mirror of
https://github.com/bspeice/speice.io
synced 2025-07-01 05:46:13 -04:00
Start on the transforms post
This commit is contained in:
@ -1,3 +1,3 @@
|
||||
export default function randomBiUnit(): number {
|
||||
export default function randomBiUnit() {
|
||||
return Math.random() * 2 - 1;
|
||||
}
|
@ -51,6 +51,8 @@ First, $S$. We're generating images, so everything is in two dimensions: $S \in
|
||||
all points that are "in the system." To generate our final image, we just plot every point in the system
|
||||
like a coordinate chart.
|
||||
|
||||
TODO: What is a stationary point? How does it relate to the chaos game?
|
||||
|
||||
For example, if we say $S = \{(0,0), (1, 1), (2, 2)\}$, there are three points to plot:
|
||||
|
||||
import {VictoryChart, VictoryTheme, VictoryScatter, VictoryLegend} from "victory";
|
||||
|
@ -1,3 +1,3 @@
|
||||
export default function randomInteger(min: number, max: number): number {
|
||||
export default function randomInteger(min: number, max: number) {
|
||||
return Math.floor(Math.random() * (max - min)) + min;
|
||||
}
|
Reference in New Issue
Block a user