Auto-sizing canvas, starting cleanup for display on mobile browsers

This commit is contained in:
2024-12-08 19:53:06 -05:00
parent 78d71cbc7b
commit 5ae6b82d26
13 changed files with 206 additions and 214 deletions

View File

@ -1,16 +1,21 @@
import Canvas, {PainterContext} from "../src/Canvas";
import {useContext} from "react";
import {SquareCanvas, PainterContext} from "../src/Canvas";
import {useContext, useEffect} from "react";
export function Render({f}) {
const {setPainter} = useContext(PainterContext);
setPainter(f);
const {width, height, setPainter} = useContext(PainterContext);
useEffect(() => {
if (width && height) {
const painter = f({width, height});
setPainter(painter);
}
}, [width, height]);
return <></>;
}
export default function Gasket({f}) {
return (
<Canvas width={500} height={500}>
<SquareCanvas>
<Render f={f}/>
</Canvas>
</SquareCanvas>
)
}

View File

@ -1,4 +1,4 @@
import {useEffect, useState, useContext} from "react";
import {useEffect, useState, useContext, useRef} from "react";
import {PainterContext} from "../src/Canvas";
import {chaosGameWeighted} from "./chaosGameWeighted";
import TeX from '@matejmazur/react-katex';
@ -30,7 +30,7 @@ export default function GasketWeighted() {
const weightInput = (title, weight, setWeight) => (
<>
<div className={styles.inputElement}>
<p><TeX>{title}</TeX> weight: {weight}</p>
<p><TeX>{title}</TeX>: {weight}</p>
<input type={'range'} min={0} max={1} step={.01} style={{width: '100%'}} value={weight}
onInput={e => setWeight(Number(e.currentTarget.value))}/>
</div>
@ -39,7 +39,7 @@ export default function GasketWeighted() {
return (
<>
<div className={styles.inputGroup} style={{display: 'grid', gridTemplateColumns: 'auto auto auto'}}>
<div className={styles.inputGroup} style={{display: 'grid', gridTemplateColumns: '1fr 1fr 1fr'}}>
{weightInput("F_0", f0Weight, setF0Weight)}
{weightInput("F_1", f1Weight, setF1Weight)}
{weightInput("F_2", f2Weight, setF2Weight)}

View File

@ -1,30 +1,33 @@
// Hint: try increasing the iteration count
const iterations = 10000;
// Hint: try changing the iteration count
const iterations = 100000;
// Hint: negating `x` and `y` creates some interesting images
const transforms = [
(x, y) => [x / 2, y / 2],
(x, y) => [(x + 1) / 2, y / 2],
(x, y) => [x / 2, (y + 1) / 2]
// Hint: negating `x` and `y` creates some cool images
const xforms = [
(x, y) => [x / 2, y / 2],
(x, y) => [(x + 1) / 2, y / 2],
(x, y) => [x / 2, (y + 1) / 2]
]
function* chaosGame() {
let image = new ImageData(500, 500);
let [x, y] = [randomBiUnit(), randomBiUnit()];
function* chaosGame({width, height}) {
let img = new ImageData(width, height);
let [x, y] = [
randomBiUnit(),
randomBiUnit()
];
for (var count = 0; count < iterations; count++) {
const i = randomInteger(0, transforms.length);
[x, y] = transforms[i](x, y);
for (let c = 0; c < iterations; c++) {
const i = randomInteger(0, xforms.length);
[x, y] = xforms[i](x, y);
if (count > 20)
plot(x, y, image);
if (c > 20)
plot(x, y, img);
if (count % 1000 === 0)
yield image;
}
if (c % 1000 === 0)
yield img;
}
yield image;
yield img;
}
// Wiring so the code above displays properly
render(<Gasket f={chaosGame()}/>)
render(<Gasket f={chaosGame}/>)

View File

@ -6,27 +6,33 @@ import {Transform} from "../src/transform";
const iterations = 50_000;
const step = 1000;
// hidden-end
export type ChaosGameWeightedProps = {
type Props = {
width: number,
height: number,
transforms: [number, Transform][]
}
export function* chaosGameWeighted({width, height, transforms}: ChaosGameWeightedProps) {
let image = new ImageData(width, height);
var [x, y] = [randomBiUnit(), randomBiUnit()];
export function* chaosGameWeighted(
{width, height, transforms}: Props
) {
let img = new ImageData(width, height);
let [x, y] = [
randomBiUnit(),
randomBiUnit()
];
for (let i = 0; i < iterations; i++) {
// highlight-start
const [_, transform] = randomChoice(transforms);
// highlight-end
[x, y] = transform(x, y);
const iterations = width * height * 0.5;
for (let c = 0; c < iterations; c++) {
// highlight-start
const [_, xform] = randomChoice(transforms);
// highlight-end
[x, y] = xform(x, y);
if (i > 20)
plot(x, y, image);
if (c > 20)
plot(x, y, img);
if (i % step === 0)
yield image;
}
if (c % step === 0)
yield img;
}
yield image;
yield img;
}

View File

@ -101,7 +101,7 @@ export const shiftData = simpleData.map(({x, y}) => { return {x: x + 1, y} })
This is a simple example designed to illustrate the principle. In general, $F_i$ functions have the form:
$$
F_i(x,y) = (a_i \cdot x + b_i \cdot y + c_i, \hspace{0.2cm} d_i \cdot x + e_i \cdot y + f_i)
F_i(x,y) = (a_i \cdot x + b_i \cdot y + c_i, d_i \cdot x + e_i \cdot y + f_i)
$$
The parameters ($a_i$, $b_i$, etc.) are values we get to choose. In the example above, we can represent our shift
@ -126,10 +126,10 @@ Fractal flames use more complex functions to produce a wide variety of images, b
Using these definitions, we can build the first image. The paper defines a function system for us:
$$
F_0(x, y) = \left({x \over 2}, {y \over 2} \right)
\hspace{0.8cm}
F_1(x, y) = \left({{x + 1} \over 2}, {y \over 2} \right)
\hspace{0.8cm}
F_0(x, y) = \left({x \over 2}, {y \over 2} \right) \\
~\\
F_1(x, y) = \left({{x + 1} \over 2}, {y \over 2} \right) \\
~\\
F_2(x, y) = \left({x \over 2}, {{y + 1} \over 2} \right)
$$
@ -141,11 +141,11 @@ Next, how do we find out all the points in $S$? The paper lays out an algorithm
$$
\begin{align*}
&(x, y) = \text{a random point in the bi-unit square} \\
&(x, y) = \text{random point in the bi-unit square} \\
&\text{iterate } \{ \\
&\hspace{1cm} i = \text{a random integer from 0 to } n - 1 \text{ inclusive} \\
&\hspace{1cm} i = \text{random integer from 0 to } n - 1 \\
&\hspace{1cm} (x,y) = F_i(x,y) \\
&\hspace{1cm} \text{plot}(x,y) \text{ except during the first 20 iterations} \\
&\hspace{1cm} \text{plot}(x,y) \text{ if iterations} > 20 \\
\}
\end{align*}
$$
@ -199,6 +199,6 @@ import chaosGameWeightedSource from "!!raw-loader!./chaosGameWeighted";
<CodeBlock language={'typescript'}>{chaosGameWeightedSource}</CodeBlock>
import GasketWeighted from "./GasketWeighted";
import Canvas from "../src/Canvas";
import {SquareCanvas} from "../src/Canvas";
<Canvas><GasketWeighted/></Canvas>
<SquareCanvas><GasketWeighted/></SquareCanvas>

View File

@ -1,34 +1,52 @@
export function plot(x: number, y: number, image: ImageData) {
// Translate (x,y) coordinates to pixel coordinates;
// also known as a "camera" function.
//
// The display range we care about is x=[0, 1], y=[0, 1],
// so our pixelX and pixelY coordinates are easy to calculate:
const pixelX = Math.floor(x * image.width);
const pixelY = Math.floor(y * image.height);
/**
* ImageData is an array that contains
* four elements per pixel (one for each
* red, green, blue, and alpha value).
* This maps from pixel coordinates
* to the array index
*/
function imageIndex(
width: number,
x: number,
y: number
) {
return y * (width * 4) + x * 4;
}
// If we have an (x,y) coordinate outside the display range,
// skip it
if (
pixelX < 0 ||
pixelX > image.width ||
pixelY < 0 ||
pixelY > image.height
) {
return;
}
export function plot(
x: number,
y: number,
img: ImageData
) {
// Translate (x,y) coordinates
// to pixel coordinates.
// Also known as a "camera" function.
//
// The display range is:
// x=[0, 1]
// y=[0, 1]
let pixelX = Math.floor(x * img.width);
let pixelY = Math.floor(y * img.height);
// ImageData is an array that contains four bytes per pixel
// (one for each of the red, green, blue, and alpha values).
// The (pixelX, pixelY) coordinates are used to find where
// in the image we need to write.
const index = pixelY * (image.width * 4) + pixelX * 4;
const index = imageIndex(
img.width,
pixelX,
pixelY
);
// Set the pixel to black by writing a 0 to the first three
// bytes (red, green, blue), and 256 to the last byte (alpha),
// starting at our index:
image.data[index] = 0;
image.data[index + 1] = 0;
image.data[index + 2] = 0;
image.data[index + 3] = 0xff;
// Skip pixels outside the display range
if (
index < 0 ||
index > img.data.length
) {
return;
}
// Set the pixel to black by writing 0
// to the first three elements,
// and 255 to the last element
img.data[index] = 0;
img.data[index + 1] = 0;
img.data[index + 2] = 0;
img.data[index + 3] = 0xff;
}