fractorium/Source/Ember/Variations04.h
Person 5f3a97e825 --User changes
-Further work on the About box.
 --Change qss files to make the text box in the About box be the same color as the one in the style dialog, so the link text is easier to see.
 --This requires reloading the qss file.

--Bug fixes
 -Pre/post assign method was wrong for Sphereblur, Concentric, RandCubes and PixelFlow.

--Code changes
 -Make Hypershift2 use MwcNextRange() instead of MwcNext() %.
 -Add m_HasPre to Xform similar to m_HasPost, to skip application of the affine if it's the ID matrix (in this case just assign the input x and y points). This gives a 5% speedup.
2018-09-18 20:49:38 -07:00

5316 lines
164 KiB
C++

#pragma once
#include "Variation.h"
namespace EmberNs
{
/// <summary>
/// eSwirl.
/// </summary>
template <typename T>
class ESwirlVariation : public ParametricVariation<T>
{
public:
ESwirlVariation(T weight = 1.0) : ParametricVariation<T>("eSwirl", eVariationId::VAR_ESWIRL, weight, true)
{
Init();
}
PARVARCOPY(ESwirlVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T tmp = helper.m_PrecalcSumSquares + 1;
T tmp2 = 2 * helper.In.x;
T xmax = (VarFuncs<T>::SafeSqrt(tmp + tmp2) + VarFuncs<T>::SafeSqrt(tmp - tmp2)) * T(0.5);
ClampGteRef<T>(xmax, -1);
T mu = std::acosh(xmax);
T nu = std::acos(Clamp<T>(helper.In.x / xmax, -1, 1));//-Pi < nu < Pi.
if (helper.In.y < 0)
nu *= -1;
nu = nu + mu * m_Out + m_In / mu;
helper.Out.x = m_Weight * std::cosh(mu) * std::cos(nu);
helper.Out.y = m_Weight * std::sinh(mu) * std::sin(nu);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string in = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string out = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t tmp = precalcSumSquares + 1;\n"
<< "\t\treal_t tmp2 = 2 * vIn.x;\n"
<< "\t\treal_t xmax = (SafeSqrt(tmp + tmp2) + SafeSqrt(tmp - tmp2)) * (real_t)(0.5);\n"
<< "\n"
<< "\t\tif (xmax < 1)\n"
<< "\t\t xmax = 1;\n"
<< "\n"
<< "\t\treal_t mu = acosh(xmax);\n"
<< "\t\treal_t nu = acos(clamp(vIn.x / xmax, -(real_t)(1.0), (real_t)(1.0)));\n"
<< "\n"
<< "\t\tif (vIn.y < 0)\n"
<< "\t\t nu *= -1;\n"
<< "\n"
<< "\t\tnu = nu + mu * " << out << " + " << in << " / mu;\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * cosh(mu) * cos(nu);\n"
<< "\t\tvOut.y = " << weight << " * sinh(mu) * sin(nu);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "SafeSqrt" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_In, prefix + "eSwirl_in"));
m_Params.push_back(ParamWithName<T>(&m_Out, prefix + "eSwirl_out"));
}
private:
T m_In;
T m_Out;
};
/// <summary>
/// lazyTravis.
/// </summary>
template <typename T>
class LazyTravisVariation : public ParametricVariation<T>
{
public:
LazyTravisVariation(T weight = 1.0) : ParametricVariation<T>("lazyTravis", eVariationId::VAR_LAZY_TRAVIS, weight)
{
Init();
}
PARVARCOPY(LazyTravisVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = std::abs(helper.In.x);
T y = std::abs(helper.In.y);
T s;
T p;
T x2, y2;
if (x > m_Weight || y > m_Weight)
{
if (x > y)
{
s = x;
if (helper.In.x > 0)
p = s + helper.In.y + s * m_Out4;
else
p = 5 * s - helper.In.y + s * m_Out4;
}
else
{
s = y;
if (helper.In.y > 0)
p = 3 * s - helper.In.x + s * m_Out4;
else
p = 7 * s + helper.In.x + s * m_Out4;
}
p = fmod(p, s * 8);
if (p <= 2 * s)
{
x2 = s + m_Space;
y2 = -(1 * s - p);
y2 = y2 + y2 / s * m_Space;
}
else if (p <= 4 * s)
{
y2 = s + m_Space;
x2 = (3 * s - p);
x2 = x2 + x2 / s * m_Space;
}
else if (p <= 6 * s)
{
x2 = -(s + m_Space);
y2 = (5 * s - p);
y2 = y2 + y2 / s * m_Space;
}
else
{
y2 = -(s + m_Space);
x2 = -(7 * s - p);
x2 = x2 + x2 / s * m_Space;
}
helper.Out.x = m_Weight * x2;
helper.Out.y = m_Weight * y2;
}
else
{
if (x > y)
{
s = x;
if (helper.In.x > 0)
p = s + helper.In.y + s * m_In4;
else
p = 5 * s - helper.In.y + s * m_In4;
}
else
{
s = y;
if (helper.In.y > 0)
p = 3 * s - helper.In.x + s * m_In4;
else
p = 7 * s + helper.In.x + s * m_In4;
}
p = fmod(p, s * 8);
if (p <= 2 * s)
{
helper.Out.x = m_Weight * s;
helper.Out.y = -(m_Weight * (s - p));
}
else if (p <= 4 * s)
{
helper.Out.x = m_Weight * (3 * s - p);
helper.Out.y = m_Weight * s;
}
else if (p <= 6 * s)
{
helper.Out.x = -(m_Weight * s);
helper.Out.y = m_Weight * (5 * s - p);
}
else
{
helper.Out.x = -(m_Weight * (7 * s - p));
helper.Out.y = -(m_Weight * s);
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string spinIn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string spinOut = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string space = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string in4 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string out4 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = fabs(vIn.x);\n"
<< "\t\treal_t y = fabs(vIn.y);\n"
<< "\t\treal_t s;\n"
<< "\t\treal_t p;\n"
<< "\t\treal_t x2, y2;\n"
<< "\n"
<< "\t\tif (x > " << weight << " || y > " << weight << ")\n"
<< "\t\t{\n"
<< "\t\t if (x > y)\n"
<< "\t\t {\n"
<< "\t\t s = x;\n"
<< "\n"
<< "\t\t if (vIn.x > 0)\n"
<< "\t\t p = fma(s, " << out4 << ", s + vIn.y);\n"
<< "\t\t else\n"
<< "\t\t p = fma((real_t)(5.0), s, fma(s, " << out4 << ", -vIn.y));\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t s = y;\n"
<< "\n"
<< "\t\t if (vIn.y > 0)\n"
<< "\t\t p = fma((real_t)(3.0), s, fma(s, " << out4 << ", -vIn.x));\n"
<< "\t\t else\n"
<< "\t\t p = fma((real_t)(7.0), s, fma(s, " << out4 << ", vIn.x));\n"
<< "\t\t }\n"
<< "\n"
<< "\t\t p = fmod(p, s * 8);\n"
<< "\n"
<< "\t\t if (p <= 2 * s)\n"
<< "\t\t {\n"
<< "\t\t x2 = s + " << space << ";\n"
<< "\t\t y2 = -fma((real_t)(1.0), s, -p);\n"
<< "\t\t y2 = y2 + y2 / s * " << space << ";\n"
<< "\t\t }\n"
<< "\t\t else if (p <= 4 * s)\n"
<< "\t\t {\n"
<< "\t\t y2 = s + " << space << ";\n"
<< "\t\t x2 = fma((real_t)(3.0), s, -p);\n"
<< "\t\t x2 = x2 + x2 / s * " << space << ";\n"
<< "\t\t }\n"
<< "\t\t else if (p <= 6 * s)\n"
<< "\t\t {\n"
<< "\t\t x2 = -(s + " << space << ");\n"
<< "\t\t y2 = fma((real_t)(5.0), s, -p);\n"
<< "\t\t y2 = y2 + y2 / s * " << space << ";\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t y2 = -(s + " << space << ");\n"
<< "\t\t x2 = -fma((real_t)(7.0), s, -p);\n"
<< "\t\t x2 = x2 + x2 / s * " << space << ";\n"
<< "\t\t }\n"
<< "\n"
<< "\t\t vOut.x = " << weight << " * x2;\n"
<< "\t\t vOut.y = " << weight << " * y2;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (x > y)\n"
<< "\t\t {\n"
<< "\t\t s = x;\n"
<< "\n"
<< "\t\t if (vIn.x > 0)\n"
<< "\t\t p = fma(s, " << in4 << ", s + vIn.y);\n"
<< "\t\t else\n"
<< "\t\t p = fma((real_t)(5.0), s, fma(s, " << in4 << ", -vIn.y));\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t s = y;\n"
<< "\n"
<< "\t\t if (vIn.y > 0)\n"
<< "\t\t p = fma((real_t)(3.0), s, fma(s, " << in4 << ", -vIn.x));\n"
<< "\t\t else\n"
<< "\t\t p = fma((real_t)(7.0), s, fma(s, " << in4 << ", vIn.x));\n"
<< "\t\t }\n"
<< "\n"
<< "\t\t p = fmod(p, s * 8);\n"
<< "\n"
<< "\t\t if (p <= 2 * s)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * s;\n"
<< "\t\t vOut.y = -(" << weight << " * (s - p));\n"
<< "\t\t }\n"
<< "\t\t else if (p <= 4 * s)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * fma((real_t)(3.0), s, -p);\n"
<< "\t\t vOut.y = " << weight << " * s;\n"
<< "\t\t }\n"
<< "\t\t else if (p <= 6 * s)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = -(" << weight << " * s);\n"
<< "\t\t vOut.y = " << weight << " * fma((real_t)(5.0), s, -p);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = -(" << weight << " * fma((real_t)(7.0), s, -p));\n"
<< "\t\t vOut.y = -(" << weight << " * s);\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_In4 = 4 * m_SpinIn;
m_Out4 = 4 * m_SpinOut;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_SpinIn, prefix + "lazyTravis_spin_in", 1, eParamType::REAL_CYCLIC, 0, 2));
m_Params.push_back(ParamWithName<T>(&m_SpinOut, prefix + "lazyTravis_spin_out", 0, eParamType::REAL_CYCLIC, 0, 2));
m_Params.push_back(ParamWithName<T>(&m_Space, prefix + "lazyTravis_space"));
m_Params.push_back(ParamWithName<T>(true, &m_In4, prefix + "lazyTravis_in4"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Out4, prefix + "lazyTravis_out4"));
}
private:
T m_SpinIn;
T m_SpinOut;
T m_Space;
T m_In4;//Precalc.
T m_Out4;
};
/// <summary>
/// squish.
/// </summary>
template <typename T>
class SquishVariation : public ParametricVariation<T>
{
public:
SquishVariation(T weight = 1.0) : ParametricVariation<T>("squish", eVariationId::VAR_SQUISH, weight)
{
Init();
}
PARVARCOPY(SquishVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = std::abs(helper.In.x);
T y = std::abs(helper.In.y);
T s;
T p;
if (x > y)
{
s = x;
if (helper.In.x > 0)
p = helper.In.y;
else
p = 4 * s - helper.In.y;
}
else
{
s = y;
if (helper.In.y > 0)
p = 2 * s - helper.In.x;
else
p = 6 * s + helper.In.x;
}
p = m_InvPower * (p + 8 * s * Floor<T>(m_Power * rand.Frand01<T>()));
if (p <= s)
{
helper.Out.x = m_Weight * s;
helper.Out.y = m_Weight * p;
}
else if (p <= 3 * s)
{
helper.Out.x = m_Weight * (2 * s - p);
helper.Out.y = m_Weight * s;
}
else if (p <= 5 * s)
{
helper.Out.x = -(m_Weight * s);
helper.Out.y = m_Weight * (4 * s - p);
}
else if (p <= 7 * s)
{
helper.Out.x = -(m_Weight * (6 * s - p));
helper.Out.y = -(m_Weight * s);
}
else
{
helper.Out.x = m_Weight * s;
helper.Out.y = (m_Weight * (8 * s - p));
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invPower = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = fabs(vIn.x);\n"
<< "\t\treal_t y = fabs(vIn.y);\n"
<< "\t\treal_t s;\n"
<< "\t\treal_t p;\n"
<< "\n"
<< "\t\tif (x > y)\n"
<< "\t\t{\n"
<< "\t\t s = x;\n"
<< "\n"
<< "\t\t if (vIn.x > 0)\n"
<< "\t\t p = vIn.y;\n"
<< "\t\t else\n"
<< "\t\t p = fma((real_t)(4.0), s, -vIn.y);\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t s = y;\n"
<< "\n"
<< "\t\t if (vIn.y > 0)\n"
<< "\t\t p = fma((real_t)(2.0), s, -vIn.x);\n"
<< "\t\t else\n"
<< "\t\t p = fma((real_t)(6.0), s, vIn.x);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tp = " << invPower << " * fma((real_t)(8.0), s * floor(" << power << " * MwcNext01(mwc)), p);\n"
<< "\n"
<< "\t\tif (p <= s)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * s;\n"
<< "\t\t vOut.y = " << weight << " * p;\n"
<< "\t\t}\n"
<< "\t\telse if (p <= 3 * s)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * fma((real_t)(2.0), s, -p);\n"
<< "\t\t vOut.y = " << weight << " * s;\n"
<< "\t\t}\n"
<< "\t\telse if (p <= 5 * s)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = -(" << weight << " * s);\n"
<< "\t\t vOut.y = " << weight << " * fma((real_t)(4.0), s, -p);\n"
<< "\t\t}\n"
<< "\t\telse if (p <= 7 * s)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = -(" << weight << " * fma((real_t)(6.0), s, -p));\n"
<< "\t\t vOut.y = -(" << weight << " * s);\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * s;\n"
<< "\t\t vOut.y = -(" << weight << " * fma((real_t)(8.0), s, -p));\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_InvPower = 1 / m_Power;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "squish_power", 2, eParamType::INTEGER, 2, T(INT_MAX)));
m_Params.push_back(ParamWithName<T>(true, &m_InvPower, prefix + "squish_inv_power"));//Precalc.
}
private:
T m_Power;
T m_InvPower;//Precalc.
};
/// <summary>
/// circus.
/// </summary>
template <typename T>
class CircusVariation : public ParametricVariation<T>
{
public:
CircusVariation(T weight = 1.0) : ParametricVariation<T>("circus", eVariationId::VAR_CIRCUS, weight, true, true, true)
{
Init();
}
PARVARCOPY(CircusVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = helper.m_PrecalcSqrtSumSquares;
if (r <= 1)
r *= m_Scale;
else
r *= m_InvScale;
helper.Out.x = m_Weight * r * helper.m_PrecalcCosa;
helper.Out.y = m_Weight * r * helper.m_PrecalcSina;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invScale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r = precalcSqrtSumSquares;\n"
<< "\n"
<< "\t\tif (r <= 1)\n"
<< "\t\t r *= " << scale << ";\n"
<< "\t\telse\n"
<< "\t\t r *= " << invScale << ";\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * r * precalcCosa;\n"
<< "\t\tvOut.y = " << weight << " * r * precalcSina;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_InvScale = 1 / m_Scale;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Scale, prefix + "circus_scale", 1));
m_Params.push_back(ParamWithName<T>(true, &m_InvScale, prefix + "circus_inv_power"));//Precalc.
}
private:
T m_Scale;
T m_InvScale;//Precalc.
};
/// <summary>
/// tancos.
/// </summary>
template <typename T>
class TancosVariation : public Variation<T>
{
public:
TancosVariation(T weight = 1.0) : Variation<T>("tancos", eVariationId::VAR_TANCOS, weight, true) { }
VARCOPY(TancosVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T d = Zeps(helper.m_PrecalcSumSquares);
helper.Out.x = (m_Weight / d) * (std::tanh(d) * (2 * helper.In.x));
helper.Out.y = (m_Weight / d) * (std::cos(d) * (2 * helper.In.y));
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t d = Zeps(precalcSumSquares);\n"
<< "\n"
<< "\t\tvOut.x = (" << weight << " / d) * (tanh(d) * ((real_t)(2.0) * vIn.x));\n"
<< "\t\tvOut.y = (" << weight << " / d) * (cos(d) * ((real_t)(2.0) * vIn.y));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
};
/// <summary>
/// rippled.
/// </summary>
template <typename T>
class RippledVariation : public Variation<T>
{
public:
RippledVariation(T weight = 1.0) : Variation<T>("rippled", eVariationId::VAR_RIPPLED, weight, true) { }
VARCOPY(RippledVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T d = Zeps(helper.m_PrecalcSumSquares);
helper.Out.x = (m_Weight / 2) * (std::tanh(d) * (2 * helper.In.x));
helper.Out.y = (m_Weight / 2) * (std::cos(d) * (2 * helper.In.y));
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t d = Zeps(precalcSumSquares);\n"
<< "\n"
<< "\t\tvOut.x = (" << weight << " / (real_t)(2.0)) * (tanh(d) * ((real_t)(2.0) * vIn.x));\n"
<< "\t\tvOut.y = (" << weight << " / (real_t)(2.0)) * (cos(d) * ((real_t)(2.0) * vIn.y));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
};
/// <summary>
/// RotateX.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class RotateXVariation : public ParametricVariation<T>
{
public:
RotateXVariation(T weight = 1.0) : ParametricVariation<T>("rotate_x", eVariationId::VAR_ROTATE_X, weight)
{
Init();
}
PARVARCOPY(RotateXVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T z = m_RxCos * helper.In.z - m_RxSin * helper.In.y;
if (m_VarType == eVariationType::VARTYPE_REG)
{
helper.Out.x = helper.In.x;
outPoint.m_X = 0;
}
else
{
helper.Out.x = helper.In.x;
}
helper.Out.y = m_RxSin * helper.In.z + m_RxCos * helper.In.y;
helper.Out.z = z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string rxSin = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
string rxCos = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t z = fma(" << rxCos << ", vIn.z, -(" << rxSin << " * vIn.y));\n"
<< "\n";
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss <<
"\t\tvOut.x = 0;\n"
"\t\toutPoint->m_X = vIn.x;\n";
}
else
{
ss <<
"\t\tvOut.x = vIn.x;\n";
}
ss << "\t\tvOut.y = fma(" << rxSin << ", vIn.z, " << rxCos << " * vIn.y);\n"
<< "\t\tvOut.z = z;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_RxSin = std::sin(m_Weight * T(M_PI_2));
m_RxCos = std::cos(m_Weight * T(M_PI_2));
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_RxSin, prefix + "rotate_x_sin"));//Precalcs only, no params.
m_Params.push_back(ParamWithName<T>(true, &m_RxCos, prefix + "rotate_x_cos"));//Original used a prefix of rx_, which is incompatible with Ember's design.
}
private:
T m_RxSin;
T m_RxCos;
};
/// <summary>
/// RotateY.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class RotateYVariation : public ParametricVariation<T>
{
public:
RotateYVariation(T weight = 1.0) : ParametricVariation<T>("rotate_y", eVariationId::VAR_ROTATE_Y, weight)
{
Init();
}
PARVARCOPY(RotateYVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = m_RyCos * helper.In.x - m_RySin * helper.In.z;
if (m_VarType == eVariationType::VARTYPE_REG)
{
helper.Out.y = 0;
outPoint.m_Y = helper.In.y;
}
else
{
helper.Out.y = helper.In.y;
}
helper.Out.z = m_RySin * helper.In.x + m_RyCos * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string rySin = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
string ryCos = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tvOut.x = fma(" << ryCos << ", vIn.x, -(" << rySin << " * vIn.z));\n";
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss <<
"\t\tvOut.y = 0;\n"
"\t\toutPoint->m_Y = vIn.y;\n";
}
else
{
ss <<
"\t\tvOut.y = vIn.y;\n";
}
ss << "\t\tvOut.z = fma(" << rySin << ", vIn.x, " << ryCos << " * vIn.z);\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_RySin = std::sin(m_Weight * T(M_PI_2));
m_RyCos = std::cos(m_Weight * T(M_PI_2));
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_RySin, prefix + "rotate_y_sin"));//Precalcs only, no params.
m_Params.push_back(ParamWithName<T>(true, &m_RyCos, prefix + "rotate_y_cos"));//Original used a prefix of ry_, which is incompatible with Ember's design.
}
private:
T m_RySin;
T m_RyCos;
};
/// <summary>
/// RotateZ.
/// This was originally pre and post spin_z, consolidated here to be consistent with the other rotate variations.
/// </summary>
template <typename T>
class RotateZVariation : public ParametricVariation<T>
{
public:
RotateZVariation(T weight = 1.0) : ParametricVariation<T>("rotate_z", eVariationId::VAR_ROTATE_Z, weight)
{
Init();
}
PARVARCOPY(RotateZVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = m_RzSin * helper.In.y + m_RzCos * helper.In.x;
helper.Out.y = m_RzCos * helper.In.y - m_RzSin * helper.In.x;
if (m_VarType == eVariationType::VARTYPE_REG)
{
helper.Out.z = helper.In.z;
outPoint.m_Z = 0;
}
else
{
helper.Out.z = helper.In.z;
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string rzSin = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
string rzCos = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tvOut.x = fma(" << rzSin << ", vIn.y, " << rzCos << " * vIn.x);\n"
<< "\t\tvOut.y = fma(" << rzCos << ", vIn.y, -(" << rzSin << " * vIn.x));\n";
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss <<
"\t\tvOut.z = 0;\n"
"\t\toutPoint->m_Z = vIn.z;\n";
}
else
{
ss <<
"\t\tvOut.z = vIn.z;\n";
}
ss << "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_RzSin = std::sin(m_Weight * T(M_PI_2));
m_RzCos = std::cos(m_Weight * T(M_PI_2));
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_RzSin, prefix + "rotate_z_sin"));//Precalcs only, no params.
m_Params.push_back(ParamWithName<T>(true, &m_RzCos, prefix + "rotate_z_cos"));
}
private:
T m_RzSin;
T m_RzCos;
};
/// <summary>
/// MirrorX.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class MirrorXVariation : public Variation<T>
{
public:
MirrorXVariation(T weight = 1.0) : Variation<T>("mirror_x", eVariationId::VAR_MIRROR_X, weight) { }
VARCOPY(MirrorXVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_VarType == eVariationType::VARTYPE_REG)
{
helper.Out.x = std::abs(outPoint.m_X);
if (rand.RandBit())
helper.Out.x = -helper.Out.x;
helper.Out.y = 0;
helper.Out.z = 0;
outPoint.m_X = 0;//Flipped x will be added.
}
else
{
helper.Out.x = std::abs(helper.In.x);
if (rand.RandBit())
helper.Out.x = -helper.Out.x;
helper.Out.y = helper.In.y;
helper.Out.z = helper.In.z;
}
}
virtual string OpenCLString() const override
{
ostringstream ss;
ss << "\t{\n";
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss <<
"\t\tvOut.x = fabs(outPoint->m_X);\n"
"\n"
"\t\tif (MwcNext(mwc) & 1)\n"
"\t\t vOut.x = -vOut.x;\n"
"\n"
"\t\tvOut.y = 0;\n"
"\t\tvOut.z = 0;\n"
"\t\toutPoint->m_X = 0;\n";
}
else
{
ss <<
"\t\tvOut.x = fabs(vIn.x);\n"
"\n"
"\t\tif (MwcNext(mwc) & 1)\n"
"\t\t vOut.x = -vOut.x;\n"
"\n"
"\t\tvOut.y = vIn.y;\n"
"\t\tvOut.z = vIn.z;\n";
}
ss << "\t}\n";
return ss.str();
}
};
/// <summary>
/// MirrorY.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class MirrorYVariation : public Variation<T>
{
public:
MirrorYVariation(T weight = 1.0) : Variation<T>("mirror_y", eVariationId::VAR_MIRROR_Y, weight) { }
VARCOPY(MirrorYVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_VarType == eVariationType::VARTYPE_REG)
{
helper.Out.y = std::abs(outPoint.m_Y);
if (rand.RandBit())
helper.Out.y = -helper.Out.y;
helper.Out.x = 0;
helper.Out.z = 0;
outPoint.m_Y = 0;//Flipped y will be added.
}
else
{
helper.Out.y = std::abs(helper.In.y);
if (rand.RandBit())
helper.Out.y = -helper.Out.y;
helper.Out.x = helper.In.x;
helper.Out.z = helper.In.z;
}
}
virtual string OpenCLString() const override
{
ostringstream ss;
ss << "\t{\n";
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss <<
"\t\tvOut.y = fabs(outPoint->m_Y);\n"
"\n"
"\t\tif (MwcNext(mwc) & 1)\n"
"\t\t vOut.y = -vOut.y;\n"
"\n"
"\t\tvOut.x = 0;\n"
"\t\tvOut.z = 0;\n"
"\t\toutPoint->m_Y = 0;\n";
}
else
{
ss <<
"\t\tvOut.y = fabs(vIn.y);\n"
"\n"
"\t\tif (MwcNext(mwc) & 1)\n"
"\t\t vOut.y = -vOut.y;\n"
"\n"
"\t\tvOut.x = vIn.x;\n"
"\t\tvOut.z = vIn.z;\n";
}
ss << "\t}\n";
return ss.str();
}
};
/// <summary>
/// MirrorZ.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class MirrorZVariation : public Variation<T>
{
public:
MirrorZVariation(T weight = 1.0) : Variation<T>("mirror_z", eVariationId::VAR_MIRROR_Z, weight) { }
VARCOPY(MirrorZVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_VarType == eVariationType::VARTYPE_REG)
{
helper.Out.z = std::abs(outPoint.m_Z);
if (rand.RandBit())
helper.Out.z = -helper.Out.z;
helper.Out.x = 0;
helper.Out.y = 0;
outPoint.m_Z = 0;//Flipped z will be added.
}
else
{
helper.Out.z = std::abs(helper.In.z);
if (rand.RandBit())
helper.Out.z = -helper.Out.z;
helper.Out.x = helper.In.x;
helper.Out.y = helper.In.y;
}
}
virtual string OpenCLString() const override
{
ostringstream ss;
ss << "\t{\n";
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss <<
"\t\tvOut.z = fabs(outPoint->m_Z);\n"
"\n"
"\t\tif (MwcNext(mwc) & 1)\n"
"\t\t vOut.z = -vOut.z;\n"
"\n"
"\t\tvOut.x = 0;\n"
"\t\tvOut.y = 0;\n"
"\t\toutPoint->m_Z = 0;\n";
}
else
{
ss <<
"\t\tvOut.z = fabs(vIn.z);\n"
"\n"
"\t\tif (MwcNext(mwc) & 1)\n"
"\t\t vOut.z = -vOut.z;\n"
"\n"
"\t\tvOut.x = vIn.x;\n"
"\t\tvOut.y = vIn.y;\n";
}
ss << "\t}\n";
return ss.str();
}
};
/// <summary>
/// RBlur.
/// </summary>
template <typename T>
class RBlurVariation : public ParametricVariation<T>
{
public:
RBlurVariation(T weight = 1.0) : ParametricVariation<T>("rblur", eVariationId::VAR_RBLUR, weight)
{
Init();
}
PARVARCOPY(RBlurVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T sx = helper.In.x - m_CenterX;
T sy = helper.In.y - m_CenterY;
T r = std::sqrt(SQR(sx) + SQR(sy)) - m_Offset;
r = r < 0 ? 0 : r;
r *= m_S2;
helper.Out.x = m_Weight * (helper.In.x + (rand.Frand01<T>() - T(0.5)) * r);
helper.Out.y = m_Weight * (helper.In.y + (rand.Frand01<T>() - T(0.5)) * r);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string strength = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string offset = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centerX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centerY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t sx = vIn.x - " << centerX << ";\n"
<< "\t\treal_t sy = vIn.y - " << centerY << ";\n"
<< "\t\treal_t r = sqrt(fma(sx, sx, SQR(sy))) - " << offset << ";\n"
<< "\n"
<< "\t\tr = r < 0 ? 0 : r;\n"
<< "\t\tr *= " << s2 << ";\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * fma(MwcNext01(mwc) - (real_t)(0.5), r, vIn.x);\n"
<< "\t\tvOut.y = " << weight << " * fma(MwcNext01(mwc) - (real_t)(0.5), r, vIn.y);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_S2 = 2 * m_Strength;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Strength, prefix + "rblur_strength", 1));
m_Params.push_back(ParamWithName<T>(&m_Offset, prefix + "rblur_offset", 1));
m_Params.push_back(ParamWithName<T>(&m_CenterX, prefix + "rblur_center_x"));
m_Params.push_back(ParamWithName<T>(&m_CenterY, prefix + "rblur_center_y"));
m_Params.push_back(ParamWithName<T>(true, &m_S2, prefix + "rblur_s2"));//Precalc.
}
private:
T m_Strength;
T m_Offset;
T m_CenterX;
T m_CenterY;
T m_S2;//Precalc.
};
/// <summary>
/// JuliaNab.
/// </summary>
template <typename T>
class JuliaNabVariation : public ParametricVariation<T>
{
public:
JuliaNabVariation(T weight = 1.0) : ParametricVariation<T>("juliaNab", eVariationId::VAR_JULIANAB, weight, true)
{
Init();
}
PARVARCOPY(JuliaNabVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T jun = Zeps(std::abs(m_N));
T a = (std::atan2(helper.In.y, std::pow(std::abs(helper.In.x), m_Sep)) + M_2PI * Floor<T>(rand.Frand01<T>() * m_AbsN)) / jun;
T r = m_Weight * std::pow(helper.m_PrecalcSumSquares, m_Cn * m_A);
helper.Out.x = r * std::cos(a) + m_B;
helper.Out.y = r * std::sin(a) + m_B;
helper.Out.z = helper.In.z;
if (m_VarType == eVariationType::VARTYPE_REG)
outPoint.m_Z = 0;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string n = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sep = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absN = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t jun = Zeps(fabs(" << n << "));\n"
<< "\n"
<< "\t\treal_t a = fma(M_2PI, floor(MwcNext01(mwc) * " << absN << "), atan2(vIn.y, pow(fabs(vIn.x), " << sep << "))) / jun;\n"
<< "\t\treal_t r = " << weight << " * pow(precalcSumSquares, " << cn << " * " << a << ");\n"
<< "\n"
<< "\t\tvOut.x = fma(r, cos(a), " << b << ");\n"
<< "\t\tvOut.y = fma(r, sin(a), " << b << ");\n"
<< "\t\tvOut.z = vIn.z;\n";
if (m_VarType == eVariationType::VARTYPE_REG)
ss << "\t\toutPoint->m_Z = 0;\n";
ss
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
virtual void Precalc() override
{
T jun = Zeps(std::abs(m_N));
m_AbsN = abs(m_N);
m_Cn = 1 / jun / 2;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_N, prefix + "juliaNab_n", 1));
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "juliaNab_a", 1));
m_Params.push_back(ParamWithName<T>(&m_B, prefix + "juliaNab_b", 1));
m_Params.push_back(ParamWithName<T>(&m_Sep, prefix + "juliaNab_separ", 1));
m_Params.push_back(ParamWithName<T>(true, &m_AbsN, prefix + "juliaNab_absn"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cn, prefix + "juliaNab_cn"));
}
private:
T m_N;
T m_A;
T m_B;
T m_Sep;
T m_AbsN;//Precalc.
T m_Cn;
};
/// <summary>
/// Sintrange.
/// </summary>
template <typename T>
class SintrangeVariation : public ParametricVariation<T>
{
public:
SintrangeVariation(T weight = 1.0) : ParametricVariation<T>("sintrange", eVariationId::VAR_SINTRANGE, weight)
{
Init();
}
PARVARCOPY(SintrangeVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T sqX = SQR(helper.In.x);
T sqY = SQR(helper.In.y);
T v = (sqX + sqY) * m_W;//Do not use precalcSumSquares here because its components are needed below.
helper.Out.x = m_Weight * std::sin(helper.In.x) * (sqX + m_W - v);
helper.Out.y = m_Weight * std::sin(helper.In.y) * (sqY + m_W - v);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string w = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t sqX = SQR(vIn.x);\n"
<< "\t\treal_t sqY = SQR(vIn.y);\n"
<< "\t\treal_t v = (sqX + sqY) * " << w << ";\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * sin(vIn.x) * (sqX + " << w << " - v);\n"
<< "\t\tvOut.y = " << weight << " * sin(vIn.y) * (sqY + " << w << " - v);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_W, prefix + "sintrange_w", 1));
}
private:
T m_W;
};
/// <summary>
/// Voron.
/// </summary>
template <typename T>
class VoronVariation : public ParametricVariation<T>
{
public:
VoronVariation(T weight = 1.0) : ParametricVariation<T>("Voron", eVariationId::VAR_VORON, weight)
{
Init();
}
PARVARCOPY(VoronVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
intmax_t l, k;
int i, j, m, m1, n, n1;
T r, rMin, offsetX, offsetY, x0 = 0, y0 = 0, x, y;
rMin = 20;
m = int(Floor<T>(helper.In.x / m_Step));
n = int(Floor<T>(helper.In.y / m_Step));
for (i = -1; i < 2; i++)
{
m1 = m + i;
for (j = -1; j < 2; j++)
{
n1 = n + j;
k = 1 + Floor<T>(m_Num * DiscreteNoise(int(19 * m1 + 257 * n1 + m_XSeed)));
for (l = 0; l < k; l++)
{
x = T(DiscreteNoise(int(l + 64 * m1 + 15 * n1 + m_XSeed)) + m1) * m_Step;
y = T(DiscreteNoise(int(l + 21 * m1 + 33 * n1 + m_YSeed)) + n1) * m_Step;
offsetX = helper.In.x - x;
offsetY = helper.In.y - y;
r = std::sqrt(SQR(offsetX) + SQR(offsetY));
if (r < rMin)
{
rMin = r;
x0 = x;
y0 = y;
}
}
}
}
helper.Out.x = m_Weight * (m_K * (helper.In.x - x0) + x0);
helper.Out.y = m_Weight * (m_K * (helper.In.y - y0) + y0);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string m_k = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string step = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string num = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string xSeed = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ySeed = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tint i, j, l, k, m, m1, n, n1;\n"
<< "\t\treal_t r, rMin, offsetX, offsetY, x0 = (real_t)(0.0), y0 = (real_t)(0.0), x, y;\n"
<< "\n"
<< "\t\trMin = 20;\n"
<< "\t\tm = (int)floor(vIn.x / " << step << ");\n"
<< "\t\tn = (int)floor(vIn.y / " << step << ");\n"
<< "\n"
<< "\t\tfor (i = -1; i < 2; i++)\n"
<< "\t\t{\n"
<< "\t\t m1 = m + i;\n"
<< "\n"
<< "\t\t for (j = -1; j < 2; j++)\n"
<< "\t\t {\n"
<< "\t\t n1 = n + j;\n"
<< "\t\t k = 1 + (int)floor(" << num << " * VoronDiscreteNoise((int)(19 * m1 + 257 * n1 + " << xSeed << ")));\n"
<< "\n"
<< "\t\t for (l = 0; l < k; l++)\n"
<< "\t\t {\n"
<< "\t\t x = (real_t)(VoronDiscreteNoise((int)(l + 64 * m1 + 15 * n1 + " << xSeed << ")) + m1) * " << step << ";\n"
<< "\t\t y = (real_t)(VoronDiscreteNoise((int)(l + 21 * m1 + 33 * n1 + " << ySeed << ")) + n1) * " << step << ";\n"
<< "\t\t offsetX = vIn.x - x;\n"
<< "\t\t offsetY = vIn.y - y;\n"
<< "\t\t r = sqrt(fma(offsetX, offsetX, SQR(offsetY)));\n"
<< "\n"
<< "\t\t if (r < rMin)\n"
<< "\t\t {\n"
<< "\t\t rMin = r;\n"
<< "\t\t x0 = x;\n"
<< "\t\t y0 = y;\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * fma(" << m_k << ", (vIn.x - x0), x0);\n"
<< "\t\tvOut.y = " << weight << " * fma(" << m_k << ", (vIn.y - y0), y0);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual string OpenCLFuncsString() const override
{
return
"real_t VoronDiscreteNoise(int x)\n"
"{\n"
" const real_t im = 2147483647;\n"
" const real_t am = (1 / im);\n"
"\n"
" int n = x;\n"
" n = (n << 13) ^ n;\n"
" return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) * am;\n"
"}\n"
"\n";
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_K, prefix + "Voron_K", T(0.99)));
m_Params.push_back(ParamWithName<T>(&m_Step, prefix + "Voron_Step", T(0.25), eParamType::REAL_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_Num, prefix + "Voron_Num", 1, eParamType::INTEGER, 1, 25));
m_Params.push_back(ParamWithName<T>(&m_XSeed, prefix + "Voron_XSeed", 3, eParamType::INTEGER));
m_Params.push_back(ParamWithName<T>(&m_YSeed, prefix + "Voron_YSeed", 7, eParamType::INTEGER));
}
private:
T DiscreteNoise(int x)
{
const T im = T(2147483647);
const T am = (1 / im);
int n = x;
n = (n << 13) ^ n;
return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) * am;
}
T m_K;//Params.
T m_Step;
T m_Num;
T m_XSeed;
T m_YSeed;
};
/// <summary>
/// Waffle.
/// </summary>
template <typename T>
class WaffleVariation : public ParametricVariation<T>
{
public:
WaffleVariation(T weight = 1.0) : ParametricVariation<T>("waffle", eVariationId::VAR_WAFFLE, weight)
{
Init();
}
PARVARCOPY(WaffleVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T a = 0, r = 0;
switch (rand.Rand(5))
{
case 0:
a = (rand.Rand(ISAAC_INT(m_Slices)) + rand.Frand01<T>() * m_XThickness) / m_Slices;
r = (rand.Rand(ISAAC_INT(m_Slices)) + rand.Frand01<T>() * m_YThickness) / m_Slices;
break;
case 1:
a = (rand.Rand(ISAAC_INT(m_Slices)) + rand.Frand01<T>()) / m_Slices;
r = (rand.Rand(ISAAC_INT(m_Slices)) + m_YThickness) / m_Slices;
break;
case 2:
a = (rand.Rand(ISAAC_INT(m_Slices)) + m_XThickness) / m_Slices;
r = (rand.Rand(ISAAC_INT(m_Slices)) + rand.Frand01<T>()) / m_Slices;
break;
case 3:
a = rand.Frand01<T>();
r = (rand.Rand(ISAAC_INT(m_Slices)) + m_YThickness + rand.Frand01<T>() * (1 - m_YThickness)) / m_Slices;
break;
case 4:
default:
a = (rand.Rand(ISAAC_INT(m_Slices)) + m_XThickness + rand.Frand01<T>() * (1 - m_XThickness)) / m_Slices;
r = rand.Frand01<T>();
break;
}
helper.Out.x = m_CosR * a + m_SinR * r;
helper.Out.y = -m_SinR * a + m_CosR * r;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string slices = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string xThickness = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string yThickness = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rotation = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sinr = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cosr = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t a = 0, r = 0;\n"
<< "\n"
<< "\t\tswitch (MwcNextRange(mwc, 5))\n"
<< "\t\t{\n"
<< "\t\t case 0:\n"
<< "\t\t a = (MwcNextRange(mwc, (int)" << slices << ") + MwcNext01(mwc) * " << xThickness << ") / " << slices << ";\n"
<< "\t\t r = (MwcNextRange(mwc, (int)" << slices << ") + MwcNext01(mwc) * " << yThickness << ") / " << slices << ";\n"
<< "\t\t break;\n"
<< "\t\t case 1:\n"
<< "\t\t a = (MwcNextRange(mwc, (int)" << slices << ") + MwcNext01(mwc)) / " << slices << ";\n"
<< "\t\t r = (MwcNextRange(mwc, (int)" << slices << ") + " << yThickness << ") / " << slices << ";\n"
<< "\t\t break;\n"
<< "\t\t case 2:\n"
<< "\t\t a = (MwcNextRange(mwc, (int)" << slices << ") + " << xThickness << ") / " << slices << ";\n"
<< "\t\t r = (MwcNextRange(mwc, (int)" << slices << ") + MwcNext01(mwc)) / " << slices << ";\n"
<< "\t\t break;\n"
<< "\t\t case 3:\n"
<< "\t\t a = MwcNext01(mwc);\n"
<< "\t\t r = fma(MwcNext01(mwc), 1 - " << yThickness << ", MwcNextRange(mwc, (int)" << slices << ") + " << yThickness << ") / " << slices << ";\n"
<< "\t\t break;\n"
<< "\t\t case 4:\n"
<< "\t\t a = fma(MwcNext01(mwc), (1 - " << xThickness << "), MwcNextRange(mwc, (int)" << slices << ") + " << xThickness << ") / " << slices << ";\n"
<< "\t\t r = MwcNext01(mwc);\n"
<< "\t\t break;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = fma(" << cosr << ", a, " << sinr << " * r);\n"
<< "\t\tvOut.y = -fma(" << sinr << ", a, " << cosr << " * r);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_SinR = std::sin(m_Rotation);
m_CosR = std::cos(m_Rotation);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Slices, prefix + "waffle_slices", 6, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_XThickness, prefix + "waffle_xthickness", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_YThickness, prefix + "waffle_ythickness", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Rotation, prefix + "waffle_rotation"));
m_Params.push_back(ParamWithName<T>(true, &m_SinR, prefix + "waffle_sinr"));
m_Params.push_back(ParamWithName<T>(true, &m_CosR, prefix + "waffle_cosr"));
}
private:
T m_Slices;
T m_XThickness;
T m_YThickness;
T m_Rotation;
T m_SinR;//Precalc.
T m_CosR;
};
/// <summary>
/// Square3D.
/// </summary>
template <typename T>
class Square3DVariation : public Variation<T>
{
public:
Square3DVariation(T weight = 1.0) : Variation<T>("square3D", eVariationId::VAR_SQUARE3D, weight) { }
VARCOPY(Square3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = m_Weight * (rand.Frand01<T>() - T(0.5));
helper.Out.y = m_Weight * (rand.Frand01<T>() - T(0.5));
helper.Out.z = m_Weight * (rand.Frand01<T>() - T(0.5));
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\tvOut.x = " << weight << " * (MwcNext01(mwc) - (real_t)(0.5));\n"
<< "\t\tvOut.y = " << weight << " * (MwcNext01(mwc) - (real_t)(0.5));\n"
<< "\t\tvOut.z = " << weight << " * (MwcNext01(mwc) - (real_t)(0.5));\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// SuperShape3D.
/// </summary>
template <typename T>
class SuperShape3DVariation : public ParametricVariation<T>
{
public:
SuperShape3DVariation(T weight = 1.0) : ParametricVariation<T>("SuperShape3D", eVariationId::VAR_SUPER_SHAPE3D, weight)
{
Init();
}
PARVARCOPY(SuperShape3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T pr1, r1, pr2, r2, rho1, phi1, sinr, sinp, cosr, cosp, msinr, msinp, mcosr, mcosp, temp;
rho1 = rand.Frand01<T>() * m_Rho2Pi;
phi1 = rand.Frand01<T>() * m_Phi2Pi;
if (rand.RandBit())
phi1 = -phi1;
sinr = std::sin(rho1);
cosr = std::cos(rho1);
sinp = std::sin(phi1);
cosp = std::cos(phi1);
temp = m_M4_1 * rho1;
msinr = std::sin(temp);
mcosr = std::cos(temp);
temp = m_M4_2 * phi1;
msinp = std::sin(temp);
mcosp = std::cos(temp);
pr1 = m_An2_1 * std::pow(std::abs(mcosr), m_N2_1) + m_Bn3_1 * std::pow(std::abs(msinr), m_N3_1);
pr2 = m_An2_2 * std::pow(std::abs(mcosp), m_N2_2) + m_Bn3_2 * std::pow(std::abs(msinp), m_N3_2);
r1 = std::pow(std::abs(pr1), m_N1_1) + m_Spiral * rho1;
r2 = std::pow(std::abs(pr2), m_N1_2);
if (int(m_Toroidmap) == 1)
{
helper.Out.x = m_Weight * cosr * (r1 + r2 * cosp);
helper.Out.y = m_Weight * sinr * (r1 + r2 * cosp);
helper.Out.z = m_Weight * r2 * sinp;
}
else
{
helper.Out.x = m_Weight * r1 * cosr * r2 * cosp;
helper.Out.y = m_Weight * r1 * sinr * r2 * cosp;
helper.Out.z = m_Weight * r2 * sinp;
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string rho = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string phi = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string m1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string m2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n1_1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n1_2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n2_1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n2_2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n3_1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n3_2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string spiral = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string toroid = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n1n_1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n1n_2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string an2_1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string an2_2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bn3_1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bn3_2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string m4_1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string m4_2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rho2pi = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string phi2pi = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t pr1, r1, pr2, r2, rho1, phi1, sinr, sinp, cosr, cosp, msinr, msinp, mcosr, mcosp, temp;\n"
<< "\n"
<< "\t\trho1 = MwcNext01(mwc) * " << rho2pi << ";\n"
<< "\t\tphi1 = MwcNext01(mwc) * " << phi2pi << ";\n"
<< "\n"
<< "\t\tif (MwcNext(mwc) & 1)\n"
<< "\t\t phi1 = -phi1;\n"
<< "\n"
<< "\t\tsinr = sin(rho1);\n"
<< "\t\tcosr = cos(rho1);\n"
<< "\n"
<< "\t\tsinp = sin(phi1);\n"
<< "\t\tcosp = cos(phi1);\n"
<< "\n"
<< "\t\ttemp = " << m4_1 << " * rho1;\n"
<< "\t\tmsinr = sin(temp);\n"
<< "\t\tmcosr = cos(temp);\n"
<< "\n"
<< "\t\ttemp = " << m4_2 << " * phi1;\n"
<< "\t\tmsinp = sin(temp);\n"
<< "\t\tmcosp = cos(temp);\n"
<< "\n"
<< "\t\tpr1 = fma(" << an2_1 << ", pow(fabs(mcosr), " << n2_1 << "), " << bn3_1 << " * pow(fabs(msinr), " << n3_1 << "));\n"
<< "\t\tpr2 = fma(" << an2_2 << ", pow(fabs(mcosp), " << n2_2 << "), " << bn3_2 << " * pow(fabs(msinp), " << n3_2 << "));\n"
<< "\t\tr1 = fma(" << spiral << ", rho1, pow(fabs(pr1), " << n1_1 << "));\n"
<< "\t\tr2 = pow(fabs(pr2), " << n1_2 << ");\n"
<< "\n"
<< "\t\tif ((int)" << toroid << " == 1)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * cosr * fma(r2, cosp, r1);\n"
<< "\t\t vOut.y = " << weight << " * sinr * fma(r2, cosp, r1);\n"
<< "\t\t vOut.z = " << weight << " * r2 * sinp;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * r1 * cosr * r2 * cosp;\n"
<< "\t\t vOut.y = " << weight << " * r1 * sinr * r2 * cosp;\n"
<< "\t\t vOut.z = " << weight << " * r2 * sinp;\n"
<< "\t\t}\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_N1n_1 = (-1 / m_N1_1);
m_N1n_2 = (-1 / m_N1_2);
m_An2_1 = std::pow(std::abs(1 / m_A1), m_N2_1);
m_An2_2 = std::pow(std::abs(1 / m_A2), m_N2_2);
m_Bn3_1 = std::pow(std::abs(1 / m_B1), m_N3_1);
m_Bn3_2 = std::pow(std::abs(1 / m_B2), m_N3_2);
m_M4_1 = m_M1 / 4;
m_M4_2 = m_M2 / 4;
m_Rho2Pi = m_Rho * T(M_2_PI);
m_Phi2Pi = m_Phi * T(M_2_PI);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Rho, prefix + "SuperShape3D_rho", T(9.9)));
m_Params.push_back(ParamWithName<T>(&m_Phi, prefix + "SuperShape3D_phi", T(2.5)));
m_Params.push_back(ParamWithName<T>(&m_M1, prefix + "SuperShape3D_m1", 6));
m_Params.push_back(ParamWithName<T>(&m_M2, prefix + "SuperShape3D_m2", 3));
m_Params.push_back(ParamWithName<T>(&m_A1, prefix + "SuperShape3D_a1", 1));
m_Params.push_back(ParamWithName<T>(&m_A2, prefix + "SuperShape3D_a2", 1));
m_Params.push_back(ParamWithName<T>(&m_B1, prefix + "SuperShape3D_b1", 1));
m_Params.push_back(ParamWithName<T>(&m_B2, prefix + "SuperShape3D_b2", 1));
m_Params.push_back(ParamWithName<T>(&m_N1_1, prefix + "SuperShape3D_n1_1", 1));
m_Params.push_back(ParamWithName<T>(&m_N1_2, prefix + "SuperShape3D_n1_2", 1));
m_Params.push_back(ParamWithName<T>(&m_N2_1, prefix + "SuperShape3D_n2_1", 1));
m_Params.push_back(ParamWithName<T>(&m_N2_2, prefix + "SuperShape3D_n2_2", 1));
m_Params.push_back(ParamWithName<T>(&m_N3_1, prefix + "SuperShape3D_n3_1", 1));
m_Params.push_back(ParamWithName<T>(&m_N3_2, prefix + "SuperShape3D_n3_2", 1));
m_Params.push_back(ParamWithName<T>(&m_Spiral, prefix + "SuperShape3D_spiral"));
m_Params.push_back(ParamWithName<T>(&m_Toroidmap, prefix + "SuperShape3D_toroidmap", 0, eParamType::INTEGER, 0, 1));
m_Params.push_back(ParamWithName<T>(true, &m_N1n_1, prefix + "SuperShape3D_n1n1"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_N1n_2, prefix + "SuperShape3D_n1n2"));
m_Params.push_back(ParamWithName<T>(true, &m_An2_1, prefix + "SuperShape3D_an21"));
m_Params.push_back(ParamWithName<T>(true, &m_An2_2, prefix + "SuperShape3D_an22"));
m_Params.push_back(ParamWithName<T>(true, &m_Bn3_1, prefix + "SuperShape3D_bn31"));
m_Params.push_back(ParamWithName<T>(true, &m_Bn3_2, prefix + "SuperShape3D_bn32"));
m_Params.push_back(ParamWithName<T>(true, &m_M4_1, prefix + "SuperShape3D_m41"));
m_Params.push_back(ParamWithName<T>(true, &m_M4_2, prefix + "SuperShape3D_m42"));
m_Params.push_back(ParamWithName<T>(true, &m_Rho2Pi, prefix + "SuperShape3D_rho2pi"));
m_Params.push_back(ParamWithName<T>(true, &m_Phi2Pi, prefix + "SuperShape3D_phi2pi"));
}
private:
T m_Rho;
T m_Phi;
T m_M1;
T m_M2;
T m_A1;
T m_A2;
T m_B1;
T m_B2;
T m_N1_1;
T m_N1_2;
T m_N2_1;
T m_N2_2;
T m_N3_1;
T m_N3_2;
T m_Spiral;
T m_Toroidmap;
T m_N1n_1;//Precalc.
T m_N1n_2;
T m_An2_1;
T m_An2_2;
T m_Bn3_1;
T m_Bn3_2;
T m_M4_1;
T m_M4_2;
T m_Rho2Pi;
T m_Phi2Pi;
};
/// <summary>
/// sphyp3D.
/// </summary>
template <typename T>
class Sphyp3DVariation : public ParametricVariation<T>
{
public:
Sphyp3DVariation(T weight = 1.0) : ParametricVariation<T>("sphyp3D", eVariationId::VAR_SPHYP3D, weight, true)
{
Init();
}
PARVARCOPY(Sphyp3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T t, rX, rY, rZ;
t = Zeps(helper.m_PrecalcSumSquares + SQR(helper.In.z));
rX = m_Weight / std::pow(t, m_StretchX);
rY = m_Weight / std::pow(t, m_StretchY);
helper.Out.x = helper.In.x * rX;
helper.Out.y = helper.In.y * rY;
//Optional 3D calculation.
if (int(m_ZOn) == 1)
{
rZ = m_Weight / std::pow(t, m_StretchZ);
helper.Out.z = helper.In.z * rZ;
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string stretchX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string stretchY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string stretchZ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string zOn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t t, rX, rY, rZ;\n"
<< "\n"
<< "\t\tt = Zeps(fma(vIn.z, vIn.z, precalcSumSquares));\n"
<< "\t\trX = " << weight << " / pow(t, " << stretchX << ");\n"
<< "\t\trY = " << weight << " / pow(t, " << stretchY << ");\n"
<< "\n"
<< "\t\tvOut.x = vIn.x * rX;\n"
<< "\t\tvOut.y = vIn.y * rY;\n"
<< "\n"
<< "\t\tif ((int)" << zOn << " == 1)\n"
<< "\t\t{\n"
<< "\t\trZ = " << weight << " / pow(t, " << stretchZ << ");\n"
<< "\n"
<< "\t\tvOut.z = vIn.z * rZ;\n"
<< "\t\t}\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_StretchX, prefix + "sphyp3D_stretchX", 1));
m_Params.push_back(ParamWithName<T>(&m_StretchY, prefix + "sphyp3D_stretchY", 1));
m_Params.push_back(ParamWithName<T>(&m_StretchZ, prefix + "sphyp3D_stretchZ", 1));
m_Params.push_back(ParamWithName<T>(&m_ZOn, prefix + "sphyp3D_zOn", 1, eParamType::INTEGER, 0, 1));
}
private:
T m_StretchX;
T m_StretchY;
T m_StretchZ;
T m_ZOn;
};
/// <summary>
/// circlecrop.
/// </summary>
template <typename T>
class CirclecropVariation : public ParametricVariation<T>
{
public:
CirclecropVariation(T weight = 1.0) : ParametricVariation<T>("circlecrop", eVariationId::VAR_CIRCLECROP, weight)
{
Init();
}
PARVARCOPY(CirclecropVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T xi = helper.In.x - m_X;
T yi = helper.In.y - m_Y;
if (m_VarType == eVariationType::VARTYPE_REG)//Original altered the input pointed to for reg.
{
helper.m_TransX -= m_X;
helper.m_TransY -= m_Y;
helper.Out.z = m_Weight * helper.In.z;//Original only assigned z for reg. Will be summed.
}
else
{
helper.Out.z = helper.In.z;//Original did nothing with z for pre/post, so passthrough direct assign.
}
const T rad = std::sqrt(SQR(xi) + SQR(yi));
const T ang = std::atan2(yi, xi);
const T rdc = m_Radius + (rand.Frand01<T>() * T(0.5) * m_Ca);
const T s = std::sin(ang);
const T c = std::cos(ang);
const int esc = rad > m_Radius;
const int cr0 = int(m_Zero);
if (cr0 && esc)
{
helper.Out.x = helper.Out.y = 0;
if (m_VarType == eVariationType::VARTYPE_REG)
outPoint.m_X = outPoint.m_Y = 0;
}
else if (cr0 && !esc)
{
helper.Out.x = m_Weight * xi + m_X;
helper.Out.y = m_Weight * yi + m_Y;
}
else if (!cr0 && esc)
{
helper.Out.x = m_Weight * rdc * c + m_X;
helper.Out.y = m_Weight * rdc * s + m_Y;
}
else if (!cr0 && !esc)
{
helper.Out.x = m_Weight * xi + m_X;
helper.Out.y = m_Weight * yi + m_Y;
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string radius = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scatterArea = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string zero = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ca = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t xi = vIn.x - " << x << ";\n"
<< "\t\treal_t yi = vIn.y - " << y << ";\n"
<< "\n";
if (m_VarType == eVariationType::VARTYPE_REG)//Original altered the input pointed to for reg.
{
ss
<< "\t\ttransX -= " << x << ";\n"
<< "\t\ttransY -= " << y << ";\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n";
}
else
{
ss
<< "\t\tvOut.z = vIn.z;\n";
}
ss
<< "\t\tconst real_t rad = sqrt(SQR(xi) + SQR(yi));\n"
<< "\t\tconst real_t ang = atan2(yi, xi);\n"
<< "\t\tconst real_t rdc = fma(MwcNext01(mwc) * (real_t)(0.5), " << ca << ", " << radius << ");\n"
<< "\t\tconst real_t s = sin(ang);\n"
<< "\t\tconst real_t c = cos(ang);\n"
<< "\n"
<< "\t\tconst int esc = rad > " << radius << ";\n"
<< "\t\tconst int cr0 = (int)" << zero << ";\n"
<< "\n"
<< "\t\tif (cr0 && esc)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = vOut.y = 0;\n";
if (m_VarType == eVariationType::VARTYPE_REG)
ss << "\t\t outPoint->m_X = outPoint->m_Y = 0;\n";
ss
<< "\t\t}\n"
<< "\t\telse if (cr0 && !esc)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = fma(" << weight << ", xi, " << x << ");\n"
<< "\t\t vOut.y = fma(" << weight << ", yi, " << y << ");\n"
<< "\t\t}\n"
<< "\t\telse if (!cr0 && esc)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = fma(" << weight << ", rdc * c, " << x << ");\n"
<< "\t\t vOut.y = fma(" << weight << ", rdc * s, " << y << ");\n"
<< "\t\t}\n"
<< "\t\telse if (!cr0 && !esc)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = fma(" << weight << ", xi, " << x << ");\n"
<< "\t\t vOut.y = fma(" << weight << ", yi, " << y << ");\n"
<< "\t\t}\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Ca = Clamp<T>(m_ScatterArea, -1, 1);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Radius, prefix + "circlecrop_radius", 1));
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "circlecrop_x"));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "circlecrop_y"));
m_Params.push_back(ParamWithName<T>(&m_ScatterArea, prefix + "circlecrop_scatter_area"));
m_Params.push_back(ParamWithName<T>(&m_Zero, prefix + "circlecrop_zero", 1, eParamType::INTEGER, 0, 1));
m_Params.push_back(ParamWithName<T>(true, &m_Ca, prefix + "circlecrop_ca"));
}
private:
T m_Radius;
T m_X;
T m_Y;
T m_ScatterArea;
T m_Zero;
T m_Ca;//Precalc.
};
/// <summary>
/// julian3Dx.
/// </summary>
template <typename T>
class Julian3DxVariation : public ParametricVariation<T>
{
public:
Julian3DxVariation(T weight = 1.0) : ParametricVariation<T>("julian3Dx", eVariationId::VAR_JULIAN3DX, weight, true, true)
{
Init();
}
PARVARCOPY(Julian3DxVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
const T z = helper.In.z / m_AbsN;
const T radiusOut = m_Weight * std::pow(helper.m_PrecalcSumSquares + z * z, m_Cn);
const T x = m_A * helper.In.x + m_B * helper.In.y + m_E;
const T y = m_C * helper.In.x + m_D * helper.In.y + m_F;
const T tempRand = T(int(rand.Frand01<T>() * m_AbsN));
const T alpha = (std::atan2(y, x) + M_2PI * tempRand) / m_Power;
const T gamma = radiusOut * helper.m_PrecalcSqrtSumSquares;
helper.Out.x = gamma * std::cos(alpha);
helper.Out.y = gamma * std::sin(alpha);
helper.Out.z = radiusOut * z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string d = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string e = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string f = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tconst real_t z = vIn.z / " << absn << ";\n"
<< "\t\tconst real_t radiusOut = " << weight << " * pow(fma(z, z, precalcSumSquares), " << cn << ");\n"
<< "\t\tconst real_t x = fma(" << a << ", vIn.x, fma(" << b << ", vIn.y, " << e << "));\n"
<< "\t\tconst real_t y = fma(" << c << ", vIn.x, fma(" << d << ", vIn.y, " << f << "));\n"
<< "\t\tconst real_t rand = (int)(MwcNext01(mwc) * " << absn << ");\n"
<< "\t\tconst real_t alpha = fma(M_2PI, rand, atan2(y, x)) / " << power << ";\n"
<< "\t\tconst real_t gamma = radiusOut * precalcSqrtSumSquares;\n"
<< "\n"
<< "\t\tvOut.x = gamma * cos(alpha);\n"
<< "\t\tvOut.y = gamma * sin(alpha);\n"
<< "\t\tvOut.z = radiusOut * z;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_AbsN = std::abs(m_Power);
m_Cn = (m_Dist / m_Power - 1) / 2;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Dist, prefix + "julian3Dx_dist", 1));
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "julian3Dx_power", 2, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "julian3Dx_a", 1));
m_Params.push_back(ParamWithName<T>(&m_B, prefix + "julian3Dx_b"));
m_Params.push_back(ParamWithName<T>(&m_C, prefix + "julian3Dx_c"));
m_Params.push_back(ParamWithName<T>(&m_D, prefix + "julian3Dx_d", 1));
m_Params.push_back(ParamWithName<T>(&m_E, prefix + "julian3Dx_e"));
m_Params.push_back(ParamWithName<T>(&m_F, prefix + "julian3Dx_f"));
m_Params.push_back(ParamWithName<T>(true, &m_AbsN, prefix + "julian3Dx_absn"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cn, prefix + "julian3Dx_cn"));
}
private:
T m_Dist;//Params.
T m_Power;
T m_A;
T m_B;
T m_C;
T m_D;
T m_E;
T m_F;
T m_AbsN;//Precalc.
T m_Cn;
};
/// <summary>
/// fourth.
/// </summary>
template <typename T>
class FourthVariation : public ParametricVariation<T>
{
public:
FourthVariation(T weight = 1.0) : ParametricVariation<T>("fourth", eVariationId::VAR_FOURTH, weight, true, true, false, false, true)
{
Init();
}
PARVARCOPY(FourthVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (helper.In.x > 0 && helper.In.y > 0)//Quadrant IV: spherical.
{
T r = 1 / helper.m_PrecalcSqrtSumSquares;
helper.Out.x = m_Weight * r * std::cos(helper.m_PrecalcAtanyx);
helper.Out.y = m_Weight * r * std::sin(helper.m_PrecalcAtanyx);
}
else if (helper.In.x > 0 && helper.In.y < 0)//Quadrant I: loonie.
{
T r2 = helper.m_PrecalcSumSquares;
if (r2 < m_SqrWeight)
{
T r = m_Weight * std::sqrt(m_SqrWeight / r2 - 1);
helper.Out.x = r * helper.In.x;
helper.Out.y = r * helper.In.y;
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
}
}
else if (helper.In.x < 0 && helper.In.y > 0)//Quadrant III: susan.
{
T x = helper.In.x - m_X;
T y = helper.In.y + m_Y;
T r = std::sqrt(SQR(x) + SQR(y));
if (r < m_Weight)
{
T a = std::atan2(y, x) + m_Spin + m_Twist * (m_Weight - r);
r *= m_Weight;
helper.Out.x = r * std::cos(a) + m_X;
helper.Out.y = r * std::sin(a) - m_Y;
}
else
{
r = m_Weight * (1 + m_Space / Zeps(r));
helper.Out.x = r * x + m_X;
helper.Out.y = r * y - m_Y;
}
}
else//Quadrant II: Linear.
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string spin = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string space = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string twist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sqrWeight = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tif (vIn.x > 0 && vIn.y > 0)\n"
<< "\t\t{\n"
<< "\t\t real_t r = 1 / precalcSqrtSumSquares;\n"
<< "\n"
<< "\t\t vOut.x = " << weight << " * r * cos(precalcAtanyx);\n"
<< "\t\t vOut.y = " << weight << " * r * sin(precalcAtanyx);\n"
<< "\t\t}\n"
<< "\t\telse if (vIn.x > 0 && vIn.y < 0)\n"
<< "\t\t{\n"
<< "\t\t real_t r2 = precalcSumSquares;\n"
<< "\n"
<< "\t\t if (r2 < " << sqrWeight << ")\n"
<< "\t\t {\n"
<< "\t\t real_t r = " << weight << " * sqrt(" << sqrWeight << " / r2 - 1);\n"
<< "\n"
<< "\t\t vOut.x = r * vIn.x;\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse if (vIn.x < 0 && vIn.y > 0)\n"
<< "\t\t{\n"
<< "\t\t real_t x = vIn.x - " << x << ";\n"
<< "\t\t real_t y = vIn.y + " << y << ";\n"
<< "\t\t real_t r = sqrt(fma(x, x, SQR(y)));\n"
<< "\n"
<< "\t\t if (r < " << weight << ")\n"
<< "\t\t {\n"
<< "\t\t real_t a = fma(" << twist << ", " << weight << " - r, atan2(y, x) + " << spin << ");\n"
<< "\n"
<< "\t\t r *= " << weight << ";\n"
<< "\t\t vOut.x = fma(r, cos(a), " << x << ");\n"
<< "\t\t vOut.y = fma(r, sin(a), -" << y << ");\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t r = " << weight << " * (1 + " << space << " / Zeps(r));\n"
<< "\t\t vOut.x = fma(r, x, " << x << ");\n"
<< "\t\t vOut.y = fma(r, y, -" << y << ");\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
virtual void Precalc() override
{
m_SqrWeight = SQR(m_Weight);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Spin, prefix + "fourth_spin", T(M_PI), eParamType::REAL_CYCLIC, 0, M_2PI));
m_Params.push_back(ParamWithName<T>(&m_Space, prefix + "fourth_space"));
m_Params.push_back(ParamWithName<T>(&m_Twist, prefix + "fourth_twist"));
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "fourth_x"));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "fourth_y"));
m_Params.push_back(ParamWithName<T>(true, &m_SqrWeight, prefix + "fourth_sqr_weight"));//Precalc.
}
private:
T m_Spin;
T m_Space;
T m_Twist;
T m_X;
T m_Y;
T m_SqrWeight;//Precalc.
};
/// <summary>
/// mobiq.
/// </summary>
template <typename T>
class MobiqVariation : public ParametricVariation<T>
{
public:
MobiqVariation(T weight = 1.0) : ParametricVariation<T>("mobiq", eVariationId::VAR_MOBIQ, weight)
{
Init();
}
PARVARCOPY(MobiqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
const T t1 = m_At;
const T t2 = helper.In.x;
const T t3 = m_Bt;
const T t4 = m_Ct;
const T t5 = m_Dt;
const T x1 = m_Ax;
const T x2 = helper.In.y;
const T x3 = m_Bx;
const T x4 = m_Cx;
const T x5 = m_Dx;
const T y1 = m_Ay;
const T y2 = helper.In.z;
const T y3 = m_By;
const T y4 = m_Cy;
const T y5 = m_Dy;
const T z1 = m_Az;
const T z3 = m_Bz;
const T z4 = m_Cz;
const T z5 = m_Dz;
T nt = t1 * t2 - x1 * x2 - y1 * y2 + t3;
T nx = t1 * x2 + x1 * t2 - z1 * y2 + x3;
T ny = t1 * y2 + y1 * t2 + z1 * x2 + y3;
T nz = z1 * t2 + x1 * y2 - y1 * x2 + z3;
T dt = t4 * t2 - x4 * x2 - y4 * y2 + t5;
T dx = t4 * x2 + x4 * t2 - z4 * y2 + x5;
T dy = t4 * y2 + y4 * t2 + z4 * x2 + y5;
T dz = z4 * t2 + x4 * y2 - y4 * x2 + z5;
T ni = m_Weight / (SQR(dt) + SQR(dx) + SQR(dy) + SQR(dz));
helper.Out.x = (nt * dt + nx * dx + ny * dy + nz * dz) * ni;
helper.Out.y = (nx * dt - nt * dx - ny * dz + nz * dy) * ni;
helper.Out.z = (ny * dt - nt * dy - nz * dx + nx * dz) * ni;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string at = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ax = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ay = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string az = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bt = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string by = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bz = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ct = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cz = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dt = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dz = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tconst real_t t1 = " << at << ";\n"
<< "\t\tconst real_t t2 = vIn.x;\n"
<< "\t\tconst real_t t3 = " << bt << ";\n"
<< "\t\tconst real_t t4 = " << ct << ";\n"
<< "\t\tconst real_t t5 = " << dt << ";\n"
<< "\t\tconst real_t x1 = " << ax << ";\n"
<< "\t\tconst real_t x2 = vIn.y;\n"
<< "\t\tconst real_t x3 = " << bx << ";\n"
<< "\t\tconst real_t x4 = " << cx << ";\n"
<< "\t\tconst real_t x5 = " << dx << ";\n"
<< "\t\tconst real_t y1 = " << ay << ";\n"
<< "\t\tconst real_t y2 = vIn.z;\n"
<< "\t\tconst real_t y3 = " << by << ";\n"
<< "\t\tconst real_t y4 = " << cy << ";\n"
<< "\t\tconst real_t y5 = " << dy << ";\n"
<< "\t\tconst real_t z1 = " << az << ";\n"
<< "\t\tconst real_t z3 = " << bz << ";\n"
<< "\t\tconst real_t z4 = " << cz << ";\n"
<< "\t\tconst real_t z5 = " << dz << ";\n"
<< "\n"
<< "\t\treal_t nt = fma(t1, t2, -(x1 * x2)) - y1 * y2 + t3;\n"
<< "\t\treal_t nx = fma(t1, x2, x1 * t2) - z1 * y2 + x3;\n"
<< "\t\treal_t ny = fma(t1, y2, fma(y1, t2, fma(z1, x2, y3)));\n"
<< "\t\treal_t nz = fma(z1, t2, x1 * y2) - y1 * x2 + z3;\n"
<< "\t\treal_t dt = fma(t4, t2, -(x4 * x2)) - y4 * y2 + t5;\n"
<< "\t\treal_t dx = fma(t4, x2, x4 * t2) - z4 * y2 + x5;\n"
<< "\t\treal_t dy = fma(t4, y2, fma(y4, t2, fma(z4, x2, y5)));\n"
<< "\t\treal_t dz = fma(z4, t2, x4 * y2) - y4 * x2 + z5;\n"
<< "\t\treal_t ni = " << weight << " / fma(dt, dt, fma(dx, dx, fma(dy, dy, SQR(dz))));\n"
<< "\n"
<< "\t\tvOut.x = fma(nt, dt, fma(nx, dx, fma(ny, dy, nz * dz))) * ni;\n"
<< "\t\tvOut.y = (fma(nx, dt, -(nt * dx)) - ny * dz + nz * dy) * ni;\n"
<< "\t\tvOut.z = (fma(ny, dt, -(nt * dy)) - nz * dx + nx * dz) * ni;\n"
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_At, prefix + "mobiq_at", 1));
m_Params.push_back(ParamWithName<T>(&m_Ax, prefix + "mobiq_ax"));
m_Params.push_back(ParamWithName<T>(&m_Ay, prefix + "mobiq_ay"));
m_Params.push_back(ParamWithName<T>(&m_Az, prefix + "mobiq_az"));
m_Params.push_back(ParamWithName<T>(&m_Bt, prefix + "mobiq_bt"));
m_Params.push_back(ParamWithName<T>(&m_Bx, prefix + "mobiq_bx"));
m_Params.push_back(ParamWithName<T>(&m_By, prefix + "mobiq_by"));
m_Params.push_back(ParamWithName<T>(&m_Bz, prefix + "mobiq_bz"));
m_Params.push_back(ParamWithName<T>(&m_Ct, prefix + "mobiq_ct"));
m_Params.push_back(ParamWithName<T>(&m_Cx, prefix + "mobiq_cx"));
m_Params.push_back(ParamWithName<T>(&m_Cy, prefix + "mobiq_cy"));
m_Params.push_back(ParamWithName<T>(&m_Cz, prefix + "mobiq_cz"));
m_Params.push_back(ParamWithName<T>(&m_Dt, prefix + "mobiq_dt", 1));
m_Params.push_back(ParamWithName<T>(&m_Dx, prefix + "mobiq_dx"));
m_Params.push_back(ParamWithName<T>(&m_Dy, prefix + "mobiq_dy"));
m_Params.push_back(ParamWithName<T>(&m_Dz, prefix + "mobiq_dz"));
}
private:
T m_At;
T m_Ax;
T m_Ay;
T m_Az;
T m_Bt;
T m_Bx;
T m_By;
T m_Bz;
T m_Ct;
T m_Cx;
T m_Cy;
T m_Cz;
T m_Dt;
T m_Dx;
T m_Dy;
T m_Dz;
};
/// <summary>
/// spherivoid.
/// </summary>
template <typename T>
class SpherivoidVariation : public ParametricVariation<T>
{
public:
SpherivoidVariation(T weight = 1.0) : ParametricVariation<T>("spherivoid", eVariationId::VAR_SPHERIVOID, weight, true, true, false, false, true)
{
Init();
}
PARVARCOPY(SpherivoidVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
const T zr = VarFuncs<T>::Hypot(helper.In.z, helper.m_PrecalcSqrtSumSquares);
const T phi = std::acos(Clamp<T>(helper.In.z / zr, -1, 1));
const T ps = std::sin(phi);
const T pc = std::cos(phi);
helper.Out.x = m_Weight * std::cos(helper.m_PrecalcAtanyx) * ps * (zr + m_Radius);
helper.Out.y = m_Weight * std::sin(helper.m_PrecalcAtanyx) * ps * (zr + m_Radius);
helper.Out.z = m_Weight * pc * (zr + m_Radius);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string radius = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tconst real_t zr = Hypot(vIn.z, precalcSqrtSumSquares);\n"
<< "\t\tconst real_t phi = acos(clamp(vIn.z / zr, -(real_t)(1.0), (real_t)(1.0)));\n"
<< "\t\tconst real_t ps = sin(phi);\n"
<< "\t\tconst real_t pc = cos(phi);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * cos(precalcAtanyx) * ps * (zr + " << radius << ");\n"
<< "\t\tvOut.y = " << weight << " * sin(precalcAtanyx) * ps * (zr + " << radius << ");\n"
<< "\t\tvOut.z = " << weight << " * pc * (zr + " << radius << ");\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Radius, prefix + "spherivoid_radius"));
}
private:
T m_Radius;
};
/// <summary>
/// farblur.
/// </summary>
template <typename T>
class FarblurVariation : public ParametricVariation<T>
{
public:
FarblurVariation(T weight = 1.0) : ParametricVariation<T>("farblur", eVariationId::VAR_FARBLUR, weight)
{
Init();
}
PARVARCOPY(FarblurVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = m_Weight * (Sqr(helper.In.x - m_XOrigin) +
Sqr(helper.In.y - m_YOrigin) +
Sqr(helper.In.z - m_ZOrigin)) *
(rand.Frand01<T>() + rand.Frand01<T>() + rand.Frand01<T>() + rand.Frand01<T>() - 2);
T u = rand.Frand01<T>() * M_2PI;
T su = std::sin(u);
T cu = std::cos(u);
T v = rand.Frand01<T>() * M_2PI;
T sv = std::sin(v);
T cv = std::cos(v);
helper.Out.x = m_X * r * sv * cu;
helper.Out.y = m_Y * r * sv * su;
helper.Out.z = m_Z * r * cv;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string xOrigin = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string yOrigin = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string zOrigin = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t xmx = vIn.x - " << xOrigin << ";\n"
<< "\t\treal_t ymy = vIn.y - " << yOrigin << ";\n"
<< "\t\treal_t zmz = vIn.z - " << zOrigin << ";\n"
<< "\t\treal_t r = " << weight << " * (fma(xmx, xmx, fma(ymy, ymy, SQR(zmz))))\n"
<< "\t\t * (MwcNext01(mwc) + MwcNext01(mwc) + MwcNext01(mwc) + MwcNext01(mwc) - 2);\n"
<< "\t\treal_t u = MwcNext01(mwc) * M_2PI;\n"
<< "\t\treal_t su = sin(u);\n"
<< "\t\treal_t cu = cos(u);\n"
<< "\t\treal_t v = MwcNext01(mwc) * M_2PI;\n"
<< "\t\treal_t sv = sin(v);\n"
<< "\t\treal_t cv = cos(v);\n"
<< "\n"
<< "\t\tvOut.x = " << x << " * r * sv * cu;\n"
<< "\t\tvOut.y = " << y << " * r * sv * su;\n"
<< "\t\tvOut.z = " << z << " * r * cv;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Sqr" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "farblur_x", 1));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "farblur_y", 1));
m_Params.push_back(ParamWithName<T>(&m_Z, prefix + "farblur_z", 1));
m_Params.push_back(ParamWithName<T>(&m_XOrigin, prefix + "farblur_x_origin"));
m_Params.push_back(ParamWithName<T>(&m_YOrigin, prefix + "farblur_y_origin"));
m_Params.push_back(ParamWithName<T>(&m_ZOrigin, prefix + "farblur_z_origin"));
}
private:
T m_X;
T m_Y;
T m_Z;
T m_XOrigin;
T m_YOrigin;
T m_ZOrigin;
};
/// <summary>
/// curl_sp.
/// </summary>
template <typename T>
class CurlSPVariation : public ParametricVariation<T>
{
public:
CurlSPVariation(T weight = 1.0) : ParametricVariation<T>("curl_sp", eVariationId::VAR_CURL_SP, weight)
{
Init();
}
PARVARCOPY(CurlSPVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
const T x = VarFuncs<T>::Powq4c(helper.In.x, m_Power);
const T y = VarFuncs<T>::Powq4c(helper.In.y, m_Power);
const T z = VarFuncs<T>::Powq4c(helper.In.z, m_Power);
const T d = SQR(x) - SQR(y);
const T re = VarFuncs<T>::Spread(m_C1 * x + m_C2 * d, m_Sx) + 1;
const T im = VarFuncs<T>::Spread(m_C1 * y + m_C2x2 * x * y, m_Sy);
T c = Zeps(VarFuncs<T>::Powq4c(SQR(re) + SQR(im), m_PowerInv));
const T r = m_Weight / c;
helper.Out.x = (x * re + y * im) * r;
helper.Out.y = (y * re - x * im) * r;
helper.Out.z = (z * m_Weight) / c;
outPoint.m_ColorX = Clamp<T>(outPoint.m_ColorX + m_DcAdjust * c, 0, 1);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2x2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dcAdjust = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string powerInv = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tconst real_t x = Powq4c(vIn.x, " << power << ");\n"
<< "\t\tconst real_t y = Powq4c(vIn.y, " << power << ");\n"
<< "\t\tconst real_t z = Powq4c(vIn.z, " << power << ");\n"
<< "\t\tconst real_t d = fma(x, x, -SQR(y));\n"
<< "\t\tconst real_t re = Spread(fma(" << c1 << ", x, " << c2 << " * d), " << sx << ") + (real_t)(1.0);\n"
<< "\t\tconst real_t im = Spread(fma(" << c1 << ", y, " << c2x2 << " * x * y), " << sy << ");\n"
<< "\t\treal_t c = Zeps(Powq4c(fma(re, re, SQR(im)), " << powerInv << "));\n"
<< "\n"
<< "\t\tconst real_t r = " << weight << " / c;\n"
<< "\n"
<< "\t\tvOut.x = fma(x, re, y * im) * r;\n"
<< "\t\tvOut.y = fma(y, re, -(x * im)) * r;\n"
<< "\t\tvOut.z = (z * " << weight << ") / c;\n"
<< "\t\toutPoint->m_ColorX = clamp(fma(" << dcAdjust << ", c, outPoint->m_ColorX), (real_t)(0.0), (real_t)(1.0));\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot", "Spread", "SignNz", "Powq4", "Powq4c", "Zeps" };
}
virtual void Precalc() override
{
m_C2x2 = 2 * m_C2;
m_DcAdjust = T(0.1) * m_Dc;
m_Power = Zeps(m_Power);
m_PowerInv = 1 / m_Power;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "curl_sp_pow", 1, eParamType::REAL_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_C1, prefix + "curl_sp_c1"));
m_Params.push_back(ParamWithName<T>(&m_C2, prefix + "curl_sp_c2"));
m_Params.push_back(ParamWithName<T>(&m_Sx, prefix + "curl_sp_sx"));
m_Params.push_back(ParamWithName<T>(&m_Sy, prefix + "curl_sp_sy"));
m_Params.push_back(ParamWithName<T>(&m_Dc, prefix + "curl_sp_dc"));
m_Params.push_back(ParamWithName<T>(true, &m_C2x2, prefix + "curl_sp_c2_x2"));
m_Params.push_back(ParamWithName<T>(true, &m_DcAdjust, prefix + "curl_sp_dc_adjust"));
m_Params.push_back(ParamWithName<T>(true, &m_PowerInv, prefix + "curl_sp_power_inv"));
}
private:
T m_Power;
T m_C1;
T m_C2;
T m_Sx;
T m_Sy;
T m_Dc;
T m_C2x2;//Precalc.
T m_DcAdjust;
T m_PowerInv;
};
/// <summary>
/// heat.
/// </summary>
template <typename T>
class HeatVariation : public ParametricVariation<T>
{
public:
HeatVariation(T weight = 1.0) : ParametricVariation<T>("heat", eVariationId::VAR_HEAT, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(HeatVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = std::sqrt(std::abs(helper.m_PrecalcSumSquares + helper.In.z));
r += m_Ar * std::sin(fma(m_Br, r, m_Cr));
if (r == 0)
r = EPS;
T temp = fma(m_At, std::sin(fma(m_Bt, r, m_Ct)), helper.m_PrecalcAtanyx);
T st = std::sin(temp);
T ct = std::cos(temp);
temp = fma(m_Ap, std::sin(fma(m_Bp, r, m_Cp)), std::acos(Clamp<T>(helper.In.z / r, -1, 1)));
T sp = std::sin(temp);
T cp = std::cos(temp);
helper.Out.x = r * ct * sp;
helper.Out.y = r * st * sp;
helper.Out.z = r * cp;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string thetaPeriod = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string thetaPhase = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string thetaAmp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string phiPeriod = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string phiPhase = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string phiAmp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rperiod = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rphase = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ramp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string at = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bt = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ct = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ap = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ar = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string br = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cr = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r = sqrt(fabs(precalcSumSquares + vIn.z));\n"
<< "\n"
<< "\t\tr += " << ar << " * sin(fma(" << br << ", r, " << cr << "));\n"
<< "\n"
<< "\t\tif (r == 0)\n"
<< "\t\t r = EPS;\n"
<< "\n"
<< "\t\treal_t temp = fma(" << at << ", sin(fma(" << bt << ", r, " << ct << ")), precalcAtanyx);\n"
<< "\t\treal_t st = sin(temp);\n"
<< "\t\treal_t ct = cos(temp);\n"
<< "\n"
<< "\t\ttemp = fma(" << ap << ", sin(fma(" << bp << ", r, " << cp << ")), acos(clamp(vIn.z / r, -(real_t)(1.0), (real_t)(1.0))));\n"
<< "\n"
<< "\t\treal_t sp = sin(temp);\n"
<< "\t\treal_t cp = cos(temp);\n"
<< "\n"
<< "\t\tvOut.x = r * ct * sp;\n"
<< "\t\tvOut.y = r * st * sp;\n"
<< "\t\tvOut.z = r * cp;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T tx = m_ThetaPeriod == 0 ? 0 : (1 / m_ThetaPeriod);
T px = m_PhiPeriod == 0 ? 0 : (1 / m_PhiPeriod);
T rx = m_Rperiod == 0 ? 0 : (1 / m_Rperiod);
m_At = m_Weight * m_ThetaAmp;
m_Bt = M_2PI * tx;
m_Ct = m_ThetaPhase * tx;
m_Ap = m_Weight * m_PhiAmp;
m_Bp = M_2PI * px;
m_Cp = m_PhiPhase * px;
m_Ar = m_Weight * m_Ramp;
m_Br = M_2PI * rx;
m_Cr = m_Rphase * rx;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_ThetaPeriod, prefix + "heat_theta_period", 1));
m_Params.push_back(ParamWithName<T>(&m_ThetaPhase, prefix + "heat_theta_phase"));
m_Params.push_back(ParamWithName<T>(&m_ThetaAmp, prefix + "heat_theta_amp", 1));
m_Params.push_back(ParamWithName<T>(&m_PhiPeriod, prefix + "heat_phi_period", 1));
m_Params.push_back(ParamWithName<T>(&m_PhiPhase, prefix + "heat_phi_phase"));
m_Params.push_back(ParamWithName<T>(&m_PhiAmp, prefix + "heat_phi_amp"));
m_Params.push_back(ParamWithName<T>(&m_Rperiod, prefix + "heat_r_period", 1));
m_Params.push_back(ParamWithName<T>(&m_Rphase, prefix + "heat_r_phase"));
m_Params.push_back(ParamWithName<T>(&m_Ramp, prefix + "heat_r_amp"));
m_Params.push_back(ParamWithName<T>(true, &m_At, prefix + "heat_at"));
m_Params.push_back(ParamWithName<T>(true, &m_Bt, prefix + "heat_bt"));
m_Params.push_back(ParamWithName<T>(true, &m_Ct, prefix + "heat_ct"));
m_Params.push_back(ParamWithName<T>(true, &m_Ap, prefix + "heat_ap"));
m_Params.push_back(ParamWithName<T>(true, &m_Bp, prefix + "heat_bp"));
m_Params.push_back(ParamWithName<T>(true, &m_Cp, prefix + "heat_cp"));
m_Params.push_back(ParamWithName<T>(true, &m_Ar, prefix + "heat_ar"));
m_Params.push_back(ParamWithName<T>(true, &m_Br, prefix + "heat_br"));
m_Params.push_back(ParamWithName<T>(true, &m_Cr, prefix + "heat_cr"));
}
private:
T m_ThetaPeriod;
T m_ThetaPhase;
T m_ThetaAmp;
T m_PhiPeriod;
T m_PhiPhase;
T m_PhiAmp;
T m_Rperiod;
T m_Rphase;
T m_Ramp;
T m_At;//Precalc.
T m_Bt;
T m_Ct;
T m_Ap;
T m_Bp;
T m_Cp;
T m_Ar;
T m_Br;
T m_Cr;
};
/// <summary>
/// interference2.
/// </summary>
template <typename T>
class Interference2Variation : public ParametricVariation<T>
{
public:
Interference2Variation(T weight = 1.0) : ParametricVariation<T>("interference2", eVariationId::VAR_INTERFERENCE2, weight)
{
Init();
}
PARVARCOPY(Interference2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T fp1x;
T fp1y;
T fp2x;
T fp2y;
switch (int(m_T1))
{
case 0:
fp1x = Sine(m_A1, m_B1, m_C1, m_P1, helper.In.x);
fp1y = Sine(m_A1, m_B1, m_C1, m_P1, helper.In.y);
break;
case 1:
fp1x = Tri(m_A1, m_B1, m_C1, m_P1, helper.In.x);
fp1y = Tri(m_A1, m_B1, m_C1, m_P1, helper.In.y);
break;
case 2:
fp1x = Squ(m_A1, m_B1, m_C1, m_P1, helper.In.x);
fp1y = Squ(m_A1, m_B1, m_C1, m_P1, helper.In.y);
break;
default:
fp1x = Sine(m_A1, m_B1, m_C1, m_P1, helper.In.x);
fp1y = Sine(m_A1, m_B1, m_C1, m_P1, helper.In.y);
break;
}
switch (int(m_T2))
{
case 0:
fp2x = Sine(m_A2, m_B2, m_C2, m_P2, helper.In.x);
fp2y = Sine(m_A2, m_B2, m_C2, m_P2, helper.In.y);
break;
case 1:
fp2x = Tri(m_A2, m_B2, m_C2, m_P2, helper.In.x);
fp2y = Tri(m_A2, m_B2, m_C2, m_P2, helper.In.y);
break;
case 2:
fp2x = Squ(m_A2, m_B2, m_C2, m_P2, helper.In.x);
fp2y = Squ(m_A2, m_B2, m_C2, m_P2, helper.In.y);
break;
default:
fp2x = Sine(m_A2, m_B2, m_C2, m_P2, helper.In.x);
fp2y = Sine(m_A2, m_B2, m_C2, m_P2, helper.In.y);
break;
}
helper.Out.x = m_Weight * (fp1x + fp2x);
helper.Out.y = m_Weight * (fp1y + fp2y);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string a1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string p1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string t1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string p2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string t2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t fp1x;\n"
<< "\t\treal_t fp1y;\n"
<< "\t\treal_t fp2x;\n"
<< "\t\treal_t fp2y;\n"
<< "\n"
<< "\t\tswitch ((int)" << t1 << ")\n"
<< "\t\t{\n"
<< "\t\t case 0:\n"
<< "\t\t fp1x = Interference2Sine(" << a1 << ", " << b1 << ", " << c1 << ", " << p1 << ", vIn.x);\n"
<< "\t\t fp1y = Interference2Sine(" << a1 << ", " << b1 << ", " << c1 << ", " << p1 << ", vIn.y);\n"
<< "\t\t break;\n"
<< "\t\t case 1:\n"
<< "\t\t fp1x = Interference2Tri(" << a1 << ", " << b1 << ", " << c1 << ", " << p1 << ", vIn.x);\n"
<< "\t\t fp1y = Interference2Tri(" << a1 << ", " << b1 << ", " << c1 << ", " << p1 << ", vIn.y);\n"
<< "\t\t break;\n"
<< "\t\t case 2:\n"
<< "\t\t fp1x = Interference2Squ(" << a1 << ", " << b1 << ", " << c1 << ", " << p1 << ", vIn.x);\n"
<< "\t\t fp1y = Interference2Squ(" << a1 << ", " << b1 << ", " << c1 << ", " << p1 << ", vIn.y);\n"
<< "\t\t break;\n"
<< "\t\t default:\n"
<< "\t\t fp1x = Interference2Sine(" << a1 << ", " << b1 << ", " << c1 << ", " << p1 << ", vIn.x);\n"
<< "\t\t fp1y = Interference2Sine(" << a1 << ", " << b1 << ", " << c1 << ", " << p1 << ", vIn.y);\n"
<< "\t\t break;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tswitch ((int)" << t2 << ")\n"
<< "\t\t{\n"
<< "\t\t case 0:\n"
<< "\t\t fp2x = Interference2Sine(" << a2 << ", " << b2 << ", " << c2 << ", " << p2 << ", vIn.x);\n"
<< "\t\t fp2y = Interference2Sine(" << a2 << ", " << b2 << ", " << c2 << ", " << p2 << ", vIn.y);\n"
<< "\t\t break;\n"
<< "\t\t case 1:\n"
<< "\t\t fp2x = Interference2Tri(" << a2 << ", " << b2 << ", " << c2 << ", " << p2 << ", vIn.x);\n"
<< "\t\t fp2y = Interference2Tri(" << a2 << ", " << b2 << ", " << c2 << ", " << p2 << ", vIn.y);\n"
<< "\t\t break;\n"
<< "\t\t case 2:\n"
<< "\t\t fp2x = Interference2Squ(" << a2 << ", " << b2 << ", " << c2 << ", " << p2 << ", vIn.x);\n"
<< "\t\t fp2y = Interference2Squ(" << a2 << ", " << b2 << ", " << c2 << ", " << p2 << ", vIn.y);\n"
<< "\t\t break;\n"
<< "\t\t default:\n"
<< "\t\t fp2x = Interference2Sine(" << a2 << ", " << b2 << ", " << c2 << ", " << p2 << ", vIn.x);\n"
<< "\t\t fp2y = Interference2Sine(" << a2 << ", " << b2 << ", " << c2 << ", " << p2 << ", vIn.y);\n"
<< "\t\t break;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * (fp1x + fp2x);\n"
<< "\t\tvOut.y = " << weight << " * (fp1y + fp2y);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual string OpenCLFuncsString() const override
{
return
"real_t Interference2Sine(real_t a, real_t b, real_t c, real_t p, real_t x)\n"
"{\n"
" return a * pow(fabs(sin(fma(b, x, c))), p);\n"
"}\n"
"\n"
"real_t Interference2Tri(real_t a, real_t b, real_t c, real_t p, real_t x)\n"
"{\n"
" return a * 2 * pow(fabs(asin(cos(fma(b, x, c - MPI2)))) * M1PI, p);\n"
"}\n"
"\n"
"real_t Interference2Squ(real_t a, real_t b, real_t c, real_t p, real_t x)\n"
"{\n"
" return a * pow(sin(fma(b, x, c)) < 0 ? EPS : 1, p);\n"
"}\n"
"\n";
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_A1, prefix + "interference2_a1", 1));//Original used a prefix of intrfr2_, which is incompatible with Ember's design.
m_Params.push_back(ParamWithName<T>(&m_B1, prefix + "interference2_b1", 1));
m_Params.push_back(ParamWithName<T>(&m_C1, prefix + "interference2_c1"));
m_Params.push_back(ParamWithName<T>(&m_P1, prefix + "interference2_p1", 1));
m_Params.push_back(ParamWithName<T>(&m_T1, prefix + "interference2_t1", 0, eParamType::INTEGER, 0, 2));
m_Params.push_back(ParamWithName<T>(&m_A2, prefix + "interference2_a2", 1));
m_Params.push_back(ParamWithName<T>(&m_B2, prefix + "interference2_b2", 1));
m_Params.push_back(ParamWithName<T>(&m_C2, prefix + "interference2_c2"));
m_Params.push_back(ParamWithName<T>(&m_P2, prefix + "interference2_p2", 1));
m_Params.push_back(ParamWithName<T>(&m_T2, prefix + "interference2_t2", 0, eParamType::INTEGER, 0, 2));
}
private:
inline static T Sine(T a, T b, T c, T p, T x)
{
return a * std::pow(std::abs(std::sin(b * x + c)), p);//Original did not fabs().
}
inline static T Tri(T a, T b, T c, T p, T x)
{
return a * 2 * std::pow(std::abs(std::asin(std::cos(b * x + c - T(M_PI_2)))) * T(M_1_PI), p);//Original did not fabs().
}
inline static T Squ(T a, T b, T c, T p, T x)
{
return a * std::pow(std::sin(b * x + c) < 0 ? EPS : T(1), p);//Original passed -1 to pow if sin() was < 0. Doing so will return NaN, so EPS is passed instead.
}
T m_A1;
T m_B1;
T m_C1;
T m_P1;
T m_T1;
T m_A2;
T m_B2;
T m_C2;
T m_P2;
T m_T2;
};
/// <summary>
/// sinq.
/// </summary>
template <typename T>
class SinqVariation : public Variation<T>
{
public:
SinqVariation(T weight = 1.0) : Variation<T>("sinq", eVariationId::VAR_SINQ, weight) { }
VARCOPY(SinqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T absV = VarFuncs<T>::Hypot(helper.In.y, helper.In.z);
T s = std::sin(helper.In.x);
T c = std::cos(helper.In.x);
T sh = std::sinh(absV);
T ch = std::cosh(absV);
T d = m_Weight * c * sh / Zeps(absV);
helper.Out.x = m_Weight * s * ch;
helper.Out.y = d * helper.In.y;
helper.Out.z = d * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t absV = Hypot(vIn.y, vIn.z);\n"
<< "\t\treal_t s = sin(vIn.x);\n"
<< "\t\treal_t c = cos(vIn.x);\n"
<< "\t\treal_t sh = sinh(absV);\n"
<< "\t\treal_t ch = cosh(absV);\n"
<< "\t\treal_t d = " << weight << " * c * sh / Zeps(absV);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * s * ch;\n"
<< "\t\tvOut.y = d * vIn.y;\n"
<< "\t\tvOut.z = d * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot", "Zeps" };
}
};
/// <summary>
/// sinhq.
/// </summary>
template <typename T>
class SinhqVariation : public Variation<T>
{
public:
SinhqVariation(T weight = 1.0) : Variation<T>("sinhq", eVariationId::VAR_SINHQ, weight) { }
VARCOPY(SinhqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T absV = VarFuncs<T>::Hypot(helper.In.y, helper.In.z);
T s = std::sin(absV);
T c = std::cos(absV);
T sh = std::sinh(helper.In.x);
T ch = std::cosh(helper.In.x);
T d = m_Weight * ch * s / Zeps(absV);
helper.Out.x = m_Weight * sh * c;
helper.Out.y = d * helper.In.y;
helper.Out.z = d * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t absV = Hypot(vIn.y, vIn.z);\n"
<< "\t\treal_t s = sin(absV);\n"
<< "\t\treal_t c = cos(absV);\n"
<< "\t\treal_t sh = sinh(vIn.x);\n"
<< "\t\treal_t ch = cosh(vIn.x);\n"
<< "\t\treal_t d = " << weight << " * ch * s / Zeps(absV);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * sh * c;\n"
<< "\t\tvOut.y = d * vIn.y;\n"
<< "\t\tvOut.z = d * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot", "Zeps" };
}
};
/// <summary>
/// secq.
/// </summary>
template <typename T>
class SecqVariation : public Variation<T>
{
public:
SecqVariation(T weight = 1.0) : Variation<T>("secq", eVariationId::VAR_SECQ, weight, true) { }
VARCOPY(SecqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T absV = VarFuncs<T>::Hypot(helper.In.y, helper.In.z);
T ni = m_Weight / Zeps(helper.m_PrecalcSumSquares + SQR(helper.In.z));
T s = std::sin(-helper.In.x);
T c = std::cos(-helper.In.x);
T sh = std::sinh(absV);
T ch = std::cosh(absV);
T d = ni * s * sh / Zeps(absV);
helper.Out.x = c * ch * ni;
helper.Out.y = -(d * helper.In.y);
helper.Out.z = -(d * helper.In.z);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t absV = Hypot(vIn.y, vIn.z);\n"
<< "\t\treal_t ni = " << weight << " / Zeps(fma(vIn.z, vIn.z, precalcSumSquares));\n"
<< "\t\treal_t s = sin(-vIn.x);\n"
<< "\t\treal_t c = cos(-vIn.x);\n"
<< "\t\treal_t sh = sinh(absV);\n"
<< "\t\treal_t ch = cosh(absV);\n"
<< "\t\treal_t d = ni * s * sh / Zeps(absV);\n"
<< "\n"
<< "\t\tvOut.x = c * ch * ni;\n"
<< "\t\tvOut.y = -(d * vIn.y);\n"
<< "\t\tvOut.z = -(d * vIn.z);\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot", "Zeps" };
}
};
/// <summary>
/// sechq.
/// </summary>
template <typename T>
class SechqVariation : public Variation<T>
{
public:
SechqVariation(T weight = 1.0) : Variation<T>("sechq", eVariationId::VAR_SECHQ, weight, true) { }
VARCOPY(SechqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T absV = VarFuncs<T>::Hypot(helper.In.y, helper.In.z);
T ni = m_Weight / Zeps(helper.m_PrecalcSumSquares + SQR(helper.In.z));
T s = std::sin(absV);
T c = std::cos(absV);
T sh = std::sinh(helper.In.x);
T ch = std::cosh(helper.In.x);
T d = ni * sh * s / Zeps(absV);
helper.Out.x = ch * c * ni;
helper.Out.y = -(d * helper.In.y);
helper.Out.z = -(d * helper.In.z);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t absV = Hypot(vIn.y, vIn.z);\n"
<< "\t\treal_t ni = " << weight << " / Zeps(fma(vIn.z, vIn.z, precalcSumSquares));\n"
<< "\t\treal_t s = sin(absV);\n"
<< "\t\treal_t c = cos(absV);\n"
<< "\t\treal_t sh = sinh(vIn.x);\n"
<< "\t\treal_t ch = cosh(vIn.x);\n"
<< "\t\treal_t d = ni * sh * s / absV;\n"
<< "\n"
<< "\t\tvOut.x = ch * c * ni;\n"
<< "\t\tvOut.y = -(d * vIn.y);\n"
<< "\t\tvOut.z = -(d * vIn.z);\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot", "Zeps" };
}
};
/// <summary>
/// tanq.
/// </summary>
template <typename T>
class TanqVariation : public Variation<T>
{
public:
TanqVariation(T weight = 1.0) : Variation<T>("tanq", eVariationId::VAR_TANQ, weight) { }
VARCOPY(TanqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T sysz = SQR(helper.In.y) + SQR(helper.In.z);
T absV = std::sqrt(sysz);
T ni = m_Weight / Zeps(SQR(helper.In.x) + sysz);
T s = std::sin(helper.In.x);
T c = std::cos(helper.In.x);
T sh = std::sinh(absV);
T ch = std::cosh(absV);
T d = c * sh / Zeps(absV);
T b = -s * sh / Zeps(absV);
T stcv = s * ch;
T nstcv = -stcv;
T ctcv = c * ch;
helper.Out.x = (stcv * ctcv + d * b * sysz) * ni;
helper.Out.y = (nstcv * b * helper.In.y + d * helper.In.y * ctcv) * ni;
helper.Out.z = (nstcv * b * helper.In.z + d * helper.In.z * ctcv) * ni;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t sysz = fma(vIn.y, vIn.y, SQR(vIn.z));\n"
<< "\t\treal_t absV = sqrt(sysz);\n"
<< "\t\treal_t ni = " << weight << " / Zeps(fma(vIn.x, vIn.x, sysz));\n"
<< "\t\treal_t s = sin(vIn.x);\n"
<< "\t\treal_t c = cos(vIn.x);\n"
<< "\t\treal_t sh = sinh(absV);\n"
<< "\t\treal_t ch = cosh(absV);\n"
<< "\t\treal_t d = c * sh / Zeps(absV);\n"
<< "\t\treal_t b = -s * sh / Zeps(absV);\n"
<< "\t\treal_t stcv = s * ch;\n"
<< "\t\treal_t nstcv = -stcv;\n"
<< "\t\treal_t ctcv = c * ch;\n"
<< "\n"
<< "\t\tvOut.x = fma(stcv, ctcv, d * b * sysz) * ni;\n"
<< "\t\tvOut.y = fma(nstcv, b * vIn.y, d * vIn.y * ctcv) * ni;\n"
<< "\t\tvOut.z = fma(nstcv, b * vIn.z, d * vIn.z * ctcv) * ni;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
};
/// <summary>
/// tanhq.
/// </summary>
template <typename T>
class TanhqVariation : public Variation<T>
{
public:
TanhqVariation(T weight = 1.0) : Variation<T>("tanhq", eVariationId::VAR_TANHQ, weight) { }
VARCOPY(TanhqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T sysz = SQR(helper.In.y) + SQR(helper.In.z);
T absV = std::sqrt(sysz);
T ni = m_Weight / Zeps(SQR(helper.In.x) + sysz);
T s = std::sin(absV);
T c = std::cos(absV);
T sh = std::sinh(helper.In.x);
T ch = std::cosh(helper.In.x);
T d = ch * s / Zeps(absV);
T b = sh * s / Zeps(absV);
T stcv = sh * c;
T nstcv = -stcv;
T ctcv = c * ch;
helper.Out.x = (stcv * ctcv + d * b * sysz) * ni;
helper.Out.y = (nstcv * b * helper.In.y + d * helper.In.y * ctcv) * ni;
helper.Out.z = (nstcv * b * helper.In.z + d * helper.In.z * ctcv) * ni;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t sysz = fma(vIn.y, vIn.y, SQR(vIn.z));\n"
<< "\t\treal_t absV = sqrt(sysz);\n"
<< "\t\treal_t ni = " << weight << " / Zeps(fma(vIn.x, vIn.x, sysz));\n"
<< "\t\treal_t s = sin(absV);\n"
<< "\t\treal_t c = cos(absV);\n"
<< "\t\treal_t sh = sinh(vIn.x);\n"
<< "\t\treal_t ch = cosh(vIn.x);\n"
<< "\t\treal_t d = ch * s / Zeps(absV);\n"
<< "\t\treal_t b = sh * s / Zeps(absV);\n"
<< "\t\treal_t stcv = sh * c;\n"
<< "\t\treal_t nstcv = -stcv;\n"
<< "\t\treal_t ctcv = c * ch;\n"
<< "\n"
<< "\t\tvOut.x = fma(stcv, ctcv, d * b * sysz) * ni;\n"
<< "\t\tvOut.y = fma(nstcv, b * vIn.y, d * vIn.y * ctcv) * ni;\n"
<< "\t\tvOut.z = fma(nstcv, b * vIn.z, d * vIn.z * ctcv) * ni;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
};
/// <summary>
/// cosq.
/// </summary>
template <typename T>
class CosqVariation : public Variation<T>
{
public:
CosqVariation(T weight = 1.0) : Variation<T>("cosq", eVariationId::VAR_COSQ, weight) { }
VARCOPY(CosqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T absV = VarFuncs<T>::Hypot(helper.In.y, helper.In.z);
T s = std::sin(helper.In.x);
T c = std::cos(helper.In.x);
T sh = std::sinh(absV);
T ch = std::cosh(absV);
T d = -m_Weight * s * sh / Zeps(absV);
helper.Out.x = m_Weight * c * ch;
helper.Out.y = d * helper.In.y;
helper.Out.z = d * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t absV = Hypot(vIn.y, vIn.z);\n"
<< "\t\treal_t s = sin(vIn.x);\n"
<< "\t\treal_t c = cos(vIn.x);\n"
<< "\t\treal_t sh = sinh(absV);\n"
<< "\t\treal_t ch = cosh(absV);\n"
<< "\t\treal_t d = -" << weight << " * s * sh / Zeps(absV);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * c * ch;\n"
<< "\t\tvOut.y = d * vIn.y;\n"
<< "\t\tvOut.z = d * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot", "Zeps" };
}
};
/// <summary>
/// coshq.
/// </summary>
template <typename T>
class CoshqVariation : public Variation<T>
{
public:
CoshqVariation(T weight = 1.0) : Variation<T>("coshq", eVariationId::VAR_COSHQ, weight) { }
VARCOPY(CoshqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T absV = VarFuncs<T>::Hypot(helper.In.y, helper.In.z);
T s = std::sin(absV);
T c = std::cos(absV);
T sh = std::sinh(helper.In.x);
T ch = std::cosh(helper.In.x);
T d = m_Weight * sh * s / Zeps(absV);
helper.Out.x = m_Weight * c * ch;
helper.Out.y = d * helper.In.y;
helper.Out.z = d * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t absV = Hypot(vIn.y, vIn.z);\n"
<< "\t\treal_t s = sin(absV);\n"
<< "\t\treal_t c = cos(absV);\n"
<< "\t\treal_t sh = sinh(vIn.x);\n"
<< "\t\treal_t ch = cosh(vIn.x);\n"
<< "\t\treal_t d = " << weight << " * sh * s / Zeps(absV);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * c * ch;\n"
<< "\t\tvOut.y = d * vIn.y;\n"
<< "\t\tvOut.z = d * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot", "Zeps" };
}
};
/// <summary>
/// cotq.
/// </summary>
template <typename T>
class CotqVariation : public Variation<T>
{
public:
CotqVariation(T weight = 1.0) : Variation<T>("cotq", eVariationId::VAR_COTQ, weight) { }
VARCOPY(CotqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T sysz = SQR(helper.In.y) + SQR(helper.In.z);
T absV = std::sqrt(sysz);
T ni = m_Weight / Zeps(SQR(helper.In.x) + sysz);
T s = std::sin(helper.In.x);
T c = std::cos(helper.In.x);
T sh = std::sinh(absV);
T ch = std::cosh(absV);
T d = c * sh / Zeps(absV);
T b = -s * sh / Zeps(absV);
T stcv = s * ch;
T nstcv = -stcv;
T ctcv = c * ch;
helper.Out.x = (stcv * ctcv + d * b * sysz) * ni;
helper.Out.y = -(nstcv * b * helper.In.y + d * helper.In.y * ctcv) * ni;
helper.Out.z = -(nstcv * b * helper.In.z + d * helper.In.z * ctcv) * ni;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t sysz = fma(vIn.y, vIn.y, SQR(vIn.z));\n"
<< "\t\treal_t absV = sqrt(sysz);\n"
<< "\t\treal_t ni = " << weight << " / Zeps(fma(vIn.x, vIn.x, sysz));\n"
<< "\t\treal_t s = sin(vIn.x);\n"
<< "\t\treal_t c = cos(vIn.x);\n"
<< "\t\treal_t sh = sinh(absV);\n"
<< "\t\treal_t ch = cosh(absV);\n"
<< "\t\treal_t d = c * sh / Zeps(absV);\n"
<< "\t\treal_t b = -s * sh / Zeps(absV);\n"
<< "\t\treal_t stcv = s * ch;\n"
<< "\t\treal_t nstcv = -stcv;\n"
<< "\t\treal_t ctcv = c * ch;\n"
<< "\n"
<< "\t\tvOut.x = fma(stcv, ctcv, d * b * sysz) * ni;\n"
<< "\t\tvOut.y = -fma(nstcv * b, vIn.y, d * vIn.y * ctcv) * ni;\n"
<< "\t\tvOut.z = -fma(nstcv * b, vIn.z, d * vIn.z * ctcv) * ni;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
};
/// <summary>
/// cothq.
/// </summary>
template <typename T>
class CothqVariation : public Variation<T>
{
public:
CothqVariation(T weight = 1.0) : Variation<T>("cothq", eVariationId::VAR_COTHQ, weight) { }
VARCOPY(CothqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T sysz = SQR(helper.In.y) + SQR(helper.In.z);
T absV = std::sqrt(sysz);
T ni = m_Weight / Zeps(Sqr(SQR(helper.In.x) + sysz));
T s = std::sin(absV);
T c = std::cos(absV);
T sh = std::sinh(helper.In.x);
T ch = std::cosh(helper.In.x);
T d = ch * s / Zeps(absV);
T b = sh * s / Zeps(absV);
T stcv = sh * c;
T nstcv = -stcv;
T ctcv = ch * c;
helper.Out.x = (stcv * ctcv + d * b * sysz) * ni;
helper.Out.y = (nstcv * b * helper.In.y + d * helper.In.y * ctcv) * ni;
helper.Out.z = (nstcv * b * helper.In.z + d * helper.In.z * ctcv) * ni;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t sysz = fma(vIn.y, vIn.y, SQR(vIn.z));\n"
<< "\t\treal_t absV = sqrt(sysz);\n"
<< "\t\treal_t ni = " << weight << " / Zeps(Sqr(fma(vIn.x, vIn.x, sysz)));\n"
<< "\t\treal_t s = sin(absV);\n"
<< "\t\treal_t c = cos(absV);\n"
<< "\t\treal_t sh = sinh(vIn.x);\n"
<< "\t\treal_t ch = cosh(vIn.x);\n"
<< "\t\treal_t d = ch * s / Zeps(absV);\n"
<< "\t\treal_t b = sh * s / Zeps(absV);\n"
<< "\t\treal_t stcv = sh * c;\n"
<< "\t\treal_t nstcv = -stcv;\n"
<< "\t\treal_t ctcv = ch * c;\n"
<< "\n"
<< "\t\tvOut.x = fma(stcv, ctcv, d * b * sysz) * ni;\n"
<< "\t\tvOut.y = fma(nstcv * b, vIn.y, d * vIn.y * ctcv) * ni;\n"
<< "\t\tvOut.z = fma(nstcv * b, vIn.z, d * vIn.z * ctcv) * ni;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps", "Sqr" };
}
};
/// <summary>
/// cscq.
/// </summary>
template <typename T>
class CscqVariation : public Variation<T>
{
public:
CscqVariation(T weight = 1.0) : Variation<T>("cscq", eVariationId::VAR_CSCQ, weight, true) { }
VARCOPY(CscqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T absV = VarFuncs<T>::Hypot(helper.In.y, helper.In.z);
T ni = m_Weight / Zeps(helper.m_PrecalcSumSquares + SQR(helper.In.z));
T s = std::sin(helper.In.x);
T c = std::cos(helper.In.x);
T sh = std::sinh(absV);
T ch = std::cosh(absV);
T d = ni * c * sh / Zeps(absV);
helper.Out.x = s * ch * ni;
helper.Out.y = -(d * helper.In.y);
helper.Out.z = -(d * helper.In.z);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t absV = Hypot(vIn.y, vIn.z);\n"
<< "\t\treal_t ni = " << weight << " / Zeps(fma(vIn.z, vIn.z, precalcSumSquares));\n"
<< "\t\treal_t s = sin(vIn.x);\n"
<< "\t\treal_t c = cos(vIn.x);\n"
<< "\t\treal_t sh = sinh(absV);\n"
<< "\t\treal_t ch = cosh(absV);\n"
<< "\t\treal_t d = ni * c * sh / Zeps(absV);\n"
<< "\n"
<< "\t\tvOut.x = s * ch * ni;\n"
<< "\t\tvOut.y = -(d * vIn.y);\n"
<< "\t\tvOut.z = -(d * vIn.z);\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot", "Zeps" };
}
};
/// <summary>
/// cschq.
/// </summary>
template <typename T>
class CschqVariation : public Variation<T>
{
public:
CschqVariation(T weight = 1.0) : Variation<T>("cschq", eVariationId::VAR_CSCHQ, weight, true) { }
VARCOPY(CschqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T absV = VarFuncs<T>::Hypot(helper.In.y, helper.In.z);
T ni = m_Weight / Zeps(helper.m_PrecalcSumSquares + SQR(helper.In.z));
T s = std::sin(absV);
T c = std::cos(absV);
T sh = std::sinh(helper.In.x);
T ch = std::cosh(helper.In.x);
T d = ni * ch * s / Zeps(absV);
helper.Out.x = sh * c * ni;
helper.Out.y = -(d * helper.In.y);
helper.Out.z = -(d * helper.In.z);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t absV = Hypot(vIn.y, vIn.z);\n"
<< "\t\treal_t ni = " << weight << " / Zeps(fma(vIn.z, vIn.z, precalcSumSquares));\n"
<< "\t\treal_t s = sin(absV);\n"
<< "\t\treal_t c = cos(absV);\n"
<< "\t\treal_t sh = sinh(vIn.x);\n"
<< "\t\treal_t ch = cosh(vIn.x);\n"
<< "\t\treal_t d = ni * ch * s / Zeps(absV);\n"
<< "\n"
<< "\t\tvOut.x = sh * c * ni;\n"
<< "\t\tvOut.y = -(d * vIn.y);\n"
<< "\t\tvOut.z = -(d * vIn.z);\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot", "Zeps" };
}
};
/// <summary>
/// estiq.
/// </summary>
template <typename T>
class EstiqVariation : public Variation<T>
{
public:
EstiqVariation(T weight = 1.0) : Variation<T>("estiq", eVariationId::VAR_ESTIQ, weight) { }
VARCOPY(EstiqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T absV = VarFuncs<T>::Hypot(helper.In.y, helper.In.z);
T e = std::exp(helper.In.x);
T s = std::sin(absV);
T c = std::cos(absV);
T a = e * s / Zeps(absV);
helper.Out.x = m_Weight * e * c;
helper.Out.y = m_Weight * a * helper.In.y;
helper.Out.z = m_Weight * a * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t absV = Hypot(vIn.y, vIn.z);\n"
<< "\t\treal_t e = exp(vIn.x);\n"
<< "\t\treal_t s = sin(absV);\n"
<< "\t\treal_t c = cos(absV);\n"
<< "\t\treal_t a = e * s / Zeps(absV);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * e * c;\n"
<< "\t\tvOut.y = " << weight << " * a * vIn.y;\n"
<< "\t\tvOut.z = " << weight << " * a * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot", "Zeps" };
}
};
/// <summary>
/// loq.
/// </summary>
template <typename T>
class LoqVariation : public ParametricVariation<T>
{
public:
LoqVariation(T weight = 1.0) : ParametricVariation<T>("loq", eVariationId::VAR_LOQ, weight)
{
Init();
}
PARVARCOPY(LoqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T absV = VarFuncs<T>::Hypot(helper.In.y, helper.In.z);
T c = m_Weight * std::atan2(absV, helper.In.x) / Zeps(absV);
helper.Out.x = std::log(SQR(helper.In.x) + SQR(absV)) * m_Denom;
helper.Out.y = c * helper.In.y;
helper.Out.z = c * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string base = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string denom = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t absV = Hypot(vIn.y, vIn.z);\n"
<< "\t\treal_t c = " << weight << " * atan2(absV, vIn.x) / Zeps(absV);\n"
<< "\n"
<< "\t\tvOut.x = log(fma(vIn.x, vIn.x, SQR(absV))) * " << denom << ";\n"
<< "\t\tvOut.y = c * vIn.y;\n"
<< "\t\tvOut.z = c * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot", "Zeps" };
}
virtual void Precalc() override
{
m_Denom = T(0.5) / std::log(m_Base);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Base, prefix + "loq_base", T(M_E), eParamType::REAL, EPS, TMAX));
m_Params.push_back(ParamWithName<T>(true, &m_Denom, prefix + "loq_denom"));//Precalc.
}
private:
T m_Base;
T m_Denom;//Precalc.
};
/// <summary>
/// curvature.
/// </summary>
template <typename T>
class CurvatureVariation : public Variation<T>
{
public:
CurvatureVariation(T weight = 1.0) : Variation<T>("curvature", eVariationId::VAR_CURVATURE, weight, true, true, false, false, true) { }
VARCOPY(CurvatureVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = m_Weight / Zeps(helper.m_PrecalcSqrtSumSquares);
helper.Out.y = helper.m_PrecalcAtanyx;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\tvOut.x = " << weight << " / Zeps(precalcSqrtSumSquares);\n"
<< "\t\tvOut.y = precalcAtanyx;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
};
/// <summary>
/// q_ode.
/// </summary>
template <typename T>
class QodeVariation : public ParametricVariation<T>
{
public:
QodeVariation(T weight = 1.0) : ParametricVariation<T>("q_ode", eVariationId::VAR_Q_ODE, weight)
{
Init();
}
PARVARCOPY(QodeVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T sqx = SQR(helper.In.x);
T sqy = SQR(helper.In.y);
T xy = helper.In.x * helper.In.y;
helper.Out.x = (m_Q01 + m_Weight * m_Q02 * helper.In.x + m_Q03 * sqx) +
(m_Q04 * xy + m_Q05 * helper.In.y + m_Q06 * sqy);
helper.Out.y = (m_Q07 + m_Q08 * helper.In.x + m_Q09 * sqx) +
(m_Q10 * xy + m_Weight * m_Q11 * helper.In.y + m_Q12 * sqy);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string q01 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q02 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q03 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q04 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q05 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q06 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q07 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q08 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q09 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q10 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q11 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q12 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t sqx = SQR(vIn.x);\n"
<< "\t\treal_t sqy = SQR(vIn.y);\n"
<< "\t\treal_t xy = vIn.x * vIn.y;\n"
<< "\n"
<< "\t\tvOut.x = (" << q01 << " + fma(" << weight << ", " << q02 << " * vIn.x, " << q03 << " * sqx)) + \n"
<< "\t\t fma(" << q04 << ", xy, fma(" << q05 << ", vIn.y, " << q06 << " * sqy));\n"
<< "\t\tvOut.y = (" << q07 << " + fma(" << q08 << ", vIn.x, " << q09 << " * sqx)) + \n"
<< "\t\t fma(" << q10 << ", xy, fma(" << weight << ", " << q11 << " * vIn.y, " << q12 << " * sqy));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Q01, prefix + "q_ode01", 1));
m_Params.push_back(ParamWithName<T>(&m_Q02, prefix + "q_ode02", -1));
m_Params.push_back(ParamWithName<T>(&m_Q03, prefix + "q_ode03"));
m_Params.push_back(ParamWithName<T>(&m_Q04, prefix + "q_ode04"));
m_Params.push_back(ParamWithName<T>(&m_Q05, prefix + "q_ode05"));
m_Params.push_back(ParamWithName<T>(&m_Q06, prefix + "q_ode06"));
m_Params.push_back(ParamWithName<T>(&m_Q07, prefix + "q_ode07", 1));
m_Params.push_back(ParamWithName<T>(&m_Q08, prefix + "q_ode08"));
m_Params.push_back(ParamWithName<T>(&m_Q09, prefix + "q_ode09"));
m_Params.push_back(ParamWithName<T>(&m_Q10, prefix + "q_ode10"));
m_Params.push_back(ParamWithName<T>(&m_Q11, prefix + "q_ode11"));
m_Params.push_back(ParamWithName<T>(&m_Q12, prefix + "q_ode12"));
}
private:
T m_Q01;
T m_Q02;
T m_Q03;
T m_Q04;
T m_Q05;
T m_Q06;
T m_Q07;
T m_Q08;
T m_Q09;
T m_Q10;
T m_Q11;
T m_Q12;
};
/// <summary>
/// blur_heart.
/// </summary>
template <typename T>
class BlurHeartVariation : public ParametricVariation<T>
{
public:
BlurHeartVariation(T weight = 1.0) : ParametricVariation<T>("blur_heart", eVariationId::VAR_BLUR_HEART, weight)
{
Init();
}
PARVARCOPY(BlurHeartVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T xx = (rand.Frand01<T>() - T(0.5)) * 2;
T yy = (rand.Frand01<T>() - T(0.5)) * 2;
T k = VarFuncs<T>::SignNz(yy);
T yymax = ((m_A * std::pow(std::abs(xx), m_P) + k * m_B * std::sqrt(std::abs(1 - SQR(xx)))) - m_A);
//The function must be in a range 0-1 to work properly.
yymax /= Zeps(std::abs(m_A) + std::abs(m_B));
//Quick and dirty way to force y to be in range without altering the density.
if (k > 0)
{
if (yy > yymax)
yy = yymax;
}
else
{
if (yy < yymax)
yy = yymax;
}
helper.Out.x = xx * m_Weight;
helper.Out.y = yy * m_Weight;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t xx = (MwcNext01(mwc) - (real_t)(0.5)) * 2;\n"
<< "\t\treal_t yy = (MwcNext01(mwc) - (real_t)(0.5)) * 2;\n"
<< "\t\treal_t k = SignNz(yy);\n"
<< "\t\treal_t yymax = ((" << a << " * pow(fabs(xx), " << p << ") + k * " << b << " * sqrt(fabs(1 - SQR(xx)))) - " << a << ");\n"
<< "\n"
<< "\t\tyymax /= Zeps(fabs(" << a << ") + fabs(" << b << "));\n"
<< "\n"
<< "\t\tif (k > 0)\n"
<< "\t\t{\n"
<< "\t\t if (yy > yymax)\n"
<< "\t\t yy = yymax;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (yy < yymax)\n"
<< "\t\t yy = yymax;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = xx * " << weight << ";\n"
<< "\t\tvOut.y = yy * " << weight << ";\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "SignNz", "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_P, prefix + "blur_heart_p", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "blur_heart_a", T(-T(0.6))));
m_Params.push_back(ParamWithName<T>(&m_B, prefix + "blur_heart_b", T(0.7)));
}
private:
T m_P;
T m_A;
T m_B;
};
/// <summary>
/// Truchet.
/// </summary>
template <typename T>
class TruchetVariation : public ParametricVariation<T>
{
public:
TruchetVariation(T weight = 1.0) : ParametricVariation<T>("Truchet", eVariationId::VAR_TRUCHET, weight)
{
Init();
}
PARVARCOPY(TruchetVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
int extended = int(m_Extended);
T seed = m_AbsSeed;
T r = -m_Rotation;
T r0 = 0;
T r1 = 0;
T tileType = 0;
T randInt = 0;
T modBase = 65535;
T multiplier = 32747;
T offset = 12345;
T niter = 0;
T x = helper.In.x * m_Scale;
T y = helper.In.y * m_Scale;
int intx = int(Round(x));
int inty = int(Round(y));
int randiter;
r = x - intx;
if (r < 0)
x = 1 + r;
else
x = r;
r = y - inty;
if (r < 0)
y = 1 + r;
else
y = r;
//Calculate the tile type.
if (seed == 0)
tileType = 0;
else if (seed == 1)
tileType = 1;
else
{
if (extended == 0)
{
T xrand = Round(helper.In.x);
T yrand = Round(helper.In.y);
xrand = xrand * m_Seed2;
yrand = yrand * m_Seed2;
niter = xrand + yrand + xrand * yrand;
randInt = (niter + seed) * m_Seed2 / 2;
randInt = fmod((randInt * multiplier + offset), modBase);
}
else
{
int xrand = int(Round(helper.In.x));
int yrand = int(Round(helper.In.y));
seed = T(Floor<T>(seed));
niter = T(abs(xrand + yrand + xrand * yrand));
randInt = seed + niter;
randiter = 0;
while (randiter < niter && randiter < 20)//Allow it to escape.
{
randiter++;
randInt = fmod((randInt * multiplier + offset), modBase);
}
}
tileType = fmod(randInt, T(2));
}
//Drawing the points.
if (extended == 0)//Fast drawmode
{
if (tileType < 1)
{
r0 = std::pow((pow(std::abs(x), m_Exponent) + std::pow(std::abs(y), m_Exponent)), m_OneOverEx);
r1 = std::pow((pow(std::abs(x - 1), m_Exponent) + std::pow(std::abs(y - 1), m_Exponent)), m_OneOverEx);
}
else
{
r0 = std::pow((pow(std::abs(x - 1), m_Exponent) + std::pow(std::abs(y), m_Exponent)), m_OneOverEx);
r1 = std::pow((pow(std::abs(x), m_Exponent) + std::pow(std::abs(y - 1), m_Exponent)), m_OneOverEx);
}
}
else//Slow drawmode
{
if (tileType == 1)
{
r0 = std::pow((std::pow(std::abs(x), m_Exponent) + std::pow(std::abs(y), m_Exponent)), m_OneOverEx);
r1 = std::pow((std::pow(std::abs(x - 1), m_Exponent) + std::pow(std::abs(y - 1), m_Exponent)), m_OneOverEx);
}
else
{
r0 = std::pow((std::pow(std::abs(x - 1), m_Exponent) + std::pow(std::abs(y), m_Exponent)), m_OneOverEx);
r1 = std::pow((std::pow(std::abs(x), m_Exponent) + std::pow(std::abs(y - 1), m_Exponent)), m_OneOverEx);
}
}
r = std::abs(r0 - T(0.5)) * m_OneOverRmax;
if (r < 1)
{
helper.Out.x = m_Size * (x + Floor<T>(helper.In.x));
helper.Out.y = m_Size * (y + Floor<T>(helper.In.y));
}
else
{
helper.Out.x = 0;//Needed because of possible sum below.
helper.Out.y = 0;
}
r = std::abs(r1 - T(0.5)) * m_OneOverRmax;
if (r < 1)
{
helper.Out.x += m_Size * (x + Floor<T>(helper.In.x));//The += is intended here.
helper.Out.y += m_Size * (y + Floor<T>(helper.In.y));
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string extended = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string exponent = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string arcWidth = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rotation = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string size = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seed = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string oneOverEx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absSeed = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seed2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string oneOverRmax = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tint extended = (int)" << extended << ";\n"
<< "\t\treal_t seed = " << absSeed << ";\n"
<< "\t\treal_t r = -" << rotation << ";\n"
<< "\t\treal_t r0 = 0;\n"
<< "\t\treal_t r1 = 0;\n"
<< "\t\treal_t tileType = 0;\n"
<< "\t\treal_t randInt = 0;\n"
<< "\t\treal_t modBase = 65535;\n"
<< "\t\treal_t multiplier = 32747;\n"
<< "\t\treal_t offset = 12345;\n"
<< "\t\treal_t niter = 0;\n"
<< "\t\treal_t x = vIn.x * " << scale << ";\n"
<< "\t\treal_t y = vIn.y * " << scale << ";\n"
<< "\t\tint intx = (int)Round(x);\n"
<< "\t\tint inty = (int)Round(y);\n"
<< "\t\tint randiter;\n"
<< "\n"
<< "\t\tr = x - intx;\n"
<< "\n"
<< "\t\tif (r < 0)\n"
<< "\t\t x = 1 + r;\n"
<< "\t\telse\n"
<< "\t\t x = r;\n"
<< "\n"
<< "\t\tr = y - inty;\n"
<< "\n"
<< "\t\tif (r < 0)\n"
<< "\t\t y = 1 + r;\n"
<< "\t\telse\n"
<< "\t\t y = r;\n"
<< "\n"
<< "\t\tif (seed == 0)\n"
<< "\t\t tileType = 0;\n"
<< "\t\telse if (seed == 1)\n"
<< "\t\t tileType = 1;\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (extended == 0)\n"
<< "\t\t {\n"
<< "\t\t real_t xrand = Round(vIn.x);\n"
<< "\t\t real_t yrand = Round(vIn.y);\n"
<< "\n"
<< "\t\t xrand = xrand * " << seed2 << ";\n"
<< "\t\t yrand = yrand * " << seed2 << ";\n"
<< "\t\t niter = fma(xrand, yrand, xrand + yrand);\n"
<< "\t\t randInt = (niter + seed) * " << seed2 << " / 2;\n"
<< "\t\t randInt = fmod(fma(randInt, multiplier, offset), modBase);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t int xrand = (int)Round(vIn.x);\n"
<< "\t\t int yrand = (int)Round(vIn.y);\n"
<< "\n"
<< "\t\t seed = floor(seed);\n"
<< "\t\t niter = (real_t)abs(xrand + yrand + xrand * yrand);\n"
<< "\t\t randInt = seed + niter;\n"
<< "\t\t randiter = 0;\n"
<< "\n"
<< "\t\t while (randiter < niter && randiter < 20)\n"
<< "\t\t {\n"
<< "\t\t randiter++;\n"
<< "\t\t randInt = fmod((randInt * multiplier + offset), modBase);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\n"
<< "\t\t tileType = fmod(randInt, 2);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (extended == 0)\n"
<< "\t\t{\n"
<< "\t\t if (tileType < 1)\n"
<< "\t\t {\n"
<< "\t\t r0 = pow((pow(fabs(x ), " << exponent << ") + pow(fabs(y ), " << exponent << ")), " << oneOverEx << ");\n"
<< "\t\t r1 = pow((pow(fabs(x - 1), " << exponent << ") + pow(fabs(y - 1), " << exponent << ")), " << oneOverEx << ");\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t r0 = pow((pow(fabs(x - 1), " << exponent << ") + pow(fabs(y ), " << exponent << ")), " << oneOverEx << ");\n"
<< "\t\t r1 = pow((pow(fabs(x ), " << exponent << ") + pow(fabs(y - 1), " << exponent << ")), " << oneOverEx << ");\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (tileType == 1)\n"
<< "\t\t {\n"
<< "\t\t r0 = pow((pow(fabs(x ), " << exponent << ") + pow(fabs(y ), " << exponent << ")), " << oneOverEx << ");\n"
<< "\t\t r1 = pow((pow(fabs(x - 1), " << exponent << ") + pow(fabs(y - 1), " << exponent << ")), " << oneOverEx << ");\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t r0 = pow((pow(fabs(x - 1), " << exponent << ") + pow(fabs(y ), " << exponent << ")), " << oneOverEx << ");\n"
<< "\t\t r1 = pow((pow(fabs(x ), " << exponent << ") + pow(fabs(y - 1), " << exponent << ")), " << oneOverEx << ");\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tr = fabs(r0 - (real_t)(0.5)) * " << oneOverRmax << ";\n"
<< "\n"
<< "\t\tif (r < 1)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << size << " * (x + floor(vIn.x));\n"
<< "\t\t vOut.y = " << size << " * (y + floor(vIn.y));\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t vOut.x = (real_t)(0.0);\n"
<< "\t\t vOut.y = (real_t)(0.0);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tr = fabs(r1 - (real_t)(0.5)) * " << oneOverRmax << ";\n"
<< "\n"
<< "\t\tif (r < 1)\n"
<< "\t\t{\n"
<< "\t\t vOut.x += " << size << " * (x + floor(vIn.x));\n"
<< "\t\t vOut.y += " << size << " * (y + floor(vIn.y));\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Round" };
}
virtual void Precalc() override
{
m_OneOverEx = 1 / m_Exponent;
m_AbsSeed = std::abs(m_Seed);
m_Seed2 = std::sqrt(Zeps(m_AbsSeed + (m_AbsSeed / 2))) / Zeps((m_AbsSeed * T(0.5))) * T(0.25);
m_OneOverRmax = 1 / (T(0.5) * (std::pow(T(2), 1 / m_Exponent) - 1) * m_ArcWidth);
m_Scale = (std::cos(-m_Rotation) - std::sin(-m_Rotation)) / m_Weight;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Extended, prefix + "Truchet_extended", 0, eParamType::INTEGER, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_Exponent, prefix + "Truchet_exponent", 2, eParamType::REAL_CYCLIC, T(0.001), 2));
m_Params.push_back(ParamWithName<T>(&m_ArcWidth, prefix + "Truchet_arc_width", T(0.5), eParamType::REAL_CYCLIC, T(0.001), 1));
m_Params.push_back(ParamWithName<T>(&m_Rotation, prefix + "Truchet_rotation"));
m_Params.push_back(ParamWithName<T>(&m_Size, prefix + "Truchet_size", 1, eParamType::REAL_CYCLIC, T(0.001), 10));
m_Params.push_back(ParamWithName<T>(&m_Seed, prefix + "Truchet_seed", 50));
m_Params.push_back(ParamWithName<T>(true, &m_OneOverEx, prefix + "Truchet_one_over_ex"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_AbsSeed, prefix + "Truchet_abs_seed"));
m_Params.push_back(ParamWithName<T>(true, &m_Seed2, prefix + "Truchet_seed2"));
m_Params.push_back(ParamWithName<T>(true, &m_OneOverRmax, prefix + "Truchet_one_over_rmax"));
m_Params.push_back(ParamWithName<T>(true, &m_Scale, prefix + "Truchet_scale"));
}
private:
T m_Extended;
T m_Exponent;
T m_ArcWidth;
T m_Rotation;
T m_Size;
T m_Seed;
T m_OneOverEx;//Precalc.
T m_AbsSeed;
T m_Seed2;
T m_OneOverRmax;
T m_Scale;
};
/// <summary>
/// gdoffs.
/// </summary>
template <typename T>
class GdoffsVariation : public ParametricVariation<T>
{
public:
GdoffsVariation(T weight = 1.0) : ParametricVariation<T>("gdoffs", eVariationId::VAR_GDOFFS, weight)
{
Init();
}
PARVARCOPY(GdoffsVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T oscX = GdoffsFosc(m_Dx, 1);
T oscY = GdoffsFosc(m_Dy, 1);
T inX = helper.In.x + m_Cx;
T inY = helper.In.y + m_Cy;
T outX;
T outY;
if (m_Square != 0)
{
outX = GdoffsFlip(GdoffsFlip(inX, GdoffsFosc(inX, 4), oscX), GdoffsFosc(GdoffsFclp(m_B * inX), 4), oscX);
outY = GdoffsFlip(GdoffsFlip(inY, GdoffsFosc(inY, 4), oscX), GdoffsFosc(GdoffsFclp(m_B * inY), 4), oscX);
}
else
{
outX = GdoffsFlip(GdoffsFlip(inX, GdoffsFosc(inX, 4), oscX), GdoffsFosc(GdoffsFclp(m_B * inX), 4), oscX);
outY = GdoffsFlip(GdoffsFlip(inY, GdoffsFosc(inY, 4), oscY), GdoffsFosc(GdoffsFclp(m_B * inY), 4), oscY);
}
helper.Out.x = m_Weight * outX;
helper.Out.y = m_Weight * outY;
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string deltaX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string deltaY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string areaX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string areaY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centerX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centerY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string gamma = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string square = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ax = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ay = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t oscX = GdoffsFosc_(" << dx << ", 1);\n"
<< "\t\treal_t oscY = GdoffsFosc_(" << dy << ", 1);\n"
<< "\t\treal_t inX = vIn.x + " << cx << ";\n"
<< "\t\treal_t inY = vIn.y + " << cy << ";\n"
<< "\t\treal_t outX;\n"
<< "\t\treal_t outY;\n"
<< "\n"
<< "\t\tif (" << square << " != 0)\n"
<< "\t\t{\n"
<< "\t\t outX = GdoffsFlip(GdoffsFlip(inX, GdoffsFosc_(inX, 4), oscX), GdoffsFosc_(GdoffsFclp(" << b << " * inX), 4), oscX);\n"
<< "\t\t outY = GdoffsFlip(GdoffsFlip(inY, GdoffsFosc_(inY, 4), oscX), GdoffsFosc_(GdoffsFclp(" << b << " * inY), 4), oscX);\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t outX = GdoffsFlip(GdoffsFlip(inX, GdoffsFosc_(inX, 4), oscX), GdoffsFosc_(GdoffsFclp(" << b << " * inX), 4), oscX);\n"
<< "\t\t outY = GdoffsFlip(GdoffsFlip(inY, GdoffsFosc_(inY, 4), oscY), GdoffsFosc_(GdoffsFclp(" << b << " * inY), 4), oscY);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * outX;\n"
<< "\t\tvOut.y = " << weight << " * outY;\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual string OpenCLFuncsString() const override
{
return
"inline real_t GdoffsFcip(real_t a) { return (real_t)((a < 0) ? -((int)(fabs(a)) + 1) : 0) + ((a > 1) ? ((int)(a)) : 0); }\n"
"inline real_t GdoffsFclp(real_t a) { return ((a < 0) ? -(fmod(fabs(a), 1)) : fmod(fabs(a), 1)); }\n"
"inline real_t GdoffsFscl(real_t a) { return GdoffsFclp((a + 1) / 2); }\n"
"inline real_t GdoffsFosc_(real_t p, real_t a) { return GdoffsFscl(-1 * cos(p * a * M_2PI)); }\n"//Underscore added to name to prevent false detection with the global function Fosc() in TestGlobalFuncs() in EmberTester.
"inline real_t GdoffsFlip(real_t a, real_t b, real_t c) { return fma(c, (b - a), a); }\n"
"\n";
}
virtual void Precalc() override
{
const T agdod = T(0.1);
const T agdoa = 2;
const T agdoc = 1;
m_Dx = m_DeltaX * agdod;
m_Dy = m_DeltaY * agdod;
m_Ax = ((std::abs(m_AreaX) < 0.1) ? T(0.1) : std::abs(m_AreaX)) * agdoa;
m_Ay = ((std::abs(m_AreaY) < 0.1) ? T(0.1) : std::abs(m_AreaY)) * agdoa;
m_Cx = m_CenterX * agdoc;
m_Cy = m_CenterY * agdoc;
m_B = m_Gamma * agdoa / (std::max(m_Ax, m_Ay));
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_DeltaX, prefix + "gdoffs_delta_x", 0, eParamType::REAL, 0, 16));
m_Params.push_back(ParamWithName<T>(&m_DeltaY, prefix + "gdoffs_delta_y", 0, eParamType::REAL, 0, 16));
m_Params.push_back(ParamWithName<T>(&m_AreaX, prefix + "gdoffs_area_x", 2));
m_Params.push_back(ParamWithName<T>(&m_AreaY, prefix + "gdoffs_area_y", 2));
m_Params.push_back(ParamWithName<T>(&m_CenterX, prefix + "gdoffs_center_x"));
m_Params.push_back(ParamWithName<T>(&m_CenterY, prefix + "gdoffs_center_y"));
m_Params.push_back(ParamWithName<T>(&m_Gamma, prefix + "gdoffs_gamma", 1, eParamType::INTEGER, 1, 6));
m_Params.push_back(ParamWithName<T>(&m_Square, prefix + "gdoffs_square", 0, eParamType::INTEGER, 0, 1));
m_Params.push_back(ParamWithName<T>(true, &m_Dx, prefix + "gdoffs_dx"));
m_Params.push_back(ParamWithName<T>(true, &m_Ax, prefix + "gdoffs_ax"));
m_Params.push_back(ParamWithName<T>(true, &m_Cx, prefix + "gdoffs_cx"));
m_Params.push_back(ParamWithName<T>(true, &m_Dy, prefix + "gdoffs_dyd"));
m_Params.push_back(ParamWithName<T>(true, &m_Ay, prefix + "gdoffs_ay"));
m_Params.push_back(ParamWithName<T>(true, &m_Cy, prefix + "gdoffs_cy"));
m_Params.push_back(ParamWithName<T>(true, &m_B, prefix + "gdoffs_b"));
}
private:
static inline T GdoffsFcip(T a) { return T((a < 0) ? -(int(std::abs(a)) + 1) : 0) + ((a > 1) ? (int(a)) : 0); }
static inline T GdoffsFclp(T a) { return ((a < 0) ? -(fmod(std::abs(a), T(1))) : fmod(std::abs(a), T(1))); }
static inline T GdoffsFscl(T a) { return GdoffsFclp((a + 1) / 2); }
static inline T GdoffsFosc(T p, T a) { return GdoffsFscl(-1 * std::cos(p * a * M_2PI)); }
static inline T GdoffsFlip(T a, T b, T c) { return (c * (b - a) + a); }
T m_DeltaX;//Params.
T m_DeltaY;
T m_AreaX;
T m_AreaY;
T m_CenterX;
T m_CenterY;
T m_Gamma;
T m_Square;
T m_Dx;//Precalc.
T m_Ax;
T m_Cx;
T m_Dy;
T m_Ay;
T m_Cy;
T m_B;
};
/// <summary>
/// octagon.
/// </summary>
template <typename T>
class OctagonVariation : public ParametricVariation<T>
{
public:
OctagonVariation(T weight = 1.0) : ParametricVariation<T>("octagon", eVariationId::VAR_OCTAGON, weight)
{
Init();
}
PARVARCOPY(OctagonVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x2 = SQR(helper.In.x);
T y2 = SQR(helper.In.y);
T z2 = SQR(helper.In.z);
T r = m_Weight / Zeps(SQR(x2) + z2 + SQR(y2) + z2);
if (r < 2)
{
helper.Out.x = r * helper.In.x;
helper.Out.y = r * helper.In.y;
helper.Out.z = r * helper.In.z;
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
helper.Out.z = m_Weight * helper.In.z;
T t = m_Weight / Zeps(std::sqrt(SQR(helper.In.x)) + std::sqrt(helper.In.z) + std::sqrt(SQR(helper.In.y)) + std::sqrt(helper.In.z));
if (r >= 0)
{
helper.Out.x = t * helper.In.x;
helper.Out.y = t * helper.In.y;
helper.Out.z = t * helper.In.z;
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
helper.Out.z = m_Weight * helper.In.z;
}
if (helper.In.x >= 0)
helper.Out.x = m_Weight * (helper.In.x + m_X);
else
helper.Out.x = m_Weight * (helper.In.x - m_X);
if (helper.In.y >= 0)
helper.Out.y = m_Weight * (helper.In.y + m_Y);
else
helper.Out.y = m_Weight * (helper.In.y - m_Y);
if (helper.In.z >= 0)
helper.Out.z = m_Weight * (helper.In.z + m_Z);
else
helper.Out.z = m_Weight * (helper.In.z - m_Z);
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x2 = SQR(vIn.x);\n"
<< "\t\treal_t y2 = SQR(vIn.y);\n"
<< "\t\treal_t z2 = SQR(vIn.z);\n"
<< "\t\treal_t r = " << weight << " / Zeps(fma(x2, x2, z2) + fma(y2, y2, z2));\n"
<< "\n"
<< "\t\tif (r < 2)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = r * vIn.x;\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t vOut.z = r * vIn.z;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t vOut.z = " << weight << " * vIn.z;\n"
<< "\n"
<< "\t\t real_t t = " << weight << " / Zeps(sqrt(SQR(vIn.x)) + sqrt(vIn.z) + sqrt(SQR(vIn.y)) + sqrt(vIn.z));\n"
<< "\n"
<< "\t\t if (r >= 0)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = t * vIn.x;\n"
<< "\t\t vOut.y = t * vIn.y;\n"
<< "\t\t vOut.z = t * vIn.z;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t vOut.z = " << weight << " * vIn.z;\n"
<< "\t\t }\n"
<< "\n"
<< "\t\t if (vIn.x >= 0)\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x + " << x << ");\n"
<< "\t\t else\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x - " << x << ");\n"
<< "\n"
<< "\t\t if (vIn.y >= 0)\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y + " << y << ");\n"
<< "\t\t else\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y - " << y << ");\n"
<< "\n"
<< "\t\t if (vIn.z >= 0)\n"
<< "\t\t vOut.z = " << weight << " * (vIn.z + " << z << ");\n"
<< "\t\t else\n"
<< "\t\t vOut.z = " << weight << " * (vIn.z - " << z << ");\n"
<< "\t\t}\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "octagon_x"));//Original used a prefix of octa_, which is incompatible with Ember's design.
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "octagon_y"));
m_Params.push_back(ParamWithName<T>(&m_Z, prefix + "octagon_z"));
}
private:
T m_X;
T m_Y;
T m_Z;
};
/// <summary>
/// trade.
/// </summary>
template <typename T>
class TradeVariation : public ParametricVariation<T>
{
public:
TradeVariation(T weight = 1.0) : ParametricVariation<T>("trade", eVariationId::VAR_TRADE, weight)
{
Init();
}
PARVARCOPY(TradeVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r, temp, c1mx;
if (helper.In.x > 0)
{
c1mx = m_C1 - helper.In.x;
r = std::sqrt(SQR(c1mx) + SQR(helper.In.y));
if (r <= m_R1)
{
r *= m_R2 / m_R1;
temp = std::atan2(helper.In.y, c1mx);
helper.Out.x = m_Weight * (r * std::cos(temp) - m_C2);
helper.Out.y = m_Weight * r * std::sin(temp);
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
}
}
else
{
c1mx = -m_C2 - helper.In.x;
r = std::sqrt(SQR(c1mx) + SQR(helper.In.y));
if (r <= m_R2)
{
r *= m_R1 / m_R2;
temp = std::atan2(helper.In.y, c1mx);
helper.Out.x = m_Weight * (r * std::cos(temp) + m_C1);
helper.Out.y = m_Weight * r * std::sin(temp);
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string r1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string d1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string r2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string d2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r, temp, c1mx;\n"
<< "\n"
<< "\t\tif (vIn.x > 0)\n"
<< "\t\t{\n"
<< "\t\t c1mx = " << c1 << " - vIn.x;\n"
<< "\t\t r = sqrt(fma(c1mx, c1mx, SQR(vIn.y)));\n"
<< "\n"
<< "\t\t if (r <= " << r1 << ")\n"
<< "\t\t {\n"
<< "\t\t r *= " << r2 << " / " << r1 << ";\n"
<< "\t\t temp = atan2(vIn.y, c1mx);\n"
<< "\n"
<< "\t\t vOut.x = " << weight << " * fma(r, cos(temp), -" << c2 << ");\n"
<< "\t\t vOut.y = " << weight << " * r * sin(temp);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t c1mx = -" << c2 << " - vIn.x;\n"
<< "\t\t r = sqrt(fma(c1mx, c1mx, SQR(vIn.y)));\n"
<< "\n"
<< "\t\t if (r <= " << r2 << ")\n"
<< "\t\t {\n"
<< "\t\t r *= " << r1 << " / " << r2 << ";\n"
<< "\t\t temp = atan2(vIn.y, c1mx);\n"
<< "\n"
<< "\t\t vOut.x = " << weight << " * fma(r, cos(temp), " << c1 << ");\n"
<< "\t\t vOut.y = " << weight << " * r * sin(temp);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_C1 = m_R1 + m_D1;
m_C2 = m_R2 + m_D2;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_R1, prefix + "trade_r1", 1, eParamType::REAL, EPS, TMAX));
m_Params.push_back(ParamWithName<T>(&m_D1, prefix + "trade_d1", 1, eParamType::REAL, 0, TMAX));
m_Params.push_back(ParamWithName<T>(&m_R2, prefix + "trade_r2", 1, eParamType::REAL, EPS, TMAX));
m_Params.push_back(ParamWithName<T>(&m_D2, prefix + "trade_d2", 1, eParamType::REAL, 0, TMAX));
m_Params.push_back(ParamWithName<T>(true, &m_C1, prefix + "trade_c1"));
m_Params.push_back(ParamWithName<T>(true, &m_C2, prefix + "trade_c2"));
}
private:
T m_R1;
T m_D1;
T m_R2;
T m_D2;
T m_C1;//Precalc.
T m_C2;
};
/// <summary>
/// Juliac.
/// </summary>
template <typename T>
class JuliacVariation : public ParametricVariation<T>
{
public:
JuliacVariation(T weight = 1.0) : ParametricVariation<T>("Juliac", eVariationId::VAR_JULIAC, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(JuliacVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T arg = helper.m_PrecalcAtanyx + fmod(T(rand.Rand()), T(1 / m_ReInv)) * M_2PI;
T lnmod = m_Dist * T(0.5) * std::log(helper.m_PrecalcSumSquares);
T temp = arg * m_ReInv + lnmod * m_Im100;
T mod2 = std::exp(lnmod * m_ReInv - arg * m_Im100);
helper.Out.x = m_Weight * mod2 * std::cos(temp);
helper.Out.y = m_Weight * mod2 * std::sin(temp);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string re = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string im = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string reInv = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string im100 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t arg = fma(fmod((real_t)MwcNext(mwc), (real_t)(1 / " << reInv << ")), M_2PI, precalcAtanyx);\n"
<< "\t\treal_t lnmod = " << dist << " * (real_t)(0.5) * log(precalcSumSquares);\n"
<< "\t\treal_t temp = fma(arg, " << reInv << ", lnmod * " << im100 << ");\n"
<< "\t\treal_t mod2 = exp(fma(lnmod, " << reInv << ", -(arg * " << im100 << ")));\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * mod2 * cos(temp);\n"
<< "\t\tvOut.y = " << weight << " * mod2 * sin(temp);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_ReInv = 1 / Zeps(m_Re);
m_Im100 = m_Im * T(0.01);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Re, prefix + "Juliac_re", 2));
m_Params.push_back(ParamWithName<T>(&m_Im, prefix + "Juliac_im", 1));
m_Params.push_back(ParamWithName<T>(&m_Dist, prefix + "Juliac_dist", 1));
m_Params.push_back(ParamWithName<T>(true, &m_ReInv, prefix + "Juliac_re_inv"));
m_Params.push_back(ParamWithName<T>(true, &m_Im100, prefix + "Juliac_im100"));
}
private:
T m_Re;
T m_Im;
T m_Dist;
T m_ReInv;
T m_Im100;
};
/// <summary>
/// blade3D.
/// </summary>
template <typename T>
class Blade3DVariation : public Variation<T>
{
public:
Blade3DVariation(T weight = 1.0) : Variation<T>("blade3D", eVariationId::VAR_BLADE3D, weight, true, true) { }
VARCOPY(Blade3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = rand.Frand01<T>() * m_Weight * helper.m_PrecalcSqrtSumSquares;
T sinr, cosr;
sincos(r, &sinr, &cosr);
helper.Out.x = m_Weight * helper.In.x * (cosr + sinr);
helper.Out.y = m_Weight * helper.In.x * (cosr - sinr);
helper.Out.z = m_Weight * helper.In.z * (sinr - cosr);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t r = MwcNext01(mwc) * " << weight << " * precalcSqrtSumSquares;\n"
<< "\t\treal_t sinr = sin(r);\n"
<< "\t\treal_t cosr = cos(r);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * vIn.x * (cosr + sinr);\n"
<< "\t\tvOut.y = " << weight << " * vIn.x * (cosr - sinr);\n"
<< "\t\tvOut.z = " << weight << " * vIn.z * (sinr - cosr);\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Blob3D.
/// </summary>
template <typename T>
class Blob3DVariation : public ParametricVariation<T>
{
public:
Blob3DVariation(T weight = 1.0) : ParametricVariation<T>("blob3D", eVariationId::VAR_BLOB3D, weight, true, true, true, true)
{
Init();
}
PARVARCOPY(Blob3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = helper.m_PrecalcSqrtSumSquares * (m_BlobLow + m_BlobDiff * (T(0.5) + T(0.5) * std::sin(m_BlobWaves * helper.m_PrecalcAtanxy)));
helper.Out.x = m_Weight * helper.m_PrecalcSina * r;
helper.Out.y = m_Weight * helper.m_PrecalcCosa * r;
helper.Out.z = m_Weight * std::sin(m_BlobWaves * helper.m_PrecalcAtanxy) * r;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string blobLow = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blobHigh = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blobWaves = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blobDiff = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r = precalcSqrtSumSquares * fma(" << blobDiff << ", fma((real_t)(0.5), sin(" << blobWaves << " * precalcAtanxy), (real_t)(0.5)), " << blobLow << ");\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * (precalcSina * r);\n"
<< "\t\tvOut.y = " << weight << " * (precalcCosa * r);\n"
<< "\t\tvOut.z = " << weight << " * (sin(" << blobWaves << " * precalcAtanxy) * r);\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_BlobDiff = m_BlobHigh - m_BlobLow;
}
virtual void Random(QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
m_BlobLow = T(0.2) + T(0.5) * rand.Frand01<T>();
m_BlobHigh = T(0.8) + T(0.4) * rand.Frand01<T>();
m_BlobWaves = T(int(2 + 5 * rand.Frand01<T>()));
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_BlobLow, prefix + "blob3D_low"));
m_Params.push_back(ParamWithName<T>(&m_BlobHigh, prefix + "blob3D_high", 1));
m_Params.push_back(ParamWithName<T>(&m_BlobWaves, prefix + "blob3D_waves", 1));
m_Params.push_back(ParamWithName<T>(true, &m_BlobDiff, prefix + "blob3D_diff"));//Precalc.
}
private:
T m_BlobLow;
T m_BlobHigh;
T m_BlobWaves;
T m_BlobDiff;//Precalc.
};
/// <summary>
/// blocky.
/// </summary>
template <typename T>
class BlockyVariation : public ParametricVariation<T>
{
public:
BlockyVariation(T weight = 1.0) : ParametricVariation<T>("blocky", eVariationId::VAR_BLOCKY, weight, true)
{
Init();
}
PARVARCOPY(BlockyVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T t = Zeps((std::cos(helper.In.x) + std::cos(helper.In.y)) / m_Mp + 1);
T r = m_Weight / t;
T tmp = helper.m_PrecalcSumSquares + 1;
T x2 = 2 * helper.In.x;
T y2 = 2 * helper.In.y;
T xmax = T(0.5) * (std::sqrt(tmp + x2) + std::sqrt(tmp - x2));
T ymax = T(0.5) * (std::sqrt(tmp + y2) + std::sqrt(tmp - y2));
T a = helper.In.x / Zeps(xmax);
T b = VarFuncs<T>::SafeSqrt(1 - SQR(a));
helper.Out.x = m_Vx * std::atan2(a, b) * r;
a = helper.In.y / Zeps(ymax);
b = VarFuncs<T>::SafeSqrt(1 - SQR(a));
helper.Out.y = m_Vy * std::atan2(a, b) * r;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string v = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t t = Zeps((cos(vIn.x) + cos(vIn.y)) / " << mp << " + 1);\n"
<< "\t\treal_t r = " << weight << " / t;\n"
<< "\t\treal_t tmp = precalcSumSquares + 1;\n"
<< "\t\treal_t x2 = 2 * vIn.x;\n"
<< "\t\treal_t y2 = 2 * vIn.y;\n"
<< "\t\treal_t xmax = (real_t)(0.5) * (sqrt(tmp + x2) + sqrt(tmp - x2));\n"
<< "\t\treal_t ymax = (real_t)(0.5) * (sqrt(tmp + y2) + sqrt(tmp - y2));\n"
<< "\t\treal_t a = vIn.x / Zeps(xmax);\n"
<< "\t\treal_t b = SafeSqrt(1 - SQR(a));\n"
<< "\n"
<< "\t\tvOut.x = " << vx << " * atan2(a, b) * r;\n"
<< "\n"
<< "\t\ta = vIn.y / Zeps(ymax);\n"
<< "\t\tb = SafeSqrt(1 - SQR(a));\n"
<< "\n"
<< "\t\tvOut.y = " << vy << " * atan2(a, b) * r;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "SafeSqrt", "Zeps" };
}
virtual void Precalc() override
{
m_V = m_Weight / T(M_PI_2);
m_Vx = m_V * m_X;
m_Vy = m_V * m_Y;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "blocky_x", 1));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "blocky_y", 1));
m_Params.push_back(ParamWithName<T>(&m_Mp, prefix + "blocky_mp", 4, eParamType::REAL_NONZERO));
m_Params.push_back(ParamWithName<T>(true, &m_V, prefix + "blocky_v"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Vx, prefix + "blocky_vx"));
m_Params.push_back(ParamWithName<T>(true, &m_Vy, prefix + "blocky_vy"));
}
private:
T m_X;
T m_Y;
T m_Mp;
T m_V;//Precalc.
T m_Vx;
T m_Vy;
};
MAKEPREPOSTPARVAR(ESwirl, eSwirl, ESWIRL)
MAKEPREPOSTPARVAR(LazyTravis, lazyTravis, LAZY_TRAVIS)
MAKEPREPOSTPARVAR(Squish, squish, SQUISH)
MAKEPREPOSTPARVAR(Circus, circus, CIRCUS)
MAKEPREPOSTVAR(Tancos, tancos, TANCOS)
MAKEPREPOSTVAR(Rippled, rippled, RIPPLED)
MAKEPREPOSTPARVAR(RotateX, rotate_x, ROTATE_X)
MAKEPREPOSTPARVAR(RotateY, rotate_y, ROTATE_Y)
MAKEPREPOSTPARVAR(RotateZ, rotate_z, ROTATE_Z)
MAKEPREPOSTVAR(MirrorX, mirror_x, MIRROR_X)
MAKEPREPOSTVAR(MirrorY, mirror_y, MIRROR_Y)
MAKEPREPOSTVAR(MirrorZ, mirror_z, MIRROR_Z)
MAKEPREPOSTPARVAR(RBlur, rblur, RBLUR)
MAKEPREPOSTPARVAR(JuliaNab, juliaNab, JULIANAB)
MAKEPREPOSTPARVAR(Sintrange, sintrange, SINTRANGE)
MAKEPREPOSTPARVAR(Voron, Voron, VORON)
MAKEPREPOSTPARVARASSIGN(Waffle, waffle, WAFFLE, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTVARASSIGN(Square3D, square3D, SQUARE3D, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTPARVARASSIGN(SuperShape3D, SuperShape3D, SUPER_SHAPE3D, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTPARVAR(Sphyp3D, sphyp3D, SPHYP3D)
MAKEPREPOSTPARVAR(Circlecrop, circlecrop, CIRCLECROP)
MAKEPREPOSTPARVAR(Julian3Dx, julian3Dx, JULIAN3DX)
MAKEPREPOSTPARVAR(Fourth, fourth, FOURTH)
MAKEPREPOSTPARVAR(Mobiq, mobiq, MOBIQ)
MAKEPREPOSTPARVAR(Spherivoid, spherivoid, SPHERIVOID)
MAKEPREPOSTPARVAR(Farblur, farblur, FARBLUR)
MAKEPREPOSTPARVAR(CurlSP, curl_sp, CURL_SP)
MAKEPREPOSTPARVAR(Heat, heat, HEAT)
MAKEPREPOSTPARVAR(Interference2, interference2, INTERFERENCE2)
MAKEPREPOSTVAR(Sinq, sinq, SINQ)
MAKEPREPOSTVAR(Sinhq, sinhq, SINHQ)
MAKEPREPOSTVAR(Secq, secq, SECQ)
MAKEPREPOSTVAR(Sechq, sechq, SECHQ)
MAKEPREPOSTVAR(Tanq, tanq, TANQ)
MAKEPREPOSTVAR(Tanhq, tanhq, TANHQ)
MAKEPREPOSTVAR(Cosq, cosq, COSQ)
MAKEPREPOSTVAR(Coshq, coshq, COSHQ)
MAKEPREPOSTVAR(Cotq, cotq, COTQ)
MAKEPREPOSTVAR(Cothq, cothq, COTHQ)
MAKEPREPOSTVAR(Cscq, cscq, CSCQ)
MAKEPREPOSTVAR(Cschq, cschq, CSCHQ)
MAKEPREPOSTVAR(Estiq, estiq, ESTIQ)
MAKEPREPOSTPARVAR(Loq, loq, LOQ)
MAKEPREPOSTVAR(Curvature, curvature, CURVATURE)
MAKEPREPOSTPARVAR(Qode, q_ode, Q_ODE)
MAKEPREPOSTPARVARASSIGN(BlurHeart, blur_heart, BLUR_HEART, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTPARVAR(Truchet, Truchet, TRUCHET)
MAKEPREPOSTPARVAR(Gdoffs, gdoffs, GDOFFS)
MAKEPREPOSTPARVAR(Octagon, octagon, OCTAGON)
MAKEPREPOSTPARVAR(Trade, trade, TRADE)
MAKEPREPOSTPARVAR(Juliac, Juliac, JULIAC)
MAKEPREPOSTVAR(Blade3D, blade3D, BLADE3D)
MAKEPREPOSTPARVAR(Blob3D, blob3D, BLOB3D)
MAKEPREPOSTPARVAR(Blocky, blocky, BLOCKY)
///// <summary>
///// LinearXZ.
///// </summary>
//template <typename T>
//class LinearXZVariation : public Variation<T>
//{
//public:
// LinearXZVariation(T weight = 1.0) : Variation<T>("linearxz", eVariationId::VAR_LINEAR_XZ, weight) { }
//
// VARCOPY(LinearXZVariation)
//
// virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
// {
// helper.Out.x = m_Weight * helper.In.x;
// helper.Out.z = m_Weight * helper.In.z;
// }
//
// virtual string OpenCLString() const override
// {
// ostringstream ss;
// intmax_t varIndex = IndexInXform();
// string weight = WeightDefineString();
//
// ss << "\t{\n"
// << "\t\tvOut.x = " << weight << " * vIn.x;\n"
// << "\t\tvOut.z = " << weight << " * vIn.z;\n"
// << "\t}\n";
//
// return ss.str();
// }
//};
//
///// <summary>
///// LinearYZ.
///// </summary>
//template <typename T>
//class LinearYZVariation : public Variation<T>
//{
//public:
// LinearYZVariation(T weight = 1.0) : Variation<T>("linearyz", eVariationId::VAR_LINEAR_YZ, weight) { }
//
// VARCOPY(LinearYZVariation)
//
// virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
// {
// helper.Out.y = m_Weight * helper.In.y;
// helper.Out.z = m_Weight * helper.In.z;
// }
//
// virtual string OpenCLString() const override
// {
// ostringstream ss;
// intmax_t varIndex = IndexInXform();
// string weight = WeightDefineString();
//
// ss << "\t{\n"
// << "\t\tvOut.y = " << weight << " * vIn.y;\n"
// << "\t\tvOut.z = " << weight << " * vIn.z;\n"
// << "\t}\n";
//
// return ss.str();
// }
//};
}