libcvautomation/libcvautomation/libcvautomation-opencv.c

419 lines
14 KiB
C
Raw Normal View History

/*
* =====================================================================================
*
* Filename: libcvautomation-opencv.c
*
* Description:
*
* Created: 06/21/2012 08:34:21 AM
* Revision: none
* Compiler: gcc
*
* Author: Bradlee Speice, bspeice@uncc.edu
* Organization: MOSAIC at University of North Carolina at Charlotte
*
* =====================================================================================
*/
#include <libcvautomation/libcvautomation-opencv.h>
/*
* === FUNCTION ======================================================================
* Name: matchSubImage
* Returns: CvPoint if a match is found, null if not
* =====================================================================================
*/
CvPoint matchSubImage ( IplImage *rootImage, IplImage *subImage, int searchMethod, double tolerance )
{
/* We have the two OpenCV images we want, go ahead and find if there are any matches */
IplImage *result;
CvPoint minloc, maxloc; /* Location for the match - depending on search algorithm,
the result may be in either minloc or maxloc */
CvPoint badpoint; /* (-1, -1), used to indicate an error */
double minval, maxval;
int rootImage_width, rootImage_height;
int subImage_width, subImage_height;
int result_width, result_height;
badpoint.x = badpoint.y = -1;
/* Make sure we have valid images */
if ( rootImage == 0 || subImage == 0) {
/* Otherwise return invalid */
minloc.x = minloc.y = -1;
return minloc;
}
/* Set up the parameters for our result image */
rootImage_width = rootImage->width;
rootImage_height = rootImage->height;
subImage_width = subImage->width;
subImage_height = subImage->height;
result_width = rootImage_width - subImage_width + 1;
result_height = rootImage_height - subImage_height + 1;
/* Initialize our result image */
result = cvCreateImage( cvSize( result_width, result_height ), IPL_DEPTH_32F, 1 );
/* Compute the result image */
cvMatchTemplate( rootImage, subImage, result, searchMethod );
cvMinMaxLoc( result, &minval, &maxval, &minloc, &maxloc, 0 );
/* Free memory for the result image
* Note that we don't control the root or sub image,
* so don't mess with those */
cvReleaseImage( &result );
/* Make sure that we have enough correlation to return a result,
* and then return the match location*/
/* Return the match location */
if ( searchMethod == CV_TM_SQDIFF || searchMethod == CV_TM_SQDIFF_NORMED )
{
if ( minval < tolerance )
return minloc;
else
return badpoint;
}
else
{
if ( maxval > tolerance )
return maxloc;
else
return badpoint;
}
} /* ----- end of function matchSubImage ----- */
/*
* === FUNCTION ======================================================================
* Name: matchSubImage_location
* Description: Match a root image and sub image from filename
* =====================================================================================
*/
CvPoint matchSubImage_location ( const char *rootImage_location, const char *subImage_location, int searchMethod, double tolerance )
{
/* This is basically a wrapper for matchSubImage( IplImage, IplImage )
* All we do is load the images from the given filenames, and then
* pass off the result to the above-named function */
IplImage *rootImage;
rootImage = cvLoadImage( rootImage_location, CV_LOAD_IMAGE_COLOR );
IplImage *subImage;
subImage = cvLoadImage( subImage_location, CV_LOAD_IMAGE_COLOR );
CvPoint return_point;
return_point.x = return_point.y = -1;
/* Make sure we have good images */
if ( rootImage == 0 || subImage == 0 )
{
/* Return error */
return return_point;
}
return_point = matchSubImage( rootImage, subImage, searchMethod, tolerance );
/* Free up the memory we created */
cvReleaseImage( &rootImage );
cvReleaseImage( &subImage );
/* Our return_point will already be NULL if there's no match */
return return_point;
} /* ----- end of function matchSubImage ----- */
/*
* === FUNCTION ======================================================================
* Name: matchSubImage_a
* Description: Match a root image and sub image from an array of sub-images.
* The list contains an element for each sub-image to specify its own
* searchMethod and threshold value.
* =====================================================================================
*/
void matchSubImage_a ( IplImage *rootImage, cvautomationList *subImageArray, int listSize )
{
/* This is also a higher-end wrapper for matchSubImage, but is mostly aimed
* at making python support for multiple images very easy. */
CvPoint resultPoint;
cvautomationList curr;
int x = 0;
for ( x = 0; x < listSize; x++ )
{
curr = subImageArray[x];
if ( subImageArray[x].cvaImage != 0 )
resultPoint = matchSubImage ( rootImage, curr.cvaImage, curr.searchMethod, curr.tolerance );
else
{
/* We have a sub-image filename, go ahead and create the actual image. */
IplImage *subImage;
subImage = cvLoadImage( curr.fileName, CV_LOAD_IMAGE_COLOR );
resultPoint = matchSubImage ( rootImage, subImage, curr.searchMethod, curr.tolerance );
cvReleaseImage( &subImage );
}
curr.resultPoint = resultPoint;
}
}
/*
* === FUNCTION ======================================================================
* Name: matchSubImage_a_location
* Description: Match a root image from location, and sub image from
* an array of sub-images.
* The list contains an element for each sub-image to specify its own
* searchMethod and threshold value.
* =====================================================================================
*/
2012-07-10 16:32:42 -04:00
void matchSubImage_a_location ( const char *rootImage_location, cvautomationList *subImageArray, int listSize )
{
/* This is also a higher-end wrapper for matchSubImage, but is mostly aimed
* at making python support for multiple images very easy. */
CvPoint resultPoint;
cvautomationList curr;
IplImage *rootImage;
2012-07-10 16:32:42 -04:00
rootImage = cvLoadImage( rootImage_location, CV_LOAD_IMAGE_COLOR );
int x = 0;
for ( x = 0; x < listSize; x++ )
{
curr = subImageArray[x];
if ( subImageArray[x].cvaImage != 0 )
resultPoint = matchSubImage ( rootImage, curr.cvaImage, curr.searchMethod, curr.tolerance );
else
{
/* We have a sub-image filename, go ahead and create the actual image. */
IplImage *subImage;
subImage = cvLoadImage( curr.fileName, CV_LOAD_IMAGE_COLOR );
resultPoint = matchSubImage ( rootImage, subImage, curr.searchMethod, curr.tolerance );
cvReleaseImage( &subImage );
}
curr.resultPoint = resultPoint;
}
cvReleaseImage( &rootImage );
}
/*
* === FUNCTION ======================================================================
* Name: matchSubImage_center
* Returns: CvPoint if a match is found, null if not
* The code is mostly the same as matchSubImage, but the difference
* here is that it returns the center of the sub-image, rather than
* the top-left corner.
* =====================================================================================
*/
CvPoint matchSubImage_center ( IplImage *rootImage, IplImage *subImage, int searchMethod, double tolerance )
{
/* We have the two OpenCV images we want, go ahead and find if there are any matches */
IplImage *result;
CvPoint minloc, maxloc; /* Location for the match - depending on search algorithm,
the result may be in either minloc or maxloc */
CvPoint badpoint; /* (-1, -1), used to indicate an error */
double minval, maxval;
int rootImage_width, rootImage_height;
int subImage_width, subImage_height;
int result_width, result_height;
badpoint.x = badpoint.y = -1;
/* Make sure we have valid images */
if ( rootImage == 0 || subImage == 0) {
/* Otherwise return invalid */
minloc.x = minloc.y = -1;
return minloc;
}
/* Set up the parameters for our result image */
rootImage_width = rootImage->width;
rootImage_height = rootImage->height;
subImage_width = subImage->width;
subImage_height = subImage->height;
result_width = rootImage_width - subImage_width + 1;
result_height = rootImage_height - subImage_height + 1;
/* Initialize our result image */
result = cvCreateImage( cvSize( result_width, result_height ), IPL_DEPTH_32F, 1 );
/* Compute the result image */
cvMatchTemplate( rootImage, subImage, result, searchMethod );
cvMinMaxLoc( result, &minval, &maxval, &minloc, &maxloc, 0 );
/* Free memory for the result image
* Note that we don't control the root or sub image,
* so don't mess with those */
cvReleaseImage( &result );
/* Make sure that we have enough correlation to return a result,
* and then return the match location*/
/* Return the match location */
if ( searchMethod == CV_TM_SQDIFF || searchMethod == CV_TM_SQDIFF_NORMED )
{
if ( minval < tolerance )
{
CvPoint resultPoint = minloc;
/* Center the image before returning */
resultPoint.x += (subImage->width) / 2;
resultPoint.y += (subImage->height) / 2;
return resultPoint;
}
else
return badpoint;
}
else
{
if ( maxval > tolerance )
{
CvPoint resultPoint;
resultPoint = maxloc;
/* Center the image before returning */
resultPoint.x += (subImage->width) / 2;
resultPoint.y += (subImage->height) / 2;
return resultPoint;
}
else
return badpoint;
}
} /* ----- end of function matchSubImage ----- */
/*
* === FUNCTION ======================================================================
* Name: matchSubImage_location_center
* Description: Match a root image and sub image from filename
* Most of the code is the same as matchSubImage_location, but use
* matchSubImage_center as the lower-level call to make sure that
* we get the center of the sub-image.
* =====================================================================================
*/
CvPoint matchSubImage_location_center ( const char *rootImage_location, const char *subImage_location, int searchMethod, double tolerance )
{
/* This is basically a wrapper for matchSubImage( IplImage, IplImage )
* All we do is load the images from the given filenames, and then
* pass off the result to the above-named function */
IplImage *rootImage;
rootImage = cvLoadImage( rootImage_location, CV_LOAD_IMAGE_COLOR );
IplImage *subImage;
subImage = cvLoadImage( subImage_location, CV_LOAD_IMAGE_COLOR );
CvPoint return_point;
return_point.x = return_point.y = -1;
/* Make sure we have good images */
if ( rootImage == 0 || subImage == 0 )
{
/* Return error */
return return_point;
}
return_point = matchSubImage_center( rootImage, subImage, searchMethod, tolerance );
/* Free up the memory we created */
cvReleaseImage( &rootImage );
cvReleaseImage( &subImage );
/* Our return_point will already be NULL if there's no match */
return return_point;
} /* ----- end of function matchSubImage ----- */
/*
* === FUNCTION ======================================================================
* Name: matchSubImage_a_center
* Description: Match a root image and sub image from an array of sub-images.
* The list contains an element for each sub-image to specify its own
* searchMethod and threshold value.
* Most of the code is the same as matchSubImage_a, but we use
* matchSubImage_center as the underlying function to make sure we
* get the center of the sub-image, rather than the top-left corner
* =====================================================================================
*/
void matchSubImage_a_center ( IplImage *rootImage, cvautomationList *subImageArray, int listSize )
{
/* This is also a higher-end wrapper for matchSubImage, but is mostly aimed
* at making python support for multiple images very easy. */
CvPoint resultPoint;
cvautomationList curr;
int x = 0;
for ( x = 0; x < listSize; x++ )
{
curr = subImageArray[x];
if ( subImageArray[x].cvaImage != 0 )
resultPoint = matchSubImage ( rootImage, curr.cvaImage, curr.searchMethod, curr.tolerance );
else
{
/* We have a sub-image filename, go ahead and create the actual image. */
IplImage *subImage;
subImage = cvLoadImage( curr.fileName, CV_LOAD_IMAGE_COLOR );
resultPoint = matchSubImage_center ( rootImage, subImage, curr.searchMethod, curr.tolerance );
cvReleaseImage( &subImage );
}
curr.resultPoint = resultPoint;
}
}
/*
* === FUNCTION ======================================================================
* Name: matchSubImage_a_location_center
* Description: Match a root image from location, and sub image from
* an array of sub-images.
* The list contains an element for each sub-image to specify its own
* searchMethod and threshold value.
* Most of the code is the same as matchSubImage_a_location, but we
* use matchSubImage_center in order to return the center of the sub-
* image, rather than the top-left corner.
* =====================================================================================
*/
2012-07-10 16:32:42 -04:00
void matchSubImage_a_location_center ( const char *rootImage_location, cvautomationList *subImageArray, int listSize )
{
/* This is also a higher-end wrapper for matchSubImage, but is mostly aimed
* at making python support for multiple images very easy. */
CvPoint resultPoint;
cvautomationList curr;
IplImage *rootImage;
2012-07-10 16:32:42 -04:00
rootImage = cvLoadImage( rootImage_location, CV_LOAD_IMAGE_COLOR );
int x = 0;
for ( x = 0; x < listSize; x++ )
{
curr = subImageArray[x];
if ( subImageArray[x].cvaImage != 0 )
resultPoint = matchSubImage ( rootImage, curr.cvaImage, curr.searchMethod, curr.tolerance );
else
{
/* We have a sub-image filename, go ahead and create the actual image. */
IplImage *subImage;
subImage = cvLoadImage( curr.fileName, CV_LOAD_IMAGE_COLOR );
resultPoint = matchSubImage_center ( rootImage, subImage, curr.searchMethod, curr.tolerance );
cvReleaseImage( &subImage );
}
curr.resultPoint = resultPoint;
}
cvReleaseImage( &rootImage );
}