fractorium/Source/EmberRender/EmberRender.cpp
mfeemster 6ba16888e3 --User changes
-Add new variations: crackle, dc_perlin.
 -Make default palette interp mode be linear instead of step.
 -Make summary tab the selected one in the Info tab.
 -Allow for highlight power of up to 10. It was previously limited to 2.

--Bug fixes
 -Direct color calculations were wrong.
 -Flattening was not applied to final xform.
 -Fix "pure virtual function call" error on shutdown.

--Code changes
 -Allow for array precalc params in variations by adding a size member to the ParamWithName class.
  -In IterOpenCLKernelCreator, memcpy precalc params instead of a direct assign since they can now be of variable length.
 -Add new file VarFuncs to consolidate some functions that are common to multiple variations. This also contains texture data for crackle and dc_perlin.
  -Place OpenCL versions of these functions in the FunctionMapper class in the EmberCL project.
 -Add new Singleton class that uses CRTP, is thread safe, and deletes after the last reference goes away. This fixes the usual "delete after main()" problem with singletons that use the static local function variable pattern.
 -Began saving files with AStyle autoformatter turned on. This will eventually touch all files as they are worked on.
 -Add missing backslash to CUDA include and library paths for builds on Nvidia systems.
 -Add missing gl.h include for Windows.
 -Remove glew include paths from Fractorium, it's not used.
 -Remove any Nvidia specific #defines and build targets, they are no longer needed with OpenCL 1.2.
 -Fix bad paths on linux build.
 -General cleanup.
2015-12-31 13:41:59 -08:00

369 lines
12 KiB
C++

#include "EmberCommonPch.h"
#include "EmberRender.h"
#include "JpegUtils.h"
//template <class OpenCLInfo> weak_ptr<OpenCLInfo> Singleton<OpenCLInfo>::m_Instance = weak_ptr<OpenCLInfo>();
/// <summary>
/// The core of the EmberRender.exe program.
/// Template argument expected to be float or double.
/// </summary>
/// <param name="opt">A populated EmberOptions object which specifies all program options to be used</param>
/// <returns>True if success, else false.</returns>
template <typename T>
bool EmberRender(EmberOptions& opt)
{
auto info = EmberCLns::OpenCLInfo::Instance();
std::cout.imbue(std::locale(""));
if (opt.DumpArgs())
cout << opt.GetValues(OPT_USE_RENDER) << endl;
if (opt.OpenCLInfo())
{
cout << "\nOpenCL Info: " << endl;
cout << info->DumpInfo();
return true;
}
Timing t;
bool writeSuccess = false;
byte* finalImagep;
uint padding;
size_t i, channels;
size_t strips;
size_t iterCount;
string filename;
string inputPath = GetPath(opt.Input());
ostringstream os;
pair<size_t, size_t> p;
vector<Ember<T>> embers;
vector<byte> finalImage;
EmberStats stats;
EmberReport emberReport;
EmberImageComments comments;
XmlToEmber<T> parser;
EmberToXml<T> emberToXml;
vector<QTIsaac<ISAAC_SIZE, ISAAC_INT>> randVec;
const vector<pair<size_t, size_t>> devices = Devices(opt.Devices());
unique_ptr<RenderProgress<T>> progress(new RenderProgress<T>());
unique_ptr<Renderer<T, float>> renderer(CreateRenderer<T>(opt.EmberCL() ? OPENCL_RENDERER : CPU_RENDERER, devices, false, 0, emberReport));
vector<string> errorReport = emberReport.ErrorReport();
if (!errorReport.empty())
emberReport.DumpErrorReport();
if (!renderer.get())
{
cout << "Renderer creation failed, exiting." << endl;
return false;
}
if (opt.EmberCL() && renderer->RendererType() != OPENCL_RENDERER)//OpenCL init failed, so fall back to CPU.
opt.EmberCL(false);
if (!InitPaletteList<T>(opt.PalettePath()))
return false;
if (!ParseEmberFile(parser, opt.Input(), embers))
return false;
if (!opt.EmberCL())
{
if (opt.ThreadCount() == 0)
{
cout << "Using " << Timing::ProcessorCount() << " automatically detected threads." << endl;
opt.ThreadCount(Timing::ProcessorCount());
}
else
{
cout << "Using " << opt.ThreadCount() << " manually specified threads." << endl;
}
renderer->ThreadCount(opt.ThreadCount(), opt.IsaacSeed() != "" ? opt.IsaacSeed().c_str() : nullptr);
}
else
{
cout << "Using OpenCL to render." << endl;
if (opt.Verbose())
{
for (auto& device : devices)
{
cout << "Platform: " << info->PlatformName(device.first) << endl;
cout << "Device: " << info->DeviceName(device.first, device.second) << endl;
}
}
if (opt.ThreadCount() > 1)
cout << "Cannot specify threads with OpenCL, using 1 thread." << endl;
opt.ThreadCount(1);
renderer->ThreadCount(opt.ThreadCount(), opt.IsaacSeed() != "" ? opt.IsaacSeed().c_str() : nullptr);
if (opt.BitsPerChannel() != 8)
{
cout << "Bits per channel cannot be anything other than 8 with OpenCL, setting to 8." << endl;
opt.BitsPerChannel(8);
}
}
if (opt.Format() != "jpg" &&
opt.Format() != "png" &&
opt.Format() != "ppm" &&
opt.Format() != "bmp")
{
cout << "Format must be jpg, png, ppm, or bmp not " << opt.Format() << ". Setting to jpg." << endl;
}
channels = opt.Format() == "png" ? 4 : 3;
if (opt.BitsPerChannel() == 16 && opt.Format() != "png")
{
cout << "Support for 16 bits per channel images is only present for the png format. Setting to 8." << endl;
opt.BitsPerChannel(8);
}
else if (opt.BitsPerChannel() != 8 && opt.BitsPerChannel() != 16)
{
cout << "Unexpected bits per channel specified " << opt.BitsPerChannel() << ". Setting to 8." << endl;
opt.BitsPerChannel(8);
}
if (opt.InsertPalette() && opt.BitsPerChannel() != 8)
{
cout << "Inserting palette only supported with 8 bits per channel, insertion will not take place." << endl;
opt.InsertPalette(false);
}
if (opt.AspectRatio() < 0)
{
cout << "Invalid pixel aspect ratio " << opt.AspectRatio() << endl << ". Must be positive, setting to 1." << endl;
opt.AspectRatio(1);
}
if (!opt.Out().empty() && (embers.size() > 1))
{
cout << "Single output file " << opt.Out() << " specified for multiple images. Changing to use prefix of badname-changethis instead. Always specify prefixes when reading a file with multiple embers." << endl;
opt.Out("");
opt.Prefix("badname-changethis");
}
//Final setup steps before running.
os.imbue(std::locale(""));
padding = uint(std::log10(double(embers.size()))) + 1;
renderer->EarlyClip(opt.EarlyClip());
renderer->YAxisUp(opt.YAxisUp());
renderer->LockAccum(opt.LockAccum());
renderer->InsertPalette(opt.InsertPalette());
renderer->PixelAspectRatio(T(opt.AspectRatio()));
renderer->Transparency(opt.Transparency());
renderer->NumChannels(channels);
renderer->BytesPerChannel(opt.BitsPerChannel() / 8);
renderer->Priority(eThreadPriority(Clamp<intmax_t>(intmax_t(opt.Priority()), intmax_t(eThreadPriority::LOWEST), intmax_t(eThreadPriority::HIGHEST))));
renderer->Callback(opt.DoProgress() ? progress.get() : nullptr);
for (i = 0; i < embers.size(); i++)
{
if (opt.Verbose() && embers.size() > 1)
cout << "\nFlame = " << i + 1 << "/" << embers.size() << endl;
else if (embers.size() > 1)
VerbosePrint(endl);
if (opt.Supersample() > 0)
embers[i].m_Supersample = opt.Supersample();
if (opt.SubBatchSize() != DEFAULT_SBS)
embers[i].m_SubBatchSize = opt.SubBatchSize();
embers[i].m_TemporalSamples = 1;//Force temporal samples to 1 for render.
embers[i].m_Quality *= T(opt.QualityScale());
embers[i].m_FinalRasW = size_t(T(embers[i].m_FinalRasW) * opt.SizeScale());
embers[i].m_FinalRasH = size_t(T(embers[i].m_FinalRasH) * opt.SizeScale());
embers[i].m_PixelsPerUnit *= T(opt.SizeScale());
if (embers[i].m_FinalRasW == 0 || embers[i].m_FinalRasH == 0)
{
cout << "Output image " << i << " has dimension 0: " << embers[i].m_FinalRasW << ", " << embers[i].m_FinalRasH << ". Setting to 1920 x 1080." << endl;
embers[i].m_FinalRasW = 1920;
embers[i].m_FinalRasH = 1080;
}
//Cast to double in case the value exceeds 2^32.
double imageMem = double(renderer->NumChannels()) * double(embers[i].m_FinalRasW)
* double(embers[i].m_FinalRasH) * double(renderer->BytesPerChannel());
double maxMem = pow(2.0, double((sizeof(void*) * 8) - 1));
if (imageMem > maxMem)//Ensure the max amount of memory for a process is not exceeded.
{
cout << "Image " << i << " size > " << maxMem << ". Setting to 1920 x 1080." << endl;
embers[i].m_FinalRasW = 1920;
embers[i].m_FinalRasH = 1080;
}
stats.Clear();
renderer->SetEmber(embers[i]);
renderer->PrepFinalAccumVector(finalImage);//Must manually call this first because it could be erroneously made smaller due to strips if called inside Renderer::Run().
if (opt.Strips() > 1)
{
strips = opt.Strips();
}
else
{
p = renderer->MemoryRequired(1, true, false);//No threaded write for render, only for animate.
strips = CalcStrips(double(p.second), double(renderer->MemoryAvailable()), opt.UseMem());
if (strips > 1)
VerbosePrint("Setting strips to " << strips << " with specified memory usage of " << opt.UseMem());
}
strips = VerifyStrips(embers[i].m_FinalRasH, strips,
[&](const string & s) { cout << s << endl; }, //Greater than height.
[&](const string & s) { cout << s << endl; }, //Mod height != 0.
[&](const string & s) { cout << s << endl; }); //Final strips value to be set.
//For testing incremental renderer.
//int sb = 1;
//bool resume = false, success = false;
//do
//{
// success = renderer->Run(finalImage, 0, sb, false/*resume == false*/) == RENDER_OK;
// sb++;
// resume = true;
//}
//while (success && renderer->ProcessState() != ACCUM_DONE);
StripsRender<T>(renderer.get(), embers[i], finalImage, 0, strips, opt.YAxisUp(),
[&](size_t strip)//Pre strip.
{
if (opt.Verbose() && (strips > 1) && strip > 0)
cout << endl;
if (strips > 1)
VerbosePrint("Strip = " << (strip + 1) << "/" << strips);
},
[&](size_t strip)//Post strip.
{
progress->Clear();
stats += renderer->Stats();
},
[&](size_t strip)//Error.
{
cout << "Error: image rendering failed, skipping to next image." << endl;
renderer->DumpErrorReport();//Something went wrong, print errors.
},
//Final strip.
//Original wrote every strip as a full image which could be very slow with many large images.
//Only write once all strips for this image are finished.
[&](Ember<T>& finalEmber)
{
if (!opt.Out().empty())
{
filename = opt.Out();
}
else if (opt.NameEnable() && !finalEmber.m_Name.empty())
{
filename = inputPath + opt.Prefix() + finalEmber.m_Name + opt.Suffix() + "." + opt.Format();
}
else
{
ostringstream fnstream;
fnstream << inputPath << opt.Prefix() << setfill('0') << setw(padding) << i << opt.Suffix() << "." << opt.Format();
filename = fnstream.str();
}
//TotalIterCount() is actually using ScaledQuality() which does not get reset upon ember assignment,
//so it ends up using the correct value for quality * strips.
iterCount = renderer->TotalIterCount(1);
comments = renderer->ImageComments(stats, opt.PrintEditDepth(), opt.IntPalette(), opt.HexPalette());
os.str("");
os << comments.m_NumIters << " / " << iterCount << " (" << std::fixed << std::setprecision(2) << ((double(stats.m_Iters) / double(iterCount)) * 100) << "%)";
VerbosePrint("\nIters ran/requested: " + os.str());
if (!opt.EmberCL()) VerbosePrint("Bad values: " << stats.m_Badvals);
VerbosePrint("Render time: " + t.Format(stats.m_RenderMs));
VerbosePrint("Pure iter time: " + t.Format(stats.m_IterMs));
VerbosePrint("Iters/sec: " << size_t(stats.m_Iters / (stats.m_IterMs / 1000.0)) << endl);
VerbosePrint("Writing " + filename);
if ((opt.Format() == "jpg" || opt.Format() == "bmp") && renderer->NumChannels() == 4)
RgbaToRgb(finalImage, finalImage, renderer->FinalRasW(), renderer->FinalRasH());
finalImagep = finalImage.data();
writeSuccess = false;
if (opt.Format() == "png")
writeSuccess = WritePng(filename.c_str(), finalImagep, finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, opt.BitsPerChannel() / 8, opt.PngComments(), comments, opt.Id(), opt.Url(), opt.Nick());
else if (opt.Format() == "jpg")
writeSuccess = WriteJpeg(filename.c_str(), finalImagep, finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, int(opt.JpegQuality()), opt.JpegComments(), comments, opt.Id(), opt.Url(), opt.Nick());
else if (opt.Format() == "ppm")
writeSuccess = WritePpm(filename.c_str(), finalImagep, finalEmber.m_FinalRasW, finalEmber.m_FinalRasH);
else if (opt.Format() == "bmp")
writeSuccess = WriteBmp(filename.c_str(), finalImagep, finalEmber.m_FinalRasW, finalEmber.m_FinalRasH);
if (!writeSuccess)
cout << "Error writing " << filename << endl;
});
if (opt.EmberCL() && opt.DumpKernel())
{
if (auto rendererCL = dynamic_cast<RendererCL<T, float>*>(renderer.get()))
{
cout << "Iteration kernel:\n" <<
rendererCL->IterKernel() << "\n\n" <<
"Density filter kernel:\n" <<
rendererCL->DEKernel() << "\n\n" <<
"Final accumulation kernel:\n" <<
rendererCL->FinalAccumKernel() << endl;
}
}
VerbosePrint("Done.");
}
t.Toc("\nFinished in: ", true);
return true;
}
/// <summary>
/// Main program entry point for EmberRender.exe.
/// </summary>
/// <param name="argc">The number of command line arguments passed</param>
/// <param name="argv">The command line arguments passed</param>
/// <returns>0 if successful, else 1.</returns>
int _tmain(int argc, _TCHAR* argv[])
{
bool b = false;
EmberOptions opt;
//Required for large allocs, else GPU memory usage will be severely limited to small sizes.
//This must be done in the application and not in the EmberCL DLL.
#ifdef WIN32
_putenv_s("GPU_MAX_ALLOC_PERCENT", "100");
//_putenv_s("GPU_FORCE_64BIT_PTR", "1");
#else
putenv(const_cast<char*>("GPU_MAX_ALLOC_PERCENT=100"));
#endif
if (!opt.Populate(argc, argv, OPT_USE_RENDER))
{
#ifdef DO_DOUBLE
if (opt.Bits() == 64)
{
b = EmberRender<double>(opt);
}
else
#endif
if (opt.Bits() == 33)
{
b = EmberRender<float>(opt);
}
else if (opt.Bits() == 32)
{
cout << "Bits 32/int histogram no longer supported. Using bits == 33 (float)." << endl;
b = EmberRender<float>(opt);
}
}
return b ? 0 : 1;
}