fractorium/Source/EmberCL/EmberCLFunctions.h
mfeemster e3b207c562 Numerous fixes
0.4.0.5 Beta 07/18/2014
--User Changes
Allow for vibrancy values > 1.
Add flatten and unflatten menu items.
Automatically flatten like Apophysis does.
Add plugin and new_linear tags to Xml to be compatible with Apophysis.

--Bug Fixes
Fix blur, blur3d, bubble, cropn, cross, curl, curl3d, epispiral, ho,
julia3d, julia3dz, loonie, mirror_x, mirror_y, mirror_z, rotate_x,
sinusoidal, spherical, spherical3d, stripes.
Unique filename on final render was completely broken.
Two severe OpenCL bugs. Random seeds were biased and fusing was being
reset too often leading to results that differ from the CPU.
Subtle, but sometimes severe bug in the setup of the xaos weights.
Use properly defined epsilon by getting the value from
std::numeric_limits, rather than hard coding 1e-6 or 1e-10.
Omit incorrect usage of epsilon everywhere. It should not be
automatically added to denominators. Rather, it should only be used if
the denominator is zero.
Force final render progress bars to 100 on completion. Sometimes they
didn't seem to make it there.
Make variation name and params comparisons be case insensitive.

--Code Changes
Make ForEach and FindIf wrappers around std::for_each and std::find_if.
2014-07-18 23:33:18 -07:00

413 lines
10 KiB
C++

#pragma once
#include "EmberCLPch.h"
#include "EmberCLStructs.h"
/// <summary>
/// OpenCL global function strings.
/// </summary>
namespace EmberCLns
{
/// <summary>
/// OpenCL equivalent of Palette::RgbToHsv().
/// </summary>
static const char* RgbToHsvFunctionString =
//rgb 0 - 1,
//h 0 - 6, s 0 - 1, v 0 - 1
"static inline void RgbToHsv(real4* rgb, real4* hsv)\n"
"{\n"
" real_t max, min, del, rc, gc, bc;\n"
"\n"
//Compute maximum of r, g, b.
" if ((*rgb).x >= (*rgb).y)\n"
" {\n"
" if ((*rgb).x >= (*rgb).z)\n"
" max = (*rgb).x;\n"
" else\n"
" max = (*rgb).z;\n"
" }\n"
" else\n"
" {\n"
" if ((*rgb).y >= (*rgb).z)\n"
" max = (*rgb).y;\n"
" else\n"
" max = (*rgb).z;\n"
" }\n"
"\n"
//Compute minimum of r, g, b.
" if ((*rgb).x <= (*rgb).y)\n"
" {\n"
" if ((*rgb).x <= (*rgb).z)\n"
" min = (*rgb).x;\n"
" else\n"
" min = (*rgb).z;\n"
" }\n"
" else\n"
" {\n"
" if ((*rgb).y <= (*rgb).z)\n"
" min = (*rgb).y;\n"
" else\n"
" min = (*rgb).z;\n"
" }\n"
"\n"
" del = max - min;\n"
" (*hsv).z = max;\n"
"\n"
" if (max != 0)\n"
" (*hsv).y = del / max;\n"
" else\n"
" (*hsv).y = 0;\n"
"\n"
" (*hsv).x = 0;\n"
" if ((*hsv).y != 0)\n"
" {\n"
" rc = (max - (*rgb).x) / del;\n"
" gc = (max - (*rgb).y) / del;\n"
" bc = (max - (*rgb).z) / del;\n"
"\n"
" if ((*rgb).x == max)\n"
" (*hsv).x = bc - gc;\n"
" else if ((*rgb).y == max)\n"
" (*hsv).x = 2 + rc - bc;\n"
" else if ((*rgb).z == max)\n"
" (*hsv).x = 4 + gc - rc;\n"
"\n"
" if ((*hsv).x < 0)\n"
" (*hsv).x += 6;\n"
" }\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of Palette::HsvToRgb().
/// </summary>
static const char* HsvToRgbFunctionString =
//h 0 - 6, s 0 - 1, v 0 - 1
//rgb 0 - 1
"static inline void HsvToRgb(real4* hsv, real4* rgb)\n"
"{\n"
" int j;\n"
" real_t f, p, q, t;\n"
"\n"
" while ((*hsv).x >= 6)\n"
" (*hsv).x = (*hsv).x - 6;\n"
"\n"
" while ((*hsv).x < 0)\n"
" (*hsv).x = (*hsv).x + 6;\n"
"\n"
" j = (int)floor((*hsv).x);\n"
" f = (*hsv).x - j;\n"
" p = (*hsv).z * (1 - (*hsv).y);\n"
" q = (*hsv).z * (1 - ((*hsv).y * f));\n"
" t = (*hsv).z * (1 - ((*hsv).y * (1 - f)));\n"
"\n"
" switch (j)\n"
" {\n"
" case 0: (*rgb).x = (*hsv).z; (*rgb).y = t; (*rgb).z = p; break;\n"
" case 1: (*rgb).x = q; (*rgb).y = (*hsv).z; (*rgb).z = p; break;\n"
" case 2: (*rgb).x = p; (*rgb).y = (*hsv).z; (*rgb).z = t; break;\n"
" case 3: (*rgb).x = p; (*rgb).y = q; (*rgb).z = (*hsv).z; break;\n"
" case 4: (*rgb).x = t; (*rgb).y = p; (*rgb).z = (*hsv).z; break;\n"
" case 5: (*rgb).x = (*hsv).z; (*rgb).y = p; (*rgb).z = q; break;\n"
" default: (*rgb).x = (*hsv).z; (*rgb).y = t; (*rgb).z = p; break;\n"
" }\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of Palette::CalcAlpha().
/// </summary>
static const char* CalcAlphaFunctionString =
"static inline real_t CalcAlpha(real_t density, real_t gamma, real_t linrange)\n"//Not the slightest clue what this is doing.//DOC
"{\n"
" real_t frac, alpha, funcval = pow(linrange, gamma);\n"
"\n"
" if (density > 0)\n"
" {\n"
" if (density < linrange)\n"
" {\n"
" frac = density / linrange;\n"
" alpha = (1.0 - frac) * density * (funcval / linrange) + frac * pow(density, gamma);\n"
" }\n"
" else\n"
" alpha = pow(density, gamma);\n"
" }\n"
" else\n"
" alpha = 0;\n"
"\n"
" return alpha;\n"
"}\n"
"\n";
/// <summary>
/// Use MWC 64 from David Thomas at the Imperial College of London for
/// random numbers in OpenCL, instead of ISAAC which was used
/// for CPU rendering.
/// </summary>
static const char* RandFunctionString =
"enum { MWC64X_A = 4294883355u };\n\n"
"inline uint MwcNext(uint2* s)\n"
"{\n"
" uint res = (*s).x ^ (*s).y; \n"//Calculate the result.
" uint hi = mul_hi((*s).x, MWC64X_A); \n"//Step the RNG.
" (*s).x = (*s).x * MWC64X_A + (*s).y;\n"//Pack the state back up.
" (*s).y = hi + ((*s).x < (*s).y); \n"
" return res; \n"//Return the next result.
"}\n"
"\n"
"inline uint MwcNextRange(uint2* s, uint val)\n"
"{\n"
" return (val == 0) ? MwcNext(s) : (MwcNext(s) % val);\n"
"}\n"
"\n"
"inline real_t MwcNext01(uint2* s)\n"
"{\n"
" return MwcNext(s) * (1.0 / 4294967296.0);\n"
"}\n"
"\n"
"inline real_t MwcNextNeg1Pos1(uint2* s)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
" return -1.0 + (f * 2.0);\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of the global ClampRef().
/// </summary>
static const char* ClampRealFunctionString =
"inline real_t Clamp(real_t val, real_t min, real_t max)\n"
"{\n"
" if (val < min)\n"
" return min;\n"
" else if (val > max)\n"
" return max;\n"
" else\n"
" return val;\n"
"}\n"
"\n"
"inline void ClampRef(real_t* val, real_t min, real_t max)\n"
"{\n"
" if (*val < min)\n"
" *val = min;\n"
" else if (*val > max)\n"
" *val = max;\n"
"}\n"
"\n"
"inline real_t ClampGte(real_t val, real_t gte)\n"
"{\n"
" return (val < gte) ? gte : val;\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of the global LRint().
/// </summary>
static const char* InlineMathFunctionsString =
"inline real_t LRint(real_t x)\n"
"{\n"
" intPrec temp = (x >= 0.0 ? (intPrec)(x + 0.5) : (intPrec)(x - 0.5));\n"
" return (real_t)temp;\n"
"}\n"
"\n"
"inline real_t Round(real_t r)\n"
"{\n"
" return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5);\n"
"}\n"
"\n"
"inline real_t Sign(real_t v)\n"
"{\n"
" return (v < 0.0) ? -1 : (v > 0.0) ? 1 : 0.0;\n"
"}\n"
"\n"
"inline real_t SignNz(real_t v)\n"
"{\n"
" return (v < 0.0) ? -1.0 : 1.0;\n"
"}\n"
"\n"
"inline real_t Sqr(real_t v)\n"
"{\n"
" return v * v;\n"
"}\n"
"\n"
"inline real_t SafeSqrt(real_t x)\n"
"{\n"
" if (x <= 0.0)\n"
" return 0.0;\n"
"\n"
" return sqrt(x);\n"
"}\n"
"\n"
"inline real_t Cube(real_t v)\n"
"{\n"
" return v * v * v;\n"
"}\n"
"\n"
"inline real_t Hypot(real_t x, real_t y)\n"
"{\n"
" return sqrt(SQR(x) + SQR(y));\n"
"}\n"
"\n"
"inline real_t Spread(real_t x, real_t y)\n"
"{\n"
" return Hypot(x, y) * ((x) > 0.0 ? 1.0 : -1.0);\n"
"}\n"
"\n"
"inline real_t Powq4(real_t x, real_t y)\n"
"{\n"
" return pow(fabs(x), y) * SignNz(x);\n"
"}\n"
"\n"
"inline real_t Powq4c(real_t x, real_t y)\n"
"{\n"
" return y == 1.0 ? x : Powq4(x, y);\n"
"}\n"
"\n"
"inline real_t Zeps(real_t x)\n"
"{\n"
" return x == 0.0 ? EPS : x;\n"
"}\n"
"\n"
"inline real_t Lerp(real_t a, real_t b, real_t p)\n"
"{\n"
" return a + (b - a) * p;\n"
"}\n"
"\n"
"inline real_t Fabsmod(real_t v)\n"
"{\n"
" real_t dummy;\n"
"\n"
" return modf(v, &dummy);\n"
"}\n"
"\n"
"inline real_t Fosc(real_t p, real_t amp, real_t ph)\n"
"{\n"
" return 0.5 - cos(p * amp + ph) * 0.5;\n"
"}\n"
"\n"
"inline real_t Foscn(real_t p, real_t ph)\n"
"{\n"
" return 0.5 - cos(p + ph) * 0.5;\n"
"}\n"
"\n"
"inline real_t LogScale(real_t x)\n"
"{\n"
" return x == 0.0 ? 0.0 : log((fabs(x) + 1) * M_E) * SignNz(x) / M_E;\n"
"}\n"
"\n"
"inline real_t LogMap(real_t x)\n"
"{\n"
" return x == 0.0 ? 0.0 : (M_E + log(x * M_E)) * 0.25 * SignNz(x);\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent Renderer::AddToAccum().
/// </summary>
static const char* AddToAccumWithCheckFunctionString =
"inline bool AccumCheck(int superRasW, int superRasH, int i, int ii, int j, int jj)\n"
"{\n"
" return (j + jj >= 0 && j + jj < superRasH && i + ii >= 0 && i + ii < superRasW);\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent various CarToRas member functions.
/// </summary>
static const char* CarToRasFunctionString =
"inline void CarToRasConvertPointToSingle(__constant CarToRasCL* carToRas, Point* point, unsigned int* singleBufferIndex)\n"
"{\n"
" *singleBufferIndex = (unsigned int)(carToRas->m_PixPerImageUnitW * point->m_X - carToRas->m_RasLlX) + (carToRas->m_RasWidth * (unsigned int)(carToRas->m_PixPerImageUnitH * point->m_Y - carToRas->m_RasLlY));\n"
"}\n"
"\n"
"inline bool CarToRasInBounds(__constant CarToRasCL* carToRas, Point* point)\n"
"{\n"
" return point->m_X >= carToRas->m_CarLlX &&\n"
" point->m_X < carToRas->m_CarUrX &&\n"
" point->m_Y < carToRas->m_CarUrY &&\n"
" point->m_Y >= carToRas->m_CarLlY;\n"
"}\n"
"\n";
static string AtomicString(bool doublePrecision, bool dp64AtomicSupport)
{
ostringstream os;
//If they want single precision, or if they want double precision and have dp atomic support.
if (!doublePrecision || dp64AtomicSupport)
{
os <<
"void AtomicAdd(volatile __global real_t* source, const real_t operand)\n"
"{\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_t realVal;\n"
" } newVal;\n"
"\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_t realVal;\n"
" } prevVal;\n"
"\n"
" do\n"
" {\n"
" prevVal.realVal = *source;\n"
" newVal.realVal = prevVal.realVal + operand;\n"
" } while (atomic_cmpxchg((volatile __global atomi*)source, prevVal.intVal, newVal.intVal) != prevVal.intVal);\n"
"}\n";
}
else//They want double precision and do not have dp atomic support.
{
os <<
"void AtomicAdd(volatile __global real_t* source, const real_t operand)\n"
"{\n"
" union\n"
" {\n"
" uint intVal[2];\n"
" real_t realVal;\n"
" } newVal;\n"
"\n"
" union\n"
" {\n"
" uint intVal[2];\n"
" real_t realVal;\n"
" } prevVal;\n"
"\n"
" do\n"
" {\n"
" prevVal.realVal = *source;\n"
" newVal.realVal = prevVal.realVal + operand;\n"
" } while ((atomic_cmpxchg((volatile __global uint*)source, prevVal.intVal[0], newVal.intVal[0]) != prevVal.intVal[0]) ||\n"
" (atomic_cmpxchg((volatile __global uint*)source + 1, prevVal.intVal[1], newVal.intVal[1]) != prevVal.intVal[1]));\n"
"}\n";
}
return os.str();
}
#ifdef GRAVEYARD
/*"void AtomicLocalAdd(volatile __local real_t* source, const real_t operand)\n"
"{\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_t realVal;\n"
" } newVal;\n"
"\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_t realVal;\n"
" } prevVal;\n"
"\n"
" do\n"
" {\n"
" prevVal.realVal = *source;\n"
" newVal.realVal = prevVal.realVal + operand;\n"
" } while (atomic_cmpxchg((volatile __local atomi*)source, prevVal.intVal, newVal.intVal) != prevVal.intVal);\n"
"}\n"*/
#endif
}