mirror of
https://github.com/bspeice/speice.io
synced 2024-11-14 14:08:09 -05:00
Revert
This commit is contained in:
parent
9ee58b7daa
commit
ffc8c52b47
1
.gitignore
vendored
1
.gitignore
vendored
@ -4,4 +4,3 @@ _site/
|
||||
.jekyll-metadata
|
||||
.bundle/
|
||||
vendor/
|
||||
.vscode/
|
12
Gemfile.lock
12
Gemfile.lock
@ -9,12 +9,12 @@ GEM
|
||||
eventmachine (>= 0.12.9)
|
||||
http_parser.rb (~> 0.6.0)
|
||||
eventmachine (1.2.7)
|
||||
ffi (1.13.1)
|
||||
ffi (1.12.2)
|
||||
forwardable-extended (2.6.0)
|
||||
http_parser.rb (0.6.0)
|
||||
i18n (0.9.5)
|
||||
concurrent-ruby (~> 1.0)
|
||||
jekyll (3.8.7)
|
||||
jekyll (3.8.6)
|
||||
addressable (~> 2.4)
|
||||
colorator (~> 1.0)
|
||||
em-websocket (~> 0.5)
|
||||
@ -48,11 +48,11 @@ GEM
|
||||
mercenary (0.3.6)
|
||||
pathutil (0.16.2)
|
||||
forwardable-extended (~> 2.6)
|
||||
public_suffix (4.0.5)
|
||||
rb-fsevent (0.10.4)
|
||||
public_suffix (4.0.4)
|
||||
rb-fsevent (0.10.3)
|
||||
rb-inotify (0.10.1)
|
||||
ffi (~> 1.0)
|
||||
rouge (3.20.0)
|
||||
rouge (3.17.0)
|
||||
rubyzip (2.3.0)
|
||||
safe_yaml (1.0.5)
|
||||
sass (3.7.4)
|
||||
@ -75,4 +75,4 @@ DEPENDENCIES
|
||||
tzinfo-data
|
||||
|
||||
BUNDLED WITH
|
||||
2.1.4
|
||||
1.17.3
|
||||
|
@ -1,276 +0,0 @@
|
||||
---
|
||||
layout: post
|
||||
title: "Release the GIL: Pybind11, PyO3"
|
||||
description: "More Python Parallelism"
|
||||
category:
|
||||
tags: [python, rust, c++]
|
||||
---
|
||||
|
||||
I've been continuing experiments with parallelism in Python; while these techniques are a bit niche,
|
||||
it's still fun to push the performance envelope. In addition to tools like
|
||||
[Cython](https://cython.org/) and [Numba](https://numba.pydata.org/) (covered
|
||||
[here](//2019/12/release-the-gil.html)) that attempt to stay as close to Python as possible, other
|
||||
projects are available that act as a bridge between Python and other languages. The goal is to make
|
||||
cooperation simple without compromising independence.
|
||||
|
||||
In practice, this "cooperation" between languages is important for performance reasons. Code written
|
||||
in C++ shouldn't have to care about the Python GIL. However, unless the GIL is explicitly unlocked,
|
||||
it will remain implicitly held; though the Python interpreter _could_ be making progress on a
|
||||
separate thread, it will be stuck waiting on the current operation to complete. We'll look at some
|
||||
techniques below for managing the GIL in a Python extension.
|
||||
|
||||
# Pybind11
|
||||
|
||||
The motto of [Pybind11](https://github.com/pybind/pybind11) is "seamless operability between C++11
|
||||
and Python", and they certainly deliver on that. Setting up a hybrid project where C++ (using CMake)
|
||||
and Python (using setuptools) could coexist was straight-forward, and the repository also works as
|
||||
[a template](https://github.com/speice-io/release-the-gil-pybind11/settings) for future projects.
|
||||
|
||||
There's a great deal of overlap between Pybind11 and Cython. Where Pybind11 makes it easy for C++ to
|
||||
interact with the interpreter, Cython uses a Python-like language to facilitate interaction with
|
||||
C++. Another way of thinking about is like this: Pybind11 is for C++ developers who want to interact
|
||||
with Python, and Cython is for Python developers who want to interact with C++.
|
||||
|
||||
Just like the previous post, we'll examine a simple Fibonacci sequence implementation to demonstrate
|
||||
how Python's threading model interacts with Pybind11:
|
||||
|
||||
```c++
|
||||
#include <cstdint>
|
||||
#include <pybind11/pybind.h>
|
||||
|
||||
inline std::uint64_t fibonacci(std::uint64_t n) {
|
||||
if (n <= 1) {
|
||||
return n;
|
||||
}
|
||||
|
||||
std::uint64_t a = 0;
|
||||
std::uint64_t b = 1;
|
||||
std::uint64_t c = a + b;
|
||||
|
||||
for (std::uint64_t _i = 2; _i < n; _i++) {
|
||||
a = b;
|
||||
b = c;
|
||||
c = a + b;
|
||||
}
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
std::uint64_t fibonacci_gil(std::uint64_t n) {
|
||||
// The GIL is held by default when entering C++ from Python, so we need no
|
||||
// manipulation here. Interestingly enough, re-acquiring a held GIL is a safe
|
||||
// operation (within the same thread), so feel free to scatter
|
||||
// `py::gil_scoped_acquire` throughout the code.
|
||||
return fibonacci(n);
|
||||
}
|
||||
|
||||
std::uint64_t fibonacci_nogil(std::uint64_t n) {
|
||||
// Because the GIL is held by default, we need to explicitly release it here
|
||||
// to run in parallel.
|
||||
// WARNING: Releasing the lock multiple times will crash the process.
|
||||
|
||||
py::gil_scoped_release release;
|
||||
return fibonacci(n);
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(speiceio_pybind11, m) {
|
||||
|
||||
m.def("fibonacci_gil", &fibonacci_gil, R"pbdoc(
|
||||
Calculate the Nth Fibonacci number while implicitly holding the GIL
|
||||
)pbdoc");
|
||||
|
||||
m.def("fibonacci_nogil", &fibonacci_nogil,
|
||||
R"pbdoc(
|
||||
Calculate the Nth Fibonacci number after explicitly unlocking the GIL
|
||||
)pbdoc");
|
||||
|
||||
#ifdef VERSION_INFO
|
||||
m.attr("__version__") = VERSION_INFO;
|
||||
#else
|
||||
m.attr("__version__") = "dev";
|
||||
#endif
|
||||
}
|
||||
```
|
||||
|
||||
After building the C++ module, those functions can be used to demonstrate the effect of unlocking
|
||||
the GIL.
|
||||
|
||||
```python
|
||||
# The billionth Fibonacci number overflows `std::uint64_t`, but that's OK;
|
||||
# our purpose is keeping the CPU busy, not getting the correct result.
|
||||
N = 1_000_000_000;
|
||||
|
||||
from speiceio_pybind11 import fibonacci_gil, fibonacci_nogil
|
||||
```
|
||||
|
||||
In the first example, even though two threads are used, the GIL constrains code to run in serial:
|
||||
|
||||
```python
|
||||
%%time
|
||||
from threading import Thread
|
||||
|
||||
# Create the two threads to run on
|
||||
t1 = Thread(target=fibonacci_gil, args=[N])
|
||||
t2 = Thread(target=fibonacci_gil, args=[N])
|
||||
# Start the threads
|
||||
t1.start(); t2.start()
|
||||
# Wait for the threads to finish
|
||||
t1.join(); t2.join()
|
||||
```
|
||||
|
||||
> <pre>
|
||||
> CPU times: user 709 ms, sys: 0 ns, total: 709 ms
|
||||
> Wall time: 705 ms
|
||||
> </pre>
|
||||
|
||||
Because the elapsed ("wall") time is effectively the same as the time spent executing on the CPU
|
||||
("user"), there was no benefit to using multiple threads.
|
||||
|
||||
However, if one thread unlocks the GIL first, the Python interpreter is allowed to execute the
|
||||
second thread in parallel:
|
||||
|
||||
```python
|
||||
%%time
|
||||
|
||||
t1 = Thread(target=fibonacci_nogil, args=[N])
|
||||
t2 = Thread(target=fibonacci_gil, args=[N])
|
||||
t1.start(); t2.start()
|
||||
t1.join(); t2.join()
|
||||
```
|
||||
|
||||
> <pre>
|
||||
> CPU times: user 734 ms, sys: 7.89 ms, total: 742 ms
|
||||
> Wall time: 372 ms
|
||||
> </pre>
|
||||
|
||||
The CPU time ("user") hasn't changed much, but the elapsed time ("wall") is effectively cut in half.
|
||||
|
||||
Caution is advised though; attempting to unlock the GIL when it isn't locked will terminate the
|
||||
current process:
|
||||
|
||||
```c++
|
||||
void recurse_unlock() {
|
||||
py::gil_scoped_release release;
|
||||
return recurse_unlock();
|
||||
}
|
||||
```
|
||||
|
||||
> <pre>
|
||||
> Python 3.8.2 (default, Apr 27 2020, 15:53:34)
|
||||
> [GCC 9.3.0] on linux
|
||||
> Type "help", "copyright", "credits" or "license" for more information.
|
||||
> >>> from speiceio_pybind11 import recurse_unlock
|
||||
> >>> recurse_unlock()
|
||||
> Fatal Python error: PyEval_SaveThread: NULL tstate
|
||||
> Python runtime state: initialized
|
||||
>
|
||||
> Current thread 0x00007f213a627740 (most recent call first):
|
||||
> File "<stdin>", line 1 in <module>
|
||||
> [1] 34943 abort (core dumped) python
|
||||
> </pre>
|
||||
|
||||
# PyO3
|
||||
|
||||
Now that pyo3 is stable, represents a great candidate for bridge.
|
||||
|
||||
```rust
|
||||
use pyo3::prelude::*;
|
||||
use pyo3::wrap_pyfunction;
|
||||
|
||||
fn fibonacci_impl(n: u64) -> u64 {
|
||||
if n <= 1 {
|
||||
return n;
|
||||
}
|
||||
|
||||
let mut a: u64 = 0;
|
||||
let mut b: u64 = 1;
|
||||
let mut c: u64 = a + b;
|
||||
|
||||
for _i in 2..n {
|
||||
a = b;
|
||||
b = c;
|
||||
// We're not particularly concerned about the actual result, just in keeping the
|
||||
// processor busy.
|
||||
c = a.overflowing_add(b).0;
|
||||
}
|
||||
|
||||
c
|
||||
}
|
||||
|
||||
#[pyfunction]
|
||||
fn fibonacci_gil(n: u64) -> PyResult<u64> {
|
||||
// The GIL is implicitly held here
|
||||
Ok(fibonacci_impl(n))
|
||||
}
|
||||
|
||||
#[pyfunction]
|
||||
fn fibonacci_nogil(py: Python, n: u64) -> PyResult<u64> {
|
||||
// Explicitly release the GIL
|
||||
py.allow_threads(|| Ok(fibonacci_impl(n)))
|
||||
}
|
||||
|
||||
#[pymodule]
|
||||
fn speiceio_pyo3(_py: Python, m: &PyModule) -> PyResult<()> {
|
||||
m.add_wrapped(wrap_pyfunction!(fibonacci_gil))?;
|
||||
m.add_wrapped(wrap_pyfunction!(fibonacci_nogil))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
```
|
||||
|
||||
```python
|
||||
N = 1_000_000_000;
|
||||
|
||||
from speiceio_pyo3 import fibonacci_gil, fibonacci_nogil
|
||||
```
|
||||
|
||||
```python
|
||||
%%time
|
||||
from threading import Thread
|
||||
|
||||
# Create the two threads to run on
|
||||
t1 = Thread(target=fibonacci_gil, args=[N])
|
||||
t2 = Thread(target=fibonacci_gil, args=[N])
|
||||
# Start the threads
|
||||
t1.start(); t2.start()
|
||||
# Wait for the threads to finish
|
||||
t1.join(); t2.join()
|
||||
```
|
||||
|
||||
> <pre>
|
||||
> CPU times: user 503 ms, sys: 3.83 ms, total: 507 ms
|
||||
> Wall time: 506 ms
|
||||
> </pre>
|
||||
|
||||
```python
|
||||
%%time
|
||||
|
||||
t1 = Thread(target=fibonacci_nogil, args=[N])
|
||||
t2 = Thread(target=fibonacci_gil, args=[N])
|
||||
t1.start(); t2.start()
|
||||
t1.join(); t2.join()
|
||||
```
|
||||
|
||||
> <pre>
|
||||
> CPU times: user 501 ms, sys: 3.96 ms, total: 505 ms
|
||||
> Wall time: 252 ms
|
||||
> </pre>
|
||||
|
||||
Interestingly enough, Rust's borrow rules actually _prevent_ double-unlocking because the GIL handle
|
||||
can't be transferred across threads:
|
||||
|
||||
```rust
|
||||
fn recursive_unlock(py: Python) -> PyResult<()> {
|
||||
py.allow_threads(|| recursive_unlock(py))
|
||||
}
|
||||
```
|
||||
|
||||
> <pre>
|
||||
> error[E0277]: `std::rc::Rc<()>` cannot be shared between threads safely
|
||||
> --> src/lib.rs:38:8
|
||||
> |
|
||||
> 38 | py.allow_threads(|| recursive_unlock(py))
|
||||
> | ^^^^^^^^^^^^^ `std::rc::Rc<()>` cannot be shared between threads safely
|
||||
> |
|
||||
> = help: within `pyo3::python::Python<'_>`, the trait `std::marker::Sync` is not implemented for `std::rc::Rc<()>`
|
||||
> </pre>
|
Loading…
Reference in New Issue
Block a user