fractorium/Source/Ember/Affine2D.cpp
mfeemster 018ba26b5f --User changes
-Add support for multiple GPU devices.
  --These options are present in the command line and in Fractorium.
 -Change scheme of specifying devices from platform,device to just total device index.
  --Single number on the command line.
  --Change from combo boxes for device selection to a table of all devices in Fractorium.
 -Temporal samples defaults to 100 instead of 1000 which was needless overkill.

--Bug fixes
 -EmberAnimate, EmberRender, FractoriumSettings, FinalRenderDialog: Fix wrong order of arguments to Clamp() when assigning thread priority.
 -VariationsDC.h: Fix NVidia OpenCL compilation error in DCTriangleVariation.
 -FractoriumXformsColor.cpp: Checking for null pixmap pointer is not enough, must also check if the underlying buffer is null via call to QPixmap::isNull().

--Code changes
 -Ember.h: Add case for FLAME_MOTION_NONE and default in ApplyFlameMotion().
 -EmberMotion.h: Call base constructor.
 -EmberPch.h: #pragma once only on Windows.
 -EmberToXml.h:
  --Handle different types of exceptions.
  --Add default cases to ToString().
 -Isaac.h: Remove unused variable in constructor.
 -Point.h: Call base constructor in Color().
 -Renderer.h/cpp:
  --Add bool to Alloc() to only allocate memory for the histogram. Needed for multi-GPU.
  --Make CoordMap() return a const ref, not a pointer.
 -SheepTools.h:
  --Use 64-bit types like the rest of the code already does.
  --Fix some comment misspellings.
 -Timing.h: Make BeginTime(), EndTime(), ElapsedTime() and Format() be const functions.
 -Utils.h:
  --Add new functions Equal() and Split().
  --Handle more exception types in ReadFile().
  --Get rid of most legacy blending of C and C++ argument parsing.
 -XmlToEmber.h:
  --Get rid of most legacy blending of C and C++ code from flam3.
  --Remove some unused variables.
 -EmberAnimate:
  --Support multi-GPU processing that alternates full frames between devices.
  --Use OpenCLInfo instead of OpenCLWrapper for --openclinfo option.
  --Remove bucketT template parameter, and hard code float in its place.
  --If a render fails, exit since there is no point in continuing an animation with a missing frame.
  --Pass variables to threaded save better, which most likely fixes a very subtle bug that existed before.
  --Remove some unused variables.
 -EmberGenome, EmberRender:
  --Support multi-GPU processing that alternates full frames between devices.
  --Use OpenCLInfo instead of OpenCLWrapper for --openclinfo option.
  --Remove bucketT template parameter, and hard code float in its place.
 -EmberRender:
  --Support multi-GPU processing that alternates full frames between devices.
  --Use OpenCLInfo instead of OpenCLWrapper for --openclinfo option.
  --Remove bucketT template parameter, and hard code float in its place.
  --Only print values when not rendering with OpenCL, since they're always 0 in that case.
 -EmberCLPch.h:
  --#pragma once only on Windows.
  --#include <atomic>.
 -IterOpenCLKernelCreator.h: Add new kernel for summing two histograms. This is needed for multi-GPU.
 -OpenCLWrapper.h:
  --Move all OpenCL info related code into its own class OpenCLInfo.
  --Add members to cache the values of global memory size and max allocation size.
 -RendererCL.h/cpp:
  --Redesign to accomodate multi-GPU.
  --Constructor now takes a vector of devices.
  --Remove DumpErrorReport() function, it's handled in the base.
  --ClearBuffer(), ReadPoints(), WritePoints(), ReadHist() and WriteHist() now optionally take a device index as a parameter.
  --MakeDmap() override and m_DmapCL member removed because it no longer applies since the histogram is always float since the last commit.
  --Add new function SumDeviceHist() to sum histograms from two devices by first copying to a temporary on the host, then a temporary on the device, then summing.
  --m_Calls member removed, as it's now per-device.
  --OpenCLWrapper removed.
  --m_Seeds member is now a vector of vector of seeds, to accomodate a separate and different array of seeds for each device.
  --Added member m_Devices, a vector of unique_ptr of RendererCLDevice.
 -EmberCommon.h
  --Added Devices() function to convert from a vector of device indices to a vector of platform,device indices.
  --Changed CreateRenderer() to accept a vector of devices to create a single RendererCL which will split work across multiple devices.
  --Added CreateRenderers() function to accept a vector of devices to create multiple RendererCL, each which will render on a single device.
  --Add more comments to some existing functions.
 -EmberCommonPch.h: #pragma once only on Windows.
 -EmberOptions.h:
  --Remove --platform option, it's just sequential device number now with the --device option.
  --Make --out be OPT_USE_RENDER instead of OPT_RENDER_ANIM since it's an error condition when animating. It makes no sense to write all frames to a single image.
  --Add Devices() function to parse comma separated --device option string and return a vector of device indices.
  --Make int and uint types be 64-bit, so intmax_t and size_t.
  --Make better use of macros.
 -JpegUtils.h: Make string parameters to WriteJpeg() and WritePng() be const ref.
 -All project files: Turn off buffer security check option in Visual Studio (/Gs-)
 -deployment.pri: Remove the line OTHER_FILES +=, it's pointless and was causing problems.
 -Ember.pro, EmberCL.pro: Add CONFIG += plugin, otherwise it wouldn't link.
 -EmberCL.pro: Add new files for multi-GPU support.
 -build_all.sh: use -j4 and QMAKE=${QMAKE:/usr/bin/qmake}
 -shared_settings.pri:
  -Add version string.
  -Remove old DESTDIR definitions.
  -Add the following lines or else nothing would build:
   CONFIG(release, debug|release) {
    CONFIG += warn_off
    DESTDIR = ../../../Bin/release
   }

   CONFIG(debug, debug|release) {
    DESTDIR = ../../../Bin/debug
   }

   QMAKE_POST_LINK += $$quote(cp --update ../../../Data/flam3-palettes.xml $${DESTDIR}$$escape_expand(\n\t))
   LIBS += -L/usr/lib -lpthread
 -AboutDialog.ui: Another futile attempt to make it look correct on Linux.
 -FinalRenderDialog.h/cpp:
  --Add support for multi-GPU.
  --Change from combo boxes for device selection to a table of all devices.
  --Ensure device selection makes sense.
  --Remove "FinalRender" prefix of various function names, it's implied given the context.
 -FinalRenderEmberController.h/cpp:
  --Add support for multi-GPU.
  --Change m_FinishedImageCount to be atomic.
  --Move CancelRender() from the base to FinalRenderEmberController<T>.
  --Refactor RenderComplete() to omit any progress related functionality or image saving since it can be potentially ran in a thread.
  --Consolidate setting various renderer fields into SyncGuiToRenderer().
 -Fractorium.cpp: Allow for resizing of the options dialog to show the entire device table.
 -FractoriumCommon.h: Add various functions to handle a table showing the available OpenCL devices on the system.
 -FractoriumEmberController.h/cpp: Remove m_FinalImageIndex, it's no longer needed.
 -FractoriumRender.cpp: Scale the interactive sub batch count and quality by the number of devices used.
 -FractoriumSettings.h/cpp:
  --Temporal samples defaults to 100 instead of 1000 which was needless overkill.
  --Add multi-GPU support, remove old device,platform pair.
 -FractoriumToolbar.cpp: Disable OpenCL toolbar button if there are no devices present on the system.
 -FractoriumOptionsDialog.h/cpp:
  --Add support for multi-GPU.
  --Consolidate more assignments in DataToGui().
  --Enable/disable CPU/OpenCL items in response to OpenCL checkbox event.
 -Misc: Convert almost everything to size_t for unsigned, intmax_t for signed.
2015-09-12 18:33:45 -07:00

385 lines
11 KiB
C++

#include "EmberPch.h"
#include "Affine2D.h"
namespace EmberNs
{
/// <summary>
/// Default constructor which sets the matrix to the identity.
/// </summary>
template <typename T>
Affine2D<T>::Affine2D()
{
MakeID();
}
/// <summary>
/// Default copy constructor.
/// </summary>
/// <param name="affine">The Affine2D object to copy</param>
template <typename T>
Affine2D<T>::Affine2D(const Affine2D<T>& affine)
{
Affine2D<T>::operator=<T>(affine);
}
/// <summary>
/// Constructor which takes each column of the affine as a separate parameter.
/// </summary>
/// <param name="x">A and D</param>
/// <param name="y">B and E</param>
/// <param name="t">C and F</param>
template <typename T>
Affine2D<T>::Affine2D(v2T& x, v2T& y, v2T& t)
{
X(x);
Y(y);
O(t);
}
/// <summary>
/// Constructor which takes all six of the affine values as parameters.
/// </summary>
/// <param name="xx">A</param>
/// <param name="xy">D</param>
/// <param name="yx">B</param>
/// <param name="yy">E</param>
/// <param name="tx">C</param>
/// <param name="ty">F</param>
template <typename T>
Affine2D<T>::Affine2D(T xx, T xy, T yx, T yy, T tx, T ty)
{
A(xx);
D(xy);
B(yx);
E(yy);
C(tx);
F(ty);
}
/// <summary>
/// Constructor which takes a 4x4 matrix and assigns the
/// corresponding values in the 2x3 affine matrix.
/// </summary>
/// <param name="mat">The 4x4 affine matrix to read from</param>
template <typename T>
Affine2D<T>::Affine2D(m4T& mat)
{
A(mat[0][0]);
B(mat[0][1]);
C(mat[0][3]);
D(mat[1][0]);
E(mat[1][1]);
F(mat[1][3]);
}
/// <summary>
/// Default assignment operator.
/// </summary>
/// <param name="affine">The Affine2D object to copy</param>
template <typename T>
Affine2D<T>& Affine2D<T>::operator = (const Affine2D<T>& affine)
{
if (this != &affine)
Affine2D<T>::operator=<T>(affine);
return *this;
}
/// <summary>
/// == operator which tests if all fields are equal with another Affine2D.
/// </summary>
/// <param name="affine">The Affine2D to compare to</param>
/// <returns>True if all fields are equal, else false</returns>
template <typename T>
bool Affine2D<T>::operator == (const Affine2D<T>& affine)
{
return IsClose(A(), affine.A()) &&
IsClose(B(), affine.B()) &&
IsClose(C(), affine.C()) &&
IsClose(D(), affine.D()) &&
IsClose(E(), affine.E()) &&
IsClose(F(), affine.F());
}
/// <summary>
/// * operator to multiply this affine transform by a vec2 and return the result as a vec2.
/// </summary>
/// <param name="v">The vec2 to multiply by</param>
/// <returns>A new vec2 which is the product of the multiplication</returns>
template <typename T>
typename v2T Affine2D<T>::operator * (const v2T& v)
{
return TransformVector(v);
}
/// <summary>
/// Make this affine transform the identity matrix.
/// A and E = 1, all else 0.
/// </summary>
template <typename T>
void Affine2D<T>::MakeID()
{
A(1);
B(0);
C(0);
D(0);
E(1);
F(0);
}
/// <summary>
/// Determine whether this affine transform is the identity matrix.
/// </summary>
/// <returns>True if A and E are equal to 1 and all others are 0, else false.</returns>
template <typename T>
bool Affine2D<T>::IsID() const
{
return (IsClose<T>(A(), 1)) &&
(IsClose<T>(B(), 0)) &&
(IsClose<T>(C(), 0)) &&
(IsClose<T>(D(), 0)) &&
(IsClose<T>(E(), 1)) &&
(IsClose<T>(F(), 0));
}
/// <summary>
/// Determine whether this affine transform is all zeroes.
/// </summary>
/// <returns>True if all 6 elements equal zero, else false.</returns>
template <typename T>
bool Affine2D<T>::IsZero() const
{
return (IsClose<T>(A(), 0)) &&
(IsClose<T>(B(), 0)) &&
(IsClose<T>(C(), 0)) &&
(IsClose<T>(D(), 0)) &&
(IsClose<T>(E(), 0)) &&
(IsClose<T>(F(), 0));
}
/// <summary>
/// Determine whether this affine transform was deliberately set to all empty values.
/// </summary>
/// <returns>True if all 6 elements equal zero, else false.</returns>
template <typename T>
bool Affine2D<T>::IsEmpty() const
{
return (IsClose<T>(A(), EMPTYFIELD)) &&
(IsClose<T>(B(), EMPTYFIELD)) &&
(IsClose<T>(C(), EMPTYFIELD)) &&
(IsClose<T>(D(), EMPTYFIELD)) &&
(IsClose<T>(E(), EMPTYFIELD)) &&
(IsClose<T>(F(), EMPTYFIELD));
}
/// <summary>
/// Rotate this affine transform around its origin by the specified angle in degrees.
/// </summary>
/// <param name="angle">The angle to rotate by</param>
template <typename T>
void Affine2D<T>::Rotate(T angle)
{
m4T origMat4 = ToMat4ColMajor(true);//Must center and use column major for glm to work.
m4T newMat4 = glm::rotate(origMat4, angle * DEG_2_RAD_T, v3T(0, 0, 1));//Assuming only rotating around z.
A(newMat4[0][0]);//Use direct assignments instead of constructor to skip assigning C and F.
B(newMat4[0][1]);
D(newMat4[1][0]);
E(newMat4[1][1]);
}
/// <summary>
/// Move by v.
/// </summary>
/// <param name="v">The vec2 describing how far to move in the x and y directions</param>
template <typename T>
void Affine2D<T>::Translate(const v2T& v)
{
O(O() + v);
}
/// <summary>
/// Rotate and scale the X and Y components by a certain amount based on X.
/// </summary>
/// <param name="v">The vec2 describing how much to rotate and scale the X and Y components</param>
template <typename T>
void Affine2D<T>::RotateScaleXTo(const v2T& v)
{
Affine2D<T> rs = CalcRotateScale(X(), v);
X(rs.TransformNormal(X()));
Y(rs.TransformNormal(Y()));
}
/// <summary>
/// Rotate and scale the X and Y components by a certain amount based on Y.
/// </summary>
/// <param name="v">The vec2 describing how much to rotate and scale the X and Y components</param>
template <typename T>
void Affine2D<T>::RotateScaleYTo(const v2T& v)
{
Affine2D<T> rs = CalcRotateScale(Y(), v);
X(rs.TransformNormal(X()));
Y(rs.TransformNormal(Y()));
}
/// <summary>
/// Return the inverse of the 2x3 affine matrix.
/// </summary>
/// <returns>The inverse of this affine transform</returns>
template <typename T>
Affine2D<T> Affine2D<T>::Inverse() const
{
T det = A() * E() - D() * B();
return Affine2D<T>(E() / det, -D() / det,
-B() / det, A() / det,
(F() * B() - C() * E()) / det, (C() * D() - F() * A()) / det);
}
/// <summary>
/// Return a vec2 gotten from transforming this affine transform
/// by the vec2 passed in, but with a T component of 0, 0.
/// </summary>
/// <param name="v">The vec2 describing how much to transform by</param>
/// <returns>The centered, transformed vec2</returns>
template <typename T>
typename v2T Affine2D<T>::TransformNormal(const v2T& v) const
{
return v2T(A() * v.x + B() * v.y, D() * v.x + E() * v.y);
}
/// <summary>
/// Return a vec2 gotten from transforming this affine transform
/// by the vec2 passed in, and applying T translation.
/// </summary>
/// <param name="v">The vec2 describing how much to transform by</param>
/// <returns>The translated, transformed vec2</returns>
template <typename T>
typename v2T Affine2D<T>::TransformVector(const v2T& v) const
{
return v2T(A() * v.x + B() * v.y + C(), D() * v.x + E() * v.y + F());
}
/// <summary>
/// Return the X and Y components as a 2x2 matrix in column major order.
/// </summary>
/// <returns>The 2x2 matrix</returns>
template <typename T>
typename m2T Affine2D<T>::ToMat2ColMajor() const
{
return m2T(A(), B(),//Col0...
D(), E());//1
}
/// <summary>
/// Return the X and Y components as a 2x2 matrix in row major order.
/// </summary>
/// <returns>The 2x2 matrix</returns>
template <typename T>
typename m2T Affine2D<T>::ToMat2RowMajor() const
{
return m2T(A(), D(),//Col0...
B(), E());//1
}
/// <summary>
/// Return the 2x3 affine transform matrix as a 4x4 matrix in column major order.
/// </summary>
/// <param name="center">Whether to use T translation value or just 0 for center</param>
/// <returns>The 4x4 matrix</returns>
template <typename T>
typename m4T Affine2D<T>::ToMat4ColMajor(bool center) const
{
m4T mat(A(), B(), 0, center ? 0 : C(), //Col0...
D(), E(), 0, center ? 0 : F(), //1
0, 0, 1, 0, //2
0, 0, 0, 1);//3
return mat;
}
/// <summary>
/// Return the 2x3 affine transform matrix as a 4x4 matrix in row major order.
/// </summary>
/// <param name="center">Whether to use T translation value or just 0 for center</param>
/// <returns>The 4x4 matrix</returns>
template <typename T>
typename m4T Affine2D<T>::ToMat4RowMajor(bool center) const
{
m4T mat(A(), D(), 0, 0,
B(), E(), 0, 0,
0, 0, 1, 0,
center ? 0 : C(), center ? 0 : F(), 0, 1);
return mat;
}
/// <summary>
/// Accessors.
/// </summary>
template <typename T> T Affine2D<T>::A() const { return m_Mat[0][0]; }//[0][0]//flam3
template <typename T> T Affine2D<T>::B() const { return m_Mat[0][1]; }//[1][0]
template <typename T> T Affine2D<T>::C() const { return m_Mat[0][2]; }//[2][0]
template <typename T> T Affine2D<T>::D() const { return m_Mat[1][0]; }//[0][1]
template <typename T> T Affine2D<T>::E() const { return m_Mat[1][1]; }//[1][1]
template <typename T> T Affine2D<T>::F() const { return m_Mat[1][2]; }//[2][1]
template <typename T> void Affine2D<T>::A(T a) { m_Mat[0][0] = a; }
template <typename T> void Affine2D<T>::B(T b) { m_Mat[0][1] = b; }
template <typename T> void Affine2D<T>::C(T c) { m_Mat[0][2] = c; }
template <typename T> void Affine2D<T>::D(T d) { m_Mat[1][0] = d; }
template <typename T> void Affine2D<T>::E(T e) { m_Mat[1][1] = e; }
template <typename T> void Affine2D<T>::F(T f) { m_Mat[1][2] = f; }
template <typename T> typename v2T Affine2D<T>::X() const { return v2T(A(), D()); }//X Axis.
template <typename T> typename v2T Affine2D<T>::Y() const { return v2T(B(), E()); }//Y Axis.
template <typename T> typename v2T Affine2D<T>::O() const { return v2T(C(), F()); }//Translation.
template <typename T> void Affine2D<T>::X(const v2T& x) { A(x.x); D(x.y); }//X Axis.
template <typename T> void Affine2D<T>::Y(const v2T& y) { B(y.x); E(y.y); }//Y Axis.
template <typename T> void Affine2D<T>::O(const v2T& t) { C(t.x); F(t.y); }//Translation.
/// <summary>
/// Rotate and scale this affine transform and return as a copy. Orginal is unchanged.
/// </summary>
/// <param name="from">The starting point to rotate and scale from</param>
/// <param name="to">The ending point to rotate and scale to</param>
/// <returns>The newly rotated and scalled Affine2D</returns>
template <typename T>
Affine2D<T> Affine2D<T>::CalcRotateScale(const v2T& from, const v2T& to)
{
T a, c;
CalcRSAC(from, to, a, c);
return Affine2D<T>(a, c, -c, a, 0, 0);
}
/// <summary>
/// Never fully understood what this did or why it's named what it is.
/// But it seems to handle some rotating and scaling.
/// </summary>
/// <param name="from">The starting point to rotate and scale from</param>
/// <param name="to">The ending point to rotate and scale to</param>
/// <param name="a">a</param>
/// <param name="c">c</param>
template <typename T>
void Affine2D<T>::CalcRSAC(const v2T& from, const v2T& to, T& a, T& c)
{
T lsq = from.x * from.x + from.y * from.y;
a = (from.y * to.y + from.x * to.x) / lsq;
c = (from.x * to.y - from.y * to.x) / lsq;
}
//This class had to be implemented in a cpp file because the compiler was breaking.
//So the explicit instantiation must be declared here rather than in Ember.cpp where
//all of the other classes are done.
template EMBER_API class Affine2D<float>;
#ifdef DO_DOUBLE
template EMBER_API class Affine2D<double>;
#endif
}