mirror of
				https://github.com/bspeice/speice.io
				synced 2025-11-04 02:20:36 -05:00 
			
		
		
		
	Render the gasket
Need to get rid of Plotly, unfortuantely - causes issues with hydration. Seems like Victory is better able to handle what I need.
This commit is contained in:
		@ -0,0 +1,246 @@
 | 
			
		||||
---
 | 
			
		||||
slug: 2024/11/playing-with-fire
 | 
			
		||||
title: "Playing with fire: The fractal flame algorithm"
 | 
			
		||||
date: 2024-11-15 12:00:00
 | 
			
		||||
authors: [bspeice]
 | 
			
		||||
tags: []
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
Wikipedia [describes](https://en.wikipedia.org/wiki/Fractal_flame) fractal flames as:
 | 
			
		||||
 | 
			
		||||
> a member of the iterated function system class of fractals
 | 
			
		||||
 | 
			
		||||
I think of them a different way: beauty in mathematics.
 | 
			
		||||
 | 
			
		||||
import isDarkMode from '@site/src/isDarkMode'
 | 
			
		||||
import bannerDark from '../banner-dark.png'
 | 
			
		||||
import bannerLight from '../banner-light.png'
 | 
			
		||||
 | 
			
		||||
<center>
 | 
			
		||||
    <!-- Why are these backwards? -->
 | 
			
		||||
    <img src={bannerLight} hidden={isDarkMode()}/>
 | 
			
		||||
    <img src={bannerDark} hidden={!isDarkMode()}/>
 | 
			
		||||
</center>
 | 
			
		||||
 | 
			
		||||
<!-- truncate -->
 | 
			
		||||
 | 
			
		||||
I don't remember exactly when or how I originally came across fractal flames, but I do remember becoming entranced by the images they created.
 | 
			
		||||
I also remember their unique appeal to my young engineering mind; this was an art form I could actively participate in.
 | 
			
		||||
 | 
			
		||||
The [paper](https://flam3.com/flame_draves.pdf) describing their mathematical structure was too much
 | 
			
		||||
for me to handle at the time (I was ~12 years old), and I was content to play around and enjoy the pictures.
 | 
			
		||||
But the desire to understand it stuck with me, so I wanted to try again. With a graduate degree in Financial Engineering under my belt,
 | 
			
		||||
maybe it would be easier this time.
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## Iterated function systems
 | 
			
		||||
 | 
			
		||||
Let's begin by defining an "[iterated function system](https://en.wikipedia.org/wiki/Iterated_function_system)" (IFS).
 | 
			
		||||
We'll start at the end and work backwards to build a practical understanding. In mathematical notation, an IFS is:
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
S = \bigcup_{i=0}^{n-1} F_i(S) \\[0.6cm]
 | 
			
		||||
S \in \mathbb{R}^2 \\
 | 
			
		||||
F_i(S) \in \mathbb{R}^2 \rightarrow \mathbb{R}^2
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
### Stationary point
 | 
			
		||||
 | 
			
		||||
First, $S$. We're generating images, so everything is in two dimensions: $S \in \mathbb{R}^2$. The set $S$ is
 | 
			
		||||
all points that are "in the system." To generate our final image, we just plot every point in the system
 | 
			
		||||
like a coordinate chart.
 | 
			
		||||
 | 
			
		||||
For example, if we say $S = \{(0,0), (1, 1), (2, 2)\}$, there are three points to plot:
 | 
			
		||||
 | 
			
		||||
import Plot from "react-plotly.js"
 | 
			
		||||
 | 
			
		||||
<center>
 | 
			
		||||
    <Plot
 | 
			
		||||
        data={[
 | 
			
		||||
            {
 | 
			
		||||
                x: [0, 1, 2],
 | 
			
		||||
                y: [0, 1, 2],
 | 
			
		||||
                type: 'scatter',
 | 
			
		||||
                mode: 'markers',
 | 
			
		||||
                marker: { size: 15 }
 | 
			
		||||
            }
 | 
			
		||||
        ]}
 | 
			
		||||
        layout={{
 | 
			
		||||
            plot_bgcolor: 'rgba(0,0,0,0)',
 | 
			
		||||
            paper_bgcolor: 'rgba(0,0,0,0)'
 | 
			
		||||
        }}
 | 
			
		||||
        config={{
 | 
			
		||||
            staticPlot: true
 | 
			
		||||
        }}
 | 
			
		||||
    />
 | 
			
		||||
</center>
 | 
			
		||||
 | 
			
		||||
For fractal flames, we just need to figure out which points are in $S$ and plot them. While there are
 | 
			
		||||
technically an infinite number of points, if we find _enough_ points and plot them, we end up with a nice picture.
 | 
			
		||||
 | 
			
		||||
### Transformation functions
 | 
			
		||||
 | 
			
		||||
Second, $F_i(S)$. At their most basic, each $F_i$ is a function that takes in a 2-dimensional point and transforms
 | 
			
		||||
it into a new 2-dimensional point: $F_i \in \mathbb{R}^2 \rightarrow \mathbb{R}^2$. It's worth discussing
 | 
			
		||||
these functions, but not critical, so **this section is optional**.
 | 
			
		||||
 | 
			
		||||
In mathematical terms, each $F_i$ is a special kind of function called an [affine transformation](https://en.wikipedia.org/wiki/Affine_transformation).
 | 
			
		||||
We can think of them like mapping from one coordinate system to another. For example, we can define a coordinate system
 | 
			
		||||
where everything is shifted over:
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
F_{shift}(x, y) = (x + 1, y)
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
That is, for an input point $(x, y)$, the output point will be $(x + 1, y)$:
 | 
			
		||||
 | 
			
		||||
<center>
 | 
			
		||||
    <Plot
 | 
			
		||||
        data={[
 | 
			
		||||
            {
 | 
			
		||||
                x: [0, 1, 2],
 | 
			
		||||
                y: [0, 1, 2],
 | 
			
		||||
                type: 'scatter',
 | 
			
		||||
                mode: 'markers',
 | 
			
		||||
                marker: { size: 12 },
 | 
			
		||||
                name: "(x, y)"
 | 
			
		||||
            },
 | 
			
		||||
            {
 | 
			
		||||
                x: [1, 2, 3],
 | 
			
		||||
                y: [0, 1, 2],
 | 
			
		||||
                type: 'scatter',
 | 
			
		||||
                mode: 'markers',
 | 
			
		||||
                marker: { size: 12 },
 | 
			
		||||
                name: "(x+1, y)"
 | 
			
		||||
            },
 | 
			
		||||
            {
 | 
			
		||||
                x: [0, 1],
 | 
			
		||||
                y: [0, 0],
 | 
			
		||||
                mode: 'lines+markers',
 | 
			
		||||
                marker: {
 | 
			
		||||
                    size: 12,
 | 
			
		||||
                    symbol: 'arrow-bar-up',
 | 
			
		||||
                    angleref: 'previous',
 | 
			
		||||
                    color: 'rgb(0,0,0)'
 | 
			
		||||
                },
 | 
			
		||||
                type: 'scatter',
 | 
			
		||||
                showlegend: false
 | 
			
		||||
            },
 | 
			
		||||
            {
 | 
			
		||||
                x: [1, 2],
 | 
			
		||||
                y: [1, 1],
 | 
			
		||||
                mode: 'lines+markers',
 | 
			
		||||
                marker: {
 | 
			
		||||
                    size: 12,
 | 
			
		||||
                    symbol: 'arrow-bar-up',
 | 
			
		||||
                    angleref: 'previous',
 | 
			
		||||
                    color: 'rgb(0,0,0)'
 | 
			
		||||
                },
 | 
			
		||||
                type: 'scatter',
 | 
			
		||||
                showlegend: false
 | 
			
		||||
            },
 | 
			
		||||
            {
 | 
			
		||||
                x: [2, 3],
 | 
			
		||||
                y: [2, 2],
 | 
			
		||||
                mode: 'lines+markers',
 | 
			
		||||
                marker: {
 | 
			
		||||
                    size: 12,
 | 
			
		||||
                    symbol: 'arrow-bar-up',
 | 
			
		||||
                    angleref: 'previous',
 | 
			
		||||
                    color: 'rgb(0,0,0)'
 | 
			
		||||
                },
 | 
			
		||||
                type: 'scatter',
 | 
			
		||||
                showlegend: false
 | 
			
		||||
            }
 | 
			
		||||
        ]}
 | 
			
		||||
        layout={{
 | 
			
		||||
            plot_bgcolor: 'rgba(0,0,0,0)',
 | 
			
		||||
            paper_bgcolor: 'rgba(0,0,0,0)'
 | 
			
		||||
        }}
 | 
			
		||||
        config={{
 | 
			
		||||
            staticPlot: true
 | 
			
		||||
        }}
 | 
			
		||||
    />
 | 
			
		||||
</center>
 | 
			
		||||
 | 
			
		||||
This is a simple example designed to illustrate the principle. In general, $F_i$ functions have the form:
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
F_i(x,y) = (a_i \cdot x + b_i \cdot y + c_i, \hspace{0.2cm} d_i \cdot x + e_i \cdot y + f_i)
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
The parameters ($a_i$, $b_i$, etc.) are values we get to choose. In the example above, we can represent our shift
 | 
			
		||||
function using these parameters:
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
a_i = 1 \hspace{0.5cm} b_i = 0 \hspace{0.5cm} c_i = 1 \\
 | 
			
		||||
d_i = 0 \hspace{0.5cm} e_i = 1 \hspace{0.5cm} f_i = 0 \\
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
\begin{align*}
 | 
			
		||||
F_{shift}(x,y) &= (1 \cdot x + 0 \cdot y + 1, 0 \cdot x + 1 \cdot y + 0) \\
 | 
			
		||||
F_{shift}(x,y) &= (x + 1, y)
 | 
			
		||||
\end{align*}
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
Fractal flames use more complex functions to produce a wide variety of images, but all follow this same format.
 | 
			
		||||
 | 
			
		||||
## Sierpinski's gasket
 | 
			
		||||
 | 
			
		||||
Using these definitions, we can build the first image. The paper defines a function system we can use as-is:
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
F_0(x, y) = \left({x \over 2}, {y \over 2} \right)
 | 
			
		||||
\hspace{0.8cm}
 | 
			
		||||
F_1(x, y) = \left({{x + 1} \over 2}, {y \over 2} \right)
 | 
			
		||||
\hspace{0.8cm}
 | 
			
		||||
F_2(x, y) = \left({x \over 2}, {{y + 1} \over 2} \right)
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
### The chaos game
 | 
			
		||||
 | 
			
		||||
import CodeBlock from '@theme/CodeBlock'
 | 
			
		||||
 | 
			
		||||
Next, how do we find out all the points in $S$? The paper lays out an algorithm called the "chaos game":
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
\begin{align*}
 | 
			
		||||
&(x, y) = \text{a random point in the bi-unit square} \\
 | 
			
		||||
&\text{iterate } \{ \\
 | 
			
		||||
&\hspace{1cm} i = \text{a random integer from 0 to } n - 1 \text{ inclusive} \\
 | 
			
		||||
&\hspace{1cm} (x,y) = F_i(x,y) \\
 | 
			
		||||
&\hspace{1cm} \text{plot}(x,y) \text{ except during the first 20 iterations} \\
 | 
			
		||||
\}
 | 
			
		||||
\end{align*}
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
Let's turn this into code, one piece at a time.
 | 
			
		||||
 | 
			
		||||
First, the "bi-unit square" is the range $[-1, 1]$. We can pick a random point like this:
 | 
			
		||||
 | 
			
		||||
import biunitSource from '!!raw-loader!./biunit'
 | 
			
		||||
 | 
			
		||||
<CodeBlock language="typescript">{biunitSource}</CodeBlock>
 | 
			
		||||
 | 
			
		||||
Next, we need to choose a random integer from $0$ to $n - 1$:
 | 
			
		||||
 | 
			
		||||
import randintSource from '!!raw-loader!./randint'
 | 
			
		||||
 | 
			
		||||
<CodeBlock language="typescript">{randintSource}</CodeBlock>
 | 
			
		||||
 | 
			
		||||
Finally, implementing the `plot` function. Web browsers have a [Canvas API](https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API)
 | 
			
		||||
we can use for 2D graphics. In our case, the plot function will take an $(x,y)$ coordinate and plot it by
 | 
			
		||||
coloring the corresponding pixel in an [ImageData](https://developer.mozilla.org/en-US/docs/Web/API/ImageData):
 | 
			
		||||
 | 
			
		||||
import plotSource from '!!raw-loader!./plot'
 | 
			
		||||
 | 
			
		||||
<CodeBlock language="typescript">{plotSource}</CodeBlock>
 | 
			
		||||
 | 
			
		||||
import Playground from '@theme/Playground'
 | 
			
		||||
import Scope from './scope'
 | 
			
		||||
 | 
			
		||||
import Gasket from '!!raw-loader!./Gasket'
 | 
			
		||||
 | 
			
		||||
<Playground scope={Scope}>{Gasket}</Playground>
 | 
			
		||||
							
								
								
									
										43
									
								
								blog/2024-11-15-playing-with-fire/1-introduction/Gasket.jsx
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										43
									
								
								blog/2024-11-15-playing-with-fire/1-introduction/Gasket.jsx
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,43 @@
 | 
			
		||||
function Gasket(props) {
 | 
			
		||||
    const iterations = 1000;
 | 
			
		||||
    const functions = [
 | 
			
		||||
        (x, y) => [x / 2, y / 2],
 | 
			
		||||
        (x, y) => [(x + 1) / 2, y / 2],
 | 
			
		||||
        (x, y) => [x / 2, (y + 1) / 2]
 | 
			
		||||
    ]
 | 
			
		||||
 | 
			
		||||
    function chaosGame(image) {
 | 
			
		||||
        var [x, y] = [randomBiUnit(), randomBiUnit()];
 | 
			
		||||
 | 
			
		||||
        for (var i = 0; i < iterations; i++) {
 | 
			
		||||
            const f = functions[randomInteger(0, functions.length)];
 | 
			
		||||
            [x, y] = f(x, y);
 | 
			
		||||
 | 
			
		||||
            if (i > 20) {
 | 
			
		||||
                plot(x, y, image);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    function onClickRender() {
 | 
			
		||||
        /** @type{HTMLCanvasElement} */
 | 
			
		||||
        const canvas = document.getElementById('canvas-gasket');
 | 
			
		||||
        const context = canvas.getContext('2d');
 | 
			
		||||
        const image = context.createImageData(canvas.width, canvas.height);
 | 
			
		||||
        chaosGame(image);
 | 
			
		||||
        context.putImageData(image, 0, 0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return <div style={{width: '100%'}}>
 | 
			
		||||
        <center>
 | 
			
		||||
            <button onClick={onClickRender}>Play chaos game</button>
 | 
			
		||||
            <hr/>
 | 
			
		||||
        </center>
 | 
			
		||||
        <div>
 | 
			
		||||
            <canvas
 | 
			
		||||
                id={'canvas-gasket'}
 | 
			
		||||
                style={{width: '100%', aspectRatio: '1 / 1'}}
 | 
			
		||||
            />
 | 
			
		||||
        </div>
 | 
			
		||||
    </div>
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,3 @@
 | 
			
		||||
export default function randomBiUnit(): number {
 | 
			
		||||
    return Math.random() * 2 - 1;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										32
									
								
								blog/2024-11-15-playing-with-fire/1-introduction/plot.ts
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										32
									
								
								blog/2024-11-15-playing-with-fire/1-introduction/plot.ts
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,32 @@
 | 
			
		||||
export default function plot(x: number, y: number, image: ImageData) {
 | 
			
		||||
    // Translate (x,y) coordinates to pixel coordinates.
 | 
			
		||||
    // The display range we care about is x=[0, 1], y=[0, 1],
 | 
			
		||||
    // so our pixelX and pixelY coordinates are easy to calculate:
 | 
			
		||||
    const pixelX = Math.floor(x * image.width);
 | 
			
		||||
    const pixelY = Math.floor(y * image.height);
 | 
			
		||||
 | 
			
		||||
    // If we have an (x,y) coordinate outside the display range,
 | 
			
		||||
    // skip it
 | 
			
		||||
    if (
 | 
			
		||||
        pixelX < 0 ||
 | 
			
		||||
        pixelX > image.width ||
 | 
			
		||||
        pixelY < 0 ||
 | 
			
		||||
        pixelY > image.height
 | 
			
		||||
    ) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // ImageData is an array that contains four bytes per pixel
 | 
			
		||||
    // (one for each of the red, green, blue, and alpha values).
 | 
			
		||||
    // The (pixelX, pixelY) coordinates are used to find where
 | 
			
		||||
    // in the image we need to write.
 | 
			
		||||
    const index = pixelY * (image.width * 4) + pixelX * 4;
 | 
			
		||||
 | 
			
		||||
    // Set the pixel to black by writing a 0 to the first three
 | 
			
		||||
    // bytes (red, green, blue), and 256 to the last byte (alpha),
 | 
			
		||||
    // starting at our index:
 | 
			
		||||
    image.data[index] = 0;
 | 
			
		||||
    image.data[index + 1] = 0;
 | 
			
		||||
    image.data[index + 2] = 0;
 | 
			
		||||
    image.data[index + 3] = 0xff;
 | 
			
		||||
}
 | 
			
		||||
@ -0,0 +1,3 @@
 | 
			
		||||
export default function randomInteger(min: number, max: number): number {
 | 
			
		||||
    return Math.floor(Math.random() * (max - min)) + min;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										14
									
								
								blog/2024-11-15-playing-with-fire/1-introduction/scope.ts
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								blog/2024-11-15-playing-with-fire/1-introduction/scope.ts
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,14 @@
 | 
			
		||||
import React from 'react';
 | 
			
		||||
 | 
			
		||||
import randomBiUnit from './biunit';
 | 
			
		||||
import plot from './plot';
 | 
			
		||||
import randomInteger from './randint';
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
const Scope = {
 | 
			
		||||
    React,
 | 
			
		||||
    plot,
 | 
			
		||||
    randomBiUnit,
 | 
			
		||||
    randomInteger
 | 
			
		||||
}
 | 
			
		||||
export default Scope;
 | 
			
		||||
		Reference in New Issue
	
	Block a user