mirror of
https://github.com/bspeice/libcvautomation
synced 2025-01-09 23:40:03 -05:00
151 lines
9.7 KiB
HTML
151 lines
9.7 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml">
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
|
|
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
|
|
<title>libcvautomation: Libcv Search Methods</title>
|
|
|
|
<link href="tabs.css" rel="stylesheet" type="text/css"/>
|
|
<link href="doxygen.css" rel="stylesheet" type="text/css" />
|
|
|
|
<link href="search/search.css" rel="stylesheet" type="text/css"/>
|
|
<script type="text/javascript" src="jquery.js"></script>
|
|
<script type="text/javascript" src="search/search.js"></script>
|
|
<script type="text/javascript">
|
|
$(document).ready(function() { searchBox.OnSelectItem(0); });
|
|
</script>
|
|
<script type="text/x-mathjax-config">
|
|
MathJax.Hub.Config({
|
|
extensions: ["tex2jax.js"],
|
|
jax: ["input/TeX","output/HTML-CSS"],
|
|
});
|
|
</script><script src="http://www.mathjax.org/mathjax/MathJax.js"></script>
|
|
|
|
</head>
|
|
<body>
|
|
<div id="top"><!-- do not remove this div! -->
|
|
|
|
|
|
<div id="titlearea">
|
|
<table cellspacing="0" cellpadding="0">
|
|
<tbody>
|
|
<tr style="height: 56px;">
|
|
|
|
|
|
<td style="padding-left: 0.5em;">
|
|
<div id="projectname">libcvautomation
|
|
 <span id="projectnumber">1.2</span>
|
|
</div>
|
|
|
|
</td>
|
|
|
|
|
|
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
</div>
|
|
|
|
<!-- Generated by Doxygen 1.7.6.1 -->
|
|
<script type="text/javascript">
|
|
var searchBox = new SearchBox("searchBox", "search",false,'Search');
|
|
</script>
|
|
<div id="navrow1" class="tabs">
|
|
<ul class="tablist">
|
|
<li><a href="index.html"><span>Main Page</span></a></li>
|
|
<li class="current"><a href="pages.html"><span>Related Pages</span></a></li>
|
|
<li><a href="annotated.html"><span>Classes</span></a></li>
|
|
<li><a href="files.html"><span>Files</span></a></li>
|
|
<li>
|
|
<div id="MSearchBox" class="MSearchBoxInactive">
|
|
<span class="left">
|
|
<img id="MSearchSelect" src="search/mag_sel.png"
|
|
onmouseover="return searchBox.OnSearchSelectShow()"
|
|
onmouseout="return searchBox.OnSearchSelectHide()"
|
|
alt=""/>
|
|
<input type="text" id="MSearchField" value="Search" accesskey="S"
|
|
onfocus="searchBox.OnSearchFieldFocus(true)"
|
|
onblur="searchBox.OnSearchFieldFocus(false)"
|
|
onkeyup="searchBox.OnSearchFieldChange(event)"/>
|
|
</span><span class="right">
|
|
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
|
|
</span>
|
|
</div>
|
|
</li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
<div class="header">
|
|
<div class="headertitle">
|
|
<div class="title">Libcv Search Methods </div> </div>
|
|
</div><!--header-->
|
|
<div class="contents">
|
|
<div class="textblock"><p>This page describes the methods libcv uses to search for a sub image in a root image. </p>
|
|
<h2><a class="anchor" id="tolerance"></a>
|
|
Tolerance Values</h2>
|
|
<p>Tolerance values are used to control how strict each of the following search methods are. Acceptable values are from <code>INT_MIN</code> to <code>INT_MAX</code>.</p>
|
|
<p>Additionally, each of the reference programs - <code>cva-input</code> and <code>cva-match</code> - have a "sane tolerance" built in. This is accessed by the "-o" switch, and allows you to specify a tolerance on scale of 1-100, where 1 is incredibly strict, and 100 is incredibly loose. </p>
|
|
<dl class="note"><dt><b>Note:</b></dt><dd>The formula for calculating the sane tolerance is: \( T(x) = (10^{\frac{\log{INT\_MAX}}{\lambda}})^x \) where \( \lambda \) is the highest tolerance value (in our case, 100). Finally, we have to round down a little bit to ensure that we don't accidentally generate a value higher than <code>INT_MAX</code>. The formula used does mean that we will never be able to generate values lower than 0. </dd></dl>
|
|
<dl class="warning"><dt><b>Warning:</b></dt><dd>The "sane-tolerance" option doesn't know which search method you are using - Thus while 1 is an incredibly strict search for <a class="el" href="libcv_search_methods.html#SQDIFF">Squared Difference</a> and <a class="el" href="libcv_search_methods.html#SQDIFF_NORMED">Squared Difference (Normalized)</a>, it is fairly loose search for <a class="el" href="libcv_search_methods.html#CCORR">Cross Correlation</a>, <a class="el" href="libcv_search_methods.html#CCORR_NORMED">Cross Correlation (Normalized)</a>, <a class="el" href="libcv_search_methods.html#CCOEFF">Correlation Coefficient</a>, and <a class="el" href="libcv_search_methods.html#CCOEFF_NORMED">Correlation Coefficient (Normalized)</a></dd></dl>
|
|
<h2><a class="anchor" id="SQDIFF"></a>
|
|
Squared Difference</h2>
|
|
<div class="fragment"><pre class="fragment"><span class="preprocessor"> #define CV_TM_SQDIFF 0 </span>
|
|
</pre></div><p> Squared Difference is the default search method used by <code>libcvautomation</code>, as well as <code>cva-match</code> and <code>cva-input</code>. </p>
|
|
<dl class="user"><dt><b>For this method, setting a low tolerance value results in a more strict match.</b></dt><dd></dd></dl>
|
|
<p>Formula: \(R(x,y) = \sum_{x',y'} (T(x',y') - I(x + x', y+y'))^2 \)</p>
|
|
<h2><a class="anchor" id="SQDIFF_NORMED"></a>
|
|
Squared Difference (Normalized)</h2>
|
|
<div class="fragment"><pre class="fragment"><span class="preprocessor"> #define CV_TM_SQDIFF_NORMED 1 </span>
|
|
</pre></div><p> This is a normalized version of the <a class="el" href="libcv_search_methods.html#SQDIFF">Squared Difference</a> search method. </p>
|
|
<dl class="user"><dt><b>For this method, setting a low tolerance value results in a more strict match.</b></dt><dd></dd></dl>
|
|
<p>Formula: \( R(x,y) = \frac{\sum_{x',y'}(T(x',y') - I(x + x', y + y'))^2}{ \sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'}I(x + x', y + y')^2}} \)</p>
|
|
<h2><a class="anchor" id="CCORR"></a>
|
|
Cross Correlation</h2>
|
|
<div class="fragment"><pre class="fragment"><span class="preprocessor"> #define CV_TM_CCORR 2 </span>
|
|
</pre></div><p> This is the Cross Correlation search method. </p>
|
|
<dl class="user"><dt><b>For this method, setting a high tolerance value results in a more strict match.</b></dt><dd></dd></dl>
|
|
<p>Formula: \( R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y')) \)</p>
|
|
<h2><a class="anchor" id="CCORR_NORMED"></a>
|
|
Cross Correlation (Normalized)</h2>
|
|
<div class="fragment"><pre class="fragment"><span class="preprocessor"> #define CV_TM_CCORR_NORMED 3 </span>
|
|
</pre></div><p> This is the normalized version of the <a class="el" href="libcv_search_methods.html#CCORR">Cross Correlation</a> search method. </p>
|
|
<dl class="user"><dt><b>For this method, setting a high tolerance value results in a more strict match.</b></dt><dd></dd></dl>
|
|
<p>Formula: \( R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I'(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}} \)</p>
|
|
<h2><a class="anchor" id="CCOEFF"></a>
|
|
Correlation Coefficient</h2>
|
|
<div class="fragment"><pre class="fragment"><span class="preprocessor"> #define CV_TM_CCOEFF 4 </span>
|
|
</pre></div><p> This is the Correlation Coefficient search method. </p>
|
|
<dl class="user"><dt><b>For this method, setting a high tolerance value results in a more strict match.</b></dt><dd></dd></dl>
|
|
<p>Formula: \( R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I(x+x',y+y')) \) where: \( \begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h) \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array} \)</p>
|
|
<h2><a class="anchor" id="CCOEFF_NORMED"></a>
|
|
Correlation Coefficient (Normalized)</h2>
|
|
<div class="fragment"><pre class="fragment"><span class="preprocessor"> #define CV_TM_CCOEFF_NORMED 5 </span>
|
|
</pre></div><p> This is the normalized version of the <a class="el" href="libcv_search_methods.html#CCOEFF">Correlation Coefficient</a> search method. </p>
|
|
<dl class="user"><dt><b>For this method, setting a high tolerance value results in a more strict match.</b></dt><dd></dd></dl>
|
|
<p>Formula: \( R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{ \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2} } \) </p>
|
|
</div></div><!-- contents -->
|
|
<!-- window showing the filter options -->
|
|
<div id="MSearchSelectWindow"
|
|
onmouseover="return searchBox.OnSearchSelectShow()"
|
|
onmouseout="return searchBox.OnSearchSelectHide()"
|
|
onkeydown="return searchBox.OnSearchSelectKey(event)">
|
|
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark"> </span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark"> </span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark"> </span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark"> </span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark"> </span>Defines</a></div>
|
|
|
|
<!-- iframe showing the search results (closed by default) -->
|
|
<div id="MSearchResultsWindow">
|
|
<iframe src="javascript:void(0)" frameborder="0"
|
|
name="MSearchResults" id="MSearchResults">
|
|
</iframe>
|
|
</div>
|
|
|
|
|
|
|
|
<hr class="footer"/><address class="footer"><small>
|
|
Generated on Wed Jul 18 2012 14:10:15 for libcvautomation by  <a href="http://www.doxygen.org/index.html">
|
|
<img class="footer" src="doxygen.png" alt="doxygen"/>
|
|
</a> 1.7.6.1
|
|
</small></address>
|
|
|
|
</body>
|
|
</html>
|