mirror of
https://github.com/bspeice/speice.io
synced 2024-11-14 05:58:09 -05:00
First draft of pybind11
Having issues with the Rust code taking *forever*. Going to break out the compiler explorer and see if it's doing something different from C++.
This commit is contained in:
parent
b8c12b9cc1
commit
5c13a8cf8d
3
.gitignore
vendored
3
.gitignore
vendored
@ -3,4 +3,5 @@ _site/
|
|||||||
.sass-cache/
|
.sass-cache/
|
||||||
.jekyll-metadata
|
.jekyll-metadata
|
||||||
.bundle/
|
.bundle/
|
||||||
vendor/
|
vendor/
|
||||||
|
.vscode/
|
162
_posts/2020-06-29-release-the-gil-pt.-2.md
Normal file
162
_posts/2020-06-29-release-the-gil-pt.-2.md
Normal file
@ -0,0 +1,162 @@
|
|||||||
|
---
|
||||||
|
layout: post
|
||||||
|
title: "Release the GIL: Part 2 - Pybind11, PyO3"
|
||||||
|
description: "More Python Parallelism"
|
||||||
|
category:
|
||||||
|
tags: [python]
|
||||||
|
---
|
||||||
|
|
||||||
|
I've been continuing experiments with parallelism in Python; while these techniques are a bit niche,
|
||||||
|
it's still fun to push the performance envelope. In addition to tools like
|
||||||
|
[Cython](https://cython.org/) and [Numba](https://numba.pydata.org/) (covered
|
||||||
|
[here](//2019/12/release-the-gil.html)) that attempt to stay as close to Python as possible, other
|
||||||
|
projects are available that act as a bridge between Python and other languages. The goal is to make
|
||||||
|
cooperation simple without compromising independence.
|
||||||
|
|
||||||
|
In practice, this "cooperation" between languages is important for performance reasons. Code written
|
||||||
|
in C++ shouldn't have to care about the Python GIL. However, unless the GIL is explicitly unlocked,
|
||||||
|
it will remain implicitly held; though the Python interpreter _could_ be making progress on a
|
||||||
|
separate thread, it will be stuck waiting on the current operation to complete. We'll look at some
|
||||||
|
techniques below for managing the GIL in a Python extension.
|
||||||
|
|
||||||
|
# Pybind11
|
||||||
|
|
||||||
|
The motto of [Pybind11](https://github.com/pybind/pybind11) is "seamless operability between C++11
|
||||||
|
and Python", and they certainly deliver on that. My experience was that it was relatively simple to
|
||||||
|
set up a hybrid project where C++ (using CMake) and Python (using setuptools) were able to
|
||||||
|
peacefully coexist. We'll examine a simple Fibonacci sequence implementation to demonstrate how
|
||||||
|
Python's threading model interacts with Pybind11.
|
||||||
|
|
||||||
|
The C++ implementation is very simple:
|
||||||
|
|
||||||
|
```c++
|
||||||
|
#include <cstdint>
|
||||||
|
|
||||||
|
inline std::uint64_t fibonacci(std::uint64_t n) {
|
||||||
|
if (n <= 1) {
|
||||||
|
return n;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::uint64_t a = 0;
|
||||||
|
std::uint64_t b = 1;
|
||||||
|
std::uint64_t c = 0;
|
||||||
|
|
||||||
|
c = a + b;
|
||||||
|
for (std::uint64_t _i = 2; _i < n; _i++) {
|
||||||
|
a = b;
|
||||||
|
b = c;
|
||||||
|
c = a + b;
|
||||||
|
}
|
||||||
|
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::uint64_t fibonacci_gil(std::uint64_t n) {
|
||||||
|
// The GIL is held by default when entering C++ from Python, so we need no
|
||||||
|
// manipulation here. Interestingly enough, re-acquiring a held GIL is a safe
|
||||||
|
// operation (within the same thread), so feel free to scatter
|
||||||
|
// `py::gil_scoped_acquire` throughout the code.
|
||||||
|
return fibonacci(n);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::uint64_t fibonacci_nogil(std::uint64_t n) {
|
||||||
|
// Because the GIL is held by default, we need to explicitly release it here.
|
||||||
|
// Note that like Cython, releasing the lock multiple times will crash the
|
||||||
|
// interpreter.
|
||||||
|
|
||||||
|
py::gil_scoped_release release;
|
||||||
|
return fibonacci(n);
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Admittedly, the project setup is significantly more involved than Cython or Numba. I've omitted
|
||||||
|
those steps here, but the full project is available at [INSERT LINK HERE].
|
||||||
|
|
||||||
|
```python
|
||||||
|
# This number will overflow, but that's OK; our purpose isn't to get an accurate result,
|
||||||
|
# it's simply to keep the processor busy.
|
||||||
|
N = 1_000_000_000;
|
||||||
|
|
||||||
|
from fibonacci import fibonacci_gil, fibonacci_nogil
|
||||||
|
```
|
||||||
|
|
||||||
|
We'll first run each function independently:
|
||||||
|
|
||||||
|
```python
|
||||||
|
%%time
|
||||||
|
_ = fibonacci_gil(N);
|
||||||
|
```
|
||||||
|
|
||||||
|
> <pre>
|
||||||
|
> CPU times: user 350 ms, sys: 3.54 ms, total: 354 ms
|
||||||
|
> Wall time: 355 ms
|
||||||
|
> </pre>
|
||||||
|
|
||||||
|
```python
|
||||||
|
%%time
|
||||||
|
_ = fibonacci_nogil(N);
|
||||||
|
```
|
||||||
|
|
||||||
|
> <pre>
|
||||||
|
> CPU times: user 385 ms, sys: 0 ns, total: 385 ms
|
||||||
|
> Wall time: 384 ms
|
||||||
|
> </pre>
|
||||||
|
|
||||||
|
There's some minor variation in how long it takes to run the code, but not a material difference.
|
||||||
|
When running the same function in multiple threads, we expect the run time to double; even though
|
||||||
|
there are multiple threads, they effectively run in serial because of the GIL:
|
||||||
|
|
||||||
|
```python
|
||||||
|
%%time
|
||||||
|
from threading import Thread
|
||||||
|
|
||||||
|
# Create the two threads to run on
|
||||||
|
t1 = Thread(target=fibonacci_gil, args=[N])
|
||||||
|
t2 = Thread(target=fibonacci_gil, args=[N])
|
||||||
|
# Start the threads
|
||||||
|
t1.start(); t2.start()
|
||||||
|
# Wait for the threads to finish
|
||||||
|
t1.join(); t2.join()
|
||||||
|
```
|
||||||
|
|
||||||
|
> <pre>
|
||||||
|
> CPU times: user 709 ms, sys: 0 ns, total: 709 ms
|
||||||
|
> Wall time: 705 ms
|
||||||
|
> </pre>
|
||||||
|
|
||||||
|
However, if one thread unlocks the GIL first, then the threads will execute in parallel:
|
||||||
|
|
||||||
|
```python
|
||||||
|
%%time
|
||||||
|
|
||||||
|
t1 = Thread(target=fibonacci_nogil, args=[N])
|
||||||
|
t2 = Thread(target=fibonacci_gil, args=[N])
|
||||||
|
t1.start(); t2.start()
|
||||||
|
t1.join(); t2.join()
|
||||||
|
```
|
||||||
|
|
||||||
|
> <pre>
|
||||||
|
> CPU times: user 734 ms, sys: 7.89 ms, total: 742 ms
|
||||||
|
> Wall time: 372 ms
|
||||||
|
> </pre>
|
||||||
|
|
||||||
|
While it takes the same amount of CPU time to compute the result ("user" time), the run time ("wall"
|
||||||
|
time) is cut in half because the code is now running in parallel.
|
||||||
|
|
||||||
|
```python
|
||||||
|
%%time
|
||||||
|
|
||||||
|
# Note that the GIL-locked version is started first
|
||||||
|
t1 = Thread(target=fibonacci_gil, args=[N])
|
||||||
|
t2 = Thread(target=fibonacci_nogil, args=[N])
|
||||||
|
t1.start(); t2.start()
|
||||||
|
t1.join(); t2.join()
|
||||||
|
```
|
||||||
|
|
||||||
|
> <pre>
|
||||||
|
> CPU times: user 736 ms, sys: 0 ns, total: 736 ms
|
||||||
|
> Wall time: 734 ms
|
||||||
|
> </pre>
|
||||||
|
|
||||||
|
Finally, it's import to note that scheduling matters; in this example, threads run in serial because
|
||||||
|
the GIL-locked thread is started first.
|
Loading…
Reference in New Issue
Block a user