Render the gasket

Need to get rid of Plotly, unfortuantely - causes issues with hydration. Seems like Victory is better able to handle what I need.
This commit is contained in:
2024-11-17 17:30:07 -05:00
parent 1b4d190906
commit 3a41d5c81a
10 changed files with 1737 additions and 450 deletions

View File

@ -0,0 +1,246 @@
---
slug: 2024/11/playing-with-fire
title: "Playing with fire: The fractal flame algorithm"
date: 2024-11-15 12:00:00
authors: [bspeice]
tags: []
---
Wikipedia [describes](https://en.wikipedia.org/wiki/Fractal_flame) fractal flames as:
> a member of the iterated function system class of fractals
I think of them a different way: beauty in mathematics.
import isDarkMode from '@site/src/isDarkMode'
import bannerDark from '../banner-dark.png'
import bannerLight from '../banner-light.png'
<center>
<!-- Why are these backwards? -->
<img src={bannerLight} hidden={isDarkMode()}/>
<img src={bannerDark} hidden={!isDarkMode()}/>
</center>
<!-- truncate -->
I don't remember exactly when or how I originally came across fractal flames, but I do remember becoming entranced by the images they created.
I also remember their unique appeal to my young engineering mind; this was an art form I could actively participate in.
The [paper](https://flam3.com/flame_draves.pdf) describing their mathematical structure was too much
for me to handle at the time (I was ~12 years old), and I was content to play around and enjoy the pictures.
But the desire to understand it stuck with me, so I wanted to try again. With a graduate degree in Financial Engineering under my belt,
maybe it would be easier this time.
---
## Iterated function systems
Let's begin by defining an "[iterated function system](https://en.wikipedia.org/wiki/Iterated_function_system)" (IFS).
We'll start at the end and work backwards to build a practical understanding. In mathematical notation, an IFS is:
$$
S = \bigcup_{i=0}^{n-1} F_i(S) \\[0.6cm]
S \in \mathbb{R}^2 \\
F_i(S) \in \mathbb{R}^2 \rightarrow \mathbb{R}^2
$$
### Stationary point
First, $S$. We're generating images, so everything is in two dimensions: $S \in \mathbb{R}^2$. The set $S$ is
all points that are "in the system." To generate our final image, we just plot every point in the system
like a coordinate chart.
For example, if we say $S = \{(0,0), (1, 1), (2, 2)\}$, there are three points to plot:
import Plot from "react-plotly.js"
<center>
<Plot
data={[
{
x: [0, 1, 2],
y: [0, 1, 2],
type: 'scatter',
mode: 'markers',
marker: { size: 15 }
}
]}
layout={{
plot_bgcolor: 'rgba(0,0,0,0)',
paper_bgcolor: 'rgba(0,0,0,0)'
}}
config={{
staticPlot: true
}}
/>
</center>
For fractal flames, we just need to figure out which points are in $S$ and plot them. While there are
technically an infinite number of points, if we find _enough_ points and plot them, we end up with a nice picture.
### Transformation functions
Second, $F_i(S)$. At their most basic, each $F_i$ is a function that takes in a 2-dimensional point and transforms
it into a new 2-dimensional point: $F_i \in \mathbb{R}^2 \rightarrow \mathbb{R}^2$. It's worth discussing
these functions, but not critical, so **this section is optional**.
In mathematical terms, each $F_i$ is a special kind of function called an [affine transformation](https://en.wikipedia.org/wiki/Affine_transformation).
We can think of them like mapping from one coordinate system to another. For example, we can define a coordinate system
where everything is shifted over:
$$
F_{shift}(x, y) = (x + 1, y)
$$
That is, for an input point $(x, y)$, the output point will be $(x + 1, y)$:
<center>
<Plot
data={[
{
x: [0, 1, 2],
y: [0, 1, 2],
type: 'scatter',
mode: 'markers',
marker: { size: 12 },
name: "(x, y)"
},
{
x: [1, 2, 3],
y: [0, 1, 2],
type: 'scatter',
mode: 'markers',
marker: { size: 12 },
name: "(x+1, y)"
},
{
x: [0, 1],
y: [0, 0],
mode: 'lines+markers',
marker: {
size: 12,
symbol: 'arrow-bar-up',
angleref: 'previous',
color: 'rgb(0,0,0)'
},
type: 'scatter',
showlegend: false
},
{
x: [1, 2],
y: [1, 1],
mode: 'lines+markers',
marker: {
size: 12,
symbol: 'arrow-bar-up',
angleref: 'previous',
color: 'rgb(0,0,0)'
},
type: 'scatter',
showlegend: false
},
{
x: [2, 3],
y: [2, 2],
mode: 'lines+markers',
marker: {
size: 12,
symbol: 'arrow-bar-up',
angleref: 'previous',
color: 'rgb(0,0,0)'
},
type: 'scatter',
showlegend: false
}
]}
layout={{
plot_bgcolor: 'rgba(0,0,0,0)',
paper_bgcolor: 'rgba(0,0,0,0)'
}}
config={{
staticPlot: true
}}
/>
</center>
This is a simple example designed to illustrate the principle. In general, $F_i$ functions have the form:
$$
F_i(x,y) = (a_i \cdot x + b_i \cdot y + c_i, \hspace{0.2cm} d_i \cdot x + e_i \cdot y + f_i)
$$
The parameters ($a_i$, $b_i$, etc.) are values we get to choose. In the example above, we can represent our shift
function using these parameters:
$$
a_i = 1 \hspace{0.5cm} b_i = 0 \hspace{0.5cm} c_i = 1 \\
d_i = 0 \hspace{0.5cm} e_i = 1 \hspace{0.5cm} f_i = 0 \\
$$
$$
\begin{align*}
F_{shift}(x,y) &= (1 \cdot x + 0 \cdot y + 1, 0 \cdot x + 1 \cdot y + 0) \\
F_{shift}(x,y) &= (x + 1, y)
\end{align*}
$$
Fractal flames use more complex functions to produce a wide variety of images, but all follow this same format.
## Sierpinski's gasket
Using these definitions, we can build the first image. The paper defines a function system we can use as-is:
$$
F_0(x, y) = \left({x \over 2}, {y \over 2} \right)
\hspace{0.8cm}
F_1(x, y) = \left({{x + 1} \over 2}, {y \over 2} \right)
\hspace{0.8cm}
F_2(x, y) = \left({x \over 2}, {{y + 1} \over 2} \right)
$$
### The chaos game
import CodeBlock from '@theme/CodeBlock'
Next, how do we find out all the points in $S$? The paper lays out an algorithm called the "chaos game":
$$
\begin{align*}
&(x, y) = \text{a random point in the bi-unit square} \\
&\text{iterate } \{ \\
&\hspace{1cm} i = \text{a random integer from 0 to } n - 1 \text{ inclusive} \\
&\hspace{1cm} (x,y) = F_i(x,y) \\
&\hspace{1cm} \text{plot}(x,y) \text{ except during the first 20 iterations} \\
\}
\end{align*}
$$
Let's turn this into code, one piece at a time.
First, the "bi-unit square" is the range $[-1, 1]$. We can pick a random point like this:
import biunitSource from '!!raw-loader!./biunit'
<CodeBlock language="typescript">{biunitSource}</CodeBlock>
Next, we need to choose a random integer from $0$ to $n - 1$:
import randintSource from '!!raw-loader!./randint'
<CodeBlock language="typescript">{randintSource}</CodeBlock>
Finally, implementing the `plot` function. Web browsers have a [Canvas API](https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API)
we can use for 2D graphics. In our case, the plot function will take an $(x,y)$ coordinate and plot it by
coloring the corresponding pixel in an [ImageData](https://developer.mozilla.org/en-US/docs/Web/API/ImageData):
import plotSource from '!!raw-loader!./plot'
<CodeBlock language="typescript">{plotSource}</CodeBlock>
import Playground from '@theme/Playground'
import Scope from './scope'
import Gasket from '!!raw-loader!./Gasket'
<Playground scope={Scope}>{Gasket}</Playground>

View File

@ -0,0 +1,43 @@
function Gasket(props) {
const iterations = 1000;
const functions = [
(x, y) => [x / 2, y / 2],
(x, y) => [(x + 1) / 2, y / 2],
(x, y) => [x / 2, (y + 1) / 2]
]
function chaosGame(image) {
var [x, y] = [randomBiUnit(), randomBiUnit()];
for (var i = 0; i < iterations; i++) {
const f = functions[randomInteger(0, functions.length)];
[x, y] = f(x, y);
if (i > 20) {
plot(x, y, image);
}
}
}
function onClickRender() {
/** @type{HTMLCanvasElement} */
const canvas = document.getElementById('canvas-gasket');
const context = canvas.getContext('2d');
const image = context.createImageData(canvas.width, canvas.height);
chaosGame(image);
context.putImageData(image, 0, 0);
}
return <div style={{width: '100%'}}>
<center>
<button onClick={onClickRender}>Play chaos game</button>
<hr/>
</center>
<div>
<canvas
id={'canvas-gasket'}
style={{width: '100%', aspectRatio: '1 / 1'}}
/>
</div>
</div>
}

View File

@ -0,0 +1,3 @@
export default function randomBiUnit(): number {
return Math.random() * 2 - 1;
}

View File

@ -0,0 +1,32 @@
export default function plot(x: number, y: number, image: ImageData) {
// Translate (x,y) coordinates to pixel coordinates.
// The display range we care about is x=[0, 1], y=[0, 1],
// so our pixelX and pixelY coordinates are easy to calculate:
const pixelX = Math.floor(x * image.width);
const pixelY = Math.floor(y * image.height);
// If we have an (x,y) coordinate outside the display range,
// skip it
if (
pixelX < 0 ||
pixelX > image.width ||
pixelY < 0 ||
pixelY > image.height
) {
return;
}
// ImageData is an array that contains four bytes per pixel
// (one for each of the red, green, blue, and alpha values).
// The (pixelX, pixelY) coordinates are used to find where
// in the image we need to write.
const index = pixelY * (image.width * 4) + pixelX * 4;
// Set the pixel to black by writing a 0 to the first three
// bytes (red, green, blue), and 256 to the last byte (alpha),
// starting at our index:
image.data[index] = 0;
image.data[index + 1] = 0;
image.data[index + 2] = 0;
image.data[index + 3] = 0xff;
}

View File

@ -0,0 +1,3 @@
export default function randomInteger(min: number, max: number): number {
return Math.floor(Math.random() * (max - min)) + min;
}

View File

@ -0,0 +1,14 @@
import React from 'react';
import randomBiUnit from './biunit';
import plot from './plot';
import randomInteger from './randint';
const Scope = {
React,
plot,
randomBiUnit,
randomInteger
}
export default Scope;