Start actually writing a post

This commit is contained in:
Bradlee Speice 2024-11-16 18:20:32 -05:00
parent 582e03cff3
commit 1b4d190906
16 changed files with 2803 additions and 0 deletions

View File

@ -0,0 +1,215 @@
---
slug: 2024/11/playing-with-fire
title: "Playing with fire: Introduction"
date: 2024-11-15 12:00:00
authors: [bspeice]
tags: []
---
Wikipedia [describes](https://en.wikipedia.org/wiki/Fractal_flame) fractal flames as:
> a member of the iterated function system class of fractals
I think of them a different way: beauty in mathematics.
import isDarkMode from "@site/src/isDarkMode";
import bannerDark from "./banner-dark.png"
import bannerLight from "./banner-light.png"
<center>
<!-- Why are these backwards? -->
<img src={bannerLight} hidden={isDarkMode()}/>
<img src={bannerDark} hidden={!isDarkMode()}/>
</center>
<!-- truncate -->
I don't remember exactly when or how I originally came across fractal flames, but I do remember becoming entranced by the images they created.
I also remember their unique appeal to my young engineering mind; this was an art form I could actively participate in.
The [paper](https://flam3.com/flame_draves.pdf) describing their mathematical structure was too much
for me to handle at the time (I was ~12 years old), and I was content to play around and enjoy the pictures.
But the desire to understand it stuck with me, so I wanted to try again. With a graduate degree in Financial Engineering under my belt,
maybe it would be easier this time.
---
## Iterated function systems
Let's begin by defining an "[iterated function system](https://en.wikipedia.org/wiki/Iterated_function_system)" (IFS).
We'll start at the end and work backwards to build a practical understanding. In mathematical notation, an IFS is:
$$
S = \bigcup_{i=0}^{n-1} F_i(S) \\[0.6cm]
S \in \mathbb{R}^2 \\
F_i(S) \in \mathbb{R}^2 \rightarrow \mathbb{R}^2
$$
### Stationary point
First, $S$. We're generating images, so everything is in two dimensions: $S \in \mathbb{R}^2$. The set $S$ is
all points that are "in the system." To generate our final image, we just plot every point in the system
like a coordinate chart.
For example, if we say $S = \{(0,0), (1, 1), (2, 2)\}$, there are three points to plot:
import Plot from "react-plotly.js"
<center>
<Plot
data={[
{
x: [0, 1, 2],
y: [0, 1, 2],
type: 'scatter',
mode: 'markers',
marker: { size: 15 }
}
]}
layout={{
plot_bgcolor: 'rgba(0,0,0,0)',
paper_bgcolor: 'rgba(0,0,0,0)'
}}
config={{
staticPlot: true
}}
/>
</center>
For fractal flames, we just need to figure out which points are in $S$ and plot them. While there are
technically an infinite number of points, if we find _enough_ points and plot them, we end up with a nice picture.
### Transformation functions
Second, $F_i(S)$. At their most basic, each $F_i$ is a function that takes in a 2-dimensional point and transforms
it into a new 2-dimensional point: $F_i \in \mathbb{R}^2 \rightarrow \mathbb{R}^2$. It's worth discussing
these functions, but not critical, so **this section is optional**.
In mathematical terms, each $F_i$ is a special kind of function called an [affine transformation](https://en.wikipedia.org/wiki/Affine_transformation).
We can think of them like mapping from one coordinate system to another. For example, we can define a coordinate system
where everything is shifted over:
$$
F_{shift}(x, y) = (x + 1, y)
$$
That is, for an input point $(x, y)$, the output point will be $(x + 1, y)$:
<center>
<Plot
data={[
{
x: [0, 1, 2],
y: [0, 1, 2],
type: 'scatter',
mode: 'markers',
marker: { size: 12 },
name: "(x, y)"
},
{
x: [1, 2, 3],
y: [0, 1, 2],
type: 'scatter',
mode: 'markers',
marker: { size: 12 },
name: "(x+1, y)"
},
{
x: [0, 1],
y: [0, 0],
mode: 'lines+markers',
marker: {
size: 12,
symbol: 'arrow-bar-up',
angleref: 'previous',
color: 'rgb(0,0,0)'
},
type: 'scatter',
showlegend: false
},
{
x: [1, 2],
y: [1, 1],
mode: 'lines+markers',
marker: {
size: 12,
symbol: 'arrow-bar-up',
angleref: 'previous',
color: 'rgb(0,0,0)'
},
type: 'scatter',
showlegend: false
},
{
x: [2, 3],
y: [2, 2],
mode: 'lines+markers',
marker: {
size: 12,
symbol: 'arrow-bar-up',
angleref: 'previous',
color: 'rgb(0,0,0)'
},
type: 'scatter',
showlegend: false
}
]}
layout={{
plot_bgcolor: 'rgba(0,0,0,0)',
paper_bgcolor: 'rgba(0,0,0,0)'
}}
config={{
staticPlot: true
}}
/>
</center>
This is a simple example designed to illustrate the principle. In general, $F_i$ functions have the form:
$$
F_i(x,y) = (a_i \cdot x + b_i \cdot y + c_i, \hspace{0.2cm} d_i \cdot x + e_i \cdot y + f_i)
$$
The parameters ($a_i$, $b_i$, etc.) are values we get to choose. In the example above, we can represent our shift
function using these parameters:
$$
a_i = 1 \hspace{0.5cm} b_i = 0 \hspace{0.5cm} c_i = 1 \\
d_i = 0 \hspace{0.5cm} e_i = 1 \hspace{0.5cm} f_i = 0 \\
$$
$$
\begin{align*}
F_{shift}(x,y) &= (1 \cdot x + 0 \cdot y + 1, 0 \cdot x + 1 \cdot y + 0) \\
F_{shift}(x,y) &= (x + 1, y)
\end{align*}
$$
Fractal flames use more complex functions to produce a wide variety of images, but all follow this same format.
## Sierpinski's gasket
Using these definitions, we can build the first image. The paper defines a function system we can use as-is:
$$
F_0(x, y) = \left({x \over 2}, {y \over 2} \right)
\hspace{0.8cm}
F_1(x, y) = \left({{x + 1} \over 2}, {y \over 2} \right)
\hspace{0.8cm}
F_2(x, y) = \left({x \over 2}, {{y + 1} \over 2} \right)
$$
### The chaos game
Next, how do we find out all the points in $S$? The paper lays out an algorithm called the "chaos game":
$$
\begin{align*}
&(x, y) = \text{a random point in the bi-unit square} \\
&\text{iterate } \{ \\
&\hspace{1cm} i = \text{a random integer from 0 to } n - 1 \text{ inclusive} \\
&\hspace{1cm} (x,y) = F_i(x,y) \\
&\hspace{1cm} \text{plot}(x,y) \text{ except during the first 20 iterations} \\
\}
\end{align*}
$$

View File

@ -0,0 +1,7 @@
---
slug: 2024/11/playing-with-fire-transforms
title: "Playing with fire: Transforms and variations"
date: 2024-11-15 13:00:00
authors: [bspeice]
tags: []
---

View File

@ -0,0 +1,9 @@
---
slug: 2024/11/playing-with-fire-log-density
title: "Playing with fire: Log-density display"
date: 2024-11-15 14:00:00
authors: [bspeice]
tags: []
---
Testing

View File

@ -0,0 +1,7 @@
---
slug: 2024/11/playing-with-fire-color
title: "Playing with fire: Color"
date: 2024-11-15 15:00:00
authors: [bspeice]
tags: []
---

Binary file not shown.

After

Width:  |  Height:  |  Size: 557 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 558 KiB

View File

@ -0,0 +1,120 @@
<Flames name="variations">
<flame name="post xform" version="Apophysis 2.08 beta" size="600 600" center="0 0" scale="150" oversample="1" filter="0.2" quality="1" background="0 0 0" brightness="4" gamma="4" >
<xform weight="0.422330042096567" color="0" pdj="1" coefs="1.51523 0.740356 -3.048677 -1.455964 0.724135 -0.362059" pdj_a="1.09358" pdj_b="2.13048" pdj_c="2.54127" pdj_d="2.37267" />
<xform weight="0.564534951145298" color="0" julia="1" coefs="-1.381068 1.381068 -1.381068 -1.381068 0 0" />
<xform weight="0.0131350067581356" color="0" linear="1" popcorn="1" coefs="0.031393 -0.031367 0.031367 0.031393 0 0" post="1 0 0 1 0.241352 0.271521" />
<palette count="256" format="RGB">
3A78875998AA5E9DAC78B1C2599BAB36798A2252601B3438
1823270D1215080705010101000000000002080A090A0809
0C070D0B090A030406010101000000000000000000000000
0A00000B0A080E1213101B1F21202830243A6737357A3C31
864424643A22452F1838251427190E1C12080E0F110E1213
1014152110183720105D320FA0531F9144180409080A1312
0C13140E13160E15160E17160F16171015180B161C0A1225
0A0F2F101E37172E40294C5A3B6B7549798758879975A9BE
79A7BF7EA6C0949FA2AA9985B7A27BC4AB72AC965A867654
61574E4C4D48374343474141573F3F7C5C36B0914EC1DFF9
C4E4FAC8E9FCBEE1F4B5DAEDB2D8EDB0D6ED5398A7386D78
1D424A1B3B4219343B1B383E1D3C411D3B462155623D7C8B
46747F4F6C74636454785C3584663E917047BEA467CEA86A
DEAC6DC5975EAC834F916E41765A335F3D21431F21241625
1F202B1A2B321A2D321B30331B323A1628360E1D220E1D21
0F1D20101C1F111C1E111D1E121E1E2B21153B2B1B725432
85542C9854279B63369F7346AD7C3AB2763AB18F4FB39453
B69957B99B56BC9E56C19651CB9346AB6A2A9851254E341D
2F261B10181A0E15160C12120D11120A10100D0D0D0C0E0E
0B0F100B10120C11140F191A101F221829331A373B1E3D52
1A40551744591D556420424C1E3B431D3C41112C33102328
101B1D10191E111820101D2311242A1B33371B3A3F276476
3E637D556284545F7D7759355C41261B30290E16180B0F0F
0908060405030002010A0E0F12171A1C1B2B17343C3C7481
467F8F508A9E528FA23E81923769722E69772248512B545E
35616C688589807F85939FB5ABD6E6B3D6EA89B7CE5891A4
467E92356C81194A6B1A373F132C310E1C1F050409020205
0000020000000101010800000B0000170A000D0D0D0D1110
0F0E14100F141F11082619082F1904210F05111717101919
0F1B1B101F22182C2B252E2B282D311B2E321A2E2F162E30
1325270E191B0F1314190D0F2E1211461A27552227612723
6C303A56213D3033381C343619343B15383E193A431A4E5C
</palette>
</flame>
<flame name="baseline" version="Apophysis 2.08 beta" size="600 600" center="0 0" scale="150" oversample="1" filter="0.2" quality="1" background="0 0 0" brightness="4" gamma="4" >
<xform weight="0.422330042096567" color="0" pdj="1" coefs="1.51523 0.740356 -3.048677 -1.455964 0.724135 -0.362059" pdj_a="1.09358" pdj_b="2.13048" pdj_c="2.54127" pdj_d="2.37267" />
<xform weight="0.564534951145298" color="0.13" julia="1" coefs="-1.381068 1.381068 -1.381068 -1.381068 0 0" />
<xform weight="0.0131350067581356" color="0.844" linear="1" popcorn="1" coefs="0.031393 -0.031367 0.031367 0.031393 0 0" />
<palette count="256" format="RGB">
FF0000D31616BD2121A72C2C9137377C4242714747664D4D
3A63631D7171008080008B8B00969600A1A100ACAC00B1B1
00B7B700CCCC00D7D700E2E200EDED00F8F800FBFB00FFFF
2CF0FF42E8FF58E0FF6DD8FF83D1FF8ECDFF99C9FFAFC2FF
C5BAFFFFA6FFE9A2FFD39FFFBD9CFFA799FF9C97FF9196FF
668FFF508CFF3A89FF2485FF0E82FF0781FF0080FF0B80FF
1680FF2C80FF3780FF4280FF4D80FF5880FF5D80FF6380FF
7980FF7785F4758BE96A96D35FA1BD59A6B254ACA749B791
3EC17C28D7501DE23A12ED2409F61200FF0016E9002CD300
58A7006D9100837C00996600AF5000BA4500C53A00DB2400
F10E00E90B00D31600BD2100B22600A72C009137007C4200
5058003A6300246E001973000E79000080000A7500146A00
1E5F003249003C3E004633004B2D005028005A1D00651200
8100008C00009800009E0000A40000AF0000BB0000C70000
D20000EA0000F00000F60000FD0000F2160BE82C16DD4221
C76E37BC8342B2994DACA452A7AF589CC56392DB6E87F179
80FF8080E99680E39B80DEA180D3AC80C8B780BEC180B3CC
809DE2808EF08080FF7A80F47580E96A80D35F80BD5480A7
4980913380662D805B2880501D803A12802407800E008000
2C841A3784204285265887336E8940838B4D998D5AAF8E66
C59073FF9595FF9393FF9292FF9090FF8D8DFF8B8BFF8888
FF8383FF8181FF8080FF7E7EFF7B7BFF7979FF7777FF7783
FF768EFF769AFF75A6FF75B1FF74BDFF74C9FF73D4FF73E0
FF72F8FF71FBFF71FFFF6BEDFF65DBFF5FC9FF5AB7FF54A5
FF4E93FF4881FF426FFF3C5DFF374BFF2D2DFA293AF62548
F12155ED1E63E81A70E4167EDF128BDB0E99D60AA6D106B4
CD02C1CA00CACC00B9CE00A7CF0096D10085D30073D50062
D70050D8003FDA002EDC001CDE000BDF0000D90C06D4180C
CE2413C82F19C33B1FBD4725B7532BB25F32AC6B38A6773E
9D8A489D7E429E723C9E66359F5B2FA04F29A04323A1371D
A12B16A21F10A3130AA30804A40000A000009C0000980000
9400009000008C00008800008400008000007C0000750000
</palette>
</flame>
<flame name="final xform" version="Apophysis 2.08 beta" size="600 600" center="0 0" scale="150" oversample="1" filter="0.2" quality="1" background="1 1 1" brightness="4" gamma="4" >
<xform weight="0.422330042096567" color="0.349" pdj="1" coefs="1.51523 0.740356 -3.048677 -1.455964 0.724135 -0.362059" pdj_a="1.09358" pdj_b="2.13048" pdj_c="2.54127" pdj_d="2.37267" />
<xform weight="0.564534951145298" color="0" julia="1" coefs="-1.381068 1.381068 -1.381068 -1.381068 0 0" />
<xform weight="0.0131350067581356" color="0.844" linear="1" popcorn="1" coefs="0.031393 -0.031367 0.031367 0.031393 0 0" post="1 0 0 1 0.241352 0.271521" />
<finalxform color="0" symmetry="1" julia="1" coefs="2 0 0 2 0 0" />
<palette count="256" format="RGB">
7E3037762C45722B496E2A4E6A2950672853652754632656
5C265C5724595322574D2155482153462050451F4E441E4D
431E4C3F1E473F1E453F1E433F1E3F3F1E3B3E1E393E1E37
421D36431C38451C3A471B3B491B3C4A1A3C4B1A3D4D1A3E
4F19405318435517445817465A16475D15495E154960154A
65134E6812506B12526E1153711055720F55740F55770E57
7A0E59810C58840B58880A588B09588F0858910756930755
9A05539D0451A1034FA5024BA90147AA0046AC0045B00242
B4043DBB0634BE082EC20A29C30B27C50C26C90F1DCC1116
D32110D6280EDA300CDC380ADF4109E04508E24A08E45106
E75704EA6402EC6B01EE7300EE7600EF7A00F07E00F18300
F29000F29300F39600F39900F39C00F3A000F3A100F3A201
F2A502F1A805F0A906EFAA08EEA909EEA80AEDA60CEBA50F
E5A313E1A113DD9F13DB9E13D99D14D49C15D09815CC9518
C79318BE8B1ABB891BB9871DB4811FB07D1FAB7621A67123
9C6227975C289256299053298E502A89482C853F2D803A2E
7E3037762C45742B47722B496E2A4E6A2951672853632656
5C265C5724595322575022564E2255482153452050451F4E
431E4C3F1E473E1D463D1D453F1E43411E413F1E3B3E1E37
421D36421D38431D3B451C3A471B3A491B3C4B1A3D4D1A3E
4F19405318435418445518455817465A16475D154960154A
65134E66124F6812506B12526E1153711055740F55770E57
7A0E597E0D57810C58840B58880A588B09588F0858930755
9A05539C04529E0452A1034FA5024BA90147AC0045B00242
B4043DB7053ABB0634BE0831C20A29C50C26C90F1DCC1116
D01711D32110D72A0EDA300CDD390ADF4109E24A08E45106
E75704E95F03EA6402EC6C01EE7300EF7A00F07E00F18300
F28900F29000F39300F39600F39C00F3A000F3A100F3A201
F2A502F2A503F1A805F0A807EFAA08EEA80AEDA60CEBA50F
E9A411E5A313E1A113DD9F13D99D14D49C15D09815CC9518
C79318C38F1ABE8B1AB9871DB4811FB07D1FAB7621A67123
A16A249C6227975E289256298E502A89482C853F2D803A2E
</palette>
</flame>
</Flames>

View File

@ -0,0 +1,95 @@
/**
* Parameters taken from the reference .flame file,
* translated into something that's easier to work with.
*/
import {Coefs, Transform} from "./types";
import { julia, linear, pdj, popcorn } from "./variation";
export const identityCoefs: Coefs = {
a: 1, b: 0, c: 0,
d: 0, e: 1, f: 0,
}
export const xform1Weight = 0.56453495;
export const xform1: Transform = {
coefs: {
a: -1.381068, b: -1.381068, c: 0,
d: 1.381068, e: -1.381068, f: 0,
},
coefsPost: identityCoefs,
variations: [[1, julia]],
color: 0
}
const xform2Weight = 0.013135;
export const xform2: Transform = {
coefs: {
a: 0.031393, b: 0.031367, c: 0,
d: -0.031367, e: 0.031393, f: 0,
},
coefsPost: {
a: 1, b: 0, c: 0.241352,
d: 0, e: 1, f: 0.271521,
},
variations: [
[1, linear],
[1, popcorn]
],
color: 0.844
}
export const xform3Weight = 0.42233;
export const xform3: Transform = {
coefs: {
a: 1.51523, b: -3.048677, c: 0.724135,
d: 0.740356, e: -1.455964, f: -0.362059,
},
coefsPost: identityCoefs,
variations: [[1, pdj(1.09358, 2.13048, 2.54127, 2.37267)]],
color: 0.349
}
export const xformFinal: Transform = {
coefs: {
a: 2, b: 0, c: 0,
d: 0, e: 2, f: 0
},
coefsPost: identityCoefs,
variations: [[1, julia]],
color: 0
}
export const palette =
"7E3037762C45722B496E2A4E6A2950672853652754632656" +
"5C265C5724595322574D2155482153462050451F4E441E4D" +
"431E4C3F1E473F1E453F1E433F1E3F3F1E3B3E1E393E1E37" +
"421D36431C38451C3A471B3B491B3C4A1A3C4B1A3D4D1A3E" +
"4F19405318435517445817465A16475D15495E154960154A" +
"65134E6812506B12526E1153711055720F55740F55770E57" +
"7A0E59810C58840B58880A588B09588F0858910756930755" +
"9A05539D0451A1034FA5024BA90147AA0046AC0045B00242" +
"B4043DBB0634BE082EC20A29C30B27C50C26C90F1DCC1116" +
"D32110D6280EDA300CDC380ADF4109E04508E24A08E45106" +
"E75704EA6402EC6B01EE7300EE7600EF7A00F07E00F18300" +
"F29000F29300F39600F39900F39C00F3A000F3A100F3A201" +
"F2A502F1A805F0A906EFAA08EEA909EEA80AEDA60CEBA50F" +
"E5A313E1A113DD9F13DB9E13D99D14D49C15D09815CC9518" +
"C79318BE8B1ABB891BB9871DB4811FB07D1FAB7621A67123" +
"9C6227975C289256299053298E502A89482C853F2D803A2E" +
"7E3037762C45742B47722B496E2A4E6A2951672853632656" +
"5C265C5724595322575022564E2255482153452050451F4E" +
"431E4C3F1E473E1D463D1D453F1E43411E413F1E3B3E1E37" +
"421D36421D38431D3B451C3A471B3A491B3C4B1A3D4D1A3E" +
"4F19405318435418445518455817465A16475D154960154A" +
"65134E66124F6812506B12526E1153711055740F55770E57" +
"7A0E597E0D57810C58840B58880A588B09588F0858930755" +
"9A05539C04529E0452A1034FA5024BA90147AC0045B00242" +
"B4043DB7053ABB0634BE0831C20A29C50C26C90F1DCC1116" +
"D01711D32110D72A0EDA300CDD390ADF4109E24A08E45106" +
"E75704E95F03EA6402EC6C01EE7300EF7A00F07E00F18300" +
"F28900F29000F39300F39600F39C00F3A000F3A100F3A201" +
"F2A502F2A503F1A805F0A807EFAA08EEA80AEDA60CEBA50F" +
"E9A411E5A313E1A113DD9F13D99D14D49C15D09815CC9518" +
"C79318C38F1ABE8B1AB9871DB4811FB07D1FAB7621A67123" +
"A16A249C6227975E289256298E502A89482C853F2D803A2E"

View File

@ -0,0 +1,24 @@
/**
* Affine transformation coefficients
*/
export type Coefs = {
a: number;
b: number;
c: number;
d: number;
e: number;
f: number;
};
export type Variation = (
x: number,
y: number,
coefs: Coefs
) => [number, number];
export type Transform = {
coefs: Coefs,
coefsPost: Coefs,
variations: [number, Variation][],
color: number
}

View File

@ -0,0 +1,29 @@
/**
* Generate a uniform random number in the range (-1, 1)
*
* @returns
*/
export function randomBiUnit() {
return Math.random() * 2 - 1;
}
/**
* Generate a uniform random integer in the range [min, max)
*
* @param min
* @param max
* @returns
*/
export function randomInteger(min: number, max: number) {
return Math.floor(Math.random() * (max - min)) + min;
}
// https://stackoverflow.com/a/34356351
export function hexToBytes(hex: string) {
var bytes = [];
for (var i = 0; i < hex.length; i += 2) {
bytes.push(parseInt(hex.substring(i, i + 2), 16));
}
return bytes;
}

View File

@ -0,0 +1,40 @@
import { Variation } from "./types";
export const linear: Variation = (x, y) => [x, y];
function r(x: number, y: number) {
return Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));
}
function theta(x: number, y: number) {
return Math.atan2(x, y);
}
function omega(): number {
return Math.random() > 0.5 ? Math.PI : 0;
}
export const julia: Variation = (x, y) => {
const sqrtR = Math.sqrt(r(x, y));
const thetaVal = theta(x, y) / 2 + omega();
return [sqrtR * Math.cos(thetaVal), sqrtR * Math.sin(thetaVal)];
};
export const popcorn: Variation = (x, y, transformCoefs) => {
return [
x + transformCoefs.c * Math.sin(Math.tan(3 * y)),
y + transformCoefs.f * Math.sin(Math.tan(3 * x)),
];
};
export const pdj: (
pdjA: number,
pdjB: number,
pdjC: number,
pdjD: number
) => Variation = (pdjA, pdjB, pdjC, pdjD) => {
return (x, y) => [
Math.sin(pdjA * y) - Math.cos(pdjB * x),
Math.sin(pdjC * x) - Math.cos(pdjD * y),
];
};

2231
package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@ -21,9 +21,11 @@
"@mdx-js/react": "^3.0.0",
"clsx": "^2.0.0",
"docusaurus-lunr-search": "^3.5.0",
"plotly.js": "^2.35.2",
"prism-react-renderer": "^2.3.0",
"react": "^18.0.0",
"react-dom": "^18.0.0",
"react-plotly.js": "^2.6.0",
"rehype-katex": "^7.0.1",
"remark-math": "^6.0.0"
},

13
src/DualImage/index.tsx Normal file
View File

@ -0,0 +1,13 @@
import {useColorMode} from "@docusaurus/theme-common";
import React from "react";
interface Props {
srcLight: string;
srcDark: string;
alt: string;
}
const DualImage = ({srcLight, srcDark, alt}: Props) => {
const {colorMode} = useColorMode();
return <img src={colorMode === "dark" ? srcDark : srcLight} alt={alt} />
}
export default DualImage;

View File

@ -21,4 +21,9 @@
[data-theme='dark'] .header-github-link::before {
background: url("data:image/svg+xml,%3Csvg viewBox='0 0 24 24' xmlns='http://www.w3.org/2000/svg'%3E%3Cpath fill='white' d='M12 .297c-6.63 0-12 5.373-12 12 0 5.303 3.438 9.8 8.205 11.385.6.113.82-.258.82-.577 0-.285-.01-1.04-.015-2.04-3.338.724-4.042-1.61-4.042-1.61C4.422 18.07 3.633 17.7 3.633 17.7c-1.087-.744.084-.729.084-.729 1.205.084 1.838 1.236 1.838 1.236 1.07 1.835 2.809 1.305 3.495.998.108-.776.417-1.305.76-1.605-2.665-.3-5.466-1.332-5.466-5.93 0-1.31.465-2.38 1.235-3.22-.135-.303-.54-1.523.105-3.176 0 0 1.005-.322 3.3 1.23.96-.267 1.98-.399 3-.405 1.02.006 2.04.138 3 .405 2.28-1.552 3.285-1.23 3.285-1.23.645 1.653.24 2.873.12 3.176.765.84 1.23 1.91 1.23 3.22 0 4.61-2.805 5.625-5.475 5.92.42.36.81 1.096.81 2.22 0 1.606-.015 2.896-.015 3.286 0 .315.21.69.825.57C20.565 22.092 24 17.592 24 12.297c0-6.627-5.373-12-12-12'/%3E%3C/svg%3E")
no-repeat;
}
/* Dark mode for Plotly, copied from https://github.com/plotly/plotly.js/issues/2006#issuecomment-2081535168 */
[data-theme='dark'] .plot-container {
filter: invert(75%) hue-rotate(180deg);
}

6
src/isDarkMode.ts Normal file
View File

@ -0,0 +1,6 @@
import {useColorMode} from "@docusaurus/theme-common";
export default function isDarkMode() {
const {colorMode} = useColorMode();
return colorMode === "dark";
}