCEUf4JVpFBSxc6OdxmDfP\nXw+5oABKSmC//Xa8gkX//hpeIQ33/fffM37839i06aegNoGIiEirlZwMt9/uJ3is7cXwxBO+7Rek\nb74pJBzWfAsirYnCBalXhw4+oT7kkLrbN23yPRxqL5n517/629Wr/dCK7S+ZqYkkZXulpaWMH/8C\nlZWn0KPHQUGXIyIiIg1w0EHwxRd+DobDD/eBw9VXB/fl0owZS+nY8bhgTi4i9VK4II2SlgaHHuqX\naGVlvodDQYHv7TBpkr/dtGlb0BB92727Qod4VFxczPjxL2N2Jt27HxB0OSIiItIIiYlw/fUwYoQf\nHvHqq/Diiy0/F0NlZSULFy6nZ8+clj2xiOySwgWJiawsOPpov0T74QcfMnz9tQ8eXn/d35rtGDgc\ncIC/9KZCh/ZpyZKl/OlPr5GcfA6dO+8bdDkiIiKyh/bbDz7+2E/6ePjhfvjsT3/acucvLi4mHO5B\nQkJyy51URHZL4YI0q65d4fjj/VLLOVixYlvgMHMmPPecn+MB/NUrDjig7u0++/gxf9I2LVy4iD//\n+U3S0y8gOzs36HJERESkiUIhuOkmOPJIuOQSuO4636uhJYZJLFpUCOzd/CcSkUZRuCAtzgx69vTL\niSdu2+6c7+mwYIFfFi6EJ5/0t99+Czk59QcPXbsG91pk977+eh733vs2WVkXk5nZJ+hyREREJIZO\nOAGmTYMLLvBzMjz7LGRnN+85Z84sJDPzlOY9iYg0msIFaTXM/LCIbt3gxz+u+9iWLfDNNz5oWLAA\nPvkEHn/crycl7Rg4HHCAn8U4KSmY1yLerFlf8cAD/6JLl1FkZPQIuhwRERFpBn36QH4+/Nd/+Xm5\nJk7ccVLwWKmoqGDp0tX06aMvLERaG4UL0iakpPh5GQ48sO525+D777f1dFiwAD780K+XlvqAITpw\nOPhgfwwNsWh+U6fO4JFHPqZbt9Gkp3cLuhwRERFpRsnJ8L//C8ccAyedBPfcA2PGxP48RUVFQF9C\noYTYH1xEmkThgrRpZtCjh1/y8uo+VlHhezvUBg//+pf/Q1dU5CeRPPRQOOwwf3vggerlEEuffTaF\nxx+fQs+el9GhQ+egyxEREZEWcuGFMHgwnHMOfP45PPggpKbG7vjz5y/FrH/sDigiMaNwQdqtDh38\nNZkPOqju9o0bYfZsmD7dd+H7y1984HDQQXUDh4EDFTjsiQ8//ISnn55N795jSE3NCrocERERaWED\nBsDUqXDllb4nw2uvwd4xmn9xxoxCsrPPjc3BRCSmFC5I3MnIgOOO80utDRu2BQ4ffgh/+hMUF9cf\nOCTqf029nHNMmvQhL7ywgD59xpCS0jHokkRERCQgHTvCiy/CQw/5S5U/9RT87GdNO+b69espLS2n\nXz/N4yTSGuljkgj+D+CPf1x3IskNG2DWLB84fPABjB/vr1oxeHDdwGHAAAUOzjn+8Y9JTJxYTN++\nl5GcnB50SSIiIhIwM7jmGt9euvBCfzWJO+6AhD2cLqGwsBDoj5nFtE4RiY04/0gksnMdO8KwYX6p\ntX69DxxmzID334e77oKSkrqBwyGH+AkkYzm+sDULh8NMnPg2//jH9+TmjiYxMU5euIiIiDTIMcf4\nttNFF8Epp8ALL8BeezX+OF9/XUhiouZbEGmtFC6INEJmJhx/vF9qlZVtCxwmTfI9HAoL/WWZBg6s\nuxxwAKS3oy/1w+EwL774JpMmrSc3dxSJiSlBlyQiIiKt0F57+S9mbrvNfxnz8st+uERDOeeYMWMp\nnTodt/udRdoh56C6GrZsgc2b/W30+qpV3TjyyNJAa1S4INJEWVn+ShXRV6uoqvJXqpg3zy/vvOMn\njly0CLp390HDgAHbQocBA/xx2pKamhqeffY1PvqoitzcS0hI0OyXIiIisnMJCfA//wNHHQVnnQW3\n3OKHTTRklMOaNWtYswb69esS87rKy6GyErKzG1aLSGOFw/7fWH2hwPbru3rczPeOTknxS/R6TU0K\n1dWhQF+nwgWRZpCU5AODAQPg3KgJjWtqfK+G2tAhPx8eecRfLjM7u24vh9rwoUvs/4Y2WVVVFRMm\nvMLkyQn07z+SUEhvJSIiItIwZ54JU6bAeef5y1U++aSfcHtXlixZSqzmW6ip8fNoffMNLF0Ka9ZA\ncrL/VrhXL+jd2y+9eu2+LolvzkFFhZ+rbf16f1vfekWF/zdWXygQfT8jY+fhQUrKrud5W778OzIy\nqlruxddDnwhEWlBCAuy7r1+GD9+2PRz2f+RqQ4cvv4Snn/brqak7Dq8YOND3gAhCZWUljz32ItOm\nZZCbO4JQaA9nZRIREZG4tffeMHmy77lwxBEwcaL/YmVn5swpJCVl/z0+35o1PkxYsgSWLfNf3uyz\nj58Dok8f30bbsAFKS/18WlOn+tuUlG2BQ69efknRKNC4UF29Y1gQHRrULomJfq62zEx/27Ej9OgB\n++23bXtaGoSC7VTQIhQuiLQCoRDk5PjltNO2bXfO/5GbNw/mz4e5c/0YxYIC/4dt6FAYMmTbbW5u\n83bn27x5Mw8//Hfmzu1G//4/wywO3iVFRESkWXTo4HstPPWUn0D7oYf8VSW255zjq6+K6NTp1AYf\ne8sW31t0yRK/VFX5MGHQID8kIy1tx+d07Ogn5d5//9rz+lCiNnD46CNYscIPZY3u3dC9e+u4cljt\nt+jV1dvuRz+2q/XG7Av+i7Hqat8LpL7bhmzb3b7hsG8jh0I+/Nl+qW979LaGPm/z5vqDgy1bfE+C\n7YODXr22rWdm+h7L4sXkv4GZnQrcD4SAp5xz4+vZ5wHgNKAcuMw5NzsW5xZpz8y2/fE66aRt253z\nPR1mzvSTST79NFx7rR8zGB02DBni/0Du6SWfom3atIkHHniehQv7kZNzqi4DJSKBaUq7oyHPFZGW\ndfnlvu1y3nn+cpX33OO7kNdasWIFGzd2oEuXzJ0ewzlYvnxbmLB8uW8/7bOPDyz22qvxX8CY+R4O\nXbrAQQf5bTU1sGqVDxtKSvyE3mvWQLdudQOHrl1j84VPZaVv3zVkqe16H/1hN7qG3a03dt/ERL8k\nJNS9rV2P3p6U5MOkne27s+eHw/5nXnu7/dLQ7ZWVdbdFrycn+5CgV69tIUJtb4P/3979x8lV1/ce\nf3/O/Ngfye6yCWx+bX6SMCQkCBgIrPDIKqJ4weIDW2qpBSlqb1tKe3tbqAqXYFtbtSo+rg8fehUp\nKVq0VgV89CpSu97qvVp8IBUQEmCz2c3PDSE/drO/ZuZ87h9nkmw2u8luZnfPzszryeM85syZ75nz\n2QzJfOY933OWdndiig4XLPrq8nOSrpa0S9LTZvaYu780bMw7JJ3r7qvMbIOkL0i6vNhjA5XKTFqy\nJFre9a7j27u7o7DhmWekxx6T7rsvStjXrTtxlsMFF0xsSl9vb68+85nN2rbtPC1ZcjXBAspG6KFy\nYV65MKfQo9tcmFPec8qHeeU8p3yYU97z0bbC9qProfLq7euWqsdueDG5iuk7xrMvgHhcfLH0859L\nt94qvfnN0je+EX1Ql6RXX90macVJ+/T0HA8T2tujD4Pnniu96U3RbM6p+EY5kYimvM+fH/0acin6\n4LpnTxQ2vPKK9KMfSX190oIFx8OGRYuiD6zu0WPjDQzco980NnJpaIied/i22trJ+UIJOFOTMXPh\nMkkvu/t2STKzRyXdIGn4G/UNkjZLkrv/zMwazGyeu++dhOMDKGhqis4dfPvbj287dEh69tkodPj3\nf5c++9noTTiTOXGWwxveMPpFiw4dOqRPfWqzdu16gxYvvmrMYME9mlY2MBAl56MtIx/rmfd96foG\nfQkqmQIAAB9jSURBVHRoqYJsnRK5eiXydUrm65QK65UK65RWvapUpyqrU43VqyZRp5pEnWoT9ZqV\nrFNdul6zUnWqTdUqmOLQI/RQQ/mshvJDyoVZZcMhZfPRbc6zkq/QS/7CiX8u8pOeZ7RtGm2cjzbu\nPD2nZxR6KHdXqFDuoUKFkjzarrBw68ceGz7m+OPRc0TPcvR+WKivRf9iX5NkMgWyY/8FMhu2zaJb\nyRSM8djw9cCCwnOapHX6SfivyvqgcuFQdOuDyvqg8hpSzgeV06Dyiu7nNai8RethEG0Pg0GFNqTQ\nBuVBdN+DIXkwKE8MSsF8fTSYL7e8FOQky0lBYT3ISYFLnpSChBQmJTu+bpaUlJAFyei+EpKSsiAp\nCwuPeVKqDqTeBRP6fwlFOeO+Q9LycewLICaNjdJ3vhP9Wu/166VHHpGuvlp69tl21dZeolxO6uw8\nHigcOiQtXx4FCldfHV0cOw7p9PEvfY7q6zt+OsV//mf0m8Oy2Wi6f3V11HMNDwVmzYoCiKPbjj6e\nSvHtOUrHZIQLiyR1Dbu/Q9Eb/6nG7CxsI1wAplhDg7RxY7Qc1d8fXb/h6CyHzZulF16QFi8+8ZSK\noaHD+spX2rRv3ztUXb1SW7eeHBAcvT8wEL251tScuFRXR7d1dVH4MXxbVc3V+mw+0Pv8R+r1Hh3x\nw+r3HvX5YQ14jwbUo0Ed1hHt00G1K2uHlbMe5eyw8tajMOhRaIeloEfSoDRYJ8vWKcjWK8hGIUUy\nX6+kz5bUos/YbxY+iGblNiS3rMIguo0+kA7Jg2hdw26VGJIS2ehDaZiWgpTkaclSsiAtU0oKU5JM\n37SbTn4RfLSuYBzbTLJR9n3c3y8VPsRLQeHWJA+i62B4UAiBgpPHKJAdHacTn8M8KHQw0TG36rty\nhZJFAUQUgLjcjocUp3tMKoQVJ6wfHS/92P5agVcpsLQCVSlQlRKqUuBpJQrrCVUppVmq0RwlvUpJ\nq1LS00palVJepaSqlFJaKY/up71KKU8rHVZps12pD4S/UNKSSiqpRJBQ0pNKelJBmFBggYKg8Gd8\nht/2HDy4XZ9tXHZmO+NMnEnfsaOwbTz7AohREEgf+pC0YYP0278tffCDoZ56ap727s2oqys6/eDc\nc6Xrros+jM/Ui+TV1h6/iLd0/EuYqqqZWzNQrBlw6ZGTbdq06dh6a2urWltbY6sFKEc1NdGVmS8b\n1lJns9GvxDwaODzxRKj29h4FwVWaM2eOBgej/c4++8SAYHiIMPE3y6RkB7TElxX9M+XCnHrCHvWG\nPToSRkFFn/eoX4c14L06YK/ofL9RSaWUVFoJpZRSOvqQqpRSnlYyjLal7Pj9tKWV8pTSno4+jCYs\n+hA6ylTL+810z6izDSbP/Wb6yBQf4+hx/sR/MuXHuHuqfxbbowVemrMK2tra1NbWFncZ5WLC3/vR\niwDxestbotMk3v/+Ae3b16yLL07o3e+Oeo5SZFa6taOyTaQfmYxwYaekYZOA1FzYNnLM4tOMOWb4\nGzqA6ZFKRddmWLdOuuUWyd307W8/q29/u0MLF/6WamrmxF3iKSWDpBprGtVY0zjq47+w2/SOKf6w\nDEymkR9o77///viKmVmK6TvS49hXEr0IMBMsWiQ9+mhWf/InT2jJkgy/pQqIwUT6kcn4G/q0pJVm\nttTM0pLeI+nxEWMel3SLJJnZ5ZIOcr0FYGYzM91443W6444Neu21B3XgQHvcJQGAVFzfMZ59Acwg\nDQ0NWr68XocOdZ1+MIBYFR0uuHte0h2SnpT0gqRH3f1FM/s9M/tgYcy/SNpmZq9I+qKkPyj2uACm\nx4YN63Xvvb8hs29p166fjXGRQQCYHsX0HWPtG8OPAWACWloyOnRoS9xlADiNSbnmgrt/T1JmxLYv\njrh/x2QcC8D0W7ZsmTZter8+97l/1Msv79HSpdcpCGbkJVsAVIBi+o7R9gUws61Zk5H0z5LeFncp\nAE6BE5cAjMtZZ52lu+66XRs3Dqi9/WENDfXGXRIAAKgACxYs0Jw5Q+rrey3uUgCcAuECgHFLp9O6\n7babdOut52rnzi+pp2d33CUBAIAyZ2Zqaclo/35OjQBmMsIFABNiZrrmmlbdddfbdeTIP6i7+/m4\nSwIAAGXuwgszcidcAGYywgUAZ+SCC9Zo06Zb1NDwlLq6fsiFHgEAwJRZvny50um9Gho6EncpAMZA\nuADgjM2fP1/33PMBrVu3Xdu2PapcbjDukgAAQBlKJpO69NJz9frrL8ddCoAxEC4AKMqsWbP0R390\ni975ztnq7HxQ/f2vx10SAAAoQ+vXZzQ4yKkRwExFuACgaIlEQr/+69frD/7gUu3b9xUdOLAt7pIA\nAECZWbVqlczaFYa5uEsBMArCBQCTwsx0+eWX6t573y3pn7Vr139wHQYAADBpamtrtWbNfL7EAGYo\nwgUAk2r58uXatOl2LV78c23f/oTCMB93SQAAoExcfnlGvb2cGgHMRIQLACZdY2Oj7rrrdl155RG1\ntz/MlZ0BAMCkWL06I2kLsyOBGYhwAcCUqKqq0u23v0fvfe8y7djxJfX27om7JAAAUOLmzp2rRYuq\n1NOzK+5SAIxAuABgypiZrr32LfrzP3+reno2q7v7hbhLAgAAJa6lJaODBzk1AphpCBcATLl169Zq\n06bfUV3dk+rq+jemMgIAgDO2dm1G7oQLwExDuABgWixYsED33vsBXXBBu7Zt+7ry+aG4SwIAACWo\nublZ9fW9Ghg4GHcpAIYhXAAwbWbPnq0777xV119fq46OB9XffyDukgAAQIkJgkAbNqzSa68xewGY\nSQgXAEyrZDKp3/iNd+r3f/8SdXc/GHc5AACgBF18cUb5POECMJMQLgCYdmamlpYNuueeGyVJnZ1/\nr46Of9X+/VuVzfbFXB0AAJjpzj33XKVSO5XLDcRdCoCCZNwFAKhc5567QpL04Q9fqY6OLj3//E+1\nZctODQzMlrRYqVSz6usXa9asc2RGFgoAACLpdFoXXbREzz//ipqa1sZdDgARLgCYAVauXKmVK1fq\nrW+VwjDUvn371NnZpS1buvTCC/9PnZ29MmuWe7Pq6harvr5ZyWR13GUDAIAYXXppRk8/vUUS4QIw\nExAuAJhRgiDQvHnzNG/ePF166XpJ0pEjR7Rjxw5t29al55//sV5+eZey2QaF4WJVVS1WQ8Ni1dTM\nlZnFXD0AAJgumcx5kp5SGOYVBIm4ywEqHuECgBlv1qxZymQyymQyuvZaKZ/Pa+/everq2qGXXmrX\nCy/8SJ2dg4XZDYtVX79Y9fWLlEik4y4dAABMkfr6eq1cOUfd3Z1qbFwedzlAxSNcAFByEomEFi5c\nqIULF2rDhsskST09PdqxY4fa27v03HM/1Kuv7lE+P1fui1VV1SwtkI4c2adEIq1EIqVEIi2zBLMd\nAAAoYS0t52vz5i2EC8AMQLgAoCzU1dVp9erVWr16ta67TsrlctqzZ486O7v0q19t0Rd3SqnU1zUw\nMKTBwawGB4eUy4UyS8ssJbO0pFRhidbdj9+6R2OOBhNBkDohqAiClFQn9fcfOKm20QOMk7eNa1y1\nNDR0RGbBKAtByVjc/ehaYb3Y2+PPNTBw8msOAJgea9ZkJD0q97fzPgjEjHABQFlKJpNqbm5Wc3Oz\nWlqu0Afu/0197GN3nDAmDEMNDQ0pm80eux2+Pvx2aCirgYFB9ff3qq9vSAMDWfX3H78dHMxKktw3\nD/vwqRHHO3n7aGNH23Zs32qpt/fzyudDhWF47DaXy0uywm/VOL6c7v6YyxKpq+sRSV5YQkkuM5d7\neMK2keujPT5ym7tLy6WOjr886Wcd2RuO9ed5slHGLZe2bdsksyi8MTMFgR1bH3lf0gn3T7ceBKbq\nappZAIhLU1OTzjnH1de3T7NmNcVdDlDRbPxN2/QwM59pNQGYOna/ye+b+r/z03GcuI/h7oXAIa8w\nDItaMv+Y0dabtw77MB2ccDvW+kQer/qbKmU/kj35ZxznN0/jGZf4y4TC/xFO+bdZ0/Lam8ndSTKm\nAb0IUFq+853/rSeemK3Fi6+KuxQgNrt3P6ONG7t08803TOlxTtWPMHMBAMqEmSmRSCiRmJwrZq9a\ntWpSnudUksmpfxtimiwAlLcLL8zo8cd/KIlwAYhTEHcBAAAAAHCmli5dqurq1zQ42BN3KUBFI1wA\nAAAAULISiYQuu2yl9u/fGncpQEUjXAAAAABQ0t74xoyy2S1xlwFUNMIFAAAAACVt5cqVCoLtyueH\n4i4FqFiECwAAAABKWk1NjdauXagDB9rjLgWoWIQLAAAAAEre5Zdn1NvLqRFAXAgXAAAAAJS888/P\nyGyr3MO4SwEqEuECAAAAgJLX2NioJUtm6fDhnXGXAlQkwgUAAAAAZaGlJaODBzk1AogD4QIAAACA\nsnDBBRmZES4AcSBcAAAAAFAWFi1apIaGfvX17Y+7FKDiEC4AAAAAKAtmpiuuyOj117fGXQpQcQgX\nAAAAAJSNiy7KKAw5NQKYbkWFC2bWaGZPmtkWM/u+mTWMMqbZzH5oZi+Y2XNmdmcxxwQAAJVpPH1H\nYdy1ZvaSmW01s7uHbb/PzHaY2TOF5drpqx7AdFm+fLlSqd3KZvviLgWoKMXOXPgLSU+5e0bSDyV9\naJQxOUl/6u4XSLpC0h+a2flFHhcAAFSe0/YdZhZI+pykt0u6QNJvjeg7Pu3ulxSW701H0QCmVyqV\n0hvfuFyvv/5K3KUAFaXYcOEGSQ8X1h+W9K6RA9x9j7s/W1jvlfSipEVFHhcAAFSe0/Ydki6T9LK7\nb3f3rKRHC/sdZVNbIoCZYP36jAYGODUCmE7FhgtN7r5XikIESU2nGmxmyyRdJOlnRR4XAABUnvH0\nHYskdQ27v0Mnfqlxh5k9a2ZfHuu0CgCl77zzVsnsVYVhLu5SgIqRPN0AM/uBpHnDN0lySfeMMtxP\n8TyzJX1T0h8XZjCMadOmTcfWW1tb1draeroyAQAoK21tbWpra4u7jGk3WX3HGD4v6aPu7mb2V5I+\nLen20QbSiwClbfbs2cpkztHOnR2aM2dl3OUAJWsi/chpwwV3v2asx8xsr5nNc/e9ZjZfUvcY45KK\ngoV/cPfHTnfM4W/oAABUopEfaO+///74iplGk9B37JS0ZNj95sI2ufu+Ydu/JOmJsY5FLwKUviuu\nyOihh7YQLgBFmEg/UuxpEY9Lel9h/VZJYwUHX5H0K3f/bJHHAwAAlWs8fcfTklaa2VIzS0t6T2E/\nFQKJo26U9PzUlQogbqtXZ+S+Re4TneQE4EwUGy58XNI1ZrZF0tWS/laSzGyBmX23sP4mSb8t6S1m\n9gt+9RMAADhDp+073D0v6Q5JT0p6QdKj7v5iYf9PmNkvzexZSRsl/bfp/gEATJ+zzz5bCxYk1du7\nJ+5SgIpw2tMiTsXdX5f01lG275Z0fWH9J5ISxRwHAABgPH1H4f73JGVGGXfLlBYIYEYxM73pTRl9\n61tbVFe3IO5ygLJX7MwFAAAAAJiR1q7NSOJXUgLTgXABAAAAQFlasmSJamsPanDwcNylAGWPcAEA\nAABAWQqCQBs2rNJrrzF7AZhqhAsAAAAAytYll2SUzxMuAFONcAEAAABA2Vq5cqWCoFO53GDcpQBl\njXABAAAAQNmqqqrSRRct0YEDr8ZdClDWCBcAAAAAlLXLLsuor49TI4CpRLgAAAAAoKxlMudJelnu\nYdylAGWLcAEAAABAWWtoaNCKFQ06dKgr7lKAskW4AAAAAKDstbRkdOgQp0YAU4VwAQAAAEDZW7Mm\nI+kluXvcpQBliXABAAAAQNmbP3++5s7Nqa/vtbhLAcoS4QIAAACAsmdmamnJaP9+To0ApgLhAgAA\nAICKcOGFGbkTLgBTgXABAAAAQEVYtmyZqqv3aWjoSNylAGWHcAEAAABARUgmk1q/foX2798adylA\n2SFcAAAAAFAx1q/PaGiIUyOAyUa4AAAAAKBirFq1SkGwTfl8Nu5SgLJCuAAAAACgYtTW1mrNmvk6\neHBb3KUAZYVwAQAAAEBF2bAho95eTo0AJhPhAgAAAICKsnp1RtIWuXvcpQBlg3ABAAAAQEWZO3eu\nmpur1dOzK+5SgLJBuAAAAACg4rS0nK+DBzk1ApgshAsAAAAAKs7atdGpEQAmB+ECAAAAgIqzaNEi\n1dX1qr//QNylAGWBcAEAAABAxQmCQFdccZ72798adylAWSBcAAAAAFCRLrooozDk1AhgMhAuAAAA\nAKhIK1asUDK5U7ncQNylACWPcAEAAABARUqn07r44qXav//luEsBSh7hAgAAAICKdemlGfX3c2oE\nUCzCBQAAAAAVK5M5T2avKJvtj7sUoKQRLgAAAACoWHV1dbrppkvV2fkVDQwcirscoGQRLgAAAACo\naO94x9X64Acv0e7dD6q3d2/c5QAliXABAAAAQMW76qor9Gd/9jYdPLhZBw92xF0OUHKScRcAAKgc\nbR1tautokyRtXLpRm9o2SZJal7WqdVlryRwDAFCe1q1bqw9/eJY+9al/0r591+mcc9bEXRJQMggX\nAADTZjo+4BMiAACKsWLFct177+/ok5/8qnbt6tXChZfFXRJQEggXAAA4A8yQAIDyNX/+fN1zz+/q\ngQceUVdXj5qb3yIzi7ssYEYjXAAA4AwQIgBAeWtsbNTdd9+uz3/+a3ruuce0dOk7FQSJuMsCZiwu\n6AgAAAAAo6itrdWdd96ilpYj6uh4VPn8UNwlATNWUTMXzKxR0tclLZXUIekmdx/1l8OaWSDp55J2\nuPuvFXNcABgPpq0D5WW8fYeZPSjpekl73f3Cie4PAMOl02m9//3v0VlnfVff/e7DWrz4ZqXTs+Iu\nC5hxij0t4i8kPeXunzCzuyV9qLBtNH8s6VeS6os8JgCMy3SECAQYwLQab9/xkKT/KWnzGe4PACdI\nJBK66aZf01ln/ZseeeQrWrjwvaqpaYy7LGBGMXc/853NXpK00d33mtl8SW3ufv4o45oVvdH/taQ/\nPdXMBTPzYmoCUFrsfpPfx9/5UxkeYLR1tB0LLSY7wJiu4+DMmJncvaKvJjbevqMwdqmkJ0bMXBhv\n30IvAmBMP/3p0/rCF/6P5s69WXV1C+IuB5Ak7d79jDZu7NLNN98wpcc5VT9S7MyFJnffK0nuvsfM\nmsYY9xlJfy6pocjjAUDFma4P94QIKAHj7Tuman8A0OWXX6r6+tl64IFHlMu9W42NK+IuCZgRThsu\nmNkPJM0bvkmSS7pnlOEnxfxmdp2icx6fNbPWwv6ntGnTpmPrra2tam1tPd0uAACUlba2NrW1tcVd\nxrQrtu+YoDH3pxcBcCpr1qzWRz5Sq09+8hvq7r5WTU3r4i4JmBIT6UeKPS3iRUmtw6YX/pu7rx4x\n5mOS3ispJ6lGUp2kb7n7LWM8J1MRgTLH9Htg4jgtYnx9x7Cxo50WMa796UUAjFd3d7f+7u++qgMH\nNmjRopa4y0EFmwmnRRQbLnxc0uvu/vHChZEa3X3MCyOZ2UZJ/51rLgAAMDGECxPrO8xsmaJwYd1E\n96cXATARhw4d0gMPPKKOjpVasuRtMqvof6oRk5kQLgRFPvfHJV1jZlskXS3pbwsHXGBm3y3yuQEA\nAIYbV99hZl+T9H8lnWdmnWZ226n2B4BiNDQ06K67flcXXrhTHR3fUhjm4y4JiEVRMxemAt8WAABw\nMmYuTB96EQBnIpvNavPmf1Zb25CWLv1NJZNVcZeEClIOMxcAAAAAoOKlUinddttNete75qij4yEN\nDfXGXRIwrQgXAAAAAGASBEGgG2+8Tu9732rt2PGg+vr2x10SMG0IFwAAAABgkpiZ3vrWjbrzzqu0\nb99DOnx4Z9wlAdOCcAEAAAAAJtn69Zfo7rvfqSNHvqr9+1+OuxxgyhEuAAAAAMAUOP/8jO6557cU\nBI9pz55n4y4HmFKECwAAAAAwRRYvXqx7732fGhvb1Nm5Wdu3f1+7d/9Chw/vVD4/FHd5wKRJxl0A\nAAAAAJSzs88+W/fd91/V1dWlvXu71dHRofb2/9COHa8pl5st6Ry5N6m6ukmzZjWptvZsBQEf1VBa\n+D8WAAAAAKZYdXW1Vq1apVWrVunKK6NtYRjqwIED6u7u1p493Wpv36Jt2/5dO3cekPtZMmtSGDap\ntjYKHWpq5siMyeeYmQgXAAAAACAGQRBo7ty5mjt3rlavXq03vznans/ntX//fnV3d2v37m61t/9S\n27Z1q7PzsMzmSmqSexQ4zJrVpOrqs2Rmsf4sAOECAAAAAMwgiURCTU1Nampq0tq1x7dns1nt27dP\n3d3d2rmzW6+++rS2b9+nzs5+BUF0aoV7Y2F2QxQ2RKGDjbhVUdvMAiUSaSWT1ScszKoYH3dXGOYU\nhjm554+tn7icvH3kWLOcpJyCIK++vm4lEufE+nOZu8dawEhm5jOtJgAA4mZmcne+lpoG9CIASs3A\nwMCx0GH//oPK50NJUhh64YNstIzcdvTfuqOPjxw7fNzw/fP5UP39Q+rtHdCRI9HS1zcgKSWzaplV\nS4oW92gJw6MhRM1JoUS0VI07nHAPlc9nFYZZ5fNDhSVaP77t+H33IZkNySwrsyFJWUlHb7OShv+b\nP/r6ie8LZ7Ieyj0n95zMQiWTCaVSyWFLQul0tJ5OJwvriWPrVVXHt6fTx8cmk8eX5uZmzZ07d1x/\nhmfqVP0I4QIAACWAcGH60IsAwMS5u4aGhjQwMDDq0t8/oN7eAR0+PKCenmh9eDjR3z8o95SCIAol\nzKrlbjKLwoFoORoU5JVOp1RVlVJ1dVrV1dFtTU1aVVUp1dZG247e1tSklUqllE6nlU4fX0+lUkql\nUiecUjJV64lEQslkUolEQolEomRPYyFcAACgxBEuTB96EQCYfu6uwcHBEwIJdx81FEgmkyX74bzU\nES4AAFDiCBemD70IAACjO1U/whU3AAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgX\nAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAA\nAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABA\nUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgX\nAAAAAABAUQgXAAAAAABAUYoKF8ys0cyeNLMtZvZ9M2sYY1yDmf2Tmb1oZi+Y2YZijovp1dbWFncJ\niAmvfeXitcdMNIG+40Ez22tmvxyx/T4z22FmzxSWa6enckwG/l2qXLz2lYvXvrQUO3PhLyQ95e4Z\nST+U9KExxn1W0r+4+2pJb5D0YpHHxTTiL3Xl4rWvXLz2mKHG23c8JOntYzz2aXe/pLB8byqKxNTg\n36XKxWtfuXjtS0ux4cINkh4urD8s6V0jB5hZvaSr3P0hSXL3nLsfLvK4AACg8py275Akd/+xpANj\nPIdNQV0AAFS8YsOFJnffK0nuvkdS0yhjlkt6zcweKkxB/F9mVlPkcQEAQOUZT99xOneY2bNm9uWx\nTqsAAAATZ+5+6gFmP5A0b/gmSS7pHkl/7+5zho3d7+5zR+z/Rkk/lXSFu//czB6QdMjd7xvjeKcu\nCACACuXuZf+te7F9x7DHlkp6wt0vHLbtHEmvubub2V9JWuDut4+yL70IAABjGKsfSY5jx2vGeqxw\nsaR57r7XzOZL6h5l2A5JXe7+88L9b0q6e6KFAgCA8jcJfcepnnvfsLtfkvTEGOPoRQAAmKBiT4t4\nXNL7Cuu3Snps5IDC9MUuMzuvsOlqSb8q8rgAAKDynLbvGMY04voKhUDiqBslPT+ZxQEAUMlOe1rE\nKXc2myPpG5IWS9ou6SZ3P2hmCyR9yd2vL4x7g6QvS0pJapd0m7sfKrZ4AABQOSbQd3xNUqukuZL2\nSrrP3R8ys82SLpIUSuqQ9HtHr+EAAACKU1S4AAAAAAAAUOxpEagQZnafme0o/MaPZ8zs2rhrwtQx\ns2vN7CUz22pmY14jBeXHzDrM7D/N7Bdm9h9x1wMAw9GPVBb6kcpFP1KamLmAcTGz+yT1uPun464F\nU8vMAklbFV0fZZekpyW9x91firUwTAsza5f0Rnc/EHctADAS/UjloB+pbPQjpYmZC5gIrp5dGS6T\n9LK7b3f3rKRHJd0Qc02YPibeGwDMbPQjlYF+pLLRj5QgXjBMxB1m9qyZfdnMGuIuBlNmkaSuYfd3\nFLahMrikH5jZ02b2gbiLAYBR0I9UBvqRykY/UoIIF3CMmf3AzH45bHmucPtOSZ+XtMLdL5K0RxLT\nEYHy9CZ3v0TSf5H0h2Z2ZdwFAags9CMARD9SkpJxF4CZw92vGefQL0l6YiprQax2Sloy7H5zYRsq\ngLvvLtzuM7NvK5qW+uN4qwJQSehHUEA/UsHoR0oTMxcwLmY2f9jdGyU9H1ctmHJPS1ppZkvNLC3p\nPZIej7kmTAMzqzWz2YX1WZLeJv6uA5hB6EcqCv1IhaIfKV3MXMB4fcLMLpIUSuqQ9HvxloOp4u55\nM7tD0pOKAsgH3f3FmMvC9Jgn6dtm5oreH77q7k/GXBMADEc/UiHoRyoa/UiJ4ldRAgAAAACAonBa\nBAAAAAAAKArhAgAAAAAAKArhAgAAAAAAKArhAgAAAAAAKArhAgAAAAAAKArhAgAAAAAAKArhAgAA\nAAAAKMr/B9pAH9lY/+K6AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1fae6c59668>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 8 day study next\n",
"study_trend(8, does_trend_down)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"However, looking only at stocks that trended down for 8 days prior to a release, the same pattern emerges: on average, the stock doesn't move, but the market reaction is often incredibly violent."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100% (47578 of 47578) |###########################################################| Elapsed Time: 0:26:26 Time: 0:26:26\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBAAAAGNCAYAAACopYLKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9//HXNwmBsG+yCglK61q3IqK4pGhde9XbuqAo\n1NZbu9rltpVra4FeH636u7e1rXa71aptXVBxRZEqBBAVEEVFRVFBBFzKThDI9v39MQMGCCTAJCeZ\neT0fj3HOnPOdcz5nIsk57/me7wkxRiRJkiRJknYlL+kCJEmSJElS82eAIEmSJEmS6mWAIEmSJEmS\n6mWAIEmSJEmS6mWAIEmSJEmS6mWAIEmSJEmS6mWAIElqsUII54YQakIIn25A21EhhF61Xv85hHBg\n41aYGSGE/iGEuSGEF0IIr4QQrmjAe4pDCK80RX3p7X0nhPB6ur7r0vOODiG8WOtxbq32U0MIC9Lz\nXwghdE/PHxVC+Cg974UQwleaah+2259zWsr/H5IkNZWCpAuQJGkvDAdmABcB4+pp+2VgPvABQIzx\na41a2V4IIeTHGKtrzVoODIkxVoYQ2gKvhhAeijF+UM+qYuNV+YkQQinwb8BnYoxVW8IA4BXgszHG\nmnR481II4eEYY016+UUxxhfrWOXdMcYrG7/yXToXeBRYkHAdkiQ1G/ZAkCS1SCGEdsBQ4KukAoTa\ny64KIbyc/nb7FyGELwGDgL+nv9Vuk/4G/Kh0+4vS7V/e8u15ev76EMK1IYR5IYRnQgj71FFHlxDC\nAyGEl9JtDg0pi0IIHWu1ezOEsE8IoXsI4b4Qwqz049j08jEhhDtCCE8Dd9TeRoyxKsZYmX5ZBISd\nfCafTdf6IvCtWvOLQwjTQwjPpx9D0vNvDyGcXavd30MI/xZCODhd2wvp9e1fz4/jG8B1McaqdL0r\n0s+baoUFRUDNdu/b2XFInfu33b6OqFXjH0IIeSGEK0IIN9RqMyqE8NudtA/p+Tv8jNM/k7OBG9Lt\nB4QQrgwhvJpud2d99UmSlI0MECRJLdU5wKQY41vAihDCkQAhhNNJfRt+dIzxSOCGGOP9wBzg4hjj\nUTHGTVtWEkLoDVwHlAJHAEfXOqluBzwTYzyCVE+H/6ijjnHACzHGw4GfAH+LMUbgQeDf09sYDCyO\nMf4L+A3wqxjjMcB5wC211nUQMCzGOGL7jYQQ9g0hvAS8C1y/k94HtwLfSu93bR8Bp8QYB5HqtfG7\n9PxbgMvS6+8IHAtMBL4O3BhjPIpU8LI03WZiqHUZSC2fBk4MITyXDmYG1ap7cAhhPvAS8PVagQLA\nbekT9J9ut74vpgOZ8SGEfev4LA4ELgSOS9dYA1wM3E/6M0+7ELh7J+23fMY7/IxjjM8CDwM/Sv//\nsgi4Cjgi3e7rdXwGkiRlPQMESVJLdRFwd3r6Hj7phXAK8NcY42aAGOOa9PxA3d9sHw1MjTGuSp/c\n/gM4Mb2sIsb4WHp6LlBSx/uPB/6W3tZUoGsIoT0wntTJOunne2rVd1O6l8DDQPv0ZQkAD8cYK+ra\n2Rjj0nRIMRD48va9IUIInYBOMcaZ6Vl/q7W4FfCXEMLLwL2kggpijNOBgSGEbqQ+v/vTn8GzwE9C\nCD8CSmp9lmftJLgoALrEGIcAP07v+5a6Z8cYDyX1OV8dQihML7o4xvgZ4ATghBDCJVs+g/Q2Dwee\nBG6vY3snA0cBc9Kf4zBgv3TPh7fToUVX4IAY4zM7aT8gva6G/IwhFYDcGUIYAVTvpI0kSVnNMRAk\nSS1OCKELqZPAQ0MIEcgndb3/j/d0lTuZX1lrupq6/25uP85AAIgxPhtC2D+kxgM4F/h5reXH1Lok\nITUz1aN+Q32Fxhg/SH+jfwIwob72ad8HPogxHhZCyAc21lp2B3ApqZDjy+lt3BVCeA74AvBYCOFr\nMcayXaz/vS21xBjnhNTAlt1ijCtr1f1GCKEcOJRUj4330/M3pC8JGAz8Pca4utZ6/wLcwI4CcHuM\n8Sd1LLubVG+DBcADDWhfO7DZ2c8Y4CxSwdLZpMKVQ7frTSFJUtazB4IkqSU6H7gjxjggxrhfjLEY\nWBRCOB74J3BZCKEItoYNAOuAjnWsazap7vdd0yfXFwFlu1HLDOCS9LZKgX/FGMvTyx4AfgW8Vqsn\nxGTgu1veHEI4vL4NhBD6hhDa1Nqf44E3areJMa4F1oQQjkvPuqTW4k7A++npkaQCly1uB76XWkVc\nkN7GgBjjohjj74CHgMPqKfFBUoEOIXVHjFYxxpUhhJL0Z0oIoRg4AFgcQshP93oghNCKVFAxP/26\n9iUS5wCv1bG9p4DztvTCCKlxKPrXquUcUoHI3bto3y+9bGfh0XrS/7+kx0voH2OcBoxOz29fz2ci\nSVLWMUCQJLVEF/LJt8tbTCA1qv8TwCPA8yGEF4D/TC+/Hfhj+pr7NqR7DqS75I8mFRq8CDwfY3w0\n/Z6G3MVgHPDZ9PgEvwBG1Vo2ntS19nfXmvddYFD6Gv/5QL23ZCR1ycGsdPf7qaTGdXi1jnZfAX6f\n3u/atf+e1GUPL5Iar2BrT4cY40fA68Bfa7W/IIQwP93+ENKDOu5iDIS/AvuF1G0j7yQVUkAq6Hgp\nXc/9wDdijKuA1sATIYR5wAukxlj4v/R7rqy17W+T7hVRW4zxdeCnwOT05z4Z6JVetia9P/1jjM/v\non3vLaurY38g9TP7UQhhLqnLRv6evgRkLvCbGOO6nbxPkqSsFVLjPEmSpFyUHn/hJeCoGOP6pOuR\nJEnNlz0QJEnKUSGEk0ldIvBbwwNJklQfeyBIkiRJkqR62QNBkiRJkiTVywBBkiRJkiTVywBBkiRJ\nkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTV\nywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBB\nkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVK2MBQgghL4TwQgjh4UytU5Ik5Y4Qwukh\nhAUhhDdDCFfVsfyAEMIzIYRNIYQfbLdscQjhpRDCiyGE2U1XtSRJuaMgg+v6LvAa0DGD65QkSTkg\nhJAH3AScDCwH5oQQHooxLqjVbCXwHeDcOlZRA5TGGFc3erGSJOWojPRACCHsC5wJ/CUT65MkSTln\nMLAwxvhujLESuBs4p3aDGOOKGONcoKqO9we8NFOSpEaVqT+0vwZ+BMQMrU+SJOWWvsB7tV4vTc9r\nqAj8M4QwJ4TwHxmtTJIkARm4hCGEcBbwYYxxXgihlNQ3AHW1M1yQJKkOMcY6/3ZqtwyNMb4fQtiH\nVJDweozx6e0beTwiSVLdGnI8kokeCEOBs0MI7wB3AZ8LIdyxk4Ky+jFmzJjEa3Af3Uf30X3Mpkcu\n7KO2Wgb0r/V63/S8Bokxvp9+/hfwAKlLInbWNqsfufDvxn3Mjof7mB0P9zE7Hg211wFCjPHqGGP/\nGON+wHBgSoxx5N6uV5Ik5ZQ5wMAQQnEIoZDUMcWu7uy09VuSEELbEEL79HQ74FRgfmMWK0lSLsrk\nXRgkSZL2SIyxOoTwbWAyqS84bokxvh5CuCK1OP45hNATeB7oANSEEL4LHAzsAzyQvjyhAPhHjHFy\nMnsiSVL2ymiAEGOcBkzL5DpbktLS0qRLaHTuY3ZwH7OD+6hsE2OcBByw3bw/1Zr+EOhXx1vLgSMa\nt7qWIxf+3biP2cF9zA7uY24Ju3O9w15tKITYVNuSJKmlCCEQHUSxyXg8IknSjhp6PJL4JQwlJSW8\n++67SZehehQXF7N48eKky5AkqVF4PNI0PJ6QpJYt8R4I6aSjSWrQnvPnJEmNwx4ITcvjkWT5OUtS\n89TQ45FM3MZRkiRJkiRlOQMESZIkSZJULwMESZIkSZJULwMESZIkSZJULwMESZIkSZJUr8Rv41iX\nn/3sRpYsWdNo6+/fvzM///n3Gm39TeGyyy6jX79+/PznP0+6FEmSspLHI/XzeESSckuzDBCWLFlD\nScnYRlv/4sWNt26Am2++mdtuu41XXnmFiy++mFtvvbVRtydJkjLP4xFJkrblJQy74frrr29Qu759\n+3LNNdfw1a9+tZErkiRJucbjEUlSUgwQdsPmzZsb1O7cc8/l7LPPpmvXrvW2vf7669l3333p2LEj\nBx10EFOnTq2z3YsvvshnP/tZOnXqxPDhw9m0adNu1S5JkrKDxyOSpKQYIOyGGGNG1/fmm29y8803\nM3fuXNatW8cTTzxBSUnJDu0qKyv593//d0aNGsWqVas4//zzuf/++zNaiyRJahk8HpEkJaVZjoHQ\nXLz99tvcd999hBCIMTJz5kxuuOEGYoyEEDjmmGM46aST9nj9+fn5VFRUMH/+fLp160b//v3rbPfc\nc89RVVXFlVdeCcCXvvQljj766D3eriRJajk8HpEkNRcGCLuw//77c9VVV219vXnzZn784x9ndP03\n3ngjY8eO5bXXXuO0007jf//3f+ndu/c27ZYvX07fvn23mVdcXJyxOiRJUvPl8YgkqbnwEoaEDR8+\nnBkzZvDuu+8CMHr06B3a9O7dm2XLlm0zb8mSJU1Sn6TmpWxxGWPLxjK2bCylt5VunS5bXJZ0aZJa\nMI9HJEkNYQ+E3dDQaw6rq6uprKykurqaqqoqNm/eTEFBAfn5+du0e/PNN1m2bBlDhw6lsLCQoqIi\nampqdljfscceS0FBAb/73e/4xje+wcMPP8zs2bMZNmxYRvZLUstRWlJKaUkpAGFcoOzLZYnWI6np\neTwiSUpKswwQ+vfv3Kj3Ru7fv3OD2r3xxhvcfffdW685nDZtGj//+c+3XnN47LHH8vnPf36H9117\n7bWMGzeOEAIA//jHPxgzZgw/+9nPtmm3efNmRo8ezYIFC2jVqhXHHXccf/7znwE488wzOfHEExk9\nejStWrViwoQJXH755fz0pz/lzDPP5Etf+tI266rdXpIk7T2PRzwekSRtK2R6JN+dbiiEWNe2tvwx\nVPPmz0lqfsK4QBzjv8uWLv37NSRdR67weCRZfs6S1Dw19HjEMRAkSZIkSVK9DBAkSZIkSVK9DBAk\nSZIkSVK9DBAkSZIkSVK9DBAkSZIkSVK9DBAkSZIkSVK9CpIuQJIkKWnFxcWE4N00G1txcXHSJUiS\n9kKzDBDKFpdRtrhs63RpSSkApSWlW6ebYh2SJCk3LF68OOkSJElq9kKMsWk2FEKsa1shBHZVQxgX\niGP2rsZMrCMbfOMb32DfffflJz/5yW6/t76fk6Sm5++27JD+/epX301kZ8cjkiTlsoYejzgGwi6U\nlJTQpk0bVq1atc38I488kry8PJYsWZLxbVZUVDBy5Ei6du1Kr169+P73v5+xOv/whz/sUXggSZIk\nSZIBwi6EEBgwYAB33XXX1nnz589n48aNjXad5G233ca8efNYvHgxixYt4txzz22WdUqSJEmScosB\nQj0uvfRSbr/99q2vb7/9dkaNGrVNm8cee4yjjjqKTp06UVxczLhx47YuGz9+PPvttx/l5eUAPP74\n4/Tu3ZuVK1fWub1WrVrRqVMnOnbsSFFRESeddFLG6rzsssv42c9+BsC0adPo168fv/rVr+jZsyd9\n+/bltttua9C2JEmSJEm5xwChHkOGDGH9+vW88cYb1NTUcM8993DJJZdsMx5A+/bt+dvf/sbatWuZ\nOHEif/zjH3n44YcBuOCCCxg6dChXXnklq1at4vLLL+fWW2+lW7dudW7vqKOO4rnnnmPs2LEZr3N7\nH3zwAevXr2f58uX85S9/4Vvf+hZr167dre1KkiRJknJDs7wLw/bCuGS74W/5dv+kk07ioIMOok+f\nPtssP/HEE7dOH3rooQwfPpxp06Zx9tlnA3DTTTdx2GGHUVpayjnnnMMZZ5xR53ZWr17N2WefzcSJ\nExkzZgwhBMaMGQNAv379mDRpEocccsge17m9wsJCrrnmGvLy8jjjjDNo3749b7zxBoMHD27Q5yJJ\nkiRJyh0tIkDIxF0Y9sYll1zCiSeeyKJFixg5cuQOy2fNmsV//dd/MX/+fCoqKqioqOD888/furxT\np06cf/75/PrXv2bChAk73c69997LwQcfzKmnnsqgQYM48cQTCSEwatQoqqurdxkeNKTO7XXr1o28\nvE86obRt23brpRaSJEmSJNXmJQwN0L9/fwYMGMDjjz/OF7/4xR2WjxgxgnPPPZdly5axZs0arrji\nim0uHZg3bx633norF110Ed/5znd2up2qqioqKysB6Nq1K08++SS33XYbp512Gj/84Q/3uk5JkiRJ\nkvaUAUID3XrrrUyZMoWioqIdlpWXl9OlSxdatWrF7NmzufPOO7cu27RpE5deeinXXXcdt956K8uX\nL+cPf/hDnds488wzmTNnDv/3f/9HVVUV+fn5HHfccSxcuJC2bdvudZ2SJEmSJO0pA4RdqH0LxAED\nBnDUUUfVuez3v/8911xzDZ06deLaa6/lwgsv3Lrs6quvpri4mK997WsUFhbyt7/9jWuuuYa33357\nh+2VlJTw+OOPc/vtt9OtWzeOPPJIevXqxdSpU7nqqquYPHnyXtW5O/srSZIkSVJtYVej9Gd0QyHE\nurYVQtjlnQLCuJCRMRD2dh25rr6fk6Sm5++27JD+/WqC20R2djwiSVIua+jxSLMMEMoWl1G2uGzr\ndGlJKQClJaVbp+uTiXXoEwYIUvNjgJAdDBCalgGCJEk7atEBgpoff05S82OAkB0MEJqWAYIkSTtq\n6PGIYyBIkiRJkqR6GSBIkiRJkqR6GSBIkiRJkqR6GSBIkiRJkqR6FSRdQHFxMSE4dlRzV1xcnHQJ\nkiRJkqQEJR4gLF68OOkSJEmSJElSPbyEQZIkSZIk1SvxHgiSJNVWtriMssVlW6dLS0oBKC0p3Tot\nSZKkphdijE2zoRBiU21LknJBGBeIY7L792pO7GMIxBgdDKiJeDwiSdKOGno84iUMkiRJkiSpXgYI\nkiRJkiSpXgYIkiRJkiSpXgYIkiRJkiSpXgYIkiRJkiSpXgYIkiRJkiSpXgVJFyBJkiRJUlOJMbJ5\n82Y2bdrE5s2bt5ne8rxhwybKyzezfv0mKioqOO+80+jatWvSpSfOAEGSJEmS1CLU1NTs9KR/06ZN\nbNq07cn/hg2bKS/fxMcfp+Zv3LiZTZsqgEJCaE0IbYDWQBtibE2MqecQWlNQ0JH8/NaUlz/LsGGr\nDBAwQJAkSZIkNYGampo6T/prn/yXl2856f9kesOGTwKAzZsr0yf+n5z8x7htABBCGwoKOlNQ0JqC\ngjbk56eeCwtb07ZtG/LzCwmh4VfzL136SqN9Ji3NXgcIIYTWwHSgML2++2KM4/Z2vZIkKbeEEE4H\nbiQ1RtMtMcbrt1t+APBX4Cjg6hjjrxr6XklS5tXU1PDWW2+xevVqNm7ctPWkf8vzxx+nnjduTJ38\nV1RUAa3Jy0ud+IfQZoeT/7y8thQUdN160r8lBNj25D8kvOe5a68DhBjj5hDC52KMH4cQ8oGZIYTH\nY4yzM1CfJEnKASH1VdBNwMnAcmBOCOGhGOOCWs1WAt8Bzt2D90qSMqSmpoaXX36FCRNm8O67rQmh\nLzG2IT+/HQUF3Xb45r9Nm9a0a9fak/8skJFLGGKMH6cnW6fXGTOxXkmSlDMGAwtjjO8ChBDuBs4B\ntoYAMcYVwIoQwhd2972SpL1XVVXFvHkvcf/9T7N8eSc6dz6TkpIBhgI5JCMBQjr5nwvsD9wcY5yT\nifVKkqSc0Rd4r9brpaSCgcZ+rySpHpWVlTz//Avcf/9M/vWvHnTpci4DBhQnXZYSkKkeCDXAkSGE\njsCDIYSDY4yvbd9u7NixW6dLS0spLS3NxOYlSWoxysrKKCsrS7qMnObxiCQ1TEVFBbNmPc+ECc+w\nevW+dO16IQMG9E26LGXAnh6PhBgze7VBCOEaYEPtgY3S82OmtyVJuSyMC8Qx2f17NSf2MQRijDnf\n9zOEMAQYG2M8Pf16NBDrGgwxhDAGWL/lWGM33+vxiCTVY9OmTTz77GweeGAWa9eWsM8+J9C+fa+k\ny0rM0qV/Z/ToIQwcODDpUhpNQ49HMnEXhu5AZYxxbQihCPg8cN3erleSJOWUOcDAEEIx8D4wHLho\nF+1rH+Ts7nslSXX4+OOPmTHjOR5++Hk2bPgUPXpcRteu3ZMuS81IJi5h6A3cnh4HIQ+4J8b4WAbW\nK0mSckSMsTqE8G1gMp/civH1EMIVqcXxzyGEnsDzQAegJoTwXeDgGGN5Xe9NaFckqcUpLy+nrOwZ\nHn30RTZtOpiePS9nn326Jl2WmqFM3MbxFVL3Y5YkSdpjMcZJwAHbzftTrekPgX4Nfa8kadfWrl3L\n1KnP8NhjL1NZeRg9e36dNm06JV2WmrGMDKIoSZIkSWoZVq9ezZNPPs0TT7xGdfWR9O79LQoL2ydd\nlloAAwRJkiRJygErVqzgiSdmMGXKQmIcRO/e36FVq7ZJl6UWxABBkiRJkrLYhx9+yOOPT2f69MWE\ncAy9e59BQUGbpMtSC2SAIEmSJElZaNmyZUycOJ1nnllGQcFx9O17Dvn5hUmXpRbMAEGSJEmSssiS\nJUt49NHpzJ79Ea1aHU+/fueRn98q6bKUBQwQJEmSJKmFizGyaNEiHnpoOvPmraV16+Pp3384eXme\n8ilz/L9JkiRJklqoGCMLFy7kwQen8+qrmygqOoGSks8QQl7SpSkLGSBIkiRJUgsTY+S1117ngQem\ns3BhpF27EykpOcjgQI3KAEGSJEmSWoiamhrmz3+VCROms2hRKzp0+BwlJZ8mhJB0acoBBgiSJEmS\n1MxVV1fz0ksvc//9M1i6tD2dOp1GScn+BgdqUgYIkiRJktRMVVVVMXfui0yYMJMPPuhKly5nU1JS\nbHCgRBggSJIkSVIzU1FRwezZc5kw4RlWruxN165fYsCAfkmXpRxngCBJkiRJzcTmzZt59tk5PPjg\nc6xZ059u3S5mwIDeSZclAQYIkiRJkpS4jRs3MnPmLB58cDbl5fuzzz4jKSnpkXRZ0jYMECRJkiQp\nIRs2bGDatGd55JG5bNx4ID16fJXu3bslXZZUJwMESZIkSWpi69ato6zsGSZOfImKikPp2fMKevbs\nnHRZ0i4ZIEiSJElSE1mzZg1Tpszk8cfnU1V1BL16fZPWrTskXZbUIAYIkiRJktTIVq5cyT//+TT/\n/OcCamo+S+/e36awsF3SZUm7xQBBkiRJkhrJRx99xKRJMygre5sQBtOr15W0alWUdFnSHjFAkCRJ\nkqQMizFy990PM3nyQvLzh9CnzxcoKGiddFnSXjFAkCRJkqQMe/vtt5k06T3697+S/PzCpMuRMiIv\n6QIkSZIkKZvEGLn33im0bz/M8EBZxQBBkiRJkjLo9dcX8Prrke7dD0q6FCmjDBAkSZIkKUNqamoY\nP34KnToNI4SQdDlSRhkgSJIkSVKGvPzyKyxaVETXrgOTLkXKOAMESZIkScqA6upqxo8vo0sXex8o\nOxkgSJIkSVIGzJ37IsuWdaVz55KkS5EahQGCJEmSJO2lyspKxo+fTrduw5IuRWo0BgiSJEmStJdm\nzXqef/2rDx079k26FKnRGCBIkiRJ0l7YvHkz9977ND162PtA2c0AQZIkSZL2wtNPP8fatfvTrl2P\npEuRGpUBgiRJkiTtoY0bNzJhwix69ixNuhSp0RkgSJIkSdIemjp1Jhs2HERRUdekS5EanQGCJEmS\nJO2B8vJyHnpoLr16nZh0KVKTMECQJEmSpD3w5JMzqKg4nDZtOiVditQkDBAkSZIkaTetWbOGRx99\nmd69T0i6FKnJGCBIkiRJ0m6aNGkaNTVHU1jYLulSpCZjgCBJkiRJu2HlypVMnvwGffocl3QpUpMy\nQJAkSZKk3fDoo1MJ4VgKCtokXYrUpAwQJEmSJKmBPvjgA8rKFtOnzzFJlyI1OQMESZIkSWqghx+e\nSkHB8eTnFyZditTkDBAkSZIkqQGWLl3KM898QO/eg5IuRUqEAYIkSZIkNcCECU/RuvVJ5OUVJF2K\nlAgDBEmSJEmqx6JFi5g7dy09ex6edClSYgwQJEmSJGkXYozcd99TtG37OfLy8pMuR0qMAYIkSZIk\n7cKbb77J/PmV9OhxaNKlSIkyQJAkSZKknYgxMn78FDp0+BwhhKTLkRJlgCBJkiRJOzF//qssXFhA\nt24HJF2KlDgDBEmSJEmqQ01NDffcM5UuXU6294GEAYIkSZIk1WnevJdYsqQDnTsPSLoUqVkwQJAk\nSZKk7VRVVXH33WV062bvA2kLAwRJkiRJ2s6cOXP58MOedOrUL+lSpGbDAEGSJEmSaqmoqGD8+Bns\ns8+wpEuRmhUDBEmSJEmq5ZlnZrNqVTHt2/dKuhSpWTFAkCRJkqS0TZs2cd99z9Cz5+eSLkVqdgwQ\nJEmSJClt+vRnKS//NG3bdk+6FKnZMUCQJEmSJGDDhg088MBsevUqTboUqVkyQJAkSZIkYMqUp9m0\n6TO0adM56VKkZmmvA4QQwr4hhCkhhFdDCK+EEK7MRGGSJCm3hBBODyEsCCG8GUK4aidtfhtCWBhC\nmBdCOLLW/MUhhJdCCC+GEGY3XdWSssW6det45JF59Op1QtKlSM1WQQbWUQX8IMY4L4TQHpgbQpgc\nY1yQgXVLkqQcEELIA24CTgaWA3NCCA/VPp4IIZwB7B9j/FQI4RjgD8CQ9OIaoDTGuLqJS5eUJSZP\nnk5V1VG0bt0h6VKkZmuveyDEGD+IMc5LT5cDrwN993a9kiQppwwGFsYY340xVgJ3A+ds1+Yc4A6A\nGOMsoFMIoWd6WcBLMyXtodWrVzNp0mv07j006VKkZi2jf2hDCCXAEcCsTK5XkiRlvb7Ae7VeL2XH\nLyS2b7OsVpsI/DOEMCeE8B+NVqWkrPTYY2XEOJhWrdomXYrUrGXiEgYA0pcv3Ad8N90TYQdjx47d\nOl1aWkppaWmmNi9JUotQVlZGWVlZ0mVko6ExxvdDCPuQChJejzE+XVdDj0ck1fbRRx/x1FNv0aeP\nQ7kpd+yPePl1AAAgAElEQVTp8UiIMe71xkMIBcCjwOMxxt/spE3MxLYkSSlhXCCOye7fqzmxjyEQ\nYwxJ15G0EMIQYGyM8fT069FAjDFeX6vNH4GpMcZ70q8XACfFGD/cbl1jgPUxxl/VsR2PRyRt45Zb\n7uHZZ/ux777HJV2KmqmlS//O6NFDGDhwYNKlNJqGHo9k6hKGW4HXdhYeSJIk1WMOMDCEUBxCKASG\nAw9v1+ZhYCRsDRzWxBg/DCG0TfeEJITQDjgVmN90pTcfN90EN94Iq1YlXYnUMixfvpwZM5bSu/fR\nSZcitQiZuI3jUGAEMCx966QXQgin731pkiQpV8QYq4FvA5OBV4G7Y4yvhxCuCCF8Ld3mMWBRCOEt\n4E/AN9Nv7wk8HUJ4EXgOeCTGOLnJd6IZGDQI5syB/faDkSNh5kyww4W0cw8+OIXCwhPJz2+VdClS\ni7DXYyDEGGcC+RmoRZIk5bAY4yTggO3m/Wm719+u432LSA3inPOGDEk9VqyA226Dyy6D1q3hiivg\n0kuhU6ekK5Saj3fffZdZs1ZQXHxR0qVILYa3O5IkScoy3bvDD38ICxbAb34D06dDSQl89aswe7a9\nEqQYI/ff/xRFRaXk5fldqNRQBgiSJElZKi8Phg2D8eNTYcKnPgXDh8NnPwt/+hOsX590hVIy3n77\nbV566WN69jws6VKkFsUAQZIkKQf07AmjR8Nbb8EvfwlPPAH9+8PXvw4vvph0dVLTiTFy771TaN9+\nGCF4OiTtDv/FSJIk5ZC8PDjtNJgwAV59Ffr2hXPOgcGD4ZZbYMOGpCuUGtfrry/g9dcj3bsflHQp\nUotjgCBJkpSj+vSBa66BRYtgzBh48MFUr4RvfxteeSXp6qTMq6mpYfz4KXTqNIwQ6r3lvaTtGCBI\nkiTluPx8OOsseOSR1OUM3brB6afD0KFwxx2wcWPSFUqZ8fLLr7BoURFduw5MuhSpRTJAkCRJ0lb9\n+8O4cfDuu/CjH8Gdd0K/fvD976cGYpRaqurqasaPL6NLF3sfSHvKAEGSJEk7KCiAc8+FSZNgzhwo\nKoLS0tTjrrtg8+akK5R2z9y5L7JsWVc6dy5JuhSpxTJAkCRJ0i4NGAC/+AUsWQLf+lZqsMV+/VI9\nFBYuTLo6qX6VlZWMHz+dbt2GJV2K1KIZIEiSJKlBCgvh/PPhySdh5szUvKFD4ZRT4L77oLIy2fqk\nnZk163n+9a8+dOzYN+lSpBbNAEGSJEm77VOfgv/3/+C99+CrX4Xf/S41fsLVV6fu6iA1F5s3b+be\ne5+mRw97H0h7ywBBkiRJe6x1a7joIpg2DaZMSd2x4eij4YwzUreFrKpKukLluqeffo61a/enXbse\nSZcitXgGCJIkScqIgw6CX/861SvhootSPRSKi2HMmNQ8qalt3LiRCRNm0bNnadKlSFnBAEGSJEkZ\nVVQEI0emxkmYNAlWroTDD4ezz4aJE6G6OukKlSumTp3Jhg0HUVTUNelSpKxggCBJkqRG85nPwE03\npXognHMOjBsH++0H114Ly5cnXZ2yWXl5OQ89NJdevU5MuhQpaxggSJIkqdG1a5cabHH27NTYCEuX\nwiGHwBe/CJMnQ01N0hUq2/zzn9OpqDicNm06JV2KlDUMECRJktSkjjwS/vhHWLIETjsNrroqdVeH\n666DDz9MujplgzVr1jBx4iv07n1C0qVIWcUAQZIkSYno0AGuuAJeeAHuugsWLoQDD4QLL0zd0SHG\npCtUSzVp0jRqagZRWNgu6VKkrGKAIEmSpESFAIMHwy23wKJFcMIJ8N3vpsKE//1fWLEi6QrVkqxY\nsYLJk9+gd+/jki5FyjoGCJIkSWo2OneGb38bXn4Z/vpXeOklGDgQLrkEZsywV4LqN3FiGSEcS6tW\nRUmXImUdAwRJkiQ1OyHAccfBHXfAO+/AoEHwH/8Bhx6a6pXgHRxUlw8++ICyssX06XNM0qVIWckA\nQZIkSc1a167wve/B66/D738Pr76auoPDqaemAob165OuUM3FQw9NoaDgePLzC5MuRcpKBgiSJElq\nEUKAk06CW29N9UC4/HK47z7o1w8uvhgeewwqK5OuUklZunQpzz77Ib17D0q6FClrGSBIkiSpxSkq\nggsugIcfhrfeguOPh2uvhX33hSuvhNmzHS8h10yY8BSFhSeSl1eQdClS1jJAkCRJUovWvTt885vw\nzDMwc2bq9YgRqbs4/Pd/p8ZQUHZ75513mDt3Lb16HZF0KVJWM0CQJElS1hg4EH72M3jzzdT4CB99\nBEOGwNCh8Ic/wMqVSVeoTIsxcv/9U2jb9nPk5eUnXY6U1QwQJEmSlHVCgGOOgd/9DpYtg6uvhunT\nYb/94Jxz4N57YePGpKtUJrz55pu88koFPXocmnQpUtYzQJAkSVJWa9UKzjoL7roL3nsPvvhF+NOf\noG9f+OpXYepUqKlJukrtiRgj48dPoWPHYYQQki5HynoGCJIkScoZHTvCqFHw5JPwyitw0EHw/e9D\ncTGMHg3z5yddoXbH/PmvsnBhAd26HZB0KVJOMECQJElSTurbF374Q5g3L3ULSIAzzoAjjoD/+Z/U\npQ9qvmpqarjnnql07mzvA6mpGCBIkiQp533mM3DddfDuu3DjjbBgQWreKafAbbfBunVJV6jtvfji\nPJYs6UCXLvslXYqUMwwQJEmSpLS8PCgthb/8JdUD4etfhwcfhH79YPhwmDgRKiuTrlJVVVXcc880\nunU72d4HUhMyQJAkSZLqUFQE552XChDeeQdOOgl+8YvUpQ/f+Q7MmgUxJl1lbpozZy4ffNCDTp36\nJV2KlFMMECRJkqR6dOsG3/gGzJwJzz4LPXrAyJHw6U/DuHHw1ltJV5g7KioqGD9+BvvsMyzpUqSc\nY4AgSZIk7Yb994drrkmNk3DnnbBqFQwdCsceCzffDCtWJF1hdnvmmdmsWlVMhw69ky5FyjkGCJIk\nSdIeCAGOPhp+8xtYujQVKsycCQMHwtlnw/jxsHFj0lVml02bNnHffc/Qs+fnki5FykkGCJIkSdJe\natUKzjwz1SPhvfdSYyf85S/Qpw985SswZQpUVyddZcs3bdozlJd/mrZtuyddipSTDBAkSZKkDOrQ\nITU+wuTJ8OqrcOih8MMfQnEx/PjH8PLLSVfYMm3YsIEHH5xDr16lSZci5SwDBEmSJKmR9OkDP/gB\nvPACPPEE5OfDF74Ahx0GN9yQuvRBDTNlytNs2nQobdp0TroUKWcZIEiSJElN4JBD4Je/hMWL4Xe/\ng4ULU0HCySfDX/8Ka9cmXWHztW7dOh55ZB69ep2YdClSTjNAkCRJkppQXh6cdBL83//B8uXwzW/C\nww9D//5w4YXwyCNQUZF0lc3L5MnTqao6itatOyRdipTTDBAkSZKkhLRpA1/6EjzwACxaBMOGwfXX\nQ9++8K1vwbPPQoxJV5msVatW8fjjr9K799CkS5FyngGCJEmS1Ax07QpXXAFPPw2zZ6fGT7jsstRt\nIX/2M3jjjaQrTMZjj5UBx9CqVdukS5FyngGCJEmS1MwMGAA/+Qm8/jqMHw/r10NpKQweDL/9LXz4\nYdIVNo2PPvqIKVPepnfvY5MuRRIGCJIkSVKzFQJ89rPw61/De+/BtdfC88/DAQfAGWfAP/4BGzYk\nXWXjeeSRqeTlHUdBQeukS5GEAYIkSZLUIhQUwKmnwh13wLJlcOmlcOedqfESLr0UJk2Cqqqkq8yc\n5cuXM2PGUnr3Hpx0KZLSDBAkSZKkFqZdO7j4Ypg4Ed58M3Vpw5gxsO++8L3vpXoptPTBFx98cAqF\nhSeSn98q6VIkpRkgSJIkSS1Yjx7wne/ArFkwYwZ07gzDh8NBB8F//ze8807SFe6+d999l1mzVtCr\n11FJlyKpFgMESZIkKUt86lMwdiwsXAi33ZYabHHIEBg6FP7wB1i5MukK6xdj5P77n6KoqJS8vPyk\ny5FUiwGCJEmSlGVCSAUHN92UGi/h6qth+nTYbz84++zUnR02bky6yrq9/fbbvPTSx/TseVjSpUja\njgGCJEmSlMVatYKzzoK77krdyeFLX4K//AX69IGvfAWeegqqq5OuMiXGyPjxT9Gu3ecIwVMVqbkp\nSLoASZIkSU2jY0cYNSr1WL4c7r4bfvSj1KUOF18Ml1wChx2W6sGQhNdee50FC2DAgIOTKUA5J8ZU\ngFZZmbqLSWXlttNVVbB6dY+ky2w2DBAkSZKkHNSnD/zgB6nHq6/CP/6RuryhY0cYMSIVKPTv33T1\n1NTUcO+9U+nU6VRCUgmGEhcj1NTs+oR++3l1Ld/Zc13z8vNTt0lt1eqT59rTbdvum/TH0mwYIEiS\nJEk57pBD4Be/gGuvhZkz4e9/hyOPhM98JtUr4bzzUnd3aEwvv/wK77zThgEDBjbuhhpZjLBhA6xe\nDR9/XH/7hmQlzanN9strahp2kt6QNlumQ6j7RH5n87ZMt26dusXprtrWNS+vnqtlli59ARhS/4eX\nAwwQJEmSJAGpE6kTTkg9fvtbeOyxVM+E//xPOOWUVJhw5pmpE7VMqq6uZvz4Mrp2PadF9D6oqoK1\na2HVqlRQsP2joAC6dk2dzO5KjPVvqzm1qWt5CHWfpG95Lipq+In8lnn1ndArOQYIkiRJknbQujX8\n+7+nHqtXw/33w29+A5dfnuqRMGIEHH98Zk725s59kWXLujJgQMnerywDYoRNm3YeEJSXpy716NLl\nk0e/fqnQoHNnaNMm6T2QGocBgiRJkqRd6tIlFRxcfjksWZK6o8M3vwnr16eChEsugYP3cNzDyspK\n7rlnGt26Dc9s0fWoqUn1IqgrIFi1KtWmdkDQpw8cemhqulMnvyVXbjJAkCRJktRg/fvDVVfBj38M\nL7+cGi/h85+Hnj1TYcJFF6VOthvquefmsGJFXwYM6JvxWjdv3jYUqB0SrFuXusRgS6+Brl3hoIM+\nCQyKipK7G4XUXGUkQAgh3AJ8AfgwxnhYJtYpSZJySwjhdOBGIA+4JcZ4fR1tfgucAWwAvhxjnNfQ\n90rKrBDg8MNTj+uug2nTUmHCIYfAoEGpXglf/CJ06LDzdWzevJn77ptJjx6j9qiGGFO9IOoKCFav\nTg3KV7sXQY8ecMABqenOnVPX3UtquEz9k/kr8DvgjgytT5Ik5ZAQQh5wE3AysByYE0J4KMa4oFab\nM4D9Y4yfCiEcA/wRGNKQ90pqXPn5MGxY6nHzzfDII6nBF6+8MjXo4ogRcNppqQHyanv66edYs2Y/\nBgzosdN1V1bWfZnB6tWwZk1qvIHaIcHAgannLYMY2otAypyMBAgxxqdDCMWZWJckScpJg4GFMcZ3\nAUIIdwPnALVDgHNIf1kRY5wVQugUQugJDGjAeyU1kaIiuOCC1GPFCrj3XvjlL+ErX0nNu+QSOOYY\n2LRpIxMmzKJnz8spL9/5WAQbN6Z6C9QOCfbb75NeBIWFSe+xlDvstCNJkpqDvsB7tV4vJRUq1Nem\nbwPfKykB3bvDN76RerzzDtx5J4waBdXVsM8+63njja9TXt5x620Pt4QCxcVwxBGp1x06OGCh1Fw0\naYAwduzYrdOlpaWUlpY25eYlSUpcWVkZZWVlSZeRLfaoY7LHI1Iy9tsPfvpT+MlPYO5c+J//eZH+\n/T/NgAEdve2h1MT29HgkxBgzUkD6EoZHdjaIYgghZmpbkiQI4wJxTHb/Xs2JfQyBGGPOX6EbQhgC\njI0xnp5+PRqItQdDDCH8EZgaY7wn/XoBcBKpSxh2+d5a6/B4RGom5s9/lRtumEZJyRXk5eUnXY60\nU0uX/p3Ro4cwcODApEtpNA09HslkZ6DAHn4TIEmSct4cYGAIoTiEUAgMBx7ers3DwEjYGjisiTF+\n2MD3SmpmDjnkYAYPbs/7789OuhRJDZSRACGEcCfwDPDpEMKSEMJlmVivJEnKDTHGauDbwGTgVeDu\nGOPrIYQrQghfS7d5DFgUQngL+BPwzV29N4HdkLQbQghcdNFZwAw2b16XdDmSGiBTd2G4OBPrkSRJ\nuSvGOAk4YLt5f9ru9bcb+l5JzV+3bt0477xB3HnnEwwYcH7S5Uiqh+OZSpIkSUrMsGEn0Lv3Mlav\nfifpUiTVwwBBkiRJUmJatWrFl798BqtXT6SmpirpciTtggGCJEmSpEQdeOABDB3ajWXLnk26FEm7\nYIAgSZIkKXEXXHAG+fnPsGnTmqRLkbQTBgiSJEmSEtelSxcuvHAI778/KelSJO2EAYIkSZKkZuGk\nk4bSr99HrFz5ZtKlSKqDAYIkSZKkZqGgoIAvf/lM1q17nOrqyqTLkbQdAwRJkiRJzcbAgQMpLe3N\n8uVPJ12KpO0YIEiSJElqVr74xdMoLJzDxo2rki5FUi0GCJIkSZKalU6dOjF8+FDef/8xYoxJlyMp\nzQBBkiRJUrNz/PFD2H//taxYsSDpUiSlGSBIkiRJanby8/MZNeosyssnUV1dkXQ5kjBAkCRJktRM\nlZSU8PnPF7Ns2bSkS5GEAYIkSZKkZuzcc0+lqOhFNmz4V9KlSDnPAEGSJElSs9W+fXtGjDiJDz6Y\n6ICKUsIMECRJkiQ1a0OGHM2BB27io4/mJ12KlNMMECRJkiQ1a3l5eYwceRYbN06mqmpT0uVIOcsA\nQZIkSVKz169fP04/fSDLlpUlXYqUswwQJEmSJLUI//Zvp9C+/SuUl3+QdClSTjJAkCRJktQitGvX\njpEjh/HRRw6oKCXBAEGSJElSizFo0FEcemgNH344L+lSpJxjgCBJkiSpxQghcMklZ1FR8RSVlRuT\nLkfKKQVJFyBJmVK2uIyyxWVbp0tLSgEoLSndOi1Jklq+Pn368IUvHMQjjzxFcfEXki5HyhkGCJKy\nRu2gIIwLlH25LNF6JElS4znjjGFMn34z69YdSceOfZMuR8oJXsIgSZIkqcUpKipi1KhTWLFiIjHW\nJF2OlBMMECRJkiS1SEcccThHHFHA++/PTboUKScYIEiSJElqkUIIjBhxFtXVZVRUbEi6HCnrGSBI\nkiRJarF69uzJuecexvLl/0y6FCnrGSBIkiRJatFOPbWU7t3fYe3aJUmXImU1AwRJkiRJLVrr1q0Z\nNepUVq50QEWpMRkgSJIkSWrxDj30EAYPbsfy5bOTLkXKWgYIkiRJklq8EALDh59JjNPZvHl90uVI\nWckAQZIkSVJW6N69O+ed91nef39y0qVIWckAQZIkSVLWGDbsBHr1eo/VqxclXYqUdQwQJEmSJGWN\nwsJCRo06ndWrJ1JTU510OVJWMUCQJEmSlFUOPPAAjjuuC8uXP5t0KVJWMUCQJEmSlFVCCFxwwRmE\nMJNNm9YmXY6UNQwQJEmSJGWdrl27cuGFx/D++5OSLkXKGgYIkiRJkrJSaenx7Lvvh6xcuTDpUqSs\nYIAgSZIkKSsVFBTw5S+fwdq1j1NTU5V0OVKLZ4AgSZIkKWt96lOf4qSTerJs2dNJlyK1eAYIkiRJ\nkrLaeeedTqtWs9m4cVXSpUgtmgGCJEmSpKzWqVMnhg8/jvfff5wYY9LlSC2WAYIkSZKkrHfCCcey\n335rWLnyjaRLkVosAwRJkiRJWS8/P59Ro85k/fpJVFdXJF2O1CIZIEiSJEnKCQMGDOCUU/qxfPmM\npEuRWiQDBEmSJEk549xzT6V167l8/PGKpEuRWhwDBEmSJEk5o0OHDowYcSLvvz/RARWl3WSAIEmS\nJCmnHHvsYA444GP+9a9Xky5FalEMECRJkiTllLy8PEaOPIuPP36CqqrNSZcjtRgGCJIkSZJyTv/+\n/Tn99IEsW1aWdClSi2GAIEmSJCkn/du/nUL79i9TXv5h0qVILYIBgiRJkqSc1K5dOy699HN89JED\nKkoNYYAgSZIkKWcNGnQUBx9cxYcfvpR0KVKzV5B0AZKk3bflW5KqqqptXteermte0sv35D1VVVUU\nFPjnSpLUOFIDKn6Bn/zkTiorD6BVq6KkS5KaLY/IJGk7MUZqamqorq7e5lFVVbXDvIa2qaqqprIy\n9aioqKKi4pPXlZWfLK/9XFFRRVVV9U4flMDll/8yXXVI/TcEtpyDhxBq7dWOy7fM2376k/fVvfyT\n6YYv37LOGHe9/trLYwSKYd68eQwaNAhJkhpLnz59+MIXDuTRR6dQXHxW0uVIzZYBgqQWrbKykvLy\nctavX095eTnl5eWsWbMegFtvvS99gl5V54l67ceWNltO9kPIB/J3eK79CKFg63SM+dtMb3mdek61\ny8trRQj55OXl7+S5oM5leXn5tGmzfZs8YCwlJdc0+WfetL5JdXV10kVIknLAmWeezIwZN7N+/ZF0\n6NAn6XKkZskAQVKzE2Nk48aN24QC69eXs2rVelasKGfVqnJWrlzPmjXlbNxYTX5+B0JoT4ztqalp\nD3SAEnj++QPrOBkv2GZefn4+BQX5tG277Yn7tt/eS5KkbFdUVMTIkSdz440Tad/+q+mwXlJtGQkQ\nQginAzeSGpTxlhjj9ZlYb0ty003wm99Aq1apR2HhJ9O1Hzubvyfv2Ztt5Pn7UAmoqqpiw4YN2wQD\na9euZ+XK8q3BwKpV61m7dgM1NYXk5XUAPgkG8vM7UVjYl8LC9rRu3YFu3dqTn996pyf7PXoc2rQ7\nKGmPhBC6APcAxcBi4IIY49o62tV5vBFCGAP8B/BRuunVMcZJTVC6pCxz5JFHcPjhL/DGGy/Qp4+X\nz0nb2+sAIaSiuZuAk4HlwJwQwkMxxgV7u+6WZMQIOPVUqKxMPSoqPpne/rGzZbXnf/zx7rXf3W3k\n5e1dGFFQsO3zzqYzPa++5X5p3PRijGzevHmbUKC8fMfeAqtXl/PxxxWE0I4QagcDHSgs7E1hYfv0\nowN9+7YjL88OUlIOGQ08GWO8IYRwFfBf6XlbNeB441cxxl81ZdGSsk8IgREjzuLqq/9GRcVBFBa2\nS7okqVnJxBH6YGBhjPFdgBDC3cA5QE4FCF26pB4tQYxQXb3nYURV1Y7Tu5r38ce7btfQ9TRkXu1g\nJNPhRGOFIg1tn5/ftAFJTU3NDr0F1q3bsbfAmjXlVFXlb9NbIMb2hNCBwsKeW3sLdO7cnu7dizJ6\nacCWwQBj3PZRQzVQRHnckLFtNU9tKaecmq2jItZxVwPiLl/X2SZs3+aTtttvq0HrZdv31NRq8//b\nu/fgKgszj+O/51ySkEASCCAI1ZQiBbVVFBGQS1qxIlKgVmupo7LtzLo7te10O85i66zY6R+1reyu\ntnZ2266123W6jlysovUyGly3YhW5CdSl0xBBIaBJiCaQ67N/nBNJIORCzjlvznu+n5kzeW/nfZ83\nt/Oc33kvfa4n8rHT7TzCZZmkBcnhhyVV6qQAQX33G0TIAFJi3LhxWrbsU1q//nmVly8LuhxgSElF\ngDBB0v4u4weUeJHHEGWWeGMai0nDQnSXmq7ByGCCiJ7mn27esWNSQ0P/lx/MtPb2Ez+3wYYVUpuO\nHWtWS0virgHNze3JR+LuAC0tHWpr61DiIoBxuRdLGqWOjli3iwomhiOSIt3ewHf+PHp6pHJeJ7MT\nD0nS2Vulm0332dj0/tINAfdpXOJtk590Z4OTp1mXeX7SeE/TThq33tZ7ynZOWs/J49Zlfb2ux6TW\n4f34LiAExrp7jSS5+yGzHv94++o3bjezmyW9Luk7PZ0CAQD9tWjRZ7Rp00919Oh+lZQQZgOdMnqM\n8OrVqz8arqioUEVFRSY3j5DrGoyEUUdH9yNHzjSYaGuT3nhjl/7yl2o1NBxXe3uHIhFPnq5iisdL\nFIuVKj+/RPF4QTJ4iCsez1c8XqBoNPEN7vqm/eQ38Jma1zn9VDN0jzXp7m6fdIfPPWY5sY9hU1lZ\nqcrKyqDLyDgze07SWV0nKXEIyl09LD7QX+wHJX3f3d3MfiBpjaSvnW5h+hEAfcnPz9fKlZ/TT36y\nUcXFf8sFFRE6Z9qPmA+y+TSzWZJWu/ui5PgqSX7yhRTNzAe7LQCp1Xm3g6amJjU2Nn70tbGxSfX1\njaqra1JdXaPq6xvV0NCkDz5oUnt7TGaFMiuSe6GkIrW3FyoWK1I8XqR4vFB5eYmv8XiRotF4IPuW\nK2+uc2EfNy/arMsvvzzoUtLGzOTu4UtKBsDM9kiqcPcaMxsn6UV3n3bSMv3tN86V9IS7f/o026If\nAdAv7q4HHviN3nxzqs4+O7yvQ+jbgQO/1apVszR58uSgS0mb/vYjqfis9jVJk5Mv2AclfVnSihSs\nF0CamZkKCwtVWFio0aNH97l85wUTu4cNicDh6NEG1dYeUn19o+rrm3T0aKPef79Jra2mSKRIZkWS\nCuVepI6OQkUip4YNeXlFikTi3EIRyD2/l7RS0r2SbpX0eA/LnLbfMLNx7n4oudx1kt5Md8EAws/M\ntGLFYt1550Nqbj5f+fkjgi4JCNygAwR3bzez2yU9qxO3Vdoz6MoADDlmpoKCAhUUFKisrKzP5d1d\nLS0t3QKHpqYmffhhoxoaGlVbe1h1dY06ejQRONTUNKmlxRWJJMKGzqMc3BMBRGfQ0DV46O02jgCy\nxr2SHjWzr0qqlvQlSTKz8ZJ+4e5L+ug3fmRmF0vqUOI2kLdlegcAhNOYMWN03XWX6NFHn1N5+XVB\nlwMELiVniyfvtfzJVKwLQHiYmfLz85Wfn69Ro0b16zktLS09nFKROIWitvY91dcnTqtoaGjSkSON\nam5uTx7hkDidojNwULl04MBmmUUViUSTX2Ndhk/9GonEepxnFiGkANLI3WslLexh+kFJS7qM99hv\nuPstaS0QQE5buHC+Kit/pvr6fSotLQ+6HCBQIb3cHIBslZeXp7y8PJWWlvZr+dbW1lMCh6amJv36\nWWnJkjq1trZ/9GhrS3xtaWnrNt7WdmI4Md7WbXp7e8dHd50wi0k6cSeKzuET0xLz3ROPzuknhmPq\n6Og5wOgryDg5CFG+1NZ2/JTvycDO7x7YueDpWvdp11swgM0BAJAGeXl5WrlykX74w40qLv67xGsw\nkIYNLY4AAA43SURBVKMIEABktXg8rpKSEpWUlHSf8ay0fPk1KdmGu6u9vb3bo62t7ZRp/Z2fCCba\n1Nx8vFvA0TXUSDzauk3vHnK0S/lSbe2/DGhfBnIkRSQysKMuBrLufi9boFN/tgAAZNi0aVM1e/YW\nbdmyWRMnXhF0OUBgCBAAoA9mplgsptgQu0fo/ffcoQcfXBV0GWl1/z13aOrUqUGXAQDIcWamG29c\nrK1bf6njxy9UQQHhNnITNzQFAAAAgD6MGjVKN9wwUwcPPhN0KUBgCBAAAAAAoB8qKq7QhAkHVVv7\nl6BLAQJBgAAAAAAA/RCPx7Vy5WLV1z+ljo62oMsBMo4AAQAAAAD6acqU8zR//li9887/Bl0KkHEE\nCAAAAAAwANdfv0ix2Ks6dqwu6FKAjCJAAAAAAIABKC0t1YoVs3Xw4NNBlwJkFAECAAAAAAzQvHlz\nVF5eq/feeyvoUoCMIUAAAAAAgAGKRqNauXKxPvjgabW3twZdDpARBAgAAAAAcAYmTZqkK6+cqHfe\n+Z+gSwEyggABAAAAAM7Q8uWfU37+62pqej/oUoC0I0AAAAAAgDNUXFysm26ap0OHNsrdgy4HSCsC\nBAAAAAAYhNmzZ+q88xp15MjuoEsB0ooAAQAAAAAGIRqN6tZbr1VT0zNqa2sOuhwgbQgQAAAAAGCQ\nzjnnHF199SS9++6moEsB0oYAAQAAAABSYOnSq1RYuF2NjYeDLgVICwIEAAAAAEiBoqIi3XxzhWpq\nuKAiwokAAQAAAABS5LLLLtX557eqpmZH0KUAKUeAAAAAAAApEolEdPPN16q5+Xm1tR0PuhwgpQgQ\nAAAAACCFJkyYoMWLp+jAgReCLgVIKQIEAAAAAEixa6+9UqNH71Z19R/U3NwQdDlAShAgAAAAAECK\nFRYW6u67b9N115nq6n6u6uqNOn68PuiygEEhQAAAAACANBgxYoQ+//mrdd99t+uGG/J19Oi/ad++\nx3XsWG3QpQFnhAABAAAAANKoqKhIixcv1Jo139RNNxWrsfGX2rdvnRobjwRdGjAgsaALAAAAAIBc\nMGzYMF111Wc0b95sbd78mtav/7WOHCnX6NHzNHz4uKDLA/pEgAAAAAAAGVRQUKCKinmaM+dyvfrq\n61q//r9UVXW2ysrmq7h4QtDlAadFgAAAGFIq91Wqcl+lJGnBuQu0unK1JKmivEIV5RWB1QUAQKrl\n5eVp3rw5mjXrMm3ZslWPPfbfqqoaq1Gj5quk5JygywNOQYAAABhSCAoAALkmHo9r1qyZmjHjEm3b\ntl2PPbZOVVUjVVo6X6Wl5TKzoEsEJBEgAAAAAMCQEIvFNGPGpZo+/WLt2LFTa9c+qaqqQpWWLtDI\nkZ8gSEDgCBAAAAAAYAiJRqOaPv1iXXTRp7Vr126tW/es/vrXmEaMmK+ysk8SJCAwBAgAQoNz5wEA\nQJhEIhF96lMX6sILL9CePX/Whg2b9NZbL6qoaL7GjJkms0jQJSLHECAACA2CAgAAEEZmpvPPn6Zp\n06Zq79692rDhJe3a9aIKC+dr7NgLCRKQMQQIAAAAAJAFzExTpkzRHXecp6qqKj3++CZt316p/Py5\nOuusixSJRIMuESFHgAAAWYTTNAAAgJlp0qRJ+va3J6m6ulpPPPGSXn/9JeXlXaFx46YrEuFtHtLD\n3D0zGzLzTG0LAIBsYWZyd66GlSH0IwDC6sCBA9q48SW98spBxeNXaNy4SxWNxoMuKxQOHPitVq2a\npcmTJwddStr0tx8hmgIAAACALDdx4kTddttXtHTpQT311Et6+eWXFYnM0vjxlykWyw+6PIQEV9sA\nAAAAgJAYP368vva1G3XvvbdowYIavfvu/dq/f5Pa2o4HXRpCgAABAAAAAEJm7NixuuWWL+rHP/6q\nFi6s06FD9+vtt19Qa2tT0KUhi3EKAwAAAACEVFlZmVasWK5Fi+r0/PMv65lnHlB7+3SNHz9HeXnD\ngy4PWYYjEAAAAAAg5EaOHKkbbvi81qz5ey1b1q733vuZqqufVnNzQ9ClIYsQIAAAAABAjiguLtby\n5ddozZqv64tfjKqu7ueqrn5Sx47VBV0asgABAgAAAADkmOHDh2vJks9pzZpv6MYbh+mDD/5d+/Zt\nUFPT+0GXhiGMayAAAAAAQI4qLCzUokVXasGCOfrjH/+kDRt+pcOHP6ExY+apqGhs0OVhiCFAAAAA\nAIAcN2zYMF155QLNnTtLr7zymtavf1iHD5+r0aPnacSI8UGXhyGCAAEAAAAAIEnKz89XRcVczZkz\nU3/60xatW/eIqqrGq6xsgYqLJwRdHgJGgAAAAAAA6CYvL09z587WrFmXacuWrVq79lFVVY3WyJHz\nVVp6btDlISAECAAAAACAHsViMV1++WWaMeMSbdu2XWvXblBVVYlKS+ertPTjMrOgS0QGESAAAAAA\nAHoVjUZ16aWXaPr0i7Vjx06tW/eU9u0rUHHxfBUWjpZ7R/LhXYY7JHUf7zq/t3mnzj8xbNYhM/9o\nWEos2zncOS8xnJiXWObEsj0PnxjvfL7kikQ+VCw2N5Pf7iHL3D0zGzLzTG0LAIBsYWZydz6+yRD6\nEQBIjY6ODu3evUdPPvmK6uqaFImYotGIotGIIpFIt3GzE8OJ+dbjcE/zYrGe55lZcjuJR2/jg50X\njUY1fPjwUB9t0d9+hAABAIAAESBkFv0IAACn6m8/EslEMQAAAAAAILsRIAAAAAAAgD4RIAAAAAAA\ngD4RIAAAAAAAgD4RIAAAAAAAgD4RIAAAAAAAgD4NKkAws+vN7E0zazezS1JVVLaqrKwMuoS0Yx/D\ngX0MB/YRYWFmI83sWTN7y8yeMbOS0yz3KzOrMbMdZ/L8XJELfzfsYziwj+HAPuaWwR6BsFPSFyRt\nSkEtWS8XfrHYx3BgH8OBfUSIrJL0vLt/UtILku48zXIPSbp6EM/PCbnwd8M+hgP7GA7sY24ZVIDg\n7m+5+15JlqJ6AABA7lkm6eHk8MOSlve0kLu/LKnuTJ8PAAAGh2sgAACAoI119xpJcvdDksZm+PkA\nAKAfzN17X8DsOUlndZ0kySV9z92fSC7zoqTvuPsbvayn9w0BAJCj3D30R/L10k/cJenX7j6qy7Lv\nu3vZadZzrqQn3P3TXabVDuD59CMAAPSgP/1IrB8ruSpTxQAAgHDqrZ9IXhjxLHevMbNxkg4PcPX9\nfj79CAAAZy6VpzDwggwAAM7E7yWtTA7fKunxXpY1ndpzDOT5AADgDPV5CkOvTzZbLukBSaMl1Uva\n5u7XpKg2AACQA8xslKRHJX1MUrWkL7l7vZmNl/QLd1+SXO4RSRWSyiTVSLrb3R863fMzvycAAITb\noAIEAAAAAACQGwK5C4OZfcfMOpKfGISKmX3fzLab2VYz+0PyXMxQMbMfmdkeM9tmZmvNrDjomlLN\nzK43szfNrN3MLgm6nlQys0Vm9mcz+z8z+8eg60k1M/tV8nzqHUHXki5mNtHMXjCzXWa208y+GXRN\nqWZm+Wb2avJ/6U4zuzvomtLFzCJm9oaZ/T7oWnIN/Uh2ox/JbvQj2Y9+JFz6249kPEAws4mSrlLi\nEMMw+pG7X+Tu0yVtlBTGX7JnJV3g7hdL2ivpzoDrSYedkr4gaVPQhaSSmUUk/VTS1ZIukLTCzKYG\nW1XKPaTE/oVZm6R/cPcLJM2W9PWw/RzdvVnSZ5L/Sy+WdI2ZzQy4rHT5lqTdQReRa+hHQoF+JEvR\nj4QG/Ui49KsfCeIIhH+WdEcA280Id/+wy2iRpI6gakkXd3/e3Tv3a7OkiUHWkw7u/pa771X4Lg46\nU9Jed69291ZJv5O0LOCaUsrdX5ZUF3Qd6eTuh9x9W3L4Q0l7JE0ItqrUc/em5GC+EncNCt05d8k3\nsYsl/TLoWnIQ/UiWox/JavQjIUA/Eh4D6UcyGiCY2VJJ+919Zya3m2lm9gMze1vSVyT9U9D1pNlX\nJT0ddBHotwmS9ncZP6AQ/qPPJWZWrkQi/mqwlaRe8lC6rZIOSXrO3V8LuqY06HwTG7pmZCijHwkl\n+pHsQj8SMvQjWa/f/Ugs1Vs2s+ckndV1UrKQuyR9V4nDBbvOyzq97OP33P0Jd79L0l3J87m+IWl1\n5qscnL72MbnM9yS1uvsjAZQ4aP3ZR2AoM7Phkh6T9K2TPm0MheQni9OT5zVvMLPz3T00h/qb2bWS\natx9m5lVKEtfE4cq+hH6kWxBP4JsRz+S3Qbaj6Q8QHD3q3qabmYXSiqXtN3MTInDzLaY2Ux3P5zq\nOtLpdPvYg0ckPaUsfMHuax/NbKUSh7l8NiMFpcEAfo5h8o6kc7qMT0xOQ5Yxs5gSL9b/6e6hvue9\nuzeY2YuSFilc1wq4QtJSM1ssaZikEWb2G3e/JeC6QoF+pBv6kSGMfkQS/UjWoh8JhQH1Ixk7hcHd\n33T3ce4+yd0/rsShStOz7cW6L2Y2ucvociXOBQoVM1ukxCEuS5MXFgm7rPxk6jRekzTZzM41szxJ\nX5YUxiu/m8L1c+vJf0ja7e7/GnQh6WBmo82sJDk8TIlPi/8cbFWp5e7fdfdz3H2SEn+LLxAepB/9\nSHjQj2Q1+pHwoB/JcgPtRwK5jWOSK5x/UD80sx1mtk3SQiWuZhk2D0gaLum55K0+Hgy6oFQzs+Vm\ntl/SLElPmlkozqt093ZJtytx5epdkn7n7qFqKs3sEUl/lDTFzN42s78JuqZUM7MrJN0k6bPJ2wq9\nkWykw2S8pBeT/0tflfSMuz8VcE0IJ/qR7EU/kqXoR8KBfiQ3mTvXbQIAAAAAAL0L8ggEAAAAAACQ\nJQgQAAAAAABAnwgQAAAAAABAnwgQAAAAAABAnwgQAAAAAABAnwgQAAAAAABAnwgQAAAAAABAn/4f\nSTfmKmb+uQ4AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1fae7326828>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 3 day study after that\n",
"study_trend(3, does_trend_down)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, when we look at a 3-day horizon, we start getting some incredible outliers. Stocks have a potential to move over ~300% up, and the standard deviation width is again, incredible. The results for a 3-day horizon follow the same pattern we've seen in the 5- and 8-day horizons."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Event Type 2: Trending up for N days\n",
"\n",
"We're now going to repeat the analysis, but do it for uptrends instead. That is, instead of looking at stocks that have been trending down over the past number of days, we focus only on stocks that have been trending up."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100% (47578 of 47578) |###########################################################| Elapsed Time: 0:22:51 Time: 0:22:51\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBAAAAGNCAYAAACopYLKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8FfW9//H352RfIISAiEACIiBCuIAKiBai1rUtWFtv\nUduqV6+9fdRrb3u7aBcBH+391S7Wtrbeayt13+pStXVBLUEWpYhsYZE17AQiCRCWLOd8f3/MSTiE\nhAQ4yZzl9Xw85pEzM9+Z+ZwJy5n3+X5nzDknAAAAAACA4wn4XQAAAAAAAIh9BAgAAAAAAKBNBAgA\nAAAAAKBNBAgAAAAAAKBNBAgAAAAAAKBNBAgAAAAAAKBNBAgAgLhlZteYWcjMBrej7U1mdnrE/MNm\ndnbHVhg9ZhY0s4/MbLGZ/bUd7YvMbHkn1fZzM1tlZkvM7EUz6xqxboSZzTezMjNbambp4eWjzWyZ\nma0xswci2qeb2bNmttbM3jezws54Dy28p8nx9OcDAIDOQIAAAIhnUyTNkXR9O9reLKlP44xz7nbn\n3OoOquuUmFlKC4sPOOdGO+dGOeeuaeeuXDTrOo6ZkoY550ZKWivpB1LT+3hC0u3OueGSSiTVh7d5\nSNKtzrnBkgab2RXh5bdK2uOcGyTpAUk/76T30Nw1kob5dGwAAGISAQIAIC6ZWY6kC+VdcF7fbN33\nw99uLzaz/zGzL0g6T9KT4W/xM81slpmNDre/Ptx+mZn9LGI/+83sJ+Fv1uebWc8W6sg3s5fD367P\nN7Ph5tnY7Jv4NWbW08x6mNkLZrYgPF0QXj/VzB43s7mSHm/pLbfjnJwbrnWxpG9ELC8ys/fM7MPw\nNC68/DEzmxTR7kkz+5yZnROu7aPw/gYe77jOuXecc6Hw7Ac6EtRcLmmpc64s3K7KOefCPUG6OOcW\nhts9Lu+CXZImS3os/PoFSZe28l5vjKjxITMLmNnXzOznEW1uMrPfttLewsuP+R2HfyeTJP083H6A\nmd1pZivC7Z4+3vkAACBRESAAAOLVZElvOufWSao0s1GSZGZXSvqcpPOdc6Mk/dw596KkhZJuCH+L\nf7hxJ2bWW9LP5H07PlLS+REX1TmS5oe/WZ8j6d9bqGO6pI+cc/8i6YeSnnDOOUl/lfT58DHGSCp3\nzu2W9BtJ9zvnxkr6oqRHIvY1VNIlzrkbWzhORvjif76ZTW7lnMyQ9I3w+460S9KnnXPnyeu18bvw\n8kck3RKusaukCyT9XdJ/SHrAOTdaXvCyNdzm7xYxDKQV/ybp9fDrweHt3gzX/t3w8j6N+wzbqiOh\nQx9JWyTJOReUVG1m3SMPEB5a8CVJ48M1hiTdIOlFhc952JckPdtK+8ZzfMzv2Dn3vqRXJX03/Odl\no6TvSxoZbvcfbZwDAAASUqrfBQAAcJKul9fFXZKeC88vlvRpSX92ztVKknOuOtzG1PK3+OdLmuWc\n2yNJZvaUpAnyLiDrnHONF8OLwvtu7iJJ14aPNcvMuptZrqTnJd0j79v0KeEaFd7H0MZvwCXlmll2\n+PWrzrm6Vt5vkXNuh5kNkPQPM1sWvrBVuO48SXnOuXnhRU9IujL8Ok3S/5nZSElBSYPC9b5nZr83\nswJ5YcaLzrmQmb0v6Ydm1lfSy+GQRs65z7RSW2MNP5RU75x7JrwoVV4vkfMkHZb0rpl9KGnf8fbT\nfLctLLtU0mhJC8PnMVNShXOu0szWhwObdZKGOOfmm9k3Wmi/M7yv9vyOJWmppKfNu/9Em/egAAAg\nEREgAADijpnlS7pE0nAzc5JS5I33/97J7rKV5fURr4Nq+f/N5vcZMElyzr1vZgPNrIe87vn3Rqwf\n65yrP2ojL0840FqBzrkd4Z8bzaxU0ihJG1tr38y3JO10zo0w774EhyLWPS7pK/JCjpvDx3jGzD6Q\n9FlJr5vZ7c650uMdwMxulnS1vN9Lo62S3nPOVYXbvC7vQv4pSf0i2vWVtC38elt43fZwrV0bw53I\nw0l6zDn3wxZKeVZeb4PVkl5uR/vIwKa137EkfUZesDRJXrgyPGLYBgAASYEhDACAeHSdpMedcwOc\nc2c654okbTSziyS9LekWM8uSmsIGyfvWu2sL+/qnpAnhngMp8noylJ5ALXMkfTl8rBJJu51zNeF1\nL0u6X9LKiJ4QMyV9s3FjM/uXtg5gZt3syNMLekgaL2llZBvn3F553f3Hhxd9OWJ1nqQd4ddflRe4\nNHpM0n95u/BuKmlmA5xzG51zv5P0iqQRbdR3paTvSprU2PMj7C1JxebdcyJV0kRJK5xzOyXtNbMx\n4R4BXw0fR/J6ftwUfn2dpH+0cMh3JX3RwvekMO8+FI1Pa/irvOEtU+SFCa21bwwwWguP9iv85yVc\nY6Fzbraku8LLc493TgAASEQECACAePQlHfl2udFLkq53zr0l6TVJH5rZR5L+O7z+MUn/G74pXqbC\nPQfCF7N3yQsNFkv60Dn3t/A27XmKwXRJ55rZUkn/oyMXv5I3jOFGHbmQlbzw4DzzbrpYJulr7TjG\n0PD7WSzvYvj/tfIEiX+T9Ifw+46s/Q+Sbg5vP1gRPR2cc7skrZL054j2/2reYxcXy3sSwePSce+B\n8Dt5F9Rvh8/vH8L7rpYXoHwo6SN55/bN8DbfkHcPhjWS1kYsf0RSDzNbKy/YuKv5wZxzqyT9SNLM\n8HmfKen0iGOuknfB/+Fx2vdu3F0L70fyfmffNbNFks6SdwPOZfKGOfzGOXciwzAAAEgI5t3nCQAA\nJKPw/ReWShrtnNvvdz0AACB20QMBAIAkZWaXyhsK8VvCAwAA0BZ6IAAAAAAAgDbRAwEAAAAAALSJ\nAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEA\nAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAA\nALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALQpagGCmQXM7CMz\nezVa+wQAAMnDzK40s9VmtsbMvt/C+iFmNt/MDpvZt5utKzezpWa22Mz+2XlVAwCQPFKjuK9vSlop\nqWsU9wkAAJKAmQUkPSjpUknbJS00s1ecc6sjmn0i6T8lXdPCLkKSSpxzVR1eLAAASSoqPRDMrK+k\nqyX9KRr7AwAASWeMpLXOuU3OuXpJz0qaHNnAOVfpnFskqaGF7U0MzQQAoENF6z/aX0v6riQXpf0B\nAIDk0kfSloj5reFl7eUkvW1mC83s36NaGQAAkBSFIQxm9hlJFc65JWZWIu8bgJbaES4AANAC51yL\n/3fihFzonNthZj3lBQmrnHNzmzfi8wgAAC1rz+eRaPRAuFDSJDPbIOkZSReb2eOtFMTUzmnq1Km+\n1xBPE+eL88X5ip2J83ViE5psk1QYMd83vKxdnHM7wj93S3pZ3pCI1toytXPi7zPni/MVOxPni/PV\nkVN7nXKA4Jz7gXOu0Dl3pqQpkv7hnPvqqe4XAAAklYWSzjKzIjNLl/eZ4nhPdmr6lsTMss0sN/w6\nR9Llkso6slgAAJJRNJ/CAAAAcFKcc0Ezu0PSTHlfcDzinFtlZl/zVruHzayXpA8ldZEUMrNvSjpH\nUk9JL4eHJ6RKeso5N9OfdwIAQOKKaoDgnJstaXY095msSkpK/C4hrnC+Tgzn68Rwvk4M5wsnyzn3\npqQhzZb9X8TrCkn9Wti0RtLIjq0uOfH3+cRwvk4M5+vEcL5ODOerY9iJjHc4pQOZuc46FgAA8cLM\n5LiJYqfh8wgAAMdq7+cR34cw9O/fX5s2bfK7DLShqKhI5eXlfpcBAECH4PNI5+DzBADEN997IIST\njk6pASeP3xMAdAx6IHQuPo/4i/MMALGpvZ9HovEYRwAAAAAAkOAIEAAAAAAAQJsIEAAAAAAAQJsI\nEAAAAAAAQJsIEAAAAAAAQJt8f4xjS+655wFt3lzdYfsvLOyme+/9rw7bf2e45ZZb1K9fP917771+\nlwKgE5WWl6q0vLTpdUn/EklSSf+SptcAooPPI23j8wgAJJeYDBA2b65W//7TOmz/5eUdt29J+v3v\nf69HH31Uy5cv1w033KAZM2Z06PEAJI/IoMCmm0pvLvW1HiCR8XkEAICjMYThBNx3333tatenTx/9\n+Mc/1q233trBFQEAgGTD5xEAgF8IEE5AbW1tu9pdc801mjRpkrp3795m2/vuu099+/ZV165dNXTo\nUM2aNavFdosXL9a5556rvLw8TZkyRYcPHz6h2gEAQGLg8wgAwC8ECCfAORfV/a1Zs0a///3vtWjR\nIu3bt09vvfWW+vfvf0y7+vp6ff7zn9dNN92kPXv26LrrrtOLL74Y1VoAAEB84PMIAMAvMXkPhFix\nfv16vfDCCzIzOec0b948/fznP5dzTmamsWPHauLEiSe9/5SUFNXV1amsrEwFBQUqLCxssd0HH3yg\nhoYG3XnnnZKkL3zhCzr//PNP+rgAACB+8HkEABArCBCOY+DAgfr+97/fNF9bW6vvfe97Ud3/Aw88\noGnTpmnlypW64oor9Ktf/Uq9e/c+qt327dvVp0+fo5YVFRVFrQ4Ax+JpB4mB3yMSAZ9HAACxggDB\nZ1OmTNGUKVNUU1Oj22+/XXfddZcee+yxo9r07t1b27ZtO2rZ5s2bddZZZ3VmqUBS4WkHiYHfI9A+\nfB4BALQH90A4Ae0dcxgMBnX48GEFg0E1NDSotrZWwWDwmHZr1qzRrFmzVFdXp/T0dGVlZSkQOPZX\ncsEFFyg1NVW/+93v1NDQoJdeekn//Oc/T/n9AACA+MPnEQCAX2KyB0JhYbcOfTZyYWG3drX7+OOP\n9eyzzzaNOZw9e7buvffepjGHF1xwgS677LJjtvvJT36i6dOny8wkSU899ZSmTp2qe+6556h2tbW1\nuuuuu7R69WqlpaVp/PjxevjhhyVJV199tSZMmKC77rpLaWlpeumll3TbbbfpRz/6ka6++mp94Qtf\nOGpfke0BAMCp4/MIn0cAAEezaN/Jt9UDmbmWjtX4nyFiG78nJDObbnJTY+/Pf6zWFati9XyF/301\nv+tIFnwe8RfnGQBiU3s/jzCEAQAAAAAAtCkmhzAAAOILTzsAAABIfAQIAIBTxtMOAAAAEh8BAgBf\n8c01AAAAEB8IEAD4im+uAQAAgPjATRQBAAAAAECb6IEAAACSXlFRkcx4mmZHKyoq8rsEAMApiMkA\nIRpjohlXDQAA2qu8vNzvEgAAiHkxGSBEY0w046qP9fWvf119+/bVD3/4Q79LAQAAAICkUVtbq8rK\nSu3Zs0eDBg1SZmam3yWdlJgMEGJF//79tXPnTm3fvl3du3dvWj5q1CgtXbpU5eXlKiwsjOox6+rq\ndNttt+lvf/ub0tPTdf311+vXv/51VOp86KGHolorAAAAAMDjnNP+/ftVWVmpyspKbdtWqY0bd2vL\nlkpVV9cqEChQbe0+/fjH6RoyZIjf5Z4UAoTjMDMNGDBAzzzzjL7xjW9IksrKynTo0KEOGyf56KOP\nasmSJSovL1daWpr++c9/xmSdAAAAAJCMgsGgqqqqVFlZqV27dmvz5kpt2lSprVsrdfhwqgKBngqF\neiglpYeyswcrO7unCgu7ysy0deszfpd/SngKQxu+8pWv6LHHHmuaf+yxx3TTTTcd1eb111/X6NGj\nlZeXp6KiIk2fPr1p3fPPP68zzzxTNTU1kqQ33nhDvXv31ieffNLi8dLS0pSXl6euXbsqKytLEydO\njFqdt9xyi+655x5J0uzZs9WvXz/df//96tWrl/r06aNHH320XccCAAAAgERXW1urbdu2aenSpZo5\n8109/PBz+uEPH9Ttt/8/fe97T+sXv/hIM2Yc0pw5/VVZeaW6d/8vFRV9V/363ayios+qb99x6t79\nLGVm5iXMF7v0QGjDuHHj9MQTT+jjjz/WoEGD9Nxzz2nevHlH3UcgNzdXTzzxhIYNG6aysjJddtll\nGjVqlCZNmqR//dd/1WuvvaY777xTv/zlL3XbbbdpxowZKigoaPF4o0eP1u23365p06Zp2rRpUa2z\nuZ07d2r//v3avn27Zs6cqS9+8Yv6/Oc/r7y8vHYfFwAAAADilXNONTU1qqys1O7du7VtW6XKy73e\nBHv2HJJZgaSecq6HsrKGKzu7h/r0KVAgkJyX0nHxrm26v2lN47f7EydO1NChQ3XGGWcctX7ChAlN\nr4cPH64pU6Zo9uzZmjRpkiTpwQcf1IgRI1RSUqLJkyfrqquuavE4VVVVmjRpkv7+979r6tSpMjNN\nnTpVktSvXz+9+eabGjZs2EnX2Vx6erp+/OMfKxAI6KqrrlJubq4+/vhjjRkzpl3nBQAAAADiQSgU\n0p49e8JBQaU2b65Ueflubd1aqdraVJn1CA876BkedtBDhYWJ03MgWuIiQHBT3Sltf6oBxJe//GVN\nmDBBGzdu1Fe/+tVj1i9YsEB33323ysrKVFdXp7q6Ol133XVN6/Py8nTdddfp17/+tV566aVWj/OX\nv/xF55xzji6//HKdd955mjBhgsxMN910k4LB4HHDg/bU2VxBQYECgSOjWLKzs5uGWgAAAABALAkG\ng2poaGia6uvrW3zdOF9ZWaXyci8s2LmzSqFQF5n1VDDYQxkZhcrOHq3u3XsoLS3b77cWN+IiQPBb\nYWGhBgwYoDfeeEMzZsw4Zv2NN96oO++8U2+99ZbS0tL0rW9966h7HCxZskQzZszQ9ddfr//8z//U\nG2+80eJxGv+gS1L37t31zjvvaPz48Xr66af1ne9855TrBAAAAIBocc7pwIEDqq2tbdcFfUNDg+rq\nGnT4cL1qaxsipnrV1R1ZV1/f0DRfV+etq69vUDDoFAikSUqVWarMvNfefJqc8157P9PkXF7TsIMz\nzkjeYQfRxBlspxkzZqiqqkpZWVkKBoNHraupqVF+fn7TUxOefvppXXHFFZKkw4cP6ytf+Yp+9rOf\n6eabb9b555+vhx56SF//+tePOcbVV1+tu+++W3/84x91yy23KCUlRePHj9czzzyj7Oz2pWLHqxMA\nAAAA2ss5p8OHD6uqqkrV1dXas6dKFRXV2r69Wjt2VKmycq8aGtJllqnGC3lv8i7sj1zQH5k3S1Mg\nkKlAIDU8pUW8TlVKypH5tLQ0ZWSkRqxP8fFsQCJAOK7I8S4DBgzQgAEDWlz3hz/8Qd/+9rd1xx13\naOLEifrSl76k6upqSdIPfvADFRUV6fbbb5ckPfHEE7rkkkt0+eWXa+DAgUcdr3///nrjjTf0ve99\nT9/5znfUpUsXTZkyRbNmzdLnPvc5nXnmmbr88stPus4Teb8AAAAAEl9dXZ2qq6tVXV2tqqoq7d5d\nra1bq7RzZ7UqKqp06JCUkpIv57rJuXylpPRQVtYgZWZ2U69e3ZSSku73W0AnIkA4jg0bNrS4PCUl\n5ahv96+99lpde+21Lba9//77j5ofMWKEKisrWz3m+PHjNXfu3GOW792795Tr/POf/9z0euLEidq8\neXO79gMAAAAgPgWDQe3du7epF0FlZZW2bfN6EFRUVGvfvloFAt1klq9QqJsCgXxlZvZTZmY3de+e\nr9TUTL5oRJOYDBBKy0tVWl4qSZpYNFHTSqdJkkr6l6ikf0mn7QMAAAAAYlkoFNL+/fubehDs2VOt\n7durtH17tSoqqrVnT43MujQFBFK+MjMHKzMzXzk53ZSfn0tAgHaLyQAhGhf5BAUAAAAAEoFzThUV\nFaqsrFRVldd7YPv2au3cWaXKyn0KhbIkeeFAKNRNGRn9lZnZTZmZ3cKPIgy0dQigXWIyQAAAAACA\nZLZv3z6tX79eS5eu16JFG1RTk61A4DQFg92Ulna6MjPPVlZWvnr3zlNKSprf5SJJECAAAAAAgM/q\n6+u1adMmrVq1XgsXrteWLfslnan09IHKz79MBQV5fpcIECAAAAAAQGdrHJawdu16LVq0XitWbFUw\n2FvSQHXrNlmFhb0ZeoCYQ4AAAAAAAJ2gpqZGGzZs0LJl6/Xhh+u1d2+6pIHKyRmrXr2+pNTUDL9L\nBI7L9wChqKiIu37GgaKiIr9LAAAAAOJKQ0ODNm/erNWrvWEJ5eXVkgYoLW2g8vNLVFSU73eJwAnx\nPUAoLy/3uwQAAAAAOGXOOVVWVmrduvVatGidli3brPr602R2lvLyPqPCwj4MS0Bc8z1AAAAAAIB4\ndfDgQW3YsEHLl3vDEvbsCci5gcrJGa2ePb+gtLQsv0sEooYAAQAAxAQzu1LSA5ICkh5xzt3XbP0Q\nSX+WNFrSD5xz97d3WwCIlmAwqK1bt2r16nVauHC91q//RGb9lZIyUPn5F6mwsDtDtJGwCBAAAIDv\nzOvT+6CkSyVtl7TQzF5xzq2OaPaJpP+UdM1JbAsAJ8U5pz179mjduvVavHi9liwpV11dgZwbqLy8\ny9WvXz8FAil+lwl0CgIEAAAQC8ZIWuuc2yRJZvaspMmSmkIA51ylpEoz++yJbgsAJ+Lw4cPasGGD\nysq8YQm7d4fk3EBlZxeroGCy0tKy/S4R8AUBAgAAiAV9JG2JmN8qLxjo6G0BoIlzTjNm/EXz5q2T\nc4UKBAaqe/dxKizswbAEQAQIAAAgyUybNq3pdUlJiUpKSnyrBUBs2bVrl+bM2abCwu8pEOBSCYmr\ntLRUpaWlJ7wdfysAAEAs2CapMGK+b3hZ1LeNDBAAINLSpStkNozwAAmveYA+ffr0dm3HQ0gBAEAs\nWCjpLDMrMrN0SVMkvXqc9pF9iU90WwA4hnNOpaVlys8f5ncpQMwiWgMAAL5zzgXN7A5JM3XkUYyr\nzOxr3mr3sJn1kvShpC6SQmb2TUnnOOdqWtrWp7cCIE7t3LlT27c7FRWd4XcpQMwiQAAAADHBOfem\npCHNlv1fxOsKSf3auy0AnIjFi8tkNoybJQLHwRAGAAAAAEnNOafZs1eooGC436UAMY0AAQAAAEBS\n2759uyoqUpST08vvUoCYdspDGMwsQ9J7ktLD+3vBOde+WzgCAAAAgM8WLy5TIMDwBaAtp9wDwTlX\nK+li59woSSMlXWVmY065MgAAAADoYN7TFxi+ALRHVIYwOOcOhl9myOuF4KKxXwAAAADoSFu2bFFl\nZYZyck7zuxQg5kUlQDCzgJktlrRT0tvOuYXR2C8AAAAAdKSPPlqhQIDeB0B7ROUxjs65kKRRZtZV\n0l/N7Bzn3Mrm7aZNm9b0uqSkRCUlJdE4PAAAcaO0tFSlpaV+lwEAkBQKhfTeeyvVo8dNfpcCxIWo\nBAiNnHP7zGyWpCslHTdAAAAgGTUP0KdP577DAOCXzZs3q6oqR0VFPfwuBYgLpzyEwcx6mFle+HWW\npMskrT7V/QIAAABAR/KGLwzzuwwgbkTjHgi9Jc0ysyWSFkh6yzn3ehT2CwAAAAAdIhQKafbslerR\ngwABaK9THsLgnFsuaXQUagEAAACATlFeXq59+/KUn9/d71KAuBGVpzAAAAAAQDz58EOGLwAnigAB\nAAAAQFIJBoOaM2eVevYkQABOBAECAAAAgKSyceNG1dR0V2ZmN79LAeIKAQIAAACApLJwYZlSUuh9\nAJwoAgQAAAAASaOhoUFz537M8AXgJBAgAAAAAEgaGzZs0MGDPZWR0dXvUoC4Q4AAAAAAIGksWFCm\n1NThfpcBxCUCBAAAAABJoaGhQfPnr1HPnuf4XQoQlwgQAAAAACSFtWvX6vDh05Wenut3KUBcIkAA\nAAAAkBQWLFihtDSGLwAniwABAAAAQMKrr6/X+++vVY8eQ/0uBYhbBAgAAAAAEt6aNWtUV9dX6ek5\nfpcCxC0CBAAAAAAJ74MPVig9fZjfZQBxjQABAAAAQEKrra3VggXrGb4AnCICBAAAAAAJzRu+UKi0\ntCy/SwHiGgECAAAAgIT2/vsrlJnJ8AXgVBEgAAAAAEhYhw8f1sKFG9Wjx9l+lwLEPQIEAAAAAAlr\n9eqPVV/fX6mpmX6XAsQ9AgQAAAAACWv+/DJlZQ33uwwgIRAgAAAAAEhIhw4d0qJFm1VQMNjvUoCE\nQIAAAAAAICGtWrVaweCZSk3N8LsUICEQIAAAAABISPPmlSk7m+ELQLQQIAAAAABIOAcOHNCSJdtU\nUDDI71KAhEGAAAAAACDhrFy5SsHgWUpJSfe7FCBhECAAAAAASDhz565QTs4wv8sAEgoBAgAAAICE\nUlNTo+XLd6h797P8LgVIKAQIAAAAABLKihUrFQoNVkpKmt+lAAmFAAEAAABAQpkzZ4Vycxm+AEQb\nAQIAAACAhLFv3z6tXLlL3bsP9LsUIOEQIAAAAABIGGVlKxUKDVEgkOp3KUDCIUAAAAAAkDDee69M\nXbowfAHoCAQIAAAAABJCdXW1Pv54j/Lzz/S7FCAhESAAAAAASAhlZSvl3NkKBFL8LgVISAQIAAAA\nABLC7Nllyssb7ncZQMIiQAAAAAAQ9/bs2aO1a/eqW7f+fpcCJCwCBAAAEBPM7EozW21ma8zs+620\n+a2ZrTWzJWY2KmJ5uZktNbPFZvbPzqsaQKxYtmyFzM6RGZc4QEfh2SYAAMB35n3if1DSpZK2S1po\nZq8451ZHtLlK0kDn3CAzGyvpIUnjwqtDkkqcc1WdXDqAGPHeeyuUl3el32UACY14DgAAxIIxktY6\n5zY55+olPStpcrM2kyU9LknOuQWS8sysV3idic81QNL65JNPtHHjAeXlFfpdCpDQ+I8WAADEgj6S\ntkTMbw0vO16bbRFtnKS3zWyhmf17h1UJICYtXVomieELQEdjCAMAAEgEFzrndphZT3lBwirn3Fy/\niwLQOWbPXqFu3T7rdxlAwiNAAAAAsWCbpMi+x33Dy5q36ddSG+fcjvDP3Wb2srwhES0GCNOmTWt6\nXVJSopKSklOrHICvdu3apU2bDquoqF/bjQFIkkpLS1VaWnrC2xEgAACAWLBQ0llmViRph6Qpkq5v\n1uZVSd+Q9JyZjZNU7ZyrMLNsSQHnXI2Z5Ui6XNL01g4UGSAAiH9Ll66Q2TCZmd+lAHGjeYA+fXqr\n/20ehQCb51/6AAAgAElEQVQBAAD4zjkXNLM7JM2Ud4+mR5xzq8zsa95q97Bz7nUzu9rM1kk6IOmW\n8Oa9JL1sZk7eZ5unnHMz/XgfADqXc06zZ69Qfv41fpcCJAUCBAAAEBOcc29KGtJs2f81m7+jhe02\nShrZsdUBiEUVFRXatq1BhYXN77kKoCNwm1IAAAAAcWnJkhWSGL4AdBYCBAAAAABxxzmn0tIyde8+\n3O9SgKRBgAAAAAAg7uzYsUM7d5pyc0/3uxQgaRAgAAAAAIg7ixfz9AWgsxEgAAAAAIgrjU9fKChg\n+ALQmQgQAAAAAMSVbdu2adeuVOXknOZ3KUBSIUAAAAAAEFc++qhMgcBwhi8AnYwAAQAAAEDc8IYv\nrFRBwTC/SwGSDgECAAAAgLixZcsW7dmTpZycnn6XAiQdAgQAAAAAcWPRojKZ0fsA8AMBAgAAAIC4\nEAqFNHv2SvXoQYAA+IEAAQAAAEBc2LRpk/bu7aLs7AK/SwGSEgECAAAAgLiwaNEKBQL0PgD8QoAA\nAAAAIOaFQiHNmbOK4QuAj045QDCzvmb2DzNbYWbLzezOaBQGAAAAAI02btyoffu6KSsr3+9SgKSV\nGoV9NEj6tnNuiZnlSlpkZjOdc6ujsG8AAAAA0IcfMnwB8Nsp90Bwzu10zi0Jv66RtEpSn1PdLwAA\nAABIUjAY1Ny5q9WzJwEC4Keo3gPBzPpLGilpQTT3CwAAACB5bdiwQTU1BcrMzPO7FCCpRWMIgyQp\nPHzhBUnfDPdEOMa0adOaXpeUlKikpCRahwcAIC6UlpaqtLTU7zIAIK4sXLhCKSnD/S4DSHpRCRDM\nLFVeePCEc+6V1tpFBggAACSj5gH69OnT/SsGAOJAQ0OD5s37WD17Xup3KUDSi9YQhhmSVjrnfhOl\n/QEAAACA1q9fr4MHT1NGRhe/SwGSXjQe43ihpBslXWJmi83sIzO78tRLAwAAAJDsFiwoU2oqwxeA\nWHDKQxicc/MkpUShFgAAAABoUl9fr/nz16pnzyv8LgWAovwUBgAAAACIlrVr16q29gylp+f6XQoA\nESAAAAAAiFELFqxQWtowv8sAEEaAAAAAACDm1NXV6YMP1qlnz6F+lwIgjAABAAAAQMxZs2aN6ur6\nKS0t2+9SAIQRIAAAAACIOe+/v0Lp6QxfAGIJAQIAAACAmFJbW6uFCzeoR4+z/S4FQAQCBAAAAAAx\n5eOPP1Z9fZHS0rL8LgVABAIEAAAAADFl/vwVyswc7ncZAJohQAAAAAAQMw4fPqxFi8pVUDDE71IA\nNEOAAAAAACBmrFq1WvX1A5SamuF3KQCaIUAAAAAAEDPmzStTdjbDF4BYRIAAAAAAICYcPHhQixdv\nUUHBYL9LAdACAgQAAAAAMWHVqtUKhc5SSkq636UAaAEBAgAAAICYMHdumbKzh/ldBoBWECAAAAAA\n8N2BAwe0bNl2de8+yO9SALSCAAEAAACA71asWKlgcJBSUtL8LgVAKwgQAAAAAPhu7twVys1l+AIQ\nywgQAAAAAPhq//79KiurUPfuZ/ldCoDjIEAAAAAA4KsVK1bKucEKBFL9LgXAcfA3FAAAAICv5sxZ\nodzci/wuA2iVc1JDg1Rbe/RUV3fsspaWN85nZ1+q7363yu+3c9IIEAAAAAD4Zu/evVq5crf69Rvo\ndylIQMFg+y74m69rqV1KipSRIaWnez8jp8hlubmtt6usnC1phN+n5aQRIAAAAADwTVnZSjl3tgKB\nFL9LQQdxTgqFvG/w2zPV17e/7fH2UVvrHbulC/nmF/h5ea23a2ybEoU/ovv2NZz6TnxEgAAAAADA\nN3PmrFDXrhf7XUbCaOxqHwweO0VrefM27ZnMpNTUk58yMqScnGOXp6Udf5vUVO/YiA4CBAAAAAC+\nqK6u1po1VerXb4DfpXSKYPBI1/jIn60ti5yvr2/fxb5z3jflKSnexXPj68jpeMsDgWPbZGQcf9vj\nXcQ3TgFu358QCBAAAEBMMLMrJT0g7ylRjzjn7muhzW8lXSXpgKSbnXNL2rstgNizfPkKOTdUZrF5\ndXkqF/wttQmFju46n55+7OvG+ZycY5e3JwQIBPjGHR2HAAEAAPjOvKuHByVdKmm7pIVm9opzbnVE\nm6skDXTODTKzsZL+V9K49mwLIDbNnl2mrl0v79BjhELSoUPedPDgkdctzR86JB0+fOSCv3H8fORF\nfksX++npR1/wtxQONH6Lz8U94hkBAgAAiAVjJK11zm2SJDN7VtJkSZEhwGRJj0uSc26BmeWZWS9J\nA9qxLYAYs2fPHq1fv1+FhUXtah8KeRf3bQUAzZfX1UlZWUem7Oyj57t2PXp5ZiYX/EBrCBAAAEAs\n6CNpS8T8VnmhQltt+rRzWwAxpL5eevPN9dq9+wLV1wfaFQjU1noX9c0DgMapR4+Wg4KMDEIAIFoI\nEAAAQLw6qUuCadOmNb0uKSlRSUlJlMoBcDwbNkhvveVNpaWS2dlKT09Xbu7RoUB+vnTGGccGBZmZ\n3IgPiJbS0lKVlpae8HYECAAAIBZsk1QYMd83vKx5m34ttElvx7ZNIgMEAB2npkaaNetIaLB/v3T5\n5dJ110kPPyw9/fRLWrt2jHr2HOp3qUDSaR6gT58+vV3bESAAAIBYsFDSWWZWJGmHpCmSrm/W5lVJ\n35D0nJmNk1TtnKsws8p2bAugg4VC0tKlRwKDDz+Uzj9fuuIK6S9/kUaMOLoHwac+VawlS5YRIABx\nhAABAAD4zjkXNLM7JM3UkUcxrjKzr3mr3cPOudfN7GozWyfvMY63HG9bn94KkFR27ZJmzvQCg5kz\npW7dvF4G//3fUkmJlJvb+rbDhp2jtLS3VF9/SGlpWZ1WM4CTR4AAAABignPuTUlDmi37v2bzd7R3\nWwDRV1cnzZ9/pJfBhg3SJZd4vQzuvVcaMKD9+8rMzNQFFwzUggWr1Lv36I4rGkDUECAAAAAAaNW6\ndUcCg9mzpSFDvMDgt7+Vxo6V0tJOft8XXFCsOXMWSCJAAOIBAQIAAACAJvv2HX3zw0OHvMDghhuk\nGTO8xyVGy6BBg5Sd/aoOH96rzMy86O0YQIcgQAAAAACSWCgkffTRkcBg8WJp3DgvNPjrX6XhwyU7\nqYemti01NVUTJgzV22+XqW/fCzvmIACihgABAAAASDI7dhy5+eHbb3u9Cq64Qrr7bmniRCk7u/Nq\nGTt2hN544w1JBAhArCNAAAAAABJcba00d+6RXgabN0uXXuqFBj/7mVRY6F9tRUVF6tnzsGpqKpSb\n28u/QgC0iQABAAAASEB79kgvvCC98oo0Z440bJj3iMWHHpLGjJFSY+RKwMx08cXD9Ze/LCdAAGJc\nwO8CAAAAAETHwYPSc89Jkyd7j1R85x3pppuk8nLp/fel6dOl8eNjJzxodO65I+Tccjnn/C4FwHHE\n2D8dAAAAAE5EQ4P07rvSU09Jr73m9S644QbpiSekrl39rq59evXqpQEDMlVVtVnduhX5XQ6AVtAD\nAQAAAIgzzkkffCDdeafUt690zz3SeedJq1Z59zi46ab4CQ8alZQUq7p6md9lADgOeiAAAAAAcWL1\naq+nwdNPe8MQbrzRuzniWWf5XdmpGzmyWGb/q1DoKgUCXKYAsYi/mQAAAEAM27ZNevZZLzTYsUO6\n/nrp+eel0aMlM7+ri568vDwVF/fShg3r1KPH2X6XA6AFBAgAAABAjKmull580ettsGSJ9PnPS7/4\nhTRxopSS4nd1HWfChGItX76MAAGIUQQIAAAAQAw4fFj629+8ngbvvitddpl0xx3S1VdLmZl+V9c5\nhg07R6mpM9XQcFipqUnypoE4QoAAAAAA+CQYlGbN8noavPKKNyzhxhulGTOkbt38rq7zZWVlaezY\nM7Vw4Sr17j3K73IANEOAAAAAAHQi56QPP/R6Gjz7rPcUhRtukH76U+mMM/yuzn/jxxdr3ryFkggQ\ngFhDgAAAAAB0grVrjzxBwTmvp0FpqTRkiN+VxZbBgwcrO/s11dbuU0ZGnD2LEkhwAb8LAAAAABLV\njh3SAw9I558vfepT3s0Rn3xSWrNGmjaN8KAlqampmjBhqHbtKvO7FADNECAAAAAAUbR3r/TnP3s3\nQTznHO8pCv/zP9LWrV6YMGZMYj1+sSOMGVOsUGiZ32UAaIYhDAAAAMApqq2VXn/dG6Lw9tvSJZdI\nt98uvfqqlJXld3Xxp3///iooOKgDB3YpJ+c0v8sBEEYPBAAAAOAkHDok/fWv0pe/LJ1+uvTb30pX\nXimVl0svvyxddx3hwckyM5WUDNcnnyz3uxQAEQgQAAAAgHY6eFB68UXp+uul3r290ODCC6VVq7zH\nMd52m5Sf73eVieG880bIueVyzvldCoAwhjAAAAAAx1FT4w1PeOEF6a23vHsYXHed9JvfSKfRu77D\n9OrVS4WF6dq3b4vy8gr9LgeA6IEAAAAAHGP/fumZZ6Rrr5X69JFmzJCuuEJav967x8HttxMedDQz\n08UXF6u6mpspArGCAAEAAACQ9/SEJ5+UJk/2QoMnn5QmTZI2bpTefFO69VapRw+/q0wuI0cWS1qp\nUCjodykAxBAGAAAAJLGqKumVV7zhCe+9J118sfTFL0qPPSZ16+Z3dejWrZuGD++pjRvXqUePIX6X\nAyS9qPRAMLNHzKzCzOhfBAAAgJj2ySfSI49IV10l9e/vPWrxhhukrVu9MOErXyE8iCUTJhTrwAEu\nM4BYEK0eCH+W9DtJj0dpfwAAAEDU7N7tPVrxhRekBQukyy+Xbr5Zev55qUsXv6vD8QwfPkwpKW+r\noaFWqakZfpcDJLWoBAjOublmVhSNfQEAAADRsHPnkdBg0SLpyiu9mx++/LKUk+N3dWivrKwsjR07\nQIsWrdLpp4/0uxwgqXEPBAAAACSM7dull17yQoMlS6TPfEa64w4vPMjK8rs6nKzx44s1f/4iSQQI\ngJ86NUCYNm1a0+uSkhKVlJR05uEBAPBdaWmpSktL/S4DSChbthwJDVaskD77Wenb3/aGKWRm+l0d\nomHw4MHKzHxNtbX7lZHBmBPAL74FCAAAJKPmAfr06dP9KwaIY5s2SS++KP3lL9KaNd7jFu++W7r0\nUimDYfIJJy0tTRMnDtU775Spb98L/C4HSFrRDBAsPAEAAABR5Zy0erX3xIQXX5Q2bJCuuUaaNs17\n9GJ6ut8VoqONGVOst956WxIBAuCXqAQIZva0pBJJBWa2WdJU59yfo7FvAAAAJKeGBmnePC80ePVV\n6fBhr6fBT38qlZRIaWl+V4jO1L9/f+Xn1+jAgd3KyenpdzlAUorWUxhuiMZ+AAAAkNz27ZPeessL\nDF5/Xerf3wsNnn9eGjlSMvq7Jq1AIKBLLinWSy8tV07OJX6XAySlgN8FAAAAILlt3iz9/vfSFVdI\nffpIM2ZI48d7T1FYtEiaOlUaNYrwANK55xYrFFom55zfpQBJicc4AgAAoFM5Jy1eLL3yitfTYMsW\n73GLt9/uPUmhCzfZRytOP/10FRamad++LcrLK/S7HCDpECAAAACgw9XWSrNmHbmfQXa2NHmy9Nvf\nShdcIKXyqRTtYGa6+OJiPf74cgIEwAf8Uw0AAIAOUVnp3cfg1Veld96Riou9+xm8+640ZIjf1SFe\njRxZrMcf/6NCoSsVCKT4XQ6QVAgQAAAAEDVr1hzpZbB0qfTpT3uhwUMPST25cT6iID8/X+ec00Ob\nN69XQcFgv8sBkgoBAgAAAE5aMCi9//6R0GD/fulzn5Puvlu6+GIpM9PvCpGIJk4s1h/+sIwAAehk\nBAgAAAA4ITU10syZXmDw9797T06YNEl68klp9GgpwHO+0MGGDx+m1NR31dBQq9TUDL/LAZIGAQIA\nAADatG2b9NprXmgwd640bpwXGkyfLhUV+V0dkk12drbOP79Iixev1umn/4vf5QBJgwABAAAAx3DO\nu4dB49CEjRulq66Sbr5ZeuYZKS/P7wqR7C68sFgffLBYEgEC0FkIEAAAANBk+3bp0UelGTO8EGHy\nZOmXv5QuvFBKS/O7OuCIIUOGKDPzb6qrq1F6eq7f5QBJgRFqAAAASa6+XnrlFe/mh8OGSeXl0tNP\nS+vWSfffL5WUEB4g9qSlpelTnzpbu3aV+V0KkDTogQAAAJCk1q6VHnlEeuwxaeBA6dZbveEJuXyZ\nizgxdmyx3n77XUnj/C4FSAoECAAAAEnk4EHphRe84GD1aumrX5X+8Q9p6FC/KwNO3IABA9St2z4d\nPFip7OwefpcDJDyGMAAAAF+ZWb6ZzTSzj83sLTNr8fZ8Znalma02szVm9v2I5VPNbKuZfRSeruy8\n6uODc9KiRdLXvy717Ss9+6z0zW9KW7ZIv/gF4QHiVyAQ0CWXFKuycrnfpQBJgQABAAD47S5J7zjn\nhkj6h6S7mzcws4CkByVdIWmYpOvN7OyIJvc750aHpzc7o+h4UFUlPfigNGqU9MUvSmec4T1Z4fXX\npWuvldLT/a4QOHXnnlusUGiZnHN+lwIkPAIEAADgt8mSHgu/fkzSNS20GSNprXNuk3OuXtKz4e0a\nWceWGD9CIW9Iwo03SgMGSPPmeU9RWL9e+vGPpX79/K4QiK7evXurX78U7du31e9SgIRHgAAAAPx2\nmnOuQpKcczslndZCmz6StkTMbw0va3SHmS0xsz+1NgQi0W3bJv30p9KgQdJ//Zc0dqwXGjzzjPTp\nT0sBPvUhQZmZLr64WFVVDGMAOho3UQQAAB3OzN6W1CtykSQn6UctND/Rfsh/kHSvc86Z2U8k3S/p\n1tYaT5s2rel1SUmJSkpKTvBwsaO+Xvr736U//UmaP1+67jrv/gbnnScZfTKQREaNGqEnnviTQqEr\nFAik+F0OEPNKS0tVWlp6wtsRIAAAgA7nnLustXVmVmFmvZxzFWZ2uqRdLTTbJqkwYr5veJmcc7sj\nlv9R0mvHqyUyQIhXa9YcefzioEHe4xefe07KyfG7MsAf+fn5Gjq0u7ZsWa+CgsF+lwPEvOYB+vTp\n09u1HZ3ZAACA316VdHP49U2SXmmhzUJJZ5lZkZmlS5oS3k7h0KHRtZLKOq5U/xw44AUGEyZ4k3NS\naak0Z450882EB8DEicXav59hDEBHogcCAADw232Snjezf5O0SdK/SpKZ9Zb0R+fcZ51zQTO7Q9JM\neV+APOKcWxXe/udmNlJSSFK5pK919hvoKI2PX/zTn6Tnn5cuuED61rekz35WSkvzuzogtgwfPkyp\nqf9QMFinlBQeMQJ0BAIEAADgK+fcHkmfbmH5DkmfjZh/U9KQFtp9tUML9MGePdKTT3rDFPbvl/7t\n36Rly6S+ff2uDIhdOTk5OvfcQi1btlq9eo3wuxwgITGEAQAAIAaEQtK770o33CCdeab0wQfS/fdL\n69ZJP/oR4QHQHhddVKxDh5b5XQaQsOiBAAAA4KOtW6VHH5VmzJC6dJFuu0168EGpe3e/KwPiz5Ah\nQ5SZ+XfV1dUoPT3X73KAhEOAAAAA4KNf/Uo6dMi7x8G55/L4ReBUpKen66KLhmj27BXq02es3+UA\nCYcAAQAAwEe//rXfFQCJZdy4Yr377ixJBAhAtHEPBAAAAAAJ48wzz1Re3l4dPPiJ36UACYcAAQAA\nAEDCCAQCuuSS4aqsXO53KUDCIUAAAAAAkFDOPbdYodAyOef8LgVIKAQIAAAAABLKGWecoT59TPv3\nb/O7FCChECAAAAAASChmpksvHaGqKoYxANFEgAAAAAAg4YwcWSznyhQKBf0uBUgYBAgAAAAAEk73\n7t119tn5qqra4HcpQMIgQAAAAACQkEpKirV/P8MYgGghQAAAAACQkIqLhyslZY2CwTq/SwESAgEC\nAAAAgISUk5Ojc8/tp8rK1X6XAiQEAgQAAAAACeuii4p16BDDGIBoIEAAAAAAkLDOPvtsZWZuUV3d\nAb9LAeIeAQIAAACAhJWenq4LLxys3btX+F0KEPcIEAAAAAAktHHjitXQsMzvMoC4R4AAAAAAIKEN\nHDhQXbtW6dChPX6XAsQ1AgQAAAAACS0QCOjii4dr925upgicCgIEAAAAAAnvvPOKFQotk3PO71KA\nuEWAAAAAACDh9enTR2ec4bR//3a/SwHiFgECAAAAgIRnZrr00hGqqmIYA3CyCBAAAAAAJIWRI4sl\nlcm5kN+lAHGJAAEAAABAUigoKNDgwXmqqtrgdylAXCJAAAAAAJA0Jk4s1r59DGMATgYBAgAAAICk\nMWLEcKWkfKxgsM7vUoC4Q4AAAAAAIGnk5uZq1Ki+qqz82O9SgLhDgAAAAAAgqVx0UbEOHWIYA3Ci\nCBAAAAAAJJVzzhmqjIzNqqs74HcpQFwhQAAAAACQVNLT03XhhYO0e/cKv0sB4kqq3wUAAJKbc67F\nKRQKHXf+RNtIUm1trTIyMnx+xwCAWDBuXLFmzZojaYzfpQBxgwABQFxovBBsbQoGg8ddf7LtgsGQ\nJGnmzHfDNXhT5OvI+dbaHG/9yf6UpKlTH2o6R43LIs9ZpFNd3+72edK3vvWrplqDwVDExbyL+F0e\nuciX7KjJLNCuZVJAZkfmnWupXXi+UFq8eLHGjRsnAAAGDhyorl1f0aFDVcrKyve7HCAuECAA8EUo\nFFJVVZUqKiq0Y8curV9fIUn65jd/2XTh7k1BBYPexaZ3YRiQWUBmKfIuDL155wJN671lR9ZHTs5F\nzqe0uNy5xvnw+gHSM8+kN12oxspPdf0PHTjw+fAZtaPOr9fmqCUnvP7oJkfPm5lSUlrb/r+Vmfnv\narzoP7b+lpY1r6cj3KpQKNQJxwEAxIOUlBRNnDhMf/vbchUWTvC7HCAuECAA6HAHDhxQRUWFKip2\nqby8QuvWVWjLlt1qaMiR1Euh0GnKzh4m9ZKys7+mQCAlfJF5ZOq8i8yWFRV9yrdjH09u7ul+l9Ci\njIyufpcAAECbzj+/WK+++oqc+5SvnzOAeEGAACBq6uvrtXv3blVUVGjbtl1au7ZC5eUV2rs3qECg\nl5zrpbS0PsrJGa3TTjtNqanHjkXPyOjiQ+UAACAZ9e3bV6efHlRNzQ516XKG3+UAMS8qAYKZXSnp\nAXn9fx9xzt0Xjf0CiE3OuabhBzt3esMP1q+vUEXFXkkFknpJOk05ORcoN7eXunXrQqoPAABijpnp\n0ktH6OmnlxMgAO1wygGCeX2LH5R0qaTtkhaa2SvOudWnum8A/jt48GA4KKjQ5s27tG5dhTZv3q36\n+ixJveTcacrMHKrc3BL17VugQCClzX0CAADEilGjivXUU/+/vTsPkuMs7zj+e+baS5a0knZWQgq2\niG0ZyzLGFQ5zxOsQFRQhmBxFYVIVrn+SQCAJRXGZkrZCVTBFDhL+SYwxkAoBQg4wFQimYF2FU6QA\nIyyD41jS6iztzmolraxdaY+ZJ390z+zsMdvTu7PTs9rvp6qru99+u/vd1mr2eZ/p7vfzct8fPjYJ\noJZG3IHwUknPuvsJSTKzL0u6VxIJBGANmZmZmfP4wZEjwxocHNbFi9OVxw8ymR3asOEO9fTklcm0\nJ91khEqV0RE8Yr2eOvWtS7OjLnhYNjtKwyaN+uiccrfyaAs+51juLq+azx6vXM/nnKdSP6wz27b5\n2xYeX6mblrqMAIB1atu2bbrppo0aHh7Uli2/nHRzgJbWiATCTkmnqtZPi8FUsc65S8WiND0tzczM\nzsvTaq7XU3dyckYTExO6cmVSzz03qfHxSV29OiP3nKS83H9J6XSb0uk2pVIZuVvl54qaL7fO9LYn\npNfcqI/bXqmqc+jmc9ZVY93Ng6Lydqvu8M5bt7mdzEX3sapzaKP6talquzT3/HWUzSlfQdmcY0v9\nZnMHQPBw3cuF89cXK1vGenk2v0647TN+U7Ds1eVVIy6U9ysvl0eWmHMOk8lm65TrV+pZ5by24Biz\n9SvbiiS9AACLu+ee2/Xgg4dJIAARmvoSxYMHD1aW+/r61NfX18zTY40pd8Cnp6WpqdnlpaZyver6\n88uaVSeVkrLZYMpkgqnWciPXOzqi6z/55FM6fPioisWiUilp69bt2rBhpzo6NqmtbaPS6eCjwar6\nbNXLteYrqTOT2qOHXPod/0rQbax0BqVUeai/cL28vbIedjDDkqCuV62FncjKexjcKsdU+chedczy\nPmEH9W/tev2JTs6eq6K6fRFl0rzyZZb5bNmfW0oHNDehMP+UNddXUb+ZDniNdiWov0XewzEwMKCB\ngYGkmwEAqHL77bfJbEDF4rTS6WzSzQFaViMSCGckPb9qfVdYtkB1AgGN5T7biS1/y7xay/V24lc6\nSbMd8GxWyuXmrs+fqreXl2vNy8vt7dF16jnOYvNUCz9C99a33qFS6XZduHBBIyMjGhoq6PjxQxoc\nLOjMmVGVStdJyqtUyqujo0ddXXl1dm5TKrWaOccuyY7ohX7bKp5jmeySNvmmpFuxkEm18gdoXfMT\n6P39/ck1BgAgSdqwYYNe/OKdevrpZ5TPt2AsArSIRvQGfiTpRjO7XtJZSW+RdF8DjpuI8q3nU1PN\nm8qd7sXK6+3Ql0pzv2Wu/ua7upNda1vc5Y4OaePG+jrzy53SvItvVaVSKW3dulVbt27VLbfcUikv\nlUo6f/68CoWChodHdOzYMzpx4gc6c+a83DdJ6glfnFhOLGxd5cQCAADA6nvVq/bpJz85LIkEAlDL\niqN+dy+a2XskfUezwzg+veKWNcFf/qX0qU8t7MinUkEHuNFTZ+ds5zpqitvpT6dnbwUHViKVSmnb\ntm3atm2bbr1VuueeoLxYLFYSC0NDIxocfFqDg4/pzJmLct+scmKhoyOvrq4edXQwIgMAAFg7br31\nhcrlvqXp6Qlls51JNwdoSQ352tDdvy1pTyOO1Uzvepd0330LO+588w0slE6n1dPTo56eHu3dO1s+\nMzOj0dFRjYyM6OzZggYHn9LgYEGnT49J6lbwKET5boUedXRsIbEAAABaTltbm17xipv0+OM/186d\nLxm2AvAAAA6USURBVEm6OUBLWtf3HW/eHEwAli+Tyai3t1e9vb26reqOv5mZGZ07d66SWDh27Ekd\nP17QqVOXZLZFwWgPPerszKurK6+Oju6mvugPAABgvrvu2qfHHntcEgkEYDHrOoEAYPVkMhlt375d\n27dv1759s+XT09M6d+6cCoWCzp4d0dGjP9XJkyM6efKydIN06tTDMkuFQ0eagiejFi6711defZzy\nslmqMspDedkspfIQgwuWd0jDw0+GP0HVaA5VIzbMXW5OPW2ULl8emnPdfcHoB77C7fGPoW7p4sXj\nVQXzf5aEyrgbFQAQ4cYbb1Q+/02dPPmQSqW8stledXUFX3bwWANAAgFAk2WzWe3YsUM7duzQi140\nWz41NaXP/8X9+tjH7lGpVJK7y90bvlwquYrFokqloHxmZra8erlYLFXq/P0R6WUve1aSVCoFneVy\nvVpl5U52+RhL1VvOPmVdXf8uaX7HWYuWpVIWa/uyjzEu7do1sGh7V1JWXg7+TVXXPvPLuru7F/yM\nSJ6ZdUv6iqTrJR2X9GZ3H1uk3kOS3iBp2N1vj7s/AERJp9Pq73+3hoaGNDQ0rJMnh3Xs2GGdOFHQ\n1as5mQWjVLW391Yez2TYR6wntvi3TatwIjNv1rkArE3Wb/IDrfc5QbvioV3xmJk8uD1m3TKzBySN\nuvsnzeyDkrrd/UOL1HuVpMuSvjgvgVDX/mFd4hEAsbm7xsbGwlGqCjp6dLhq+OtNCh7NzKuzszd8\nNHNLeEcjMNfp0/+sD3zgTu3Z01qvEKw3HuEOBAAAkLR7Jd0dLn9B0oCkBQkAd/9BOGz0svYHgOUy\nM23evFmbN2/WzTffrFe/OigvFosaHR0NH80s6MiRn+n48YJOnrwss21yz8ssrw0bgsRCLnfdoncN\nAmsFCQQAAJC0vLsPS5K7D5lZvsn7A8CypNNp5fN55fN53XabtH9/UD41NaVCoaBCoaDTpws6cuSI\nTpwoaGioJLPgboVMZjaxkMm0J/uDAHUigQAAAFadmT0qqbe6SMEbOO9fpPpKnzFYcv+DBw9Wlvv6\n+tTX17fC0wHAXLlcTrt27dKuXbt0552z5ePj4yoUCuH7Fc7q6NGf6cSJgqam2pVK9apYzKu9PUgs\ndHZuUypFdw2rY2BgQAMDA7H34zcSAACsOnffX2ubmQ2bWa+7D5vZdkmFmIePtX91AgEAmqmrq0u7\nd+/W7t27ddddQZm76+LFi+FjEMMaHHxWg4OP68yZ83LfLLNelUp5dXbm1dZ2nbLZTmWzXUqnczwO\ngWWbn0Dv7++vaz8SCAAAIGnfkPR2SQ9Iepukry9Rd3ac0+XtDwAtxczU3d2t7u5u7dmzR+U+XbFY\nrAx9febMsAYHD2l09LLGxsZ17tyEJieLMuuUWaeCsYo7VSp1yr0rTDIsnLijASvFbxAAAEjaA5K+\nambvlHRC0pslycx2SHrQ3d8Qrn9JUp+krWZ2UtIBd3+41v4AsJal02n19vaqt7dX+/btW7B9ZmZG\nExMTC6bnnhvX2NiILlyY0MWLE7p0KZhGRiZULGbmJB3cg0nqVC63MPGQyXS0xF0O7iWVSkWVSjML\nJvfFy0ulolKptNLpNqXTOWUywbx6nZEy4iOBAAAAEuXu5yX9+iLlZyW9oWr9rXH2B4BrWSaT0caN\nG7Vx48a66ru7JicnF006XLo0oYsXL+j8+XGNjZXXJzQxMSmpXalUl8p3ObgHdzqk07OJBklLduql\nGZkF81SqKGmmxhRscw+m8rKZK5vNKJvNKJNJK5cLlnO5uVMmk1ZbWybcntb0dFHj45O6cmVK4+OT\nunp1ShMTwfzKlUlJGZnlJLVV5lJO7rNz94WJh8XWU6lsSyRbVhsJBAAAAAC4xpmZ2tvb1d7eri1b\nttS1T6lU0pUrVyqJhvHx8XA+obGxMV24cFZjYxOSVOnElzvwbW3BlM2mlc22KZPpUiaTqUzpdHrO\n+lLbUqlUwzvn7q7p6WlNTU1pcnKy5nxyckrj489pfPycxsenKgmJiYlgfvlykJCYmioqlcpJysks\nSEBUJyTcg/nVq+ca+nM0GwkEAAAAAMACqVRKXV1d6urqSropDWdmyuVyyuVy2rBhw4qPVyqVqpIO\nSyUk9up5z3teA36CZJBAAAAAAABgBVKpVOUOj2sZb40AAAAAAACRSCAAAAAAAIBIJBAAAAAAAEAk\nEggAAAAAACASCQQAAAAAABCJBAIAAAAAAIhEAgEAAAAAAEQigQAAAAAAACKRQAAAAAAAAJFIIAAA\nAAAAgEgkEAAAAAAAQCQSCAAAAAAAIBIJBAAAAAAAEIkEAgAAAAAAiEQCAQAAAAAARCKBAAAAAAAA\nIpFAAAAAAAAAkUggAAAAAACASCQQAAAAAABApEzSDQAArH0Dxwc0cHxAknT39Xfr4MBBSVLfDX3q\nu6GPdgEAAFwDzN2bcyIzb9a5AKxN1m/yA633OdFK7aruEA8cH6h0gukQr11mJne3pNuxXhCPAACw\nUL3xCHcgAMAaQqIAAAAASeEdCAAAAAAAIBIJBAAAAAAAEIlHGAAkipfcAQAAAGsDL1EEgEXwskI0\nCy9RbC7iEQAAFqo3HiGBAABAgkggNBfxCAAAC9Ubj/AOBAAAAAAAEIkEAgAAAAAAiEQCAQAAAAAA\nRCKBAAAAAAAAIpFAAAAAAAAAkUggAAAAAACASCQQAAAAAABAJBIIAAAAAAAgEgkEAAAAAAAQiQQC\nAAAAAACIRAIBAAAAAABEIoEAAAAAAAAikUAAAAAAAACRSCAAAAAAAIBIJBAAAAAAAEAkEggAAAAA\nACASCQQAAAAAABBpRQkEM/tdM3vKzIpmdmejGgVpYGAg6SasKVyveLhe8XC94uF6IS4z6zaz75jZ\nM2b2X2a2qUa9h8xs2MyenFd+wMxOm9kT4fS65rT82sf/53i4XvFwveLhesXD9VodK70D4bCk35L0\nWAPagir8wsfD9YqH6xUP1yserheW4UOSvuvueyR9T9KHa9R7WNJra2z7K3e/M5y+vRqNXI/4/xwP\n1yserlc8XK94uF6rY0UJBHd/xt2flWQNag8AAFh/7pX0hXD5C5LetFgld/+BpAs1jkEsAgDAKuMd\nCAAAIGl5dx+WJHcfkpRfxjHeY2aHzOyztR6BAAAAK2PuvnQFs0cl9VYXSXJJH3X3R8I635f0fnd/\nYonjLH0iAADWKXe/5r89XyKeuF/S5919S1XdUXffWuM410t6xN1vryrrkXTO3d3MPi5ph7u/q8b+\nxCMAACyinngkU8dB9jerMQAA4Nq0VDwRvhix192HzWy7pELMY49UrT4o6ZEl6hKPAACwTI18hIE/\nyAAAYDm+Ient4fLbJH19ibqmeTFHmHQo+21JTzWycQAAILDSYRzfZGanJL1c0jfN7FuNaRYAAFhH\nHpC038yekfQaSZ+QJDPbYWbfLFcysy9J+m9JN5vZSTN7R7jpk2b2pJkdknS3pD9tbvMBAFgfIt+B\nAAAAAAAA0PRRGMzsj83saTM7bGafaPb51yIze7+ZlcxsS3Tt9cvMPhn+bh0ys381s41Jt6kVmdnr\nzOx/zez/zOyDSbenlZnZLjP7npn9PPzMem/SbVoLzCxlZk+Y2TeSbkurM7NNZvYv4WfXz83sZUm3\nab0gHomPeKQ+xCP1IR6pH/HI8hCP1C9OPNLUBIKZ9Un6TUn73H2fpE818/xrkZntkrRf0omk27IG\nfEfSXne/Q9Kzkj6ccHtajpmlJH1G0msl7ZV0n5ndkmyrWtqMpD9z972S7pL0bq5XXd4n6RdJN2KN\n+LSk/3T3F0p6kaSnE27PukA8Eh/xSCzEIxGIR2IjHlke4pH61R2PNPsOhD+U9Al3n5Ekdz/X5POv\nRX8t6QNJN2ItcPfvunspXP2hpF1JtqdFvVTSs+5+wt2nJX1Z0r0Jt6llufuQux8Kly8r+DDdmWyr\nWlvYyXi9pM8m3ZZWF34r+Wp3f1iS3H3G3S8l3Kz1gngkPuKROhGP1IV4JAbikfiIR+oXNx5pdgLh\nZkm/amY/NLPvm9mvNPn8a4qZvVHSKXc/nHRb1qB3SuKlngvtlHSqav20+ANUFzO7QdIdkv4n2Za0\nvHIngxfsRNst6ZyZPRzeYvkPZtaRdKPWCeKRGIhHVoR4ZHHEI8tEPFI34pH6xYpHMo0+u5k9Kqm3\nukjBP9z94fm63f3lZvYSSV+V9IJGt2EtibheH1Fwu2D1tnVtiev1UXd/JKzzUUnT7v6lBJqIa5CZ\nbZD0NUnvCzP/WISZ/YakYXc/FN4ivu4/syJkJN0p6d3u/mMz+xtJH5J0INlmXRuIR+IhHomHeARJ\nIB6pD/FIbLHikYYnENx9f61tZvYHkv4trPej8EU8W919tNHtWCtqXS8zu03SDZJ+Zmam4Pa3n5jZ\nS9290MQmtpSlfr8kyczeruB2pV9rSoPWnjOSnl+1vissQw1mllHwx/of3X2psekhvVLSG83s9ZI6\nJF1nZl90999PuF2t6rSCb3V/HK5/TRIvEmsQ4pF4iEfiIR5ZMeKRmIhHYiEeiSdWPNLsRxj+Q+EH\nqZndLCm7nv9YL8Xdn3L37e7+AnffreAf9sXr+Y91FDN7nYJbld7o7pNJt6dF/UjSjWZ2vZnlJL1F\nEm+mXdrnJP3C3T+ddENanbt/xN2f7+4vUPC79T3+WNfm7sOSToV/DyXpNeJlT81CPFIn4pH4iEfq\nQjwSH/FInYhH4okbjzT8DoQID0v6nJkdljQpiX/I+rm4/SbK30nKSXo0+JJEP3T3P0q2Sa3F3Ytm\n9h4Fb4hOSXrI3Xnrew1m9kpJvyfpsJn9VMH/w4+4+7eTbRmuIe+V9E9mlpV0TNI7Em7PekE8snzE\nI9GIRyIQj8RDPIImqDseMXfeKwEAAAAAAJbW7EcYAAAAAADAGkQCAQAAAAAARCKBAAAAAAAAIpFA\nAAAAAAAAkUggAAAAAACASCQQAAAAAABAJBIIAAAAAAAg0v8DKqxIkSzxlWUAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1fae6e8d438>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def does_trend_up(ticker, event, horizon):\n",
" # Figure out if the `event` has an uptrend for\n",
" # the `horizon` days preceding it\n",
" # As an interpretation note: it is assumed that\n",
" # the closing price of day `event` is the reference\n",
" # point, and we want `horizon` days before that.\n",
" # The price_data.hdf was created in the second appendix code block\n",
" try:\n",
" ticker_data = pd.read_hdf('price_data.hdf', ticker)\n",
" data = ticker_data[event-TradeDay(horizon):event]\n",
" midpoints = data['Open']/2 + data['Close']/2\n",
"\n",
" # Shift dates one forward into the future and subtract\n",
" # Effectively: do we trend down over all days?\n",
" elems = midpoints - midpoints.shift(1)\n",
" return len(elems)-1 == len(elems.dropna()[elems >= 0])\n",
" except KeyError:\n",
" # If the stock doesn't exist, it doesn't qualify as trending down\n",
" # Mostly this is here to make sure the entire analysis doesn't \n",
" # blow up if there were issues in data retrieval\n",
" return False\n",
"\n",
"study_trend(5, does_trend_up)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The patterns here are very similar. With the exception of noting that stocks can go to nearly 400% after an earnings announcement (most likely this included a takeover announcement, etc.), we still see large min/max bars and wide standard deviation of returns.\n",
"\n",
"We'll repeat the pattern for stocks going up for both 8 and 3 days straight, but at this point, the results should be very predictable:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100% (47578 of 47578) |###########################################################| Elapsed Time: 0:20:51 Time: 0:20:51\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBcAAAGNCAYAAABKeZmzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8nGW9///XZyaTvU1XkjZtlhZFEKpUyqqlLLJ9QUBE\niorQI+rhAXLU4xeKG63Hs+DvezwcF1Q8lE3ZBFQUWpYjKSAUSqGUQte0aZq2SemWNNtkluv3xz1J\nJmnSps0kd5J5P33czr1cc9+fmSntPe+57us25xwiIiIiIiIiIkcq4HcBIiIiIiIiIjK8KVwQERER\nERERkX5RuCAiIiIiIiIi/aJwQURERERERET6ReGCiIiIiIiIiPSLwgURERERERER6ReFCyIiklbM\n7DIzi5vZh/vQ9lozK0pavtvMPjKwFaaOmd1hZqvN7D0zu7MP7UvN7N1Bqu12M6sxs7cS0wWJ9ePM\n7G9mtt/MfpbUPt/M3k60fdvMPjCznw5GrT3UfpsfxxURERnKFC6IiEi6mQu8DFzdh7bXAcXtC865\nrznn1g5QXf1iZsFuy6cBpzvnjgeOB042s9l92JUbiPp68VPn3MzEtCSxrhX4PvDPXYpyrtE5d2Ki\n7YnAFuCJQaw12Xd9Oq6IiMiQpXBBRETShpnlAWcAX6FbuGBmt5rZqsSv4v9mZlcAJwG/S/xanm1m\nL5rZzET7qxPtV5nZfyTtZ7+Z/djMVprZq2Y2sYc6xprZH83snUSb482z2cxGJ7Vbb2YTzWyCmT1u\nZq8nptMS2283swfM7BXggW6HcUC2mWUDOUAGUNdDLZ9I1Po2cGPS+lIze8nM3kxMpybW329mn0lq\n9zszu8TMjkvU9lZif9P78pF0X+Gca3bOvQqEe32S1+tkonPu7z1syzWze8xsmZmtMLNLEutfM7Nj\nk9q9aGYzD9L+WjN7wswWm9m69s/YzP4dyEm8zgcTz/9r4s/NKjO7sg+vW0REZMRRuCAiIunkUmCJ\nc24jsMvMTgRIdMm/BJiV+FX8J865J4DlwBcSv5a3tu/EzCYB/wHMAT4OzEr6wp0HvOqc+zheD4mv\n9lDHQuAt59zHgO8BDzrnHPAn4PLEMU4GqpxzHwD/jfcr/ynA54B7kvZ1LHC2c+6LyQdwzi0DKoAd\nwDbgWefcuh5qWQTcmHjdyXYC5zrnTsLr7fHzxPp7gHmJGkcDpwFPA/8I3Omcm4kXytQk2jydfGlJ\nNzclgoj/MbOCXtr05Crg0V62fQ/4X+fcqcDZwP8zsxzgkcTzSNRT5Jx76yDtAT4GXAnMAOaaWbFz\n7jagOfFn4hrgAmBbolfFDGAJIiIiaUjhgoiIpJOr8b5kgvfltL33wrnAvc65MIBzbl9ivdHDr+vA\nLOBF59we51wc+D3QfslBm3PumcT8CqCsh+d/EngwcawXgXFmlg88hvdFnsRj+xfoc4FfJHoXPAXk\nm1luYttTzrm27gdI9Bz4CDAZ79KOc8zsjG5tCoCCpB4ADyZtDgH/Y2argD/ghRg4514Cjjaz8Xjv\n3xOJ9+A14Htm9n+BsqT38v8452p7eA/uAqYlQpha4HDGT5gLPNzLtvOA+Yn3qgLIBEoSr+FziTaf\nBx4/RHvwQofGxGt5Hyjt4XjvAp82s383s0865/YfxusQEREZMTL8LkBERGQwmNlYvF+mjzczBwTx\nLh245Uh32cv6SNJ8jJ7/re0+roEBOOdeM7PpZjYBuAz4UdL2U5xzkS5PMgNo6qWOy4FlzrmWRNvF\neL0MDriUoBffAmqdczMS4zm0JG17ALgG70v+dYnaHzazZcDFwDNm9jXnXEVvO0/0yGj3W+AvfSnK\nzGYAQefc2wdpdoVzbkMPz91lZifg9WD4+sHaJy4DSb40I/mz7PjsnXMbEpfKXAT82MxecM79uC+v\nRUREZCRRzwUREUkXVwIPOOfKnXPTnHOlwGYz+yTwPDCvvTt8IogAaABG97CvN4DZ5t3ZIIj3C37F\nYdTyMvClxLHmAB845xoT2/6I9yv++0k9KJ4D/qn9yWb2sT4coxo408yCZhYCzgTWJDdwztUD+8zs\n9MSqLyVtLsC7pALgy3hhTLv7gW96u/AGuDSzcufcZufcz4E/411K0Ktul0p8FljdU7Me1l1N770W\nAJ4Fbk46zseTtj2KFyaNds6t7kP73rQlPvf2S2RanHMPAf8fMLMPzxcRERlxFC6IiEi6uArvi3uy\nJ4GrnXPP4v1y/qaZvUXnnQruB36dGLwvm0SPg0Q3//l4gcLbwJvOub8mntOXuy0sBD5hZu8A/wZc\nm7TtMeCLdF6+AV6wcJJ5A0Cupuuv7r15HNiE123/beBt59zTPbT7B+CuxOtOrv0u4LrE5QIfJqmH\nhHNuJ15QcW9S+8+bd9vLt4GPkhhg8iBjLvwkMQDiSrzg41vtG8xsM/CfwLVmVm1db/95JQcPF34M\nhBL7fpfO3h/g3V2i+3gNye1Xd2ufLPm9uRt418weBE4A3ki87h8m9iciIpJ2zBs/SkRERKRvEuM9\nvAPM1BgDIiIiAuq5ICIiIofBzM7BG9zwZwoWREREpJ16LoiIiIiIiIhIv6jngoiIiIiIiIj0i8IF\nEREREREREekXhQsiIiIiIiIi0i8KF0RERERERESkXxQuiIiIiIiIiEi/KFwQERERERERkX5RuCAi\nIiIiIiIi/aJwQURERERERET6ReGCiIiIiIiIiPSLwgURERERERER6ReFCyIiIiIiIiLSLwoXRERE\nRERERKRfFC6IiIiIiIiISL8oXBARERERERGRflG4ICIiIiIiIiL9onBBRERERERERPpF4YKIiIiI\niIiI9IvCBRERERERERHpF4ULIiIiIiIiItIvKQkXzOwCM1trZuvN7NaDtJtlZhEz+2wqjisiIiLp\n51DnHWZ2jJm9amatZvbtw3muiIiIHBlzzvVvB2YBYD1wDrAdWA7Mdc6t7aHd80ALsMg592S/Diwi\nIiJppy/nHWY2ASgFLgP2Oud+2tfnioiIyJFJRc+Fk4ENzrktzrkI8AhwaQ/tvgE8DuxMwTFFREQk\nPR3yvMM5t8s5twKIHu5zRURE5MikIlwoBrYmLdck1nUws8nAZc65XwGWgmOKiIhIejrkeccAPVdE\nREQOImOQjnMnkHxdY68Bg5n17zoNERGREco5p4B+EOhcREREpHe9nY+kIlzYBpQkLU9JrEt2EvCI\nmRkwAbjQzCLOuad6KTYFZUmqLFiwgAULFvhdhvhAn3360mc/9Hj/hAp9O+/o93N1LjL06O+l9KXP\nPn3psx96DnY+kopwYTlwtJmVAjuAucDVyQ2cc9OSirkX+EtvwYKIiIjIQRzyvKOb5LOgw32uiIiI\n9FG/wwXnXMzMbgKewxvD4R7n3Boz+7q32d3d/Sn9PaaIiIikp76cd5hZIfAmMAqIm9k/Acc55xp7\neq5PL0VERGREScmYC865JcAx3db9ppe2/5CKY8rgmTNnjt8liE/02acvffYylB3qvMM5VwdM7etz\nZXjQ30vpS599+tJnP7zYULum0MzcUKtJRETEb2amAR0Hic5FREREenaw85HBultEv5WVlbFlyxa/\ny5BDKC0tpaqqyu8yREREUk7nIoND5xIiIsPTsOm5kEhIfKhIDoc+JxGRgaGeC4NH5yL+0vssIjJ0\nHex8JDDYxYiIiIiIiIjIyKJwQURERERERET6ReGCiIiIiIiIiPSLwgURERERERER6ReFCyIiIiIi\nIiLSL8PmVpTd/fCHd1JdvW/A9l9SMoYf/eibA7b/wTJv3jymTp3Kj370I79LERERGXF0PtI3Oh8R\nERn5hm24UF29j7KyBQO2/6qqgdt3u1/+8pfcd999vPvuu3zhC19g0aJFA35MERERSR2dj4iIyEBw\nzhGNRgmHw7S2thIOhw+Yb2lppakpzP79rTQ2hjnppI9w4okzfKt52IYLQ9kdd9zBrbfeesh2xcXF\n/OAHP+DZZ5+lpaVlECoTERGRdKHzERER/0UiET744AOampq6hAMtLWEaGrxwoLHRe2xqCtPc3Epz\ns7c9GjUCgSwgC7NsIAvIxrmsxJRNMDiKjIyJNDRsIy9vs8KFkSYcDvep3WWXXQbA8uXL2bZt20Hb\n3nHHHfz85z+noaGB4uJi7rrrLs4666wD2r399ttcf/31bNy4kQsvvBAzO/wXICIiIsOezkdERAaP\nc47GxkZqa2upra1j48ZaKivr2L59LzAOGIWZFwzE415QkJExjoyMbILBLDIyssnIyCIYzGLUqGzG\njs0iEDjcr+tbU//CDoPChQHgnEvp/tavX88vf/lLVqxYQWFhIdXV1cRisQPaRSIRLr/8cr797W9z\n44038qc//Ymrr76a+fPnp7QeERERGfp0PiIiMjBisRi7du2itraWmpo61q+vpaqqjoYGh1khzhWR\nlXU0+fmfZMqUCUcQEgxP6fEqB1hlZSWPP/44ZoZzjr///e/85Cc/wTmHmXHKKadw5plnHvH+g8Eg\nbW1trF69mvHjx1NSUtJju2XLlhGNRrn55psBuOKKK5g1a9YRH1dERHpXUVVBRVVFx/ycsjkAzCmb\n0zEvMph0PiIiknotLS3U1tayY0ctmzd7PRJqanYTixUAhUAReXmnkp9fxJgxo9K6p5bChRSYPn16\nl2saw+Ewt9xyS0r3f+edd7JgwQLef/99zj//fP7zP/+TSZMmdWm3fft2iouLu6wrLS1NWR0iIsPB\nYH3pT96fLTQqrqtI2b5FjoTOR0REjlw8Hmfv3r3U1taybVstGzbUsWlTLXv2hBO9EQoJhaaSnz+L\noqKjCAZDfpc85ChcGCbmzp3L3LlzaWxs5Gtf+xrz58/n/vvv79Jm0qRJB1wrWV1dzdFHHz2YpYqI\n+Epf+kUGjs5HRGQkqaur45VX3mTduh1s2bKTSCQXKMK5InJzTyQ/v4iSkjFp3RvhcAT8LmAk6us1\njrFYjNbWVmKxWMdtRnq6dnH9+vW8+OKLtLW1kZmZSU5ODoHAgR/daaedRkZGBj//+c+JRqM8+eST\nvPHGG/1+PSIiIjL86HxERKRnu3fv5oEHHmf+/Ad55pnR7Nz5aSZO/DYlJd+kpGQupaVzmDjxWHJy\nxipYOAzDtudCScmYAb33c0nJmD63XbduHY888kjHNY5Lly7lRz/6Ucc1jqeddhqf/vSnD3jej3/8\nYxYuXNjxB/b3v/89t99+Oz/84Q+7tAuHw8yfP5+1a9cSCoU4/fTTufvuuwG46KKLmD17NvPnzycU\nCvHkk09y/fXX8/3vf5+LLrqIK664osu+ktuLiIhI/+h8ROcjIjJ87Nu3jyVLlvLcc+swO40pUz5D\nMJjpd1kjhqV6JOH+MjPXU03t/1DK0KbPSUSGEltouNsH/u+kwThO4u9X/XwyCHQu4i+9zyKSavv3\n7+eFF17m6affJR6fxeTJp5ORke13WSm1Y8dbnHnmVr7whUsH9DgHOx8Ztj0XRERERERERHrT3NzM\niy/+naeeeou2to8zadJNZGbm+V3WiKVwQUREREREREaMcDjMyy+/xh//+AbNzcdRVHQDWVmj/S5r\nxFO4ICIiIiIiIsNeJBLhtdfe4PHHX6Wh4WgKC7/KxIlj/S4rbShcEBGRQVNRVUFFVUXHfPstI5Nv\nHykiIiJyOKLRKG+++RaPPfYyu3dP5aijrqOsbKLfZaUdhQsiIjJokkMEW2hUXFfhaz0iIiIyfMXj\ncVaufIfHHlvKjh0TmTDhC5SXT/K7rLSlcEFEBp1+vT48g/V+6XMRERGR4cA5x+rV7/GHP1SwZUs+\n48Z9lvLyEr/LSnsKF0Rk0OnX68MzWO+XPheRgystLcVMdwMdaKWlpX6XICJDlHOO9evX84c/vMiG\nDUEKCi6krGya/m4eIoZ1uJCKX9n0S52IiIj0RVVVld8liIikrU2bNvHEE39j9eoIo0adTVnZhxUq\nDDHDOlxIxa9s+qXuQDfccANTpkzhe9/7nt+liIiIiIhIGtu6dSt//OPfWLGigdzcOZSVHa9QYYgK\n+F3ASFBWVkZ2djZ79uzpsv7EE08kEAhQXV2d8mO2tbXx5S9/mXHjxlFUVMS3vvWtlNX5q1/9SsGC\niIiIiIj4IhaLsXnzZn7zm4f4/vcf5733TqCs7EYKC09QsDCEDeueC0OFmVFeXs7DDz/MjTfeCMDq\n1atpaWkZsD/89913HytXrqSqqopQKMQbb7wxJOsUERERERE5lObmZjZs2MBbb61n+fJKWlvHEwx+\njNLSzxMI6GvrcKCeCylyzTXXcP/993cs33///Vx77bVd2jzzzDPMnDmTgoICSktLWbhwYce2xx57\njGnTptHY2AjA4sWLmTRpErt37+7xeKFQiIKCAkaPHk1OTg5nnnlmyuqcN28eP/zhDwFYunQpU6dO\n5ac//SmFhYUUFxdz33339elYIiIiIiIiPXHOUVdXR0XFy9xxxz184xs/484717Js2dGMGXMTJSVf\npbj4ZAULw4jChRQ59dRT2b9/P+vWrSMej/Poo4/ypS99CedcR5v8/HwefPBB6uvrefrpp/n1r3/N\nU089BcDnP/95zjjjDG6++Wb27NnD9ddfz6JFixg/fnyPx5s5cybLli1jwYIFKa+zu9raWvbv38/2\n7dv5n//5H2688Ubq6+sP67giIiIiIpLeotEoGzZs4Mknn+aWW+5k/vxHuP/+RrZtm0Nx8XcoLb2K\nSZNOJDMz3+9S5QiMqBjIFvrbtb+9V8CZZ57Jsccey+TJk7tsnz17dsf88ccfz9y5c1m6dCmf+cxn\nAPjFL37BjBkzmDNnDpdeeikXXnhhj8fZu3cvn/nMZ3j66ae5/fbbMTNuv/12AKZOncqSJUv46Ec/\nesR1dpeZmckPfvADAoEAF154Ifn5+axbt46TTz65T++LiIiIiIikJ++HzfW8+eZ63n67ikikCLMP\nM27clygpmaDLs0eQERUuuNt7//W9L/obTnzpS19i9uzZbN68mS9/+csHbH/99de57bbbWL16NW1t\nbbS1tXHllVd2bC8oKODKK6/kv/7rv3jyySd7Pc4f/vAHjjvuOM477zxOOukkZs+ejZlx7bXXEovF\nDhos9KXO7saPH08g0NnJJTc3t+PyDZGhbDBuNavb2YqIiIh0cs6xfft21qxZz2uvrWfTpn3A0WRn\nH8+ECZcRCuX4XaIMkBEVLvitpKSE8vJyFi9ezKJFiw7Y/sUvfpGbb76ZZ599llAoxLe+9a0uYyqs\nXLmSRYsWcfXVV/ONb3yDxYsX93icaDRKJBIBYNy4cbzwwgucfvrpPPTQQ3znO9/pd50iI8Vg3GpW\nt7MVERGRdBcOh9m0aRPvvLOeZcs20NCQg3MfpqDgAkpKpmKmq/HTgcKFFFu0aBF79+4lJyeHWCzW\nZVtjYyNjx47tuLvDQw89xPnnnw9Aa2sr11xzDf/xH//Bddddx6xZs/jVr37FDTfccMAxLrroIm67\n7TZ++9vfMm/ePILBIKeffjoPP/wwubm5/a5TRERERETkYPbu3cu6det54431vPtuDbHYFAKBDzN+\n/GxKSsb6XZ74QOFCCiRfJ1ReXk55eXmP2+666y6+/e1vc9NNN3HmmWdy1VVXsW/fPgC++93vUlpa\nyte+9jUAHnzwQc4++2zOO+88pk+f3uV4ZWVlLF68mFtuuYXvfOc7jBo1irlz5/Liiy9yySWXMG3a\nNM4777wjrvNwXq+IiIiIiIx8zjk++OADVq16j5dfXsOWLU3Ah8nLO4nCws+TkZHld4niM4ULKbBp\n06Ye1weDwS69Aj772c/y2c9+tse2P/3pT7ssz5gxg127dvV6zNNPP51XXnnlgPUHu4tDX+u89957\nO+bPPPNMqqur+7QfEREREREZOZxz7Ny5k3feeY+XXnqfmpoIZscxZswllJZO0Y+O0sWwDheSB1I7\ns/RMFlQsAA5vILVU7ENERERERGQkcM5RV1fXEShs3x4DjmPs2MspLZ2sQEF6NazDhVQEAAoRRERE\nREQknTnnqK2tZeVKL1CorXXAcYwbdwUlJZMUKEifDOtwQURERERERA5f+y0j33nnfV566X3q6gwv\nULiSkpIiBQpy2BQuiIiIiIiIpAHnHNu2bWPlSi9Q+OCDIHAc48dfRUlJoQIF6ReFCyIiIiIiIiOU\nc46ampqOQGHXrhBmxzFu3NWUlBylQEFSRuGCiIiIiIjICOKcY+vWrR2Bwu7dWcBxTJjwRUpKJipQ\nkAExbMKF0tJS/UcwDJSWlvpdgoiIiIhIWtq5cyevvrqCl156nz17cggEjmP8+GsoLZ3od2mSBoZN\nuFBVVeV3CSIiIiIiIkOKc47NmzezZMmrLF9eC3yCCRO+TFmZAgUZXMMmXBARERERERFPLBZj9er3\n+MtfXmXDhhjZ2acxdepcAgF9xRN/pORPnpldANwJBIB7nHN3dNv+BeDWxOJ+4Abn3LupOLaIiIiI\niEi6aG1t5Y03VvDUU6/zwQfjGT36HMrKjtYl5OK7focLZhYAfgGcA2wHlpvZn51za5OabQJmO+fq\nE0HEb4FT+3tsERERERGRdLBv3z5efvl1nnlmJS0tH2L8+KspL5/kd1kiHVLRc+FkYINzbguAmT0C\nXAp0hAvOuWVJ7ZcBxSk4roiIiIiIyIi2fft2nn/+VZYurcS5Eyks/EcKCwv8LkvkAKkIF4qBrUnL\nNXiBQ2+uBxan4LgiIiIiIiIjjnOO9evX8/TTr7Jq1T5CoVOZPPkSMjKy/C5NpFeDOtqHmZ0FzAM+\nebB2CxYs6JifM2cOc+bMGdC6REREhpqKigoqKir8LkNERAZRJBLhnXdW8ec/v0Z1dYjc3NMpKTmO\nQCDod2kih5SKcGEbUJK0PCWxrgszmwHcDVzgnNt7sB0mhwsiIiLpqHu4vnDhQv+KERGRAdXU1MRr\nry3nL39ZTn19MWPGXExZWakGaZRhJRXhwnLgaDMrBXYAc4GrkxuYWQnwBHCNc64yBccUEREREREZ\n1nbt2kVFxTKee241bW0fZeLE6ygrm+h3WSJHpN/hgnMuZmY3Ac/ReSvKNWb2dW+zuxv4ATAOuMu8\n+C3inDvYuAwiIiIiIiIjjnOO6upqnn32VV57rQazkygquonMzHy/SxPpl5SMueCcWwIc023db5Lm\nvwp8NRXHEhERERERGW7i8Tjvvfc+f/3rq6xbFyYz8zSmTPkcwWDI79JEUmJQB3QUERERERFJJ845\n1q5dx0MPPU91dR6jRs2mtPQYjacgI47CBRERERERkQGwY8cOHnvsWVasaKKg4ALKyo5WqCAjlsIF\nERERERGRFGpoaOCvf/1fnn++klBoDuXlMzEL+F2WyIBSuCAiIiIiIpIC4XCYioq/8+STy4lETqK4\n+BtkZGT5XZbIoFC4ICIiIiIi0g/xeJwVK97m4Ycr2LOnnKKifyQ7u8DvskQGlcIFERERERGRI1RZ\nWcnvf/8sGzfmMGHCXMrKiv0uScQXChdEREREREQO086dO3n88edYtmwPo0Z9mvLyj2iwRklrChdE\nRERERET6qLGxkcWLX2Tx4rUEg5+irGwWgUDQ77JEfKdwQURERERE5BAikQivvPIajz32Gq2tH2fy\n5JsIhXL8LktkyFC4ICIiIiIi0gvnHKtWvcvvf/+/1NUVU1T0VQoLx/ldlsiQo3BBRERERESkB1u2\nbOHhh5/l/feNceM+S3l5qd8liQxZChdERERERESS7N69mz/+8XlefnkHubnnUl5+vAZrFDkEhQsi\nIiIiIiJAc3Mzzz23lL/+9V3gdEpKriAYDPldlsiwoHBBRERERETSWjQaZdmy5TzyyMs0NX2USZNu\nJDMzz++yRIYVhQsiIiIiIpK2nHP85Ce/Ze3a0RQWzmPChIl+lyQyLClcEBERERGRtFVXV8eGDVGm\nTfui36WIDGsBvwsQERERERHxy/r1G3Fuut9liAx7ChdERERERCRtrVhRSX6+wgWR/lK4ICIiIsOK\nmV1gZmvNbL2Z3dpLm5+Z2QYzW2lmJyatrzKzd8zsbTN7Y/CqFpGhqK2tjfff38aYMWV+lyIy7GnM\nBRERERk2zCwA/AI4B9gOLDezPzvn1ia1uRCY7pz7kJmdAvwKODWxOQ7Mcc7tHeTSRWQI2rJlC7HY\nZDIysvwuRWTYU88FERERGU5OBjY457Y45yLAI8Cl3dpcCjwA4Jx7HSgws8LENkPnPyKSsGZNJWa6\nJEIkFfSPq4iIiAwnxcDWpOWaxLqDtdmW1MYBz5vZcjP76oBVKSLDwhtvbGTMGIULIqmgyyJEREQk\nnZzhnNthZhPxQoY1zrlX/C5KRAZffX0927Y1U1Iyye9SREYEhQsiIiIynGwDSpKWpyTWdW8ztac2\nzrkdiccPzOyPeJdZHBAuLFiwoGN+zpw5zJkzp/+Vi8iQsnFjJc5Nw8z8LkVkyKqoqKCioqJPbRUu\niIiIyHCyHDjazEqBHcBc4OpubZ4CbgQeNbNTgX3OuTozywUCzrlGM8sDzgMW9nSQ5HBBREamd96p\nJDv7Q36XITKkdQ/YFy7s8Z9NQOGCiIgMAc454vE40WiUaDRKLBbrmO/rFInEaGuLEg5HOx4BfvOb\nR4nF4oljOJxzxGLxjvl43PW4PXk5uU37cjzeuQ/G+/wGphHnXMzMbgKewxs76h7n3Boz+7q32d3t\nnHvGzC4ys41AEzAv8fRC4I9m5vDOgX7vnHvOj9chIv6Kx+O89dYmxo493+9SREYMhQsiIpJS0WiU\npqamLtP+/Y3U1zexZ4837dvXBAY33ngHkUiUSCSKc4ZZRsfk/ROVAQST5r3JuZ4fA4FcAoGMxBSE\nSbBq1YxEl1fDzPDuZGiHWBfosj15nZkRDHY+Z//+bcAtg/wupzfn3BLgmG7rftNt+aYenrcZ+PjA\nViciw8H27dtpbh7FhAmj/S5FZMRQuCAiIgflnKOlpeWAwKChobEjLNi71wsMGhqaaGmJEgjk4fU6\nz8O5POLxPILBUYRCRWRm5hEK5cHoGxgz5hsdYYD3ZT31Jk48dkD2266lJWdA9y8iIqm3fn0lzuku\nESKppHAqw5IWAAAgAElEQVRBRGQEi8VihMNh2traaGtr63W+uTlMc3Mbzc1tNDWFAbj99l+xb18T\n+/c341wWgYAXFoAXFjiXT2bmJEKhvI7AYPz4PILBrD4PjhUK5Q7cixcREenFihWVjBo12+8yREYU\nhQsiIkOIc45IJEI4HO5xAli69CVaW9toavKCgObmNlpavICgpaWN1lZvPhxuIxp1mGVhlolZJpAF\nZOKcN+9cJs5524NBLxgIBjOhEJqaLic3N4+CglzvEgMREZERoLW1lbVra5k8udTvUkRGFIULIiIp\n4JwDoKGhoddgoLU1TFOTNzU2hhPBQPu6VlpawrS2thGPBwkEsjDLwgsDvMm5LCiFe++NYJZFMDiK\njAwvDPCmzvkxY7x5s+AR32IrP78oZe+PiIjIUFFVVYVzUwkGQ36XIjKiKFwQEekmHo/T2tpKc3Mz\nLS0tNDc3d8zv399MfX0Le/c2U1/fzP79LTQ0NNPY2AIl8M1v/rbHUMC5LOLxLDIy8gkGxydCgayO\nx1Aoi+xsLxA4VC+BsrJzBuNtEBERGZHee28jZhpvQSTVFC6IyIgWj8dpbm4GvF8q2oOC5mYvFKiv\nb2Hfvq5BQXNzGMgiEMgFcoBc4nHvEXIJhcYQCuUSCuWSkZFDbm4uBQU5wA8pKfln316riIiIHNry\n5ZWMHTvL7zJERhyFCyIy7DjnaG1tpampicbGxo6pvr6RXbsa2b27kb17vamhoRnIgVL4l395EcjF\nuRzi8dzEZQVHJYKCHEKhXMaMyWXChOwBu3OBiIiI+GfPnj3U1UUpKTnK71JERhyFCyIyZEQikS5h\nQWNjIw0NXliwe3cje/Z4gUF9fRPRaJBAIB/wpnjce8zMHE9mZj6Zmfnk5OQzenT7YIS3MHXqPH9f\noIiIiPhq48ZKYPoRj0ckIr1TuCAivtm1axcA8+f/jPr6JlpaYgQC+Zh1BgZdb3fohQZFRfkahElE\nREQO29tvV5Kd/VG/yxAZkRQuiMiga2tr429/e5nHH18BUyEe/wLjx+cTDGbplwQREREZELFYjJUr\nqxg79hK/SxEZkRQuiMigcc6xdu067r9/CbW1U5k06QbgVnJzJ/hdmoiIiIxwNTU1hMNjyczM87sU\nkRFJ4YKIDIq9e/fy2GOL+fvf9zB27KWUlZX7XZKIiIikkfXrK3FOt6AUGSgKF0RkQEWjUZYu/TuP\nPvo68fjplJVdlRhgUURERGTwLF9eSUHBp/0uQ2TEUrggIgNm48aN3HvvM9TUFDJp0tfJzi7wuyQR\nERFJQ83NzWzcuIspU6b4XYrIiKVwQURSrr6+nscfX8LSpbUUFFxEefmH/C5JRERE0timTZuAUgIB\nff0RGSj6r0tEUiYWi/HKK8t4+OG/E4mcTGnpZ3XLSBEREfHd6tWVBAIab0FkIClcEJGUqKqq4r77\nnmbTpjFMmnQ9OTnj/C5JREREBOccb75ZybhxZ/hdisiIpnBBRPpl//79/OlPz/HCC9Xk519AeflH\nMDO/yxIREREBYNeuXezZE2Dq1PF+lyIyoilcEJEjEo/Hee21N3jooZdoaZlJScmNBIOZfpclIiIi\n0sXGjd4tKPXjh8jASkm4YGYXAHcCAeAe59wdPbT5GXAh0ARc55xbmYpji8jg27p1Kw888DTr1uVQ\nWDiPiRMn+l2SiIiISI9WrNhIbu5Mv8sQGfH6HS6YWQD4BXAOsB1YbmZ/ds6tTWpzITDdOfchMzsF\n+DVwan+PLSKDq7m5maeeep4lSzaSk3Me5eXH61eAYSbu4rTFIrTFwrTF2rzHeJhI3JuPxNuIuDbg\nBJbzSuJZlvj/zs+6fb7r53947bCP8I5bkVjnutTpXOey676t23Lyc5Of5x3jo7zFMowAhmEWIEAA\nMyNgAcASywECZt6SJbXtcV3i+Yl9NoYbIBZERESGnmg0yqpV1UyceIXfpYiMeKnouXAysME5twXA\nzB4BLgXWJrW5FHgAwDn3upkVmFmhc64uBccXkQHmDYT0Fg888DcaG09gypSbyMjI8rusISvuHNF4\nhLZYG+Fo55f3cCxMpP2LfNybj7o2b53z5qMuTJTEPGFihInhzcctDHyKn9s8YtZG3MLErY14IIxL\nPMYDYVygDZd4JBjGBb1Hgm0QjEA8EywTLAsLZGIuCywTC2QRcFkYIXDwAvPB2r+sJ39pd4n/T1p3\nkHad27oHA46/2tc6d5EUSmCA6yGQ6G25va112w+whG+CxcHi3vEtDsRx5oB4or44zuJezYm24Hpf\nl7y+wMHOjyIiIkNPdXU10ehRhEI5fpciMuKlIlwoBrYmLdfgBQ4Ha7MtsU7hgsgQt337dn73u6dZ\nvTrIUUddw/jxRYN6/LhztEZbaGproiXWREu0iZZoM61xbzkc96Y2mmlzTbTRRIQmItZE1JqIBZqJ\nBZrBZnIH5ya+YMZ7eIwlfWmM9zAf6/Kc5MklthEYxcJgtvcl3oJgWZD85d2yElMmAcsiYFkYiXmy\nCJBJEO8LfjAx3z5lMZoMl0WdraSET5Hhssggk5BlkeEyCeE9ZrosQi6TUOIxy2WRGc8iZJlkB7LI\niIcIBA0O8UP7QjNu694LIMUWmvG9QTjGdwf4GPv2beG/J5UN6DFEROTIrF3rjbcgIgNPAzqKpBnn\noKEB6uo6p9raA5d37nQ0NIRpbc0nELiWUCiEmWEGgQCYdU7Jy73N97StdcxK+Mip/L/AJcQCTcSC\nTcSDTbiMJuIZTRBq9ibLgkAeFs8jYLkEAnkEXB5B86YMyyPD5ZJBHpnkkUchWeSRSS5ZLo9Ml8tL\n9kM+yXzMJbq19/RIkED7MgECLtDRjT7gAgQDwaS2nf9rb/tLm8atbh+ZLpNAIOCNQhNK7ee30L7J\npe6l1O5URERkhFq+vJIxY/6P32WIpIVUhAvbgJKk5SmJdd3bTD1Emw4LFizomJ8zZw5z5szpb40i\nI1r3wKCnsCB5ORiEoiIoLOyciopg5szO5XHjovz+90+yejVMmHAeOTkTcM47VjzOYc33tq05OJFK\nZ8x0XyXL5ZHj8sh2eeTE88h1ud5jPJeMjGC//7Z6yS7mDHduat7w3th+sl32wB5D0kZFRQUVFRV+\nlyEiMmw1NjZSVbWPkpJiv0sRSQupCBeWA0ebWSmwA5gLXN2tzVPAjcCjZnYqsO9g4y0khwsi6S4W\ng23bYMsWb6qqgurqAwODjIwDw4LCws7AIDlMyMvry5FDLFw4l+XLV/DAA4tobPwExcWzCQZT+VN8\nMYvtNc52n0nhPkVGhu7h+sKFC/0rRkRkGKqsrATK8cafF5GB1u9wwTkXM7ObgOfovBXlGjP7urfZ\n3e2ce8bMLjKzjXi3opzX3+OKjBRtbbB1a2dwkBwibNkC27fDhAlQWupNZWVw4okwaVLXMKFvgcHh\nCQQCnHLKLI477iM88cQS/va3XzF27MWMHTst9QcTERERSaFVqyoJhTTegshgScmYC865JcAx3db9\nptvyTak4lshw09zs9TToKTjYsgV27oTJk73QoD1AmD0brrnGm586FbJ8vjHDqFGjuO66KznttPXc\ne+9TbN5cQnHx+WRmDkCiISIiItJPzjlWrKhk7Niz/C5FJG1oQEeRfmhshB07uk7btnWGB1VV3lgI\nJSWdvQ5KS+HCCzvnJ0/2LmkYDo455sP86EdlPPdcBU8+eReh0DkUFZ2IWffbBIqIiIj4p66ujvr6\nbEpLx/pdikjaGCZfaUQGj3Owd++BoUFPUyzmXZ6QPBUXw0kndfZCKCz07owwUmRmZnLxxedx0kkz\neOCBv7B69TsUFl5MXt5Ev0sTERERAWDDBt2CUmSwKVyQtBGLwQcfHDowqK2F7OwDQ4MpU2DWrK7r\nRo/2bquYjoqKivjOd77CsmXL+d3v7mXPnlkUF3+KQEB/rYiIiIi/3nxzI/n5p/pdhkha0bcAGRGa\nm73LEZKnmpquy3V1UFBwYGhwzDFw1lmdy0VFkJvr9ysaHgKBAKeffgrHH38sf/jDYpYubR/wsdzv\n0kRERCRNtbW18f772ygsLPO7FJG0onBBhjTnYNeuQwcHzc3e2AXFxV4Pg+JiKC+HT36yc92kSZCZ\n6fcrGplGjx7NV75yFaefvpZ77/0TVVXlFBefRyiklEZEREQG15YtW4jFJpGR4fOI2CJpRuGC+CYc\n9m6zuH1776HB9u1eL4Li4q7BwSmndF03fnz6Xp4wlBx77Ef4l38p59lnK/jTn+4iM/NcCgs/pgEf\nRUREZNCsWVOJ2dF+lyGSdhQuSMrF497YBu3hQHJQkPzY0OD1Jpg82Zvag4OZMztDg8mTdYnCcJOV\nlcVnPnM+J510Avff/xfWrHmHoqKLyc0d73dpIiIikgaWL69kzJjL/S5DJO0oXJDDsn9/72FB+2Nt\nrTe2QXFx56UKkyfDySd3XTdhwsi6i4J0NXnyZG699au89tob/O5397B79ykUF5+hAR9FRERkwNTX\n11NT00RJySS/SxFJOzrLF8Ab22DfPti69cCppqYzOIjHOy9HaA8Kpk+HT32qc3nSJMjSJW6CN+Dj\nGWecyvHHH8tjjz3Dyy//mnHjLmHMmFK/SxMREZERaOPGSmCaLskU8YHChTTR1NRzcNA+VVd7vQhK\nSmDq1M7p7LM7L1eYPDm9b70oR66goIDrr5/LGWesZdGiJ6iqOpri4k8TCuX4XZqIiIiMIKtWVZKZ\nqfEWRPygcGEECIe9XgU9BQbt8y0tXkgwdWpngHDyyXDFFZ1BQkGB369ERjIz47jjjuVf/3Uaixf/\njT//+ZdkZ58HRX5XJiIiIiNBPB5nxYpNjBt3vt+liKQlhQtDnHOwZ48XFGzZ4k3t89XV3rRnj3cp\nQnKPg+OOg/PP71yeMEE9DmRoyMrK4rLLLmTWrBncd99fIAqbN7+Y6L5omBlmgY75Qz32tS0ToaGh\nhoyMbILBLDIysgkEMtRtUkREZITYsWMHzc2jmDBhtN+liKQlhQs+i0a98Qx6Cg/a5zMyvN4GpaXe\nVFLi9TooKfGmoiIIBv1+JSKHp7i4mNtu+xrf/5cbmDfPiMcd8XiceNzhnEsse/PRaNf13bcnz8di\n8QO2OedgF4wd+wzNzWGam1tpbg4TicQxy8YsC7NsIAvIxrksnMsmHs/qEkZkZBy4HAiEFFCIiIgM\nAevWbcS56X6XIZK2FC4MsKamzh4GPYUHO3bAxImdoUFpKZxwAlx8cec6Xa4gI1UgcbuQOXPmDPix\nblr4RX7wg691WReNRgmHw7S2thIOh7vMt7a20toaprFxP42Nu9i/v5WmpjCNjV4w0dTUSktLmLa2\nWGc4UQpbt/4aSA4brMujmeFcz9v61L4Etm59oLO14YUnSctw4LrDbUMJVFc/Tjyeh1k+mZl5ZGbm\nEwp5j5mZebrzh4iIDCkrVlQyatRsv8sQSVs6M+ynSMQLCzZtOnDassULF6ZO7RoenHtu5/yUKZCZ\n6ferEElPGRkZZGRkkJeXd8T7iMViHWHEvT//Jj/+8aVdvqS3zx9s3eG0X/Q7+O53z+jY1r3XRE+9\nKI6kzaJ74VvfOobGxkYaGprYtWs3e/Y0sXdvI/v2NbFrVxOxWIhAIA/IB/KIx/NxrjN8SA4jgsHQ\nAccUERFJldbWVtaurWXyZN2RSsQvChf6YO/erqFBZWXn/LZt3ngH06Z50/Tp8LnPQXm5Fx4cdZTG\nOhAZyYLBILm5ueTm5gIwadLA31d7+vTB6fJ5wgkn9LrNOUdrayuNjY00NTV1PNbXN7Jnzzb27Gli\nz55G6uubqK1tJBoNYJaPmRdGxON5UAbV1a9gFiQQyEhMnfN9Xe+NuyEiIumsqqoK56YqzBbxkcIF\nvHEPtm49MDhoX45GvdBg+nQvQDjxRO8uC9OmeQGCeh6ISLoxM3JycsjJyWHixIkHbeuco62t7YAg\n4r5n4KqrWgmHo4TDUSKRGG1t3nw06s23tXnrIxFvvn19JOLNRyJRnDMgiFkGZhkd85ABJVBTcy/O\nBYDgAZNzAZxrn/cmMy+w8IKL4AGP3bc1Ne2EsQP7fouIyMG9/34lZhpvQcRPaRcuvP46LF3aNUio\nqfEGRWzvfTBtGlx+eWeYMH68eh+IiBwpMyMrK4usrCzGjx/fueEZOP/8c/u1b2/QzjixWIxoNEo0\nGu0yv+juG/jBD84mFot1mdqf09P6SCRGNBpJhB0xotF4IsiIdTxGIjFisXjHOtr6+SaJiEi/vPHG\nRsaOnet3GSJpLe3ChY0boa4OZsyAyy7r7H2QleV3ZSIicrjMjGAwSDAYJLOXbmSlpQN//e13F14/\n4McQEZGe7dmzh7q6CCUlR/ldikhaS7tw4Ytf9CYRERERERn+Nm6sBKbr1tAiPtMoWCIiIiIiMmy9\n/XYl2dlH+12GSNpTuCAiIiIiIsNSLBZj5coqxo6d5ncpImlP4YKIiIiIiAxLNTU1hMNjyczM87sU\nkbSncEFERERERIal9esrcU63oBQZChQuiIiIiIjIsLR8eSWjRytcEBkKFC6IiIiIiMiw09zczMaN\nuygomOp3KSKCwgURERERERmGNm/eDJQSCGT4XYqIoHBBRERERESGoXff3UggoEsiRIYKhQsiIiIi\nIjKsOOd4881Kxo1TuCAyVChcEBERERGRYWXXrl3s3m3k5Iz3uxQRSVC4ICIiIiIiw8rGjZXA0ZiZ\n36WISILCBRERERERGVbeequS3FxdEiEylChcEBERERGRYSMajbJqVTVjxpT7XYqIJFG4ICIiIiIi\nw0Z1dTWRyERCoRy/SxGRJAoXRERERERk2Fi7thLndEmEyFCjcEFERERERIaNN9+sZMyYo/0uQ0S6\nyfC7ABERERERkb5obGxk8+Z9lJQU+12KDCDnoKnJezTrnAKBgy8PBc51PrZPybWOZAoXRERERERk\nWKisrATKMVMH7JGgrQ127/amXbu6PoZC3hfy9i/o8XjXL+zdl+HwgojkL/vd95O8fLjb2iUfq71N\nKORNGRmd8z2tO9T2nta1tGQQjw/O59YbhQsiIiIiIjIsrFpVSSik8RaGE+egoaEzOEgOEZqbYdw4\nmDABxo+HD30ITj3VW87KOvzj9DWISF6Grj0fkkOB7r0i+rqtJ/E4RCKdUzTadbm39U1NXdf19Lxo\nFMLhYzn55B2H/wGlkMIFEREREREZ8pxzrFixibFjz/K7FOnBwXohZGV1BggTJnghwoQJUFDg9SBI\nheQv9sFgavaZSoGA9z4cbmjSVzt2vMu4ca0Ds/M+UrggIiIiIiJDXl1dHQ0NWZSUjPW7lLTlHOzf\n39kDoS+9EMaPh+xsvyuXwaBwQUREREREhrwNG3QLysESicCePQcGCLt2eb+8t/dAGKheCDI8KVwQ\nEREREZEhb8WKSvLyTvG7jBGj/Y4M3cODXbu83gljx3YGCNOnwymnqBeCHJzCBRERERERGdLa2tp4\n770aCguv8ruUYScWg717e+6FYNZ1LISyMu9x7Fj1QpDDp3BBRERERESGtC1bthCLTSIjY4BGwxuG\nnPMGUWyfwmFv2reva4iwb593yUJ7gDB1Kpx4ojefm+v3q5CRROGCiIiIiIgMaWvWVGJ2tN9l9Itz\n3lgG4XDXQKCnx77MRyKQkeGNgZCZ6U1ZWZ1BwowZXoAwbpzXTmSg6Y+ZiIiIiIgMacuXVzJmzOV+\nl3FYIhGoroaqKm/avt27RWJ7CJAcCHSfz8vzQoHetmdlQSikSxdkaOlXuGBmY4FHgVKgCvi8c66+\nW5spwANAIRAHfuuc+1l/jisiIiLpy8wuAO4EAsA9zrk7emjzM+BCoAm4zjm3sq/PFZGhpb6+npqa\nJkpKivwu5aCiUaipgc2bvTBhxw4oKvLGMTjrLO9yhFDI7ypFBk5/ey7MB15wzv3EzG4FbkusSxYF\nvu2cW2lm+cAKM3vOObe2n8cWERGRNGNmAeAXwDnAdmC5mf05+bzCzC4EpjvnPmRmpwC/Bk7ty3NF\nZOiprKwEpuH9Jzx0xGKwbVtnmLBtGxx1lBcmfOpTUFLi9TIQSRf9DRcuBc5MzN8PVNAtXHDO1QK1\niflGM1sDFAP6h1xEREQO18nABufcFgAzewTvfCT5vOJSvF6TOOdeN7MCMysEyvvwXBEZYt55p5LM\nTP/HW4jHvUsb2sOEmhpvbIOyMjjtNCgt9S5XEElX/Q0XjnLO1YEXIpjZUQdrbGZlwMeB1/t5XBER\nEUlPxcDWpOUavMDhUG2K+/hcERlCGhrivPZaDePGnT/ox47Hoba2M0zYuhXGjPHChFmz4HOfg5yc\nQS9LZMg6ZLhgZs/jjZfQsQpwwPd7aO4Osp984HHgn5xzjQc75oIFCzrm58yZw5w5cw5VpoiIyIhS\nUVFBRUWF32WMFHa4T9C5iIi/6uvhJz+BX/wCWlpuJBrNJCsLsrM7p+Tl7tt6Wn+owQ+dg7q6zjCh\nuhpGjfLChBNPhMsv160bJf0czvnIIcMF59yne9tmZnVmVuicqzOzImBnL+0y8IKFB51zfz7UMZP/\nQRcREUlH3b/QLly40L9ihpZtQEnS8pTEuu5tpvbQJrMPzwV0LiLil7Y2+PWv4V//FS66CF56aR93\n3nk/U6Z8k7Y2o7WVLlM43DlfXw87d3JAm/Z2GRm9BxBNTV6gkJvrhQknnACXXAL5+X6/IyL+Opzz\nkf5eFvEUcB1wB3At0FtwsAh43zn33/08noiIiKS35cDRZlYK7ADmAld3a/MUcCPwqJmdCuxL/BCy\nqw/PFREfOAePPQbf/S4ccww8/zzMmAHOjWXcOEdb215ycsYd8WUIznnBRfdAon2aOhUuuABGj07t\n6xJJJ/0NF+4AHjOzfwC2AJ8HMLNJeLecvNjMzgC+CLxrZm/jXTrxXefckn4eW0RERNKMcy5mZjcB\nz9F5O8k1ZvZ1b7O72zn3jJldZGYb8W5FOe9gz/XppYhIQkUF3HKLN8bBb38LZ5/duc3M+MQnplFR\nsYmcnHFHfAwzr4eCBlwUGTj9Checc3uAc3tYvwO4ODH/dyDYn+OIiIiItEv8QHFMt3W/6bZ8U1+f\nKyL+WL0a5s+H99/3LoO46qqex0U4/vhpPP/8GuCkQa9RRPpuaN0sVkRERERERrSaGvjKV+Ccc+Dc\nc2HNGrj66t4HXCwvLweqcC4+qHWKyOFRuCAiIiIiIgOuvt4bU+FjH4OjjoJ16+Cb3zz0pQqjRo1i\n6tRR7N+/Y3AKFZEjonBBREREREQGTDgM//3f8OEPQ20tvPMO/Pu/w5gxfd/HSSdNY9++TQNXpIj0\nm8IFERERERFJuXgcHnkEjj0WnnsOXngBFi2CKVMOf18f+cg0QOGCyFDW37tFiIiIiIiIdPG3v3l3\ngDCDe+6Bs87q3/5KS0sxe5xYLEIwGEpNkSKSUuq5ICIiIiIiKfHuu3DRRfDVr8L//b/w+uv9DxYA\nsrKyOOaYIurrq/u/MxEZEAoXRERERESkX7ZuhXnzvLs/XHCBdweI3m4teaQ+8Ylp7N+vSyNEhiqF\nCyIiIiIickT27YP58+HjH4dJk2D9erj5ZsjMTP2xPvShaZgpXBAZqhQuiIiIiIjIYYlE4L/+y7sD\nxAcfeHeA+Ld/g4KCgTtmcXExWVl7iESaB+4gInLENKCjiIiIiIj02ZYtcPXVkJvrDdx4/PGDc9xg\nMMiMGaW8++5mjjrqo4NzUBHpM/VcEBERERGRPnniCZg1Cy6/3Lu95GAFC+0+/vFptLTo0giRoUg9\nF0RERERE5KBaWuCf/xmWLIG//AVOOcWfOqZPn4bZ6/4cXEQOSj0XRERERESkV2vWeGHC7t3w9tv+\nBQsAEydOpKAgQkvLXv+KEJEeKVwQEREREZEDOAeLFsHs2d4dIB55ZGAHbOwLM2PmzGns3atLI0SG\nGl0WISIiIiIiXTQ0wD/+I6xaBRUV8NEhNH7iCSdM48UXNwCf8LsUEUmingsi8v+3d+/xUZUH/sc/\nzySEcBMSJFykXAa8AEaB0JZaW7IWXddLbbu/9WVtvba2Vmtbu9XVX7srurv2uv7WbVf7a3Wr3W0r\nVavipd4q8V4FFQEVtCD3S1QCKJAEMs/+MYFGGq5DcjIzn/frldecOXOG802nhCdfn/McSZKkHWbP\nhokT4aCD4Pnnu1axAJBOp4nxTWKMSUeR1IblgiRJkiQyGbjuOjjpJPjud+GnP83ebrKrOeiggxg6\ntBfvvbcm6SiS2vCyCEmSJKnIvfUWnHtudtHG556DkSOTTrR7NTVp7r13MX36DE46iqRWzlyQJEmS\nitjMmTBhAlRXw5NPdv1iAWDMmDQxLko6hqQ2nLkgSZIkFaFt2+Caa+Cmm+CWW+CEE5JOtPeGDx9O\nCHfS0rKVkpJuSceRhOWCJEmSVHSWL4czz4QePeDFF2HQoKQT7Zvy8nIOPXQgq1cvp6IinXQcSXhZ\nhCRJklRU7rkHJk2Ck0+GBx/Mv2Jhu0mT0mzcuDjpGJJaOXNBUqerW1JH3ZI6AKYMn8K0umkA1I6o\npXZEbWK5JEkqZI2NcPnlcO+9cPfd8JGPJJ0oN4cemiaEh5KOIamV5YKkTmeJIElS51q4EM44A0aN\ngpdegn79kk6Uu6FDh1JW9g5bt26hW7ceSceRip6XRUiSJEkF7Je/hGOPhQsvhNtvL4xiAaCkpITq\n6mGsX/9m0lEk4cwFSZIkqSC9+y5cfDHMng2PPZa91WShmTAhzezZi4GxSUeRip4zFyRJkqQC8+KL\nUFMD3bvDrFmFWSwAjBqVBlzUUeoKLBckSZKkAtHUBN/7Hpx4IlxzDfz859CrV9KpOk5VVRV9+zbT\n2Lg+6ShS0bNckCRJkgrAAw9kZyg88ww891x2AcdCF0JgwoSRNDQ4e0FKmuWCJEmSlMf+9Cc45RS4\n9FK4/nqYMQNGjkw6Vec56qg0W7daLkhJs1yQJEmS8tB778GVV8LkyTBlCsybB3/zN0mn6nzpdJoY\nF/xkO/QAABznSURBVBNjTDqKVNQsFyRJkqQ8EiP86ldwxBGwalW2VLjsMigrSzpZMvr27cuQIT3Y\ntGlt0lGkouatKCVJkqQ88dJLcMkl0NgIt98OH/lI0om6hpqaNPffv5jevQclHUUqWs5ckCRJkrq4\nt9+GCy/MXvZw3nnw/PMWC22NGZO9NEJScpy5IEkCoG5JHXVL6gCYMnwK0+qmAVA7opbaEbWJ5ZKk\nYrZtG/z0p9nbSp55JixYAP36JZ2q6xkxYgRwF5nMNlIpf8WRkuDfPEkSYIkgSV3NzJnwta9BVVV2\ne9y4pBN1XT169GD06AHU16+gX78RSceRipLlgiR1cc4okKTismwZfOtb2UsfrrsOPv1pCCHpVF1f\nTU2a6dMXWy5ICbFckKQcdMYv/pYIklQctmyBH/0Irr8+O2Ph1luhR4+kU+WPww8fBTwCHJd0FKko\nWS5IUg78xV+SlKsY4e674ZvfhEmT4IUXYPjwpFPln6FDh1Ja+hZbt26hWzdbGamzWS5IkiRJCXn1\nVfj612H1arj5ZjjO/+i+30pLS6muHsaCBUsYMGBM0nGkomO5IKlguVaBJKmr2rABpk2D//kf+Kd/\ngq98BUodmedswoQ0L764GLBckDqbP8IkFSxLBElSV5PJwC23wLe/Daeemp25MGBA0qkKx+jRaeD2\npGNIRclyQZIkSeoEL78MF1yQnaFw331QU5N0osIzcOBA+vTZQmPjBsrL+yYdRyoqqaQDSJIkSYVs\nyxa44go44QS48EJ4+mmLhY4SQmDixDQNDYuTjiIVHcsFSZIkqYM89hhUV8OSJTB3Lpx/PoSQdKrC\nVl2dprnZckHqbF4WIUmSJB1g69bBt74Ff/gD3HADnHxy0omKx6hRaWL8AzFGgk2O1GmcuSBJkiQd\nIDHCbbfBuHHQpw/Mn2+x0Nn69evH4MHd2bSpPukoUlHJaeZCCKECmA4MB5YAp8cYN+zi2BQwG1gR\nY/xkLueVJEmSupply+Cii2DpUrjrLpg8OelExaumJs3vf7+Y3r0HJh1FKhq5zly4Ang0xng48Bhw\n5W6O/Trwao7nkyRJkrqUlhb4j//ILtI4eTK88ILFQtLGjk0To+suSJ0p13LhNODW1u1bgU+1d1AI\nYShwEnBTjueTJEmSuox58+CjH4U774SnnoLvfAfKypJOpZEjRwLLyGRako4iFY1cy4WqGONagBjj\nGqBqF8f9P+AyIOZ4PkmSJClxjY3ZIuG44+ALX4CZM+Hww5NOpe169OjBqFH92bhxRdJRpKKxxzUX\nQgiPAG0vVgpkS4LvtHP4X5QHIYSTgbUxxjkhhNrW9+/WtGnTdmzX1tZSW1u7p7dIklRQ6urqqKur\nSzqGpHY8/jh86UvZW0zOnQuDByedSO2pqUkzffpi+vUbnnQUqSjssVyIMR6/q9dCCGtDCANjjGtD\nCIOA9pZk/SjwyRDCSUAPoE8I4ZcxxrN39ee2LRckSSpGO5frV199dXJhJAGwfj1cfjn8/vfwk5/A\naaclnUi7c9hhaUKYCfxV0lGkopDrZREzgHNbt88B7tn5gBjj/40xDosxpoEzgMd2VyxIkiRJXUmM\ncMcd2dtLlpZmby9psdD1DRs2jNLStWzb1ph0FKko5HQrSuD7wG9DCOcDS4HTAUIIg4GfxxhPyfHP\nlyRJkhKzciVcfDG8/jr89rfZxRuVH0pLSxk3bihvvLGUgw92QQypo+U0cyHGuC7GODXGeHiM8YQY\n4/rW/avbKxZijI/HGD+ZyzklSZKkjpbJwA03wPjxMGECvPSSxUI+mjAhzaZN3pJS6gy5zlyQJEmS\nCsqrr8IFF2S3H38cxo5NNo/23+jRaeB3SceQikKuay5IkiRJBaGpCaZNgylT4POfhyeftFjId4MG\nDaJXr000NW1MOopU8CwXJEmSVPSeeip7+cOcOdlLIL7yFUg5Us57qVSKiRPTNDR4aYTU0fyRKUmS\npKL1zjvwxS/CGWfAP/8z3HUXDB2adCodSEcdlaapyXJB6miWC5IkSSo6McIvf5m9vWTPntl1Fv72\nbyGEpJPpQBs1Kg0sJsaYdBSpoLmgoyRJkorKwoVw0UWwfj3cdx9MmpR0InWkiooKqqq6sXnzW/Tq\nVZV0HKlgOXNBkiRJRaGxMbtg40c/CqeeCs89Z7FQLGpqXHdB6miWC5IkSSp4M2fC0UfD3LnZRRu/\n8Q0odQ5v0Rg3Lk0mY7kgdSR/pEqSJKlgvfUW/P3fw+OPw49/DJ/8ZNKJlISRI0cS4wwymRZSqZKk\n40gFyZkLkiRJKjiZDNx8c3bBxqoqeOUVi4Vi1rNnT9LpSt59d2XSUaSC5cwFSZIkFZRXX4Uvfxma\nm+Hhh2H8+KQTqSuoqUlzxx2L6dt3WNJRpILkzAVJkiQVhC1b4NvfhilT4LOfhWeesVjQnx1+ePaW\nlJI6huWCJEmS8t5DD8GRR8Kf/pRdtPGii6DES+vVxrBhwygpWcO2bU1JR5EKkpdFSJIkKW+tWQOX\nXpq9reQNN8CJJyadSF1Vt27dGDPmEN58cyn9+x+WdByp4DhzQZIkSXknk4Ebb4TqahgxAubPt1jQ\nntXUpHnvPS+NkDqCMxckSZKUV+bOzS7YWFICM2dmL4eQ9sbo0WlCuCfpGFJBcuaCJEmS8sKmTXD5\n5TB1Kpx/PjzxhMWC9s3gwYPp2fNdmpreTTqKVHAsFyRJktTl3XcfjBsHq1dnL4G44AJIOZLVPkql\nUhx99AjWr38z6ShSwfGyCEmSJHVZb7+dvfPDSy/BTTdlZy1IuTj66DTPPLMIOCrpKFJBse+VJEl5\nIYRQEUJ4OISwMITwUAih7y6OOzGEsCCE8HoI4R/a7L8qhLAihPBi65fL/3VxM2bAUUfB8OEwb57F\ngg6MUaPSwGJijElHkQqK5YIkScoXVwCPxhgPBx4Drtz5gBBCCvgJ8NfAOOCzIYQj2hxyXYxxYuvX\ng50RWvtuwwY477zsLSanT4cf/hDKy5NOpUJRWVnJwQen2Lz57aSjSAXFckGSJOWL04BbW7dvBT7V\nzjEfAt6IMS6NMW4Fbmt933ahYyMqV3/4Q3a2Qnk5vPwyfOxjSSdSoQkhUFOTpqHBW1JKB5LlgiRJ\nyhdVMca1ADHGNUBVO8ccAixv83xF677tvhpCmBNCuGlXl1UoGZs3wyWXwLnnws9+BjfeCL17J51K\nhWrcuDSZjOWCdCC5oKMkSeoyQgiPAAPb7gIi8J12Dt/XC6ZvAK6JMcYQwr8A1wFfaO/AadOm7diu\nra2ltrZ2H0+lffHss3DOOfDhD8PcuVBRkXQiFbp0Og3cT4wZsldTSWpPXV0ddXV1e3Ws5YIkSeoy\nYozH7+q1EMLaEMLAGOPaEMIgoL6dw1YCw9o8H9q6jxjjW232/xy4d1fnalsuqOM0NcG0afCLX8AN\nN8BnPpN0IhWLXr16MXx4P9avX0nfvh9IOo7UZe1csF999dW7PNaaTpIk5YsZwLmt2+cA97RzzCxg\ndAhheAihDDij9X20FhLbfQaY33FRtSdz5sAHPwgLFmRnK1gsqLPV1KTZsMFLI6QDxXJBkiTli+8D\nx4cQFgKfAL4HEEIYHEK4DyDG2AJ8FXgYeAW4Lcb4Wuv7fxBCmBtCmANMAS7t7G9AsG0b/Ou/wgkn\nwGWXwe9+B1XtrZ4hdbAjjsjeklLSgeFlEZIkKS/EGNcBU9vZvxo4pc3zB4HD2znu7A4NqD1auBDO\nPhv69oUXXoAPOBtdCRo2bBip1GpaWpopKSlLOo6U95y5IEmSpA6VycD118Oxx2YXbnzoIYsFJa+s\nrIwxY4awfv3SpKNIBcGZC5IkSeowS5bAeedBc3P2rhCjRyedSPqziRPTzJ+/mP79D006ipT3nLkg\nSZKkAy5GuPnm7KKNJ50ETzxhsaCu59BD04TgugvSgeDMBUmSJB1Qq1fDBRfAqlUwcyYceWTSiaT2\nDRkyhPLyDTQ3v0dZWe+k40h5zZkLkiRJOmCmT4fx42HiRPjjHy0W1LWlUimOPnoEDQ1vJh1FynvO\nXJAkSVLO3nkHLroI5s6F++7LXg4h5YPx49M8++xioDrpKFJec+aCJEmScnL//XDUUTB0KLz4osWC\n8suoUWlgERs3rmTz5rdpatrItm1NxBiTjiblFWcuSJIkab+89x584xvw2GPw61/DlClJJ5L2Xf/+\n/Zk6dSSLF9/Hli3NbNnSxJYtzTQ1bSWEboTQnRDKgO5A9jHG7sRYRozZfaWl3SkpKaOkJPuYfd52\nu4xUyl+9VNj8f7gkSZL22axZcOaZ8PGPw8svQ58+SSeS9k8Igc9//tN/sT+TybB161aamppobm5+\n32Pb7S1bmtm0qYHNm5vZtKmJzZub2by5aUdRsWFDM42NTWzbBiEMpqSkmqqqcS4gqYJjuSBJkqS9\nlsnAD38I//Zv8J//CX/3d0knkjpGKpWie/fudO/e/YD8edu2bWPJkiU899x8nnpqJo2Nh1BWdiQD\nBoyhtLT8gJxDSpLlgiRJkvbKypVw9tmwbRvMng3DhiWdSMofpaWljB49mtGjR3P66Vt54403ePrp\neTz//INs3ZqmV69qKisPpaSkW9JRpf1iuSBJkqQ9uvtu+PKX4WtfgyuugJKSpBNJ+atbt26MHTuW\nsWPHctZZjbz66ms8+eRsXn55BjEeQZ8+1VRUjCQE199X/rBckCRJ0i5t3gzf/CY88gjccw9Mnpx0\nIqmwlJeXM3HiBCZOnMC7777LvHmv8Pjjj/H66xuAcVRUVNOnzyGEEJKOKu2W5YIkSZLaNWcOfPaz\nMGkSvPQSHHRQ0omkwtanTx+OOWYyxxwzmXXr1jFnzjxmzrybZctagCM5+OBqevWqSjqm1C7LBUmS\nJL1PJgPXXw/XXgv//u/wuc8lnUgqPpWVlRx33BT+6q8+zpo1a3jhhXnU1f0PS5b0oKSkmgEDjqS8\nvF/SMaUdLBckSZK0w5o1cO65sGEDPPccpNNJJ5KKWwiBwYMHc8opgzn55ONZtmwZs2bN4/HHf8ba\ntQdTWlrNgAFjKSvrlXRUFTnLBUmSJAHwwAPwhS/ABRfAP/4jdHPReqlLCSEwfPhwhg8fzqc//Tcs\nWrSIP/5xHk8//ShNTR+gvLya/v0PpaSkjBBSLgipTmW5IEmSVOQaG+Hyy7MLNk6fDh//eNKJJO1J\nSUkJhx12GIcddhhnnNHMwoULeeqpecyd+wBbt26jpSVDjAApQigBUjttl+x4HuP7H9u+Dtn925/H\nuH0/QAaIhBDftx3j9u3sY/arvdf/vL399bbbLS2DGTiwlh49Kjr6f04dAJYLkiRJReyVV7KLNh5x\nRHYBxwrH8FLeKSsro7q6murq6vftz2QyZDIZWlpa9ulxb44BSKVShBB2PO5qe0+v7+rYefNe4847\nf0Z9/dEMHvwxL/3o4nIqF0IIFcB0YDiwBDg9xrihneP6AjcBR5Ktoc6PMT6Xy7klSZK0/2KEG2+E\nq66CH/wgu86Cd7qTCksqlSKVSlFamp//TXngwIFMnjyJhx9+ggce+E9inMyQIZMpKSlLOpraketF\nOFcAj8YYDwceA67cxXHXAw/EGMcARwOv5XheSZIk7ae334bTToP/+i94+mk47zyLBUldU+/evfnM\nZ07iBz/4IlOmvMWKFT9m1apZZDItSUfTTnItF04Dbm3dvhX41M4HhBAOAj4WY/wFQIxxW4xxY47n\nlSRJ0n549FEYPx7GjIFnnoHDDks6kSTtWWVlJWef/bdce+2ZHHXUApYuvYH6+leI2YUl1AXkOj+m\nKsa4FiDGuCaEUNXOMSOBt0MIvyA7a2E28PUY45Yczy1JkqS91NwM3/42/OY3cMstMHVq0okkad8N\nHjyYr371LBYtWsT06Y+yYMEzVFRMpaJiZNLRit4ey4UQwiPAwLa7yC7h+Z12Dm+vNioFJgIXxxhn\nhxD+nezlFFft6pzTpk3bsV1bW0ttbe2eYkqSVFDq6uqoq6tLOoYKxMKFcOaZMHRodtHGgw9OOpEk\n5WbUqFFceWWa+fNf4Te/mcGbb/ZnwICp9O49KOloRSvkMo0khPAaUBtjXBtCGATMbF1Xoe0xA4Fn\nY4zp1ufHAv8QYzx1F39mdGqLJBW+cHUgXtWxP+874xyddZ4QAjFGr4rvBIU0Fokxu67CFVfANdfA\nhRe6toKkwtPS0sKsWS9w221PsH59mkGDjqO8vF/SsTrV6tUvMmXKcs4887QOPc/uxiO5XhYxAzgX\n+D5wDnDPzge0Fg/LQwiHxRhfBz4BvJrjeSVJkrQbDQ3wpS/B669DXR2MG5d0IknqGCUlJUye/CEm\nTDiaJ598ljvu+P80NR3NkCEfp1u3nknHKxq5Luj4feD4EMJCsqXB9wBCCINDCPe1Oe5rwK9CCHPI\nrrtwbY7nlSRJ0i7Mnw8f+hAMGgTPPWexIKk4dO/enalTa/nRjy7m1FMzrF37E5Yvf4KWluakoxWF\nnGYuxBjXAX+xHFCMcTVwSpvnLwMfzOVckiRJ2rM778xe/nDddXDWWUmnkaTOt/32lbW1k7n33seY\nOfPHlJVNYdCgCaRSJUnHK1i5XhYhSZKkLqClBa66Cv77v+HBB6GmJulEkpSsyspKzjnn/3D88au4\n885HmT37WXr3/gQHHzyG4AI0B5zlgiRJUp5bvx4+9znYtAlmzYKq9m4OLklFasiQIVxyydltbl/5\nNJWVx9Ov34ikoxWUXNdckCRJUoJefTW7vsKoUfDIIxYLkrQr2dtXfonLLvsIPXvew+LFv2LjxpXE\nmEk6WkFw5oIkSVKeuuuu7B0hfvQjOOecpNNIUtcXQqC6+kjGjh3DrFkvMGPG71i2bAOp1MHEWAVU\n0atXFT17DqC8vJ+XT+wDywVJkqQ8k8nAtGlwyy3wwAPwQZfNlqR9sv32lZMnf4jm5mbefvtt6uvr\nWbmynkWLnmfp0nqWLWskhAHEWEUqlS0devWqoqyst6VDOywXJEmS8siGDfD5z2cfZ82CgQOTTiRJ\n+a2srIwhQ4YwZMgQxo//8/7Gxkbq6+upr69n+fJ6Fi1ayNKl9bz3XiSEKmKsorR0e+kwgG7deib3\nTXQBlguSJEl54rXX4FOfguOPz95qsqws6USSVLjKy8sZNmwYw4YNY9KkP+/ftGkT9fX1rF1bz7Jl\na1i8eC5Ll9bT2NiNEKrIZKro3v3Pl1eUlnZP7pvoRJYLkiRJeeCee+CCC+D734fzzks6jSQVr169\nejFy5EhGjhzJ5MnZfTFGNm7cuKN0WLJkKW++OZvly99i27ZeQCUxVhBCJT16VFBeXkGPHhWUlpYn\n+r0cSJYLkiRJXVgmA9dcAzffDPfeCx/+cNKJJEk7CyHQt29f+vbty6GHHsqxx2b3ZzIZ1q9fz7p1\n62hoaKC+voEVK1awenUDa9c20NiYIpWqACrIZCro1q1iR/nQvftBpFIliX5f+8JyQZIkqYvauBHO\nOgveeSe7vsKgQUknkiTti1QqRWVlJZWVlX/xWoyRLVu20NDQQENDA+vWNbBq1UpWrpzPmjUNrFjx\nLnAQIVQQY7aA2D7jobw8O+uhKy0sabkgSZLUBS1YkF1f4bjj4PbbXV9BkgpNCIGePXvSs2dPDjnk\nkL94vaWlhQ0bNuwoH+rrG1i5chWrVjWwZs06GhvDjlkP69c3An07/Xtoy3JBkiSpi7n3Xjj/fPju\nd+GLX0w6jSQpCSUlJbud9dDY2Pi+WQ/tFRSdyXJBkiSpi8hk4F/+BX72s2zBsH2hMEmS2goh0KNH\nD3r06MGQIUOSjgNYLkiSJHUJGzfCOedAfX12fYXBg5NOJEnS3kslHUCSJKnYvf569i4QAwfCzJkW\nC5Kk/GO5IEmSlKD774djj4VLL4Wf/tSFGyVJ+cnLIiRJkhKQycC118KNN8Ldd8MxxySdSJKk/We5\nIEnSfqhbUkfdkjoApgyfwrS6aQDUjqildkRtYrmUH959F849F1atyq6v0EXW4pIkab+FGGPSGd4n\nhBC7WiZJ0oHR9hfyuiV1O34J76hfyMPVgXhVYfybEkIgxhiSzlEMOmMscvrp0Lcv/OQn0L17h55K\nkqQDZnfjEcsFSVLBslzQ/uiMsciGDdlyQZKkfLK78YgLOkqSJHUyiwVJUqGxXJAkSZIkSTmxXJAk\nSZIkSTlxzQVJUkHp7EUjO4trLnQexyKSJLXPBR0lScpzlgudx7GIJEntc0FHSZIkSZLUYSwXJEmS\nJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElS\nTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwX\nJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmS\nJElSTiwXJEmSJElSTnIqF0IIFSGEh0MIC0MID4UQ+u7iuEtDCPNDCHNDCL8KIZTlcl51rrq6uqQj\nKCF+9sXLz15d0T6MO24OIawNIczdn/era/LnUvHysy9efvb5JdeZC1cAj8YYDwceA67c+YAQwhDg\nEmBijPEooBQ4I8fzqhP5l7p4+dkXLz97dVF7HHe0+gXw1zm8X12QP5eKl5998fKzzy+5lgunAbe2\nbt8KfGoXx5UAvUIIpUBPYFWO55UkScVnr8YdMcangIb9fb8kSdp3uZYLVTHGtQAxxjVA1c4HxBhX\nAf8GLANWAutjjI/meF5JklR89jju6OD3S5KkXQgxxt0fEMIjwMC2u4AIfAe4JcZY2ebYd2KM/Xd6\nfz/gTuDvgA3AHcDtMcZf7+J8uw8kSVKRijGGpDN0tFzHHW1eGw7c23pJ5vZ96/bm/Y5FJEnatV2N\nR0r34o3H7+q11sWSBsYY14YQBgH17Rw2FVgcY1zX+p7fAccA7ZYLxTBwkiRJ7TsA447d2av3OxaR\nJGnf5XpZxAzg3Nbtc4B72jlmGTA5hFAeQgjAJ4DXcjyvJEkqPnsz7tgutH7t7/slSdI+2ONlEbt9\ncwiVwG+BDwBLgdNjjOtDCIOBn8cYT2k97iqyd4jYCrwEfDHGuDXX8JIkqXjsw7jj10At0B9YC1wV\nY/zFrt7f+d+JJEmFJ6dyQZIkSZIkKdfLIlQkQghXhRBWhBBebP06MelM6jghhBNDCAtCCK+HEP4h\n6TzqPCGEJSGEl0MIL4UQnk86jyS15XikuDgeKV6OR/KTMxe0V1ovbXk3xnhd0lnUsUIIKeB1suuj\nrAJmAWfEGBckGkydIoSwGKiJMTYknUWSduZ4pHg4HilujkfykzMXtC9cPbs4fAh4I8a4tHVtlNuA\n0xLOpM4T8N8GSV2b45Hi4HikuDkeyUN+YNoXXw0hzAkh3BRC6Jt0GHWYQ4DlbZ6vaN2n4hCBR0II\ns0IIFyQdRpLa4XikODgeKW6OR/KQ5YJ2CCE8EkKY2+ZrXuvjqcANQDrGOB5YAzgdUSpMH40xTgRO\nAi4OIRybdCBJxcXxiCQcj+Sl0qQDqOuIMR6/l4f+HLi3I7MoUSuBYW2eD23dpyIQY1zd+vhWCOEu\nstNSn0o2laRi4nhErRyPFDHHI/nJmQvaKyGEQW2efgaYn1QWdbhZwOgQwvAQQhlwBjAj4UzqBCGE\nniGE3q3bvYAT8O+6pC7E8UhRcTxSpByP5C9nLmhv/SCEMB7IAEuALycbRx0lxtgSQvgq8DDZAvLm\nGONrCcdS5xgI3BVCiGT/ffhVjPHhhDNJUluOR4qE45Gi5ngkT3krSkmSJEmSlBMvi5AkSZIkSTmx\nXJAkSZIkSTmxXJAkSZIkSTmxXJAkSZIkSTmxXJAkSZIkSTmxXJAkSZIkSTmxXJAkSZIkSTn5XwGz\nSIQHpzdOAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1fae76e6940>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"study_trend(8, does_trend_up)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100% (47578 of 47578) |###########################################################| Elapsed Time: 0:26:56 Time: 0:26:56\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBAAAAGNCAYAAACopYLKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8FfW9//H352SBQEIIawIkAcG64QIuoFaI4kpVXKpC\na11ue+u9j1r7u23v1S4KWO99VB+33lqXtrZ1qbVVVFAUQaQQ9k0EJSyKLGFHCWtYspx8f3/MSTiE\nhBPISeYsr+fjcR6ZM/Od73wmIWTmfb4zY845AQAAAAAAHE/A7wIAAAAAAEDsI0AAAAAAAAARESAA\nAAAAAICICBAAAAAAAEBEBAgAAAAAACAiAgQAAAAAABARAQIAIG6Z2U1mVmNmX2tC27vNLDfs/fNm\ndnrLVhgdZlZgZkvM7GMzW25m9zVhnUIzW95K9b0Wqu1jM1tvZh+H1XAwbNlzYes8ZmYbzWxfvb7u\nNrMvw9b5l9bYh/rMbES8/PsAAKC1pPpdAAAAzTBS0mxJoySNjdD2HkklkrZLknPu+y1aWTOYWYpz\nLhg2a6ukwc65KjNrJ2mFmb3jnNseoSvXclWGbcS5kbXTZva/kvaELf7COTewgdUmSnpa0poGlr3m\nnHsgulWesJskvSdptc91AAAQMxiBAACIS2bWXtKlkr4rL0AIX/agmX1qZkvN7H/M7FZJF0j6W+hT\n7bZmNsPMBobajwq1/9TMfh3Wz/7QJ+XLzGyemXVtoI4cM5tgZp+E2vQ3z3oz6xDW7nMz62pmXczs\nTTNbGHpdHFo+2sz+amZzJP01fBvOuWrnXFXobYYka+R7cn6o1qWSfhA2v9DMZpnZR6HX4ND8l83s\nxrB2fzOzG8zszFBtH4f669uEH0mt2yX9I7yshho55xY553Y00keD6xzVwOzbYTX+3swCZnafmT0R\n1uZuM/tdI+0tNP+Yn3HoZ3KjpCdC7fuY2QNmtiLU7u9N/F4AAJBQCBAAAPFqhKQpzrkvJO00swGS\nZGbXSrpB0oXOuQGSnnDOvSVpsaRvOecGOucO13ZiZnmSfi2pSNJ5ki4MO6luL2mec+48eSMd/rWB\nOsZK+tg5d66kX0h6xTnnJL0t6ebQNi6StME595WkpyQ96ZwbJOmbkv4S1tcZkq5wzn27/kbMrJeZ\nfSKpVNLjjYw+eEHSD0L7He5LSVc65y6QN2rj6dD8v0i6N9R/B0kXS5ok6d8k/TY0cuACSZtDbSZZ\n2GUgDdR4maTtzrm1YbN7h07CZ5jZ1xtbt55bQoHMODPr1cB2Tpd0h6RLQjXWSPqWpLcU+p6H3CHp\ntUba136Pj/kZO+fmyxsh8Z+hfy/rJT0o6bxQu39r4n4AAJBQCBAAAPFqlKTXQtOv68gohCslveic\nq5Ak51ztcHpTw59sXyhphnNul3OuRtKrkoaEllU6594PTS+R1LuB9b8u6ZXQtmZI6mRmmZLGyTtZ\nV+jr62H1PRMaJTBRUmbosgRJmuicq2xoZ51zm0MhRT9J99QfDWFm2ZKynXNzQ7NeCVucJunPZvap\npDfkBRVyzs2S1M/MOsv7/r0V+h7Ml/QLM/tPSb3DvpffiHDZxCgdPfpgq6SC0En7TyT9PfS9OZ6J\noW2eK2mapJcbaDNM0kBJi0PfxyskneKc2ylprZldZGadJJ3mnJvXSPs+ob6a8jOWpE9C9X9bUrCR\nNgAAJDTugQAAiDtmliPvJLC/mTlJKfKu9/+vk+2ykflVYdNBNfx3s/59BkySnHPzzayvmXWRdz39\no2HLB4VdkuDN9EbUH4hUqHNuu5mVSLpM0vhI7UP+Q97IgHPMLEXSobBlf5X0HXkhxz2hbfzDzBZI\nul7S+2b2fedc8fE2EOr3Fnkn6rW1VknaHZr+2MzWSvqapI+Ps3+7w97+WdITDTQzSS87537RwLLX\n5I02WC1pQhPahwc2jf2MJekb8oKlG+WFK/1DYQsAAEmDEQgAgHh0m6S/Ouf6OOdOcc4VSlofGiL/\noaR7zSxDqgsbJGmfpA4N9LVI0hAz6xQ6CR4lqfgEapkt6c7QtookfeWcKw8tmyDpSUkrw0ZCTJX0\no9qVzezcSBsws55m1jZsf74u6bPwNs65vZL2mNkloVl3hi3OlrQtNH2XvMCl1suS/p/XhVsd2kYf\n59x659zTkt6RdE6kGiVdJWmVc25rWN1dzCwQmj5F3uiJdfV3r96+hl8iMULSyga29U9J36wdhWHe\nfSgKQsveDq03UkdGqDTUPr+h7YfZr9C/l9D9EgqcczMlPRSaH2kkBQAACYcAAQAQj+7QkU+Xa42X\nNMo594GkdyV9ZN7jBH8SWv6ypD+Ersdvq9DIgdCQ/IfkhQZLJX3knHsvtE5TnmIwVtL5ofsT/I+k\nu8OWjZN3rf1rYfN+JOmC0DX+JZIiPpJR3iUHC0PD72fIu6/Digba/Yuk50L7HV77c/Iue1gqbwRA\n3UgH59yXklZJejGs/e1mVhJqf5ZCN3WMcA+EO3T05QuS94n9p6F6xkm6rzZIMbPHzWyTpAzzHuf4\nSGidB8K2fb9CoyLCOedWSfqlpKmh7/tUSbmhZXtC+1PgnPvoOO3zartrZH9ek/SfZrZEXvDxt9Al\nIEskPeWc29fIegAAJCzz7vMEAACSUej+C59IGuic2+93PQAAIHYxAgEAgCRlZsPkXSLwO8IDAAAQ\nCSMQAAAAAABARIxAAAAAAAAAEREgAAAAAACAiAgQAAAAAABARAQIAAAAAAAgIgIEAAAAAAAQEQEC\nAAAAAACIiAABAAAAAABERIAAAAAAAAAiIkAAAAAAAAARESAAAAAAAICICBAAAAAAAEBEBAgAAAAA\nACAiAgQAAAAAABARAQIAAAAAAIiIAAEAAAAAAEREgAAAAAAAACIiQAAAAAAAABERIAAAAAAAgIgI\nEAAAAAAAQERRCxDMLGBmH5vZxGj1CQAAkoeZXWtmq83sczN7sIHlp5nZPDM7bGY/rrdsg5l9YmZL\nzWxR61UNAEDySI1iXz+StFJShyj2CQAAkoCZBSQ9I2mYpK2SFpvZO8651WHNyiT9UNJNDXRRI6nI\nObe7xYsFACBJRWUEgpn1kjRc0p+j0R8AAEg6F0la45wrdc5VSXpN0ojwBs65nc65JZKqG1jfxKWZ\nAAC0qGj9of0/Sf8pyUWpPwAAkFx6StoU9n5zaF5TOUkfmtliM/vXqFYGAAAkReESBjP7hqQdzrll\nZlYk7xOAhtoRLgAA0ADnXIN/O3FCLnXObTOzrvKChFXOuTn1G3E8AgBAw5pyPBKNEQiXSrrRzNZJ\n+oeky83sr40UlNCv0aNH+14D+8g+so/sYyK9kmEfUWeLpIKw971C85rEObct9PUrSRPkXRLRWNuE\nfiXD7w37mBgv9jExXuxjYryaqtkBgnPu5865AufcKZJGSprunLuruf0CAICkslhSPzMrNLN0eccU\nx3uyU92nJGbWzswyQ9PtJV0tqaQliwUAIBlF8ykMAAAAJ8U5FzSz+yVNlfcBx1+cc6vM7D5vsXve\nzLpL+khSlqQaM/uRpDMldZU0IXR5QqqkV51zU/3ZEwAAEldUAwTn3ExJM6PZZzwpKiryu4QWxz4m\nBvYxMbCPSDTOuSmSTqs3749h0zsk5Tewarmk81q2uviRDL837GNiYB8TA/uYXOxErndo1obMXGtt\nCwCAeGFmctxEsdVwPAIAwLGaejzi+yUMvXv3Vmlpqd9lIILCwkJt2LDB7zIAAGgRHI+0Do4nACC+\n+T4CIZR0tEoNOHn8nACgZTACoXVxPOIvvs8AEJuaejwSjcc4AgAAAACABEeAAAAAAAAAIiJAAAAA\nAAAAEREgAAAAAACAiAgQAAAAAABARL4/xrEhjzzyW23cuKfF+i8o6KhHH/1/LdZ/a7j33nuVn5+v\nRx991O9SACCqijcUq3hDcd10Ue8iSVJR76K6aaA1cDwSGccjAJBcYjJA2Lhxj3r3HtNi/W/Y0HJ9\nS9Kzzz6rl156ScuXL9e3vvUtvfDCCy26PQBIJOFBgY01Fd9T7Gs9SF4cjwAAcDQuYTgBjz/+eJPa\n9ezZUw8//LC++93vtnBFAAAg2XA8AgDwCwHCCaioqGhSu5tuukk33nijOnXqFLHt448/rl69eqlD\nhw4644wzNGPGjAbbLV26VOeff76ys7M1cuRIHT58+IRqBwAAiYHjEQCAXwgQToBzLqr9ff7553r2\n2We1ZMkS7du3Tx988IF69+59TLuqqirdfPPNuvvuu7Vr1y7ddttteuutt6JaCwAAiA8cjwAA/BKT\n90CIFWvXrtWbb74pM5NzTnPnztUTTzwh55zMTIMGDdLQoUNPuv+UlBRVVlaqpKREnTt3VkFBQYPt\nFixYoOrqaj3wwAOSpFtvvVUXXnjhSW8XAADED45HAACxggDhOPr27asHH3yw7n1FRYX+67/+K6r9\n//a3v9WYMWO0cuVKXXPNNfrNb36jvLy8o9pt3bpVPXv2PGpeYWFh1OoAED94QgGQfDgeAQDECi5h\n8NnIkSM1e/ZslZaWSpIeeuihY9rk5eVpy5YtR83buHFjq9QHILYU9S7SmKIxGlM0RjNLZ9ZNEx4A\naA6ORwAATUGAcAKaes1hMBjU4cOHFQwGVV1drYqKCgWDwWPaff7555oxY4YqKyuVnp6ujIwMBQLH\n/kguvvhipaam6umnn1Z1dbXGjx+vRYsWNXt/AABA/OF4BADgl5i8hKGgoGOLPhu5oKBjk9p99tln\neu211+quOZw5c6YeffTRumsOL774Yl111VXHrPfYY49p7NixMjNJ0quvvqrRo0frkUceOapdRUWF\nHnroIa1evVppaWm65JJL9Pzzz0uShg8friFDhuihhx5SWlqaxo8fr+9973v65S9/qeHDh+vWW289\nqq/w9gAAoPk4HuF4BABwNIv2nXwb3ZCZa2hbtX8MEdv4OQGxx8aa3OjE/r1Min30/n81v+tIFhyP\n+IvvMwDEpqYej3AJAwAAAAAAiIgAAQAAAAAARESAAAAAAAAAIorJmygCwMko3lCs4g3FddO1jzYs\n6l3EYw4BAACAZiJAAJAwwoMCG2sqvqfY13oAAACARMIlDAAAAAAAICJGIAAAgKRXWFgoM56m2dIK\nCwv9LgEA0AwxGSBE4zpmroUGAABNtWHDBr9LAAAg5plzrnU2ZOYa2paZ6Xg12FiTG928GqPRRyL4\n93//d/Xq1Uu/+MUvTnjdSD8nINYkw+89+5gYQv+/8tF3K2nseAQAgGTW1OMR7oFwHL1791bbtm21\na9euo+YPGDBAgUBAGzdujPo2Kysrddddd6lTp07Kzc3Vf/zHf0Stzt///vcnFR4AAAAAAECAcBxm\npj59+ugf//hH3bySkhIdOnSoxa6TfOmll7Rs2TJt2LBB69ev10033RSTdQIAAAAAkgsBQgTf+c53\n9PLLL9e9f/nll3X33Xcf1eb999/XwIEDlZ2drcLCQo0dO7Zu2bhx43TKKaeovLxckjR58mTl5eWp\nrKyswe2lpaUpOztbHTp0UEZGhoYOHRq1Ou+991498sgjkqSZM2cqPz9fTz75pLp3766ePXvqpZde\natK2AAAAAADJhwAhgsGDB2v//v367LPPVFNTo9dff1133nnnUfcDyMzM1CuvvKK9e/dq0qRJ+sMf\n/qCJEydKkm6//XZdeumleuCBB7Rr1y5973vf0wsvvKDOnTs3uL2BAwdqwYIFGjNmTNTrrG/79u3a\nv3+/tm7dqj//+c/6wQ9+oL17957QdgEAAAAAySEmn8JQn431dxh+7af7Q4cO1RlnnKEePXoctXzI\nkCF10/3799fIkSM1c+ZM3XjjjZKkZ555Ruecc46Kioo0YsQIXXfddQ1uZ/fu3brxxhs1adIkjR49\nWmam0aNHS5Ly8/M1ZcoUnXXWWSddZ33p6el6+OGHFQgEdN111ykzM1OfffaZLrrooiZ9XwAAAAAA\nySMuAoRoPIWhOe68804NGTJE69ev11133XXM8oULF+pnP/uZSkpKVFlZqcrKSt122211y7Ozs3Xb\nbbfp//7v/zR+/PhGt/PGG2/ozDPP1NVXX60LLrhAQ4YMkZnp7rvvVjAYPG540JQ66+vcubMCgSOD\nUNq1a1d3qQUAAAAAAOG4hKEJCgoK1KdPH02ePFm33HLLMcu//e1v66abbtKWLVu0Z88e3XfffUdd\nOrBs2TK98MILGjVqlH74wx82up3q6mpVVVVJkjp16qRp06bppZde0jXXXKOf/vSnza4TAAAAAICT\nRYDQRC+88IKmT5+ujIyMY5aVl5crJydHaWlpWrRokf7+97/XLTt8+LC+853v6Ne//rVeeOEFbd26\nVb///e8b3Mbw4cO1ePFi/elPf1J1dbVSUlJ0ySWXaM2aNWrXrl2z6wQAAAAA4GQRIBxH+CMQ+/Tp\no4EDBza47LnnntPDDz+s7OxsPfbYY7rjjjvqlv385z9XYWGhvv/97ys9PV2vvPKKHn74Ya1du/aY\n7fXu3VuTJ0/Wyy+/rM6dO2vAgAHKzc3VjBkz9OCDD2rq1KnNqvNE9hcAAAAAgHB2vLv0R3VDZq6h\nbZnZcZ8UYGMtKvdAaG4fyS7SzwmINcnwe88+JobQ/68kuK2kseMRAACSWVOPR2LyJorFG4pVvKFY\nkjS0cKjGFI+RJBX1LlJR76JW6wMAAAAAAHhiMkCIxkk+QQEAAAAAANHDPRAAAAAAAEBEBAgAAAAA\nACAiAgQAAAAAABARAQIAAAAAAIjI95soFhYWyoynV8W6wsJCv0sAAAAAAPjI9wBhw4YNfpcAAAAA\nAAAi4BIGAAAAAAAQEQECAAAAAACIiAABAAAAAABERIAAAAAAAAAiIkAAAAAAAAARESAAAAAAAICI\nCBAAAAAAAGiAc05fffWVgsGg36XEhFS/CwAAAAAAIJZ8+eWXWrasRDNmlGjbtl16+OHvqG/fvn6X\n5TsCBAAAAABA0isrK9Mnn5SouLhEGzdWyuwsder0TaWk/FPOOb/LiwkECAAAAACApLRnzx59+ukK\nzZxZonXr9ks6Sx073qDCwnyZmSRp717zt8gYQoAAAAAAAEga+/btU0nJSs2aVaLPPtsl585QdvbV\nKigolBm3CTweAgQAAAAAQEI7cOCAVqxYqTlzVqikZIecO01ZWUXKz++jQCDF7/LiRrMDBDNrI2mW\npPRQf28658Y2t18AAJBczOxaSb+V95SovzjnHq+3/DRJL0oaKOnnzrknm7ouACD5HDp0SKtWrdbc\nuSVatmyLgsF+yswcrF69+ikQ4LP0k9Hs75pzrsLMLnfOHTSzFElzzWyyc25RFOoDAABJwLwxo89I\nGiZpq6TFZvaOc251WLMyST+UdNNJrAsASAIVFRX67LPPNHduiZYsKVV19Slq126gevS4Qykp6X6X\nF/eiErs45w6GJtuE+uQWlQAA4ERcJGmNc65UkszsNUkjJNWFAM65nZJ2mtn1J7ouACBxVVVVac2a\nNZo/v0QLF65VVVWh2rQ5S7m5tyo1tY3f5SWUqAQIoeR/iaS+kp51zi2ORr8AACBp9JS0Kez9ZnnB\nQEuvCwCIQ9XV1Vq7dq0WLizRvHlrVFHRQ+np/dW16w1KS8vwu7yEFa0RCDWSBphZB0lvm9mZzrmV\n9duNGTOmbrqoqEhFRUXR2DwAAHGjuLhYxcXFfpeR1DgeAYD4VFNTo/Xr12vx4hLNnr1aBw92U2pq\nf3Xteo3S0zP9Li+unOzxSFTvHOGc22dmMyRdK+m4AQIAAMmo/gnr2LHcdzhki6SCsPe9QvOivi7H\nIwAQP2pqarRx40Z99FGJZs9epX37Oiolpb+6dr1cXbt28Lu8uHWyxyPReApDF0lVzrm9ZpYh6SpJ\nv25uvwAAIKksltTPzAolbZM0UtKo47S3ZqwLAIhhzjlt2bJFH39couLiFdq9u70Cgf7q0uV7ysnJ\n8bu8pBaNEQh5kl4O3QchIOl159z7UegXAAAkCedc0MzulzRVRx7FuMrM7vMWu+fNrLukjyRlSaox\nsx9JOtM5V97Quj7tCgDgJDjntH37di1d6oUGX36ZGgoN7lZhYRe/y0NINB7juFze85gBAABOmnNu\niqTT6s37Y9j0Dkn5TV0XABD7vvzyS33yyQoVF5doy5YaBQL91anTKBUWdpOZRe4ArSqq90AAAAAA\nAOB4ysrK9OmnXmhQWnpYZv2Vk3OLCgt7EBrEOAIEAAAAAECL2rNnj5YvX6FZs1boiy/2ybkzlZNz\nvQoL8wkN4ggBAgAAAAAg6vbv368VK1Zq5swSrV5dJukMdehwlQoKCuXdQg/xhgABAAAAABAVBw8e\n1IoVKzV7dolKSnaopuZrysoaovz8UxQIpPhdHpqJAAEAAAAAcNIOHz6sVatWa+7cEi1dulnBYD9l\nZg5Wr179FAhwyplI+GkCAAAAAJqssrJSW7Zs0caNm1VSslHLlm1UdfUpysg4Tz163K6UlHS/S0QL\nIUAAAAAAADTIOafdu3dr06ZNWrt2s5Yv36TS0jJJuXKul9q1G6Du3W9Vampbv0tFKyBAAAAAAABI\n8kYXbN26VaWlm7Ry5WatXr1Z+/alyCxfZr2UnX2uevXK5dKEJMVPHQAAAACSkHNOe/bsqRtdUFKy\nSRs27JRz3eVcvjIyzlF29jeUk9PB71IRIwgQAAAAACAJVFVV1Y0uWLVqs1au3KR9+wJ1ows6dDhb\nPXvmMboAjeJfBgAAAAAkGOec9u7de9S9CzZs+ErOdQuNLuivDh2uU8eOHWRmfpeLOEGAAAAAAABx\nrqqqStu2bdPGjd69C1au3KS9exUaXZCvDh3OUo8eeUpJSfO7VMQxAgQAAAAAiCPOOe3bty80umCT\nSko2a/36L1VT01XO5att2zOVnX2NsrOzGV2AqCJAAAAAAIAYVl1dXTe6oPbeBbt3O5n1klm+srKu\nVl5eD0YXoMURIAAAAABADKkdXbBu3SYtX75Z69btUE1NF9XU5Csj43R16HCVCgo6MroArY4AAQAA\nAAB8Ul1dre3btx81umDXrqDMeknKV4cOV4ZGF6T7XSpAgAAAAAAArWXfvn3avHmz1q3z7l2wdu12\nBYOd5Vy+2rT5mrKzh6mgIIfRBYhJBAgAAAAA0AKCwWDd6ILVqzdrxYpNKiurqhtdkJV1hXJzezK6\nAHGDAAEAAAAAoqyqqkqPPvqctmxJD40uOFUdOlyugoJOjC5A3CJAAAAAAIAoW7RoiTZt6q7evUf6\nXQoQNQG/CwAAAACARFJZWak33pijLl0u97sUIKoIEAAAAAAgiubNW6TduwuVmdnd71KAqCJAAAAA\nAIAoOXz4sN56a766dSvyuxQg6ggQAAAAACBK5sxZoH37+ql9+65+lwJEHQECAAAAAETBwYMHNWHC\nIuXmDvW7FKBFECAAAAAAQBTMnDlPBw6coYyMTn6XArQIAgQAAAAAaKYDBw7onXeWKDd3iN+lAC2G\nAAEAAAAAmmn69Dk6fPhstW2b7XcpQIshQAAAAACAZti3b5/efXeZ8vIu87sUoEURIAAAAABAM0yb\nNlvV1QPUpk2W36UALYoAAQAAAABO0p49e/T++yXKzb3U71KAFkeAAAAAAAAnacqUmaqpuVDp6e39\nLgVocQQIAAAAAHASysrKNHXqZ8rLu9jvUoBWQYAAAAAAACdh0qRimQ1WWlqG36UArYIAAQAAAABO\n0Jdffqni4nXKyxvkdylAqyFAAAAAAIAT9N57xQoELlFqahu/SwFaDQECAAAAAJyAbdu2afbsTcrL\nu8jvUoBWRYAAAAAAACdg4sQZSk39ulJS0vwuBWhVBAgAAAAA0ESbN2/W/Pk7lJd3vt+lAK2OAAEA\nAAAAmmjChOlKTx+iQCDV71KAVkeAAAAAAABNsGHDBn300W7l5p7ndymALwgQAAAAACAC55zGj5+u\njIwiBQIpfpcD+IIAAQAAAAAiWLdunT755KC6dz/b71IA3xAgAAAAAMBxOOf05pvT1b59kcw4hULy\n4l8/AAAAABzH559/rpUrq9W161l+lwL4igABAAAAABrhnNO4cdOVlXW5zMzvcgBfESAAAAAAQCNW\nrFipNWtS1LnzaX6XAviOAAEAAAAAGlBTU6Nx42aoY8crGH0AiAABAAAAABr06afLVVraTjk5ff0u\nBYgJBAgAAAAAUE8wGNS4ccXKyWH0AVCLAAEAAAAA6lm27BNt2ZKjjh17+10KEDMIEAAAAAAgTHV1\ntV5/faY6dbrc71KAmEKAAAAAAABhPvroY23f3k3Z2fl+lwLEFAIEAAAAAAipqqrSuHGz1bUrow+A\n+ggQAAAAACBkwYLFKivrpaysHn6XAsQcAgQAAAAAkFRRUaE335yrbt0YfQA0hAABAAAAACTNm7dQ\ne/eeovbtu/ldChCTCBAAAAAAJL3Dhw/rrbcWqFu3Ir9LAWJWswMEM+tlZtPNbIWZLTezB6JRGAAA\nSC5mdq2ZrTazz83swUba/M7M1pjZMjMbEDZ/g5l9YmZLzWxR61UNIFHMmjVf5eWnqV27zn6XAsSs\n1Cj0US3px865ZWaWKWmJmU11zq2OQt8AACAJmFlA0jOShknaKmmxmb0TfjxhZtdJ6uucO9XMBkn6\nvaTBocU1koqcc7tbuXQACeDgwYOaMGGRunf/vt+lADGt2SMQnHPbnXPLQtPlklZJ6tncfgEAQFK5\nSNIa51ypc65K0muSRtRrM0LSXyXJObdQUraZdQ8tM3FpJoCTNGPGXB06dJYyMnL8LgWIaVH9Q2tm\nvSWdJ2lhNPsFAAAJr6ekTWHvN+vYDyTqt9kS1sZJ+tDMFpvZv7ZYlQASTnl5uSZO/Fh5eUP8LgWI\nedG4hEGSFLp84U1JPwqNRDjGmDFj6qaLiopUVFQUrc0DABAXiouLVVxc7HcZiehS59w2M+sqL0hY\n5Zyb01BDjkcAhJs2bbYqK89VmzYd/C4FaDUnezxizrlmb9zMUiW9J2myc+6pRtq4aGwLAJrCxprc\n6MT+P4d9TAxmJuec+V2H38xssKQxzrlrQ+8fkuScc4+HtfmDpBnOuddD71dLGuqc21Gvr9GS9jvn\nnmxgOxx0jHILAAAgAElEQVSPAKizd+9e/fSnf1DXrj9Qenqm3+UgRm3e/Dc99NBg9evXz+9SWkxT\nj0eidQnDC5JWNhYeAAAARLBYUj8zKzSzdEkjJU2s12aipLukusBhj3Nuh5m1C42ElJm1l3S1pJLW\nKx1AvJo6dZaCwfMJD4AmavYlDGZ2qaRvS1puZkvlXYP4c+fclOb2DQAAkoNzLmhm90uaKu8Djr84\n51aZ2X3eYve8c+59MxtuZl9IOiDp3tDq3SVNMDMn79jmVefcVD/2A0D82L17t6ZMWam8vB/6XQoQ\nN5odIDjn5kpKiUItAAAgiYU+fDit3rw/1nt/fwPrrZd3E2cAaLIpU2ZKGqS0tHZ+lwLEDR53BAAA\nACCp7Ny5Ux9++Lny8gb7XQoQVwgQAAAAACSVSZOKZXaxUlPb+l0KEFcIEAAAAAAkjR07dqi4eIN6\n9BjkdylA3CFAAAAAAJA03n13hlJTL1VKSrrfpQBxhwABAAAAQFLYunWr5szZotzcC/wuBYhLBAgA\nAAAAksLbb09XevoQpaSk+V0KEJcIEAAAAAAkvI0bN2rRop3KzR3gdylA3CJAAAAAAJDw3n57htq0\nGapAINXvUoC4RYAAAAAAIKGtX79eS5bsVW7uuX6XAsQ1AgQAAAAACcs5p7femq527YpkxukP0Bz8\nBgEAAABIWF988YWWLz+sbt36+10KEPcIEAAAAAAkJOec3nhjujIzL2f0ARAF/BYBAAAASEirVq3W\n6tVOXbqc4XcpQEIgQAAAAACQcGpqavTGGzOUnX2FzMzvcoCEQIAAAAAAIOGUlKzQunXp6tTpVL9L\nARIGAQIAAACAhOKNPihWx46MPgCiiQABAAAAQEL55JNPVVqaqY4d+/hdCpBQCBAAAAAAJIxgMKjX\nXy9Wp06MPgCijQABAAAAQMJYsmSptm3rrI4dC/0uBUg4BAgAAAAAEkJ1dbXGjZulzp2v8LsUICER\nIAAAAABICAsXfqSvvspThw49/S4FSEgECAAAAADiXmVlpd54Y466dr3c71KAhEWAAAAAACDuzZu3\nSLt3FyozM9fvUoCERYAAAAAAIK5VVFRo/Pj56tatyO9SgIRGgAAAAAAgrs2Zs0D79vVV+/Zd/S4F\nSGgECAAAAADi1qFDhzR+/EJ1717kdylAwiNAAAAAABC3Zs6cpwMHTldGRie/SwESHgECAAAAgLh0\n4MABvf32R8rNHep3KUBSIEAAAAAAEJemT5+jw4fPVtu22X6XAiQFAgQAAAAAcWffvn16991lysu7\nzO9SgKRBgAAAAAAg7kybNlvV1QPUpk2W36UASYMAAQAAAEBc2bNnj95/v0S5uZf6XQqQVAgQAAAA\nAMSVDz6YpZqaC5Se3t7vUoCkQoAAAAAAIG6UlZVp6tTVysu7xO9SgKRDgAAAAAAgbkyePFPODVJa\nWobfpQBJhwABAAAAQFz46quvNH36WvXoMdjvUoCkRIAAAAAAIC68++4MBQKXKDW1jd+lAEmJAAEA\nAABAzNu+fbtmzdqovLwL/S4FSFoECAAAAABi3sSJM5SWdplSUtL9LgVIWgQIAAAAAGLa5s2bNW/e\nNuXlne93KUBSI0AAAAAAENPefnuG0tOHKBBI9bsUIKkRIAAAAACIWaWlpVq8eJdycwf4XQqQ9AgQ\nAAAAAMQk55zGj5+ujIyhCgRS/C4HSHoECAAAAABi0rp167Rs2QF1736O36UAEAECAAAAgBjknNOb\nb05X+/ZFMuO0BYgF/CYCAAAAiDmff/65VqyoUteuZ/ldCoAQAgQAAAAAMcU5pzfemKEOHa6Qmfld\nDoAQAgQAAAAAMWXlylVasyagzp1P87sUAGEIEAAAAADEjJqamtDog8sZfQDEGAIEAAAAADFj+fIS\nrVvXVp069fO7FAD1ECAAAAAAiAnBYFDjxhUrJ4d7HwCxiAABAAAAQExYtuwTbd6crZycPn6XAqAB\nBAgAAAAAfFddXa3XX5+pTp2u8LsUAI0gQAAAAADgu48++lg7dnRTdna+36UAaESq3wUAAAAASG5V\nVVUaN262unQZ5XcpSALOScGgVF3tfW1suvbr3r3d/C45ZhAgAAAAAPDVwoUfqaysl/r06eF3KYii\npp6oN3TS3pTlJ9t3TY2UkuK9UlMjT2dk9PT7WxkzCBAAAAAA+KayslJvvDFHXbve5XcpCa/2JLqq\nKvKroXaNrduUE/Xwk/JIJ+2pqVIgcOyyNm2k9u0jr9uUvk/kIR+bNy+VNLjFfi7xhAABAAAAgG/m\nzVuoPXv6qE+f7n6X4ptgsOkn68052XdOSktr/JWa2vD8tm2Pv05jJ+0pKSd2oo7YF5UAwcz+Iul6\nSTucc+dEo08AAJBczOxaSb+Vd5PnvzjnHm+gze8kXSfpgKR7nHPLmrougNhz+PBhvfnmfHXv/i9+\nl9IkNTVSRYVUWel9rX019r6pAYAkpac3fgLf2Al+u3ZNCwBqXyf6yTtQX7RGILwo6WlJf41SfwAA\nIImYWUDSM5KGSdoqabGZveOcWx3W5jpJfZ1zp5rZIEl/kDS4KesCiE2zZ89XefnX1KVLlxbbRu1J\nf/0T/cZO+o8XDgSD3ol+mzbeq6Hp9HQpI0Pq2NGbbkoYkJLSYrsPRFVUAgTn3BwzK4xGXwAAICld\nJGmNc65UkszsNUkjJIWHACMU+rDCObfQzLLNrLukPk1YF0CMOXjwoMaPX6Tu3b9/zLLGTvqbeuJ/\nvJP+xk78a0/6j9cmLY1P8JHcuAcCAACIBT0lbQp7v1leqBCpTc8mrgsgBhw6JC1YIM2aJc2YsVdr\n196jlJScY078g8HGT+LDp9u3l3JyGm5T+56TfiB6WjVAGDNmTN10UVGRioqKWnPzAAD4rri4WMXF\nxX6XkShO6pSA4xGg9ZSXS/PmSTNneq9ly6Szz5aGDJE6dVqhzMwz1aXLsSf+qamc9AMt6WSPR3wL\nEAAASEb1T1jHjh3rXzGxZYukgrD3vULz6rfJb6BNehPWrcPxCNBy9uyR5szxwoJZs6QVK6Tzz/cC\ngzFjpIsv9kYNSNKSJZ301FMfqLDwHhlpAdCqTvZ4JJoBgukkPwkAAABJb7GkfqF7Km2TNFLSqHpt\nJkr6gaTXzWywpD3OuR1mtrMJ6wJoATt3ekHBrFleaPDFF9KgQdLQodITT3jTbds2vO6AAefplFPm\na+fOz9Wly2mtWziAkxKtxzj+XVKRpM5mtlHSaOfci9HoGwAAJD7nXNDM7pc0VUcexbjKzO7zFrvn\nnXPvm9lwM/tC3mMc7z3euj7tCpDQtm07EhbMnClt3ixdeqkXGDz3nDfaID29aX0FAgF961tX6b//\n+0N17nyqvAeqAIhl0XoKw7ei0Q8AAEhezrkpkk6rN++P9d7f39R1ATRfaemRwGDWLKmsTLrsMu+S\nhO9+Vzr3XO9+BSfr1FNP1XnnzdXq1cuUlzcweoUDaBE8hQEAAACAnJPWrj0SFsyc6T01YcgQb4TB\nAw9I/ftLgSgOFDAz3XbbVfrlL8cpGDxbKSlp0escQNQRIAAAAABJyDlp1aqjRxiYeWHB0KHSz34m\nnXZayz8NoVevXioqytfs2QuUn39Zy24MQLMQIAAAAABJoKZGWr78yP0LZs2SsrK8sODqq6X//m+p\nTx9/Hp94443DNGfOn1VZOVDp6e1bvwAATUKAAAAAACSg6mpp6dIjYcGcOVK3bt4lCbfcIv32t1J+\nfuR+WkOnTp00fHh/vfvuLBUWXud3OQAaQYAAAAAAJIDKSmnx4iOBwfz5UkGBN8Lgzjul55+XcnP9\nrrJx11wzVB9++IwOHRqsjIwcv8sB0AACBAAAACAOHTokLVhw5B4GixdLX/uaFxj8279Jr74qde7s\nd5VN1759e33zm4P117/+U336fNPvcgA0gAABAAAAiAPl5dK8eUdGGCxdKp19tndJwk9/Kl16qZSd\n7XeVzXPZZRdr0qSntX//VmVl9fC7HAD1ECAAAAAAMWjPHu++BbUjDFaskAYO9EYYPPKIdPHFUmam\n31VGV3p6ukaOHKpnn/1QmZl3yfy4oyOARhEgAAAAADGgqkqaO1eaNEmaNk364gtp0CAvMHjiCW+6\nbVu/q2x5F1wwUIWFC7Rr1xfq3PlUv8sBEIYAAQAAAPDJV19Jkyd7ocHUqVK/ftI3viE9+6x0wQVS\nerrfFba+QCCgUaOu1K9/PU2dOvWVWcDvkgCEECAAAAAArcQ56ZNPpPfe80KDlSulYcOk66/3HquY\nl+d3hbHh9NNP0znnzNWaNZ8qN/c8v8sBEEKAAAAAALSgAwekf/7TCwwmTfIuQ7j+eulXv5Iuu0xq\n08bvCmOPmen226/Www+/qWDwLKWkpPldEgARIAAAAABRt379kcBgzhzpoou8SxN+/GPvUYvcGzCy\n/Px8XXZZD82fv0i9el3qdzkARIAAAAAANFt1tfeIxdpLE3bulIYPl777Xem11+L/8Yp+GTFimObO\nfUFVVQOUltbO73KApEeAAAAAAJyEnTulKVO80GDqVKlPH2+UwYsvejdADHDvv2br0qWLhg8/U5Mm\nzVZh4TV+lwMkPQIEAAAAoAmck5YvPzLKoKREuuIKLzR48kmpRw+/K0xM115bpGnTntXhw4PUtm1H\nv8sBkhoBAgAAANCIgwel6dOPhAbp6V5gMHq0NHQoN0BsDZmZmbr11ov06qvT1bv3LX6XAyQ1AgQA\nAAAgTGmpFxa89553A8Tzz/dCgw8/lE47jRsg+mHIkEs0adLT2r9/m7KyeNYl4BcCBAAAACS16mpp\n/vwjT03Yvt27AeI990h//7vUkVHzvmvTpo1GjRqq556bpqys7/hdDpC0CBAAAACQdHbtOnIDxA8+\nkAoKpOuvl/70J+nCC6WUFL8rRH0XXDBQ+fkLtGvXWnXq1NfvcoCkRIAAAACAhOecd9PD2ksTPv1U\nuvxy79KEJ56QevXyu0JEkpKSolGjhunxxz9UTs4pMq4lAVodAQIAAAAS0qFD3g0Qay9NCAS8UQa/\n/KVUVCS1bet3hThRZ555hs4+e57WrVuu7t3P8bscIOkQIAAAACBhbNp0ZJTBrFnSgAHeKIPJk6Uz\nzuAGiPHOzHT77VfpkUcmqKbmTAUCnM4ArYnfOAAAAMStYFBasOBIaLB1q3TdddKdd0qvvCLl5Phd\nIaKtsLBQl17aXYsXL1bPnhf7XQ6QVAgQAAAAEFd27/ZugDhpkve1Z09vlMEf/iANGsQNEJPBzTdf\nqQULXlJV1XlKS8vwuxwgaRAgAAAAIOaVlkpvvy1NmCB9/LE0dKgXGvzP/3hPUEBy6dq1q6655jR9\n8MEcFRRc5Xc5QNIgQAAAAEDMcU5atUoaP94LDUpLpRtukH7yE+nKK6UMPnROesOHX67p05/T4cMX\nqW3bbL/LAZICAQIAAABiQk2NtHixFxhMmCAdPCjdfLP0v/8rXXaZlMqRK8JkZWXp5psv0GuvzVDv\n3jf5XQ6QFPhvGAAAAL6pqvKeljB+vPTOO1JWlnTLLdKrr0rnn89TE3B8RUWXavLkp1VevkOZmd39\nLgdIeAQIAAAAaFUHD0pTp3qjDN57T+rb1xtpMG2adPrpfleHeNK2bVvdcccQ/fGP05SZ+W2/ywES\nHgECAAAAWtzu3V5YMGGC9M9/eqMLbrlFeuwxKT/f7+oQzwYNukDvvbdAu3evV05OH7/LARJawO8C\nAAAAkJi2bZN+/3vp6qulwkLpzTelG2+U1q2Tpk+X7r+f8ADNl5KSolGjhmn37g/lnPO7HCChMQIB\nAAAAUfPFF94og/HjpdWrpeHDpfvu895nZvpdHRJV//5n6cwz52njxhXq1q2/3+UACYsAAQAAACfN\nOWnZsiNPTti5UxoxQhozRrr8cik93e8KkQzMTHfccZXGjJmomprTFQhwmgO0BH6zAAAAcEKCQWne\nvCOhQSDg3c/gj3+UBg/23gOtrU+fPrr44i5asuQj9ew52O9ygIREgAAAAICIKiq8mx9OmCBNnCjl\n5XlPTnjnHenss3ncImLDzTdfqYUL/6rq6vOUmtrW73KAhEOAAAAAgAbt3y9NnuyFBpMnS/37eyMN\nfvYz6ZRT/K4OOFb37t119dWn6sMP56qgYJjf5QAJhwFmAAAAqPPVV9Jf/iJdf73Us6f04ovevQxW\nr5bmzJF+/GPCA8S24cMvV2rqR6qo2Od3KUDCIUAAAABIcqWl0lNPSUVFUr9+0pQp0re/LW3a5I08\n+P73pdxcv6sEmiY7O1sjRgzUtm3FfpcCJBwuYQAAAEgyzkmrVnmPVpwwQdq4UbrhBuknP5GuvFLK\nyPC7QqB5hg27TFOmPK0DB75S+/Zd/S4HSBiMQAAAAEgCNTXSwoXSQw9Jp58uXXut9OWX0v/+r7Rt\nm/TCC16IQHiARNC2bVvdccfX9eWX0/wuBUgojEAAAABIUFVV0syZ3iiDt9+WsrO9Jye8+qp0/vk8\nOQGJbfDgC/Xeewu1Z0+pOnYs9LscICEQIAAAACSQgwelqVO90OC996S+fb3Q4J//9EYeAMkiNTVV\no0Zdod/85kNlZ39XRmIGNBuXMAAAACSIX/1KysuTnn5auvBC6ZNPpEWLvMcuEh4gGZ1zztk6/fSg\ndu5c5XcpQEIgQAAAAEgQt98urVvnjTa4/36pVy+/KwL8ZWa6444rtX//NNXUBP0uB4h7BAgAAAAJ\n4rTTpM6d/a4CiC19+/bVoEE52rZtid+lAHGPAAEAAABAQrvllitVXT1L1dUVfpcCxDUCBAAAAAAJ\nLS8vT8OGnaJt2+b5XQoQ1wgQAAAAACS866+/QoHAIlVU7Pe7FCBuESAAAAAASHgdO3bUiBEDtH37\nTL9LAeIWAQIAAACApDBs2GVq336lDh7c6XcpQFwiQAAAAACQFDIyMnTbbZdqx45pfpcCxCUCBAAA\nAABJ45JLLlL37tu0d+9Gv0sB4g4BAgAAAICkkZaWplGjLldZ2YdyzvldDhBXUv0uAACQeJxzqqmp\nqXsFg8Gj3h9vfvg8STp06JAyMjJ83iMAQCI599xzdOqp87Vjx2fq0uV0v8sB4gYBAgA0k3Ou7oQ5\n/GtD86K5TJI+/fTTiCfmwWCNqqtrVFUVrJsOBr1X7bzw+dXVR+aFvxqaX10drNtGMOhtz5vnZBaQ\nFJBZSt107css5aj34fOcC5tfIC1fvlwXXXSRHz9aAECCCgQCGjnySj322Afq3Plrob9TACIhQAAQ\nt2pqanTgwAGVl5dr//79Ki8v1759+1VWVi5J+t3v/qaaGqdgsPYk/Mi0d7Jb+ym5a3Be/WXhX8OX\neSfLJu+k10IHIRZ6BY5aduRreLtjlx07r4FlBdJTT605+oRbKXLuyEm4c7Un8KkyCxz1CgRSjplX\ne7LflHZpaQGlpzfczts/i8JP+U6GlwIAWkS/fv10/vnzVFLysXr0uMDvcoC4QIAAIOZUV1cfFQrs\n379fe/eWa+fO/dq5s1y7du3Xrl3l2rfvoKQMBQJZkjLlXJZqajKVmtpFypfWrBkkMzvqhPbIdKDR\nZYFAQCkpTV8veifLJ2qk8vNv9WG7AADEPzPTN795lZYu/YeCwXOUkpLud0lAzItKgGBm10r6rbyP\nv/7inHs8Gv0CSBzOOVVUVBwVDJSXe2HAzp3lKivzQoHdu/frwIEqBQKZkjJl5oUCUpbS0nqpTZss\npadnql27TGVnt1cgkNLoNjt3PrXV9g/AyTOzHEmvSyqUtEHS7c65vQ20a/B4w8xGS/pXSV+Gmv7c\nOTelFUoHEOd69Oihyy8v1MyZ85WfP9TvcoCY1+wAwbyP4Z6RNEzSVkmLzewd59zq5vYNIPY553Tw\n4MGjRgvs31+uXbvK9dVXXihQVrZfe/aUq6rKjhot4FymzDKVnt5d6emZatMmSx07ZqpLlwyfPtEH\n4JOHJE1zzj1hZg9K+lloXp0mHG886Zx7sjWLBpAYbrhhmGbNel6VlRcoPb293+UAMS0aIxAukrTG\nOVcqSWb2mqQRkggQgDgWDAbrRgnUhgN793r3F6gNBnbvLtfevQdUU9MmLBjwwoGUlBylpxcoPT1T\n6emZ6t49i6GBABozQlLtR38vSypWvQBBkY83SB0BnJScnBzdcMO5evvtmSosHO53OUBMi0aA0FPS\nprD3m+X9kQfinnNSdbUUDDb8Ot6ySMv97LeqqlqHD1eourpaVVXVqqwMqqKiShUVQVVWevOqqpwk\n7+Z7zmVK6ijnUmWWqkDAex25OZ8p/D53fk9X5ZRIw76m/9a53gxz8haF34zP1S076n1ty0bmN9a+\n/nzXWPvG1j9OW9fotjpprLrUm9dQu3rbaXCbzZgfjT7qz6+dPpQjJIVuzrkdkuSc225m3RpoE+l4\n434z+46kjyT9pKFLIACgMVddNURTpz6jgwcHqV27zn6XA8SsVr2J4pgxY+qmi4qKVFRU1JqbRxPU\nnjA39VV7Unqy72N1ndoTbueklJSGX6mpjS+LtPxklzW2PD39xPr99NMV+uKLUu3bV6Fg0Km62rsU\nIT29rdq3z1Z6eke1bZut1NS2SkvLUGpqW6Wmtqm7rCD86oJYnK6yPnrRSSP0skwWOke1ULsjjWuX\nmWr3y+qWyEmB8PfHaV83v177gB3ZdkPr19ZU975+Hw3VEOrTnOk5O10/qP3w9ah+w9rVnxe+78ds\nM+z7c9S2I8w/kbZNnR/6vv2qbeI9Vqu4uFjFxcV+l9HqzOxDSd3DZ8n7Sf+ygeYn+uiN5yQ96pxz\nZvaYpCclfbexxhyPAKivXbt2uu22i/Xii/9Unz63+10O0OJO9njEmvt4LDMbLGmMc+7a0PuHJLn6\nN1I0M5fIj+LaskXasOHETr6b8qqqat0+a2q8E83GXikpUlrakRPS+sua8z5W1gk/6Q4Ejj45TTTh\nj0E88jjEcu3ZU66ysgMqK/MuU9izp1zl5RUKBNpLai8z71KFmppMpaS0r7tMwXu1V2qq//cwGGum\n0Qn8f46UPPu44NoFGjRokN+ltBhvBI9L4P9pIjOzVZKKnHM7zCxX0gzn3Bn12jT1eKNQ0rvOuXMa\n2VZCH48AOHlVVVX62c+eVk3N7erQoZff5SCGbN78Nz300GD169fP71JaTFOPR6IxAmGxpH6hP9jb\nJI2UNCoK/caVqVOlP/3JOwFNSzv+SXikV3q61K7d0fOa22dDr4b6TPQTZhwtEAgoKytLWVlZEdsG\ng8G6kOHI64B27dqjsrLNoXsiHNDu3eU6dKhKZl7QIGWqpqa9nMtUauqRkKE2cEhJaeN72ADAdxMl\n3SPpcUl3S3qngTaNHm+YWa5zbnuo3S2SSlq6YACJJy0tTaNGFemppz5UVtY9HJ8ADWh2gOCcC5rZ\n/ZKm6shjlVY1u7I4c++93gtIVCkpKerQoYM6dOgQsW11dfVRoxpqRzbs2lWmsrLSuhsw7txZrsOH\naxQIHAkbakc2pKUdPbIhLa29UlLS+WMOJKbHJY0zs3+RVCrpdkkyszzp/7d3r8FR3ecdx3/P6rIS\nCF1RLFVCYMzawVYiYxNIyjiWb4FQ1zYZxzaxh6Z90+mkbWaadhonbpPJJDOd9EWnSdM3uTVtx82k\nTaa5OG2CayuJ00JxBdiEYMnYIAl0MbvCQlgCSfv0xS4gjO7a3aM9+n5mdtg9F+3vj7TaR8+e8z/6\nqrvfP0u98UUzu1VSUqnLQP5+rgcAIBw2bbpV69f/j86c6dDq1TcFHQdYcjIyB0L6Wsu8wgBIkgoL\nC1VZWanKyspZt7148eJVjYbz589raGhYicSA4vHXlEikjmoYGBjWxYtSJFJ2zZENk5sMl+7ndoYX\nAIvh7glJ906xvFfS/ZMeT1lvuPuerAYEsGxEIhF95CP36fOf36uamphSV5AFcAklNoBAFRcXq7i4\nWFVVM8+27+7XNBtSRzacVzzeqzNnLs3XcF59fcNSo9TV9ddKzdNm6SMXprtp2nUz75e6uU+//+z7\nXnl+96ufL7Vuqu3Tt+ulEyd+JrPIpJu97fGVW2o8U6+bbr+57nPl/woAgPwWi8W0adMvdezYIdXX\n3xZ0HGBJoYEAIC+YmaLRqKLRqKqrq2fc1t31tc/9hb70pT+Qu1++XVo3n9tC9snVft9qk/bsSWp8\nfFwTE0lNTCQ1Pp76N5n0a5Zduk1e9/ab+7Xrkslr111aNnmdlGompBohkcuPJ/87ed3bl19adtW6\nNW+/SgQAANllZvrwh+/TU099RxMT71JBQVHQkYAlgwYCgNC59AdnWVlZwEmyrE26++67gk4h6UrT\nI5lMXnObbvlc1n3921Jzc3PQwwMALDONjY1qbV2jX/xin9asuSPoOMCSQQMBALBoqdMZTJFI5s8V\nXbFiRca/JgAAs3nggXv0wgtf09jY7Soq4r0IkFLHiQIAAAAAJqmurtbOnc06ffrnQUcBlgwaCAAA\nAAAwhe3b71RJyWGNjAwGHQVYEmggAAAAAMAUVq5cqYcffq/6+v4r6CjAkkADAQAAAACmcccd71NN\nzUmdO3c66ChA4GggAAAAAMA0iouL9dhjd+qNN/ZevuQysFzRQAAAAACAGWzefJvWrTunROLVoKMA\ngaKBAAAAAAAziEQi2r37Xr355rNyTwYdBwgMDQQAAAAAmMU733mT3v3uYvX3vxR0FCAwNBAAAAAA\nYBZmpkcf/YBGR5/XxMRY0HGAQNBAAAAAAIA5WLNmje644zfU2/u/QUcBAkEDAQAAAADm6MEH71Ey\n+UuNjY0EHQXIORoIAAAAADBHq1ev1s6dN6u39xdBRwFyjgYCAAAAAMzDjh2tKi4+qNHRs0FHAXKK\nBgIAAAAAzENZWZk+9KEt6ut7LugoQE7RQAAAAACAebrzzt9UZeVrOneuN+goQM7QQAAAAACAeYpG\no3rssffrzJlng44C5AwNBAAAAABYgPe853atWXNWicTxoKMAOUEDAQAAAAAWoKCgQLt336OzZ/fK\n3VX5U38AAA09SURBVIOOA2QdDQQAAAAAWKCbb96od72rUAMDLwcdBcg6GggAAAAAsEBmpkceuU9v\nvfWcksnxoOMAWUUDAQAAAAAWYe3atdq27Tr19h4IOgqQVTQQAAAAAGCRdu26VxMTL2hsbCToKEDW\n0EAAAAAAgEWqra3V9u03qbf3haCjAFlDAwEAAAAAMmDnzrtUVNSu0dE3g44CZAUNBAAAAADIgFWr\nVmnXrs3q63s+6ChAVtBAAAAAAIAMaW3dpoqKTg0P9wcdBcg4GggAAAAAkCElJSV69NH3a2Dg2aCj\nABlHAwEAAAAAMmjr1s1qbDyjwcHXg44CZBQNBAAAAADIoIKCAu3efY8GB/dqdPSs3D3oSEBGFAYd\nAAAAAADCprn5Fn3gA51qb/+G+vtHZFYlsxpNTFQrGq1RaWmNVqyoUVHRSplZ0HGBOaGBAABYUtpO\ntKntRJsk6c61d+qzbZ+VJLWua1XrutbAcgEAMB9mpiee2KUnnpAuXryoRCKheDyuM2cS6unpUlfX\nQZ0+Hdfw8ITMqiXVyL1G0Wi1VqxINRiKikqDHgZwFRoIAIAlhUYBACBsiouLVVdXp7q6umvWjYyM\nXG4uDAzE1dPzqrq79+v06bhGRwtkVi33GkmppkJpaarBUFBQnPuBYNmjgQAAAAAAASktLVVDQ4Ma\nGhquWu7uOn/+/OXmQn9/XF1dR3TqVEK9vQmNj5fIrEbJZLXMai4ftVBaWqVIhD/zkB38ZAEAAADA\nEmNmKisrU1lZmZqamq5a5+4aGhpSPB5XIpFQX19cJ0+eVE9PXKdOvSn3ssvNhYKCK/MtlJRUyox5\n9LFwNBAAhAbnzgMAgOXAzFRRUaGKigqtX7/+qnXJZFJnz55VPB5XPB7X6dMJdXd3qqcnru7uYUkV\n6eZCjQoLr8y3EI2WM5kjZmW5uqSImTmXLwGAxZncJGk70Xa5MUKTJH+Zmdydii1HqEcALGfj4+Ma\nHBxMT+YY16lTcXV3J3TqVFxnz45evlJEMlmj4uIr8y0s9ytF9PT8sz75yfdqw4YNQUfJmrnWIxyB\nAAB5hEYBAABYqMLCQtXW1qq2tvaadRcuXFAikVAikdAbb8TV03NC3d3tl68UEYnUyD01oWNJyZUJ\nHblSxPJCAwEAAAAAlrloNKr6+nrV19dfs25kZOTyfAsDA3F1d3eouzuu3t6ERkcLJK1VcXFM1dUx\nRaOrch8eOUMDAQAAAAAwrdLSUjU2NqqxsfGq5e6uc+fO6fXXX9fBg5168cW96u+vkHtMlZUxlZc3\nMmljyNBAAAAAAADMm5mpvLxcLS0tamlp0Z49SfX09Ojo0Q7t2/eMTp4ckvsNKi29UVVVN6i4eGXQ\nkbFINBAAAAAAAIsWiUTU1NSkpqYm7dhxr4aGhtTR0an29qNqb39GFy/WSoqpqiqmsrL6ZT0xY76i\ngQAAAAAAyLjy8nJt3ny7Nm++XePj4+rq6tLRo53at+97OnlyRGYxlZbGVF19gwoLS4KOizmggQAA\nAAAAyKrCwkKtX79e69ev1/33b9fg4KA6Ojr14ouHdPjw9zU+Xi8pNRHjypXv4OiEJYoGAgAAAAAg\np6qqqrR16xZt3bpFY2NjOnHihI4c6dS+ff+irq6k3GMqK7tRVVXXq6CgOOi4SKOBAAAAAAAITFFR\nkWKxmGKxmB566IOKx+N65ZVOHTiwX0eOfFfJ5BpFIqmjE0pLqzk6IUA0EAAAAAAAS4KZafXq1Vq9\nerW2bXufLly4oNdee00vvdSp/ft/qa6uIkkxrVoVU2XlOkUi/EmbS/xvAwAAAACWpGg0qo0bN2rj\nxo165BFXf3+/jh3r1IEDP9exY/8q97UqKIippiamkpLKoOOGHg0EAAAAAMCSZ2aqq6tTXV2dWlvv\n0MjIiI4fP65Dhzp14ECbBgZWyD2m8vKYKiqaFIkUBB05dGggAAAAAADyTmlpqZqbm9Xc3KzHH3ed\nPn1ax451av/+Z/Xqq3G5X6/i4htVXb1B0eiqoOOGAg0EAAAAAEBeMzM1NDSooaFB99zTquHhYR0/\nflwHD3bqwIGfamSkUlJMFRUxlZc3yCwSdOS8RAMBAAAAABAqZWVlamlpUUtLi/bsSaqnp0dHj3Zo\n374f6eTJIUkbVFISU3X1BhUVrQg6bt6ggQAAAAAACK1IJKKmpiY1NTVpx457NTQ0pI6OTrW3H1V7\n+zO6eLFWUkxVVTGVldVzmcgZ0EAAAAAAACwb5eXl2rz5dm3efLvGx8fV1dWlo0c7tW/f99TVNSpp\ng0pLY6quvkGFhSVBx11SzN1z80RmnqvnAgAgX5iZ3J2POnKEegQAMJPBwUF1dHTqxRc7dfhwl8bH\n63X+/KC+8IXf1oYNG4KOlzVzrUcWNXOEmT1sZkfMbMLMblvM1wqDtra2oCNkHWMMB8YYDowRYWFm\nVWb2UzN7xcx+YmYV02z3dTPrN7OXFrL/crEcXjeMMRwYYziEbYxVVVXaunWLPvaxx/WVr/ypnnxy\nm269dUy1tbVBR1sSFjv15MuSdkn6WQay5L2wvXimwhjDgTGGA2NEiHxS0rPufpOk5yQ9Oc1235S0\nfRH7LwvL4XXDGMOBMYZDmMdYVFSkWCymCxfeUkXFsu5NX7aoBoK7v+LunZI49BIAACzUg5K+lb7/\nLUkPTbWRu78gaXCh+wMAgMXh4pcAACBo73D3fkly9z5J78jx/gAAYA5mnUTRzPZKum7yIkku6dPu\n/sP0Ns9L+oS7t8/wdZixCACAKSyHSRRnqCeekvQP7l49adu4u9dM83XWSvqhu7970rLEPPanHgEA\nYApzqUdmvYyju9+XqzAAACCcZqon0hMjXufu/WZWJ2lgnl9+zvtTjwAAsHCZPIWBN2QAALAQP5D0\n0fT935H0/Rm2NV1bc8xnfwAAsECznsIw485mD0n6sqTVks5KOuTuH8xQNgAAsAyYWbWk70haI+mk\npEfc/ayZ1Uv6qrvfn97uaUmtkmok9Uv6jLt/c7r9cz8SAADCbVENBAAAAAAAsDwEchUGM/uEmSXT\nnxiEipl9zswOm9lBM/vP9LmYoWJmXzSzX5vZITP7rpmVB50p08zsYTM7YmYTZnZb0Hkyycx2mNkx\nM+swsz8POk+mmdnX0+dTvxR0lmwxs0Yze87MfmVmL5vZHwedKdPMLGpm+9O/S182s88EnSlbzCxi\nZu1m9oOgsyw31CP5jXokv1GP5D/qkXCZaz2S8waCmTVKuk+pQwzD6Ivu3uLumyQ9IymMP2Q/lXSL\nu98qqVPSkwHnyYaXJe2S9LOgg2SSmUUk/Z2k7ZJukbTbzN4ZbKqM+6ZS4wuzcUl/4u63SHqfpI+F\n7fvo7hck3ZX+XXqrpA+a2ZaAY2XLxyUdDTrEckM9EgrUI3mKeiQ0qEfCZU71SBBHIPyNpD8L4Hlz\nwt2HJz1cKSkZVJZscfdn3f3SuPZJagwyTza4+yvu3qnwTQ66RVKnu5909zFJ35b0YMCZMsrdX5A0\nGHSObHL3Pnc/lL4/LOnXkhqCTZV57v5W+m5UqasGhe6cu/QfsTslfS3oLMsQ9Uieox7Ja9QjIUA9\nEh7zqUdy2kAwswckdbv7y7l83lwzs8+bWZekj0j6y6DzZNnvSfqPoENgzhokdU963KMQ/qJfTsxs\nnVId8f3BJsm89KF0ByX1Sdrr7geCzpQFl/6IDV0xspRRj4QS9Uh+oR4JGeqRvDfneqQw089sZnsl\nXTd5UTrIU5I+pdThgpPX5Z0Zxvhpd/+huz8l6an0+Vx/JOmzuU+5OLONMb3NpyWNufvTAURctLmM\nEVjKzKxM0r9J+vjbPm0MhfQni5vS5zX/u5nd7O6hOdTfzH5LUr+7HzKzVuXpe+JSRT1CPZIvqEeQ\n76hH8tt865GMNxDc/b6plptZs6R1kg6bmSl1mNn/mdkWdx/IdI5smm6MU3ha0o+Vh2/Ys43RzD6q\n1GEud+ckUBbM4/sYJqckNU163JhehjxjZoVKvVn/k7uH+pr37j5kZs9L2qFwzRWwTdIDZrZTUqmk\nVWb2j+6+J+BcoUA9chXqkSWMekQS9Ujeoh4JhXnVIzk7hcHdj7h7nbuvd/frlTpUaVO+vVnPxsw2\nTHr4kFLnAoWKme1Q6hCXB9ITi4RdXn4yNY0DkjaY2VozK5b0mKQwzvxuCtf3bSrfkHTU3f826CDZ\nYGarzawifb9UqU+LjwWbKrPc/VPu3uTu65V6LT5H8yD7qEfCg3okr1GPhAf1SJ6bbz0SyGUc01zh\nfEH9lZm9ZGaHJN2r1GyWYfNlSWWS9qYv9fH3QQfKNDN7yMy6Jb1X0o/MLBTnVbr7hKQ/VGrm6l9J\n+ra7h6qoNLOnJf23pBvNrMvMfjfoTJlmZtskPS7p7vRlhdrThXSY1Et6Pv27dL+kn7j7jwPOhHCi\nHslf1CN5inokHKhHlidzZ94mAAAAAAAwsyCPQAAAAAAAAHmCBgIAAAAAAJgVDQQAAAAAADArGggA\nAAAAAGBWNBAAAAAAAMCsaCAAAAAAAIBZ0UAAAAAAAACz+n9WbX+0Yscg8AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1fae7851390>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"study_trend(3, does_trend_up)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Conclusion and Summary\n",
"\n",
"I guess the most important thing to summarize with is this: **looking at the entire market, stock performance prior to an earnings release has no bearing on the stock's performance.** Honestly: given the huge variability of returns after an earnings release, even when the stock has been trending for a long time, you're best off divesting before an earnings release and letting the market sort itself out.\n",
"\n",
"*However*, there is a big caveat. These results are taken when we look at the entire market. So while we can say that the market as a whole knows nothing and just reacts violently, I want to take a closer look into this data. Does the market typically perform poorly on large-cap/high liquidity stocks? Do smaller companies have investors that know them better and can thus predict performance better? Are specific market sectors better at prediction? Presumably technology stocks are more volatile than the industrials.\n",
"\n",
"So there are some more interesting questions I still want to ask with this data. Knowing that the hard work of data processing is largely already done, it should be fairly simple to continue this analysis and get much more refined with it. Until next time."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Appendix\n",
"\n",
"Export event data for Russell 3000 companies:\n",
"\n",
"```python\n",
"import pandas as pd\n",
"from html.parser import HTMLParser\n",
"from datetime import datetime, timedelta\n",
"import requests\n",
"import re\n",
"from dateutil import parser\n",
"import progressbar\n",
"from concurrent import futures\n",
"import yaml\n",
"\n",
"class EarningsParser(HTMLParser):\n",
" store_dates = False\n",
" earnings_offset = None\n",
" dates = []\n",
" \n",
" def __init__(self, *args, **kwargs):\n",
" super().__init__(*args, **kwargs)\n",
" self.dates = []\n",
" \n",
" def handle_starttag(self, tag, attrs):\n",
" if tag == 'table':\n",
" self.store_dates = True\n",
" \n",
" def handle_data(self, data):\n",
" if self.store_dates:\n",
" match = re.match(r'\\d+/\\d+/\\d+', data)\n",
" if match:\n",
" self.dates.append(match.group(0))\n",
" \n",
" # If a company reports before the bell, record the earnings date\n",
" # being at midnight the day before. Ex: WMT reports 5/19/2016,\n",
" # but we want the reference point to be the closing price on 5/18/2016\n",
" if 'After Close' in data:\n",
" self.earnings_offset = timedelta(days=0)\n",
" elif 'Before Open' in data:\n",
" self.earnings_offset = timedelta(days=-1)\n",
" \n",
" def handle_endtag(self, tag):\n",
" if tag == 'table':\n",
" self.store_dates = False\n",
" \n",
"def earnings_releases(ticker):\n",
" #print(\"Looking up ticker {}\".format(ticker))\n",
" user_agent = 'Mozilla/5.0 (Windows NT 10.0; WOW64; rv:46.0) '\\\n",
" 'Gecko/20100101 Firefox/46.0'\n",
" headers = {'user-agent': user_agent}\n",
" base_url = 'http://www.streetinsider.com/ec_earnings.php?q={}'\\\n",
" .format(ticker)\n",
" e = EarningsParser()\n",
" s = requests.Session()\n",
" a = requests.adapters.HTTPAdapter(max_retries=0)\n",
" s.mount('http://', a)\n",
" e.feed(str(s.get(base_url, headers=headers).content))\n",
" \n",
" if e.earnings_offset is not None:\n",
" dates = map(lambda x: parser.parse(x) + e.earnings_offset, e.dates)\n",
" past = filter(lambda x: x < datetime.now(), dates)\n",
" return list(map(lambda d: d.isoformat(), past))\n",
"\n",
"# Use a Russell-3000 ETF tracker (ticker IWV) to get a list of holdings\n",
"r3000 = pd.read_csv('https://www.ishares.com/us/products/239714/'\n",
" 'ishares-russell-3000-etf/1449138789749.ajax?'\n",
" 'fileType=csv&fileName=IWV_holdings&dataType=fund',\n",
" header=10)\n",
"r3000_equities = r3000[(r3000['Exchange'] == 'NASDAQ') |\n",
" (r3000['Exchange'] == 'New York Stock Exchange Inc.')]\n",
"\n",
"dates_file = open('earnings_dates.yaml', 'w')\n",
"\n",
"with futures.ThreadPoolExecutor(max_workers=8) as pool:\n",
" fs = {pool.submit(earnings_releases, r3000_equities.ix[t]['Ticker']): t\n",
" for t in r3000_equities.index}\n",
" pbar = progressbar.ProgressBar(term_width=80,\n",
" max_value=r3000_equities.index.max())\n",
" \n",
" for future in futures.as_completed(fs):\n",
" i = fs[future]\n",
" pbar.update(i)\n",
" dates_file.write(yaml.dump({r3000_equities.ix[i]['Ticker']:\n",
" future.result()}))\n",
"```\n",
"\n",
"Downloading stock price data needed for the event studies:\n",
"\n",
"```python\n",
"from secrets import QUANDL_KEY\n",
"import pandas as pd\n",
"import yaml\n",
"from dateutil.parser import parse\n",
"from datetime import timedelta\n",
"import quandl\n",
"from progressbar import ProgressBar\n",
"\n",
"def fetch_ticker(ticker, start, end):\n",
" # Quandl is currently giving me issues with returning\n",
" # the entire dataset and not slicing server-side.\n",
" # So instead, we'll do it client-side!\n",
" q_format = '%Y-%m-%d'\n",
" ticker_data = quandl.get('YAHOO/' + ticker,\n",
" start_date=start.strftime(q_format),\n",
" end_date=end.strftime(q_format),\n",
" authtoken=QUANDL_KEY)\n",
" return ticker_data\n",
" \n",
"data_str = open('earnings_dates.yaml', 'r').read()\n",
"# Need to remove invalid lines\n",
"filtered = filter(lambda x: '{' not in x, data_str.split('\\n'))\n",
"earnings_data = yaml.load('\\n'.join(filtered))\n",
"\n",
"# Get the first 1500 keys - split up into two statements\n",
"# because of Quandl rate limits\n",
"tickers = list(earnings_data.keys())\n",
"\n",
"price_dict = {}\n",
"invalid_tickers = []\n",
"for ticker in ProgressBar()(tickers[0:1500]):\n",
" try:\n",
" # Replace '.' with '-' in name for some tickers\n",
" fixed = ticker.replace('.', '-')\n",
" event_strs = earnings_data[ticker]\n",
" events = [parse(event) for event in event_strs]\n",
" td = timedelta(days=20)\n",
" price_dict[ticker] = fetch_ticker(fixed,\n",
" min(events)-td, max(events)+td)\n",
" except quandl.NotFoundError:\n",
" invalid_tickers.append(ticker)\n",
" \n",
"# Execute this after 10 minutes have passed\n",
"for ticker in ProgressBar()(tickers[1500:]):\n",
" try:\n",
" # Replace '.' with '-' in name for some tickers\n",
" fixed = ticker.replace('.', '-')\n",
" event_strs = earnings_data[ticker]\n",
" events = [parse(event) for event in event_strs]\n",
" td = timedelta(days=20)\n",
" price_dict[ticker] = fetch_ticker(fixed,\n",
" min(events)-td, max(events)+td)\n",
" except quandl.NotFoundError:\n",
" invalid_tickers.append(ticker)\n",
" \n",
"prices_store = pd.HDFStore('price_data.hdf')\n",
"for ticker, prices in price_dict.items():\n",
" prices_store[ticker] = prices\n",
"```"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}