fractorium/Source/Ember/Iterator.h
Person 90ec5b8246 --User changes:
-Show common folder locations such as documents, downloads, pictures in the sidebar in all file dialogs.
 -Warning message about exceeding memory in final render dialog now suggests strips as the solution to the problem.
 -Strips now has a tooltip explaining what it does.
 -Allow more digits in the spinners on the color section the flame tab.
 -Add manually adjustable size spinners in the final render dialog. Percentage scale and absolute size are fully synced.
 -Default prefix in final render is now the filename when doing animations (coming from sequence section of the library tab).
 -Changed the elliptic variation back to using a less precise version for float, and a more precise version for double. The last release had it always using double.
 -New applied xaos table that shows a read-only view of actual weights by taking the base xform weights and multiplying them by the xaos values.
 -New table in the xaos tab that gives a graphical representation of the probability that each xform is chosen, with and without xaos.
 -Add button to transpose the xaos rows and columns.
 -Add support for importing .chaos files from Chaotica.
 --Pasting back to Chaotica will work for most, but not all, variations due to incompatible parameter names in some.
 -Curves are now splines instead of Bezier. This adds compatibility with Chaotica, but breaks it for Apophysis. Xmls are still pastable, but the color curves will look different.
 --The curve editor on the palette tab can now add points by clicking on the lines and remove points by clicking on the points themselves, just like Chaotica.
 --Splines are saved in four new xml fields: overall_curve, red_curve, green_curve and blue_curve.
 -Allow for specifying the percentage of a sub batch each thread should iterate through per kernel call when running with OpenCL. This gives a roughly 1% performance increase due to having to make less kernel calls while iterating.
 --This field is present for interactive editing (where it's not very useful) and in the final render dialog.
 --On the command line, this is specified as --sbpctth for EmberRender and EmberAnimate.
 -Allow double clicking to toggle the supersample field in the flame tab between 1 and 2 for easily checking the effect of the field.
 -When showing affine values as polar coordinates, show angles normalized to 360 to match Chaotica.
 -Fuse Count spinner now toggles between 15 and 100 when double clicking for easily checking the effect of the field.
 -Added field for limiting the range in the x and y direction that the initial points are chosen from.
 -Added a field called K2 which is an alternative way to set brightness, ignored when zero.
 --This has no effect for many variations, but hs a noticeable effect for some.
 -Added new variations:
 arcsech
 arcsech2
 arcsinh
 arctanh
 asteria
 block
 bwraps_rand
 circlecrop2
 coth_spiral
 crackle2
 depth_blur
 depth_blur2
 depth_gaussian
 depth_gaussian2
 depth_ngon
 depth_ngon2
 depth_sine
 depth_sine2
 dragonfire
 dspherical
 dust
 excinis
 exp2
 flipx
 flowerdb
 foci_p
 gaussian
 glynnia2
 glynnsim4
 glynnsim5
 henon
 henon
 hex_rand
 hex_truchet
 hypershift
 lazyjess
 lens
 lozi
 lozi
 modulusx
 modulusy
 oscilloscope2
 point_symmetry
 pointsymmetry
 projective
 pulse
 rotate
 scry2
 shift
 smartshape
 spher
 squares
 starblur2
 swirl3
 swirl3r
 tanh_spiral
 target0
 target2
 tile_hlp
 truchet_glyph
 truchet_inv
 truchet_knot
 unicorngaloshen
 vibration
 vibration2
 --hex_truchet, hex_rand should always use double. They are extremely sensitive.

--Bug fixes:
 -Bounds sign was flipped for x coordinate of world space when center was not zero.
 -Right clicking and dragging spinner showed menu on mouse up, even if it was very far away.
 -Text boxes for size in final render dialog were hard to type in. Same bug as xform weight used to be so fix the same way.
 -Fix spelling to be plural in toggle color speed box.
 -Stop using the blank user palette to generate flames. Either put colored palettes in it, or exclude it from randoms.
 -Clicking the random palette button for a palette file with only one palette in it would freeze the program.
 -Clicking none scale in final render did not re-render the preview.
 -Use less precision on random xaos. No need for 12 decimal places.
 -The term sub batch is overloaded in the options dialog. Change the naming and tooltip of those settings for cpu and opencl.
 --Also made clear in the tooltip for the default opencl quality setting that the value is per device.
 -The arrows spinner in palette editor appears like a read-only label. Made it look like a spinner.
 -Fix border colors for various spin boxes and table headers in the style sheet. Requires reload.
 -Fix a bug in the bwraps variation which would produce different results than Chaotica and Apophysis.
 -Synth was allowed to be selected for random flame generation when using an Nvidia card but it shouldn't have been because Nvidia has a hard time compiling synth.
 -A casting bug in the OpenCL kernels for log scaling and density filtering was preventing successful compilations on Intel iGPUs. Fixed even though we don't support anything other than AMD and Nvidia.
 -Palette rotation (click and drag) position was not being reset when loading a new flame.
 -When the xform circles were hidden, opening and closing the options dialog would improperly reshow them.
 -Double click toggle was broken on integer spin boxes.
 -Fixed tab order of some controls.
 -Creating a palette from a jpg in the palette editor only produced a single color.
 --Needed to package imageformats/qjpeg.dll with the Windows installer.
 -The basic memory benchmark test flame was not really testing memory. Make it more spread out.
 -Remove the temporal samples field from the flame tab, it was never used because it's only an animation parameter which is specified in the final render dialog or on the command line with EmberAnimate.

--Code changes:
 -Add IsEmpty() to Palette to determine if a palette is all black.
 -Attempt to avoid selecting a blank palette in PaletteList::GetRandomPalette().
 -Add function ScanForChaosNodes() and some associated helper functions in XmlToEmber.
 -Make variation param name correction be case insensitive in XmlToEmber.
 -Report error when assigning a variation param value in XmlToEmber.
 -Add SubBatchPercentPerThread() method to RendererCL.
 -Override enterEvent() and leaveEvent() in DoubleSpinBox and SpinBox to prevent the context menu from showing up on right mouse up after already leaving the spinner.
 -Filtering the mouse wheel event in TableWidget no longer appears to be needed. It was probably an old Qt bug that has been fixed.
 -Gui/ember syncing code in the final render dialog needed to be reworked to accommodate absolute sizes.
2019-04-13 19:00:46 -07:00

596 lines
22 KiB
C++

#pragma once
#include "Ember.h"
/// <summary>
/// Iterator and derived classes.
/// </summary>
#define CHOOSE_XFORM_GRAIN 16384//The size of xform random selection buffer. Multiply by the (number of non-final xforms present + 1) if xaos is used.
#define CHOOSE_XFORM_GRAIN_M1 16383//All 1s, so it's logically and-able.
namespace EmberNs
{
#define ITERATORUSINGS \
using Iterator<T>::NextXformFromIndex; \
using Iterator<T>::DoFinalXform; \
using Iterator<T>::DoBadVals;
template <typename T>
struct IterParams
{
size_t m_Count;
size_t m_Skip;
//T m_OneColDiv2;
//T m_OneRowDiv2;
};
/// <summary>
/// Iterator base class.
/// Iterating is one loop level outside of the inner xform application loop so it's still very important
/// to take every optimization possible here.
/// The original had many temporary assignments in order to feed the output of the current iteration
/// into the input of the next iteration. All unneccessary temporary assignments are eliminated by simply using i and i + 1
/// as the input and output indices on the samples array passed to Xform.Apply().
/// Note that the samples array is assigned to while fusing. Although this technically doesn't make sense
/// since values computed during fusing get thrown out, it doesn't matter because it will get overwritten
/// in the actual loop below it since the index counter is reset to zero when fusing is complete.
/// Flam3 needlessly computed the final xform on each fuse iteration only to throw it away. It's omitted here as an optimization.
/// Rather than place many conditionals inside the iteration loop, they are broken into separate classes depending
/// on what's contained in the ember's xforms.
/// The biggest difference is whether xaos is present or not, since it requires extra work when picking
/// the next random xform to use. Further, each of those is broken into two loops, one for embers with a final xform
/// and one without.
/// Last, the fuse loop and real loop are separated and duplicated to omit the conditional check for fuse inside the real loop.
/// Although this makes this file about four times as verbose as it would normally be, it does lead to performance improvements.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
class EMBER_API Iterator
{
public:
/// <summary>
/// Constructor that takes a pointer to the renderer which is calling this and a virtual destructor so proper derived class destructors get called.
/// </summary>
Iterator()
{
}
virtual ~Iterator() = default;
Iterator(const Iterator<T>& iter) = delete;
/// <summary>
/// Accessors.
/// </summary>
const byte* XformDistributions() const { return m_XformDistributions.empty() ? nullptr : m_XformDistributions.data(); }
size_t XformDistributionsSize() const { return m_XformDistributions.size(); }
/// <summary>
/// Virtual empty iteration function that will be overidden in derived iterator classes.
/// </summary>
/// <param name="ember">The ember whose xforms will be applied</param>
/// <param name="count">The number of iterations to do</param>
/// <param name="skip">The number of times to fuse</param>
/// <param name="samples">The buffer to store the output points</param>
/// <param name="rand">The random context to use</param>
/// <returns>The number of bad values</returns>
virtual size_t Iterate(Ember<T>& ember, IterParams<T>& params, Point<T>* samples, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) { return 0; }
/// <summary>
/// Initialize the xform selection vector by normalizing the weights of all xforms and
/// setting the corresponding percentage of elements in the vector to each xform's index in its
/// parent ember.
/// Note that this method of looking up and index in a vector is how flam3 did it and is about 10%
/// faster than using a while loop to check a random number against a normalized weight.
/// Also, the ember used to initialize this must be the same ember, unchanged, used to iterate.
/// If one is passed to this function, its parameters are changed and then it's passed to Iterate(),
/// the behavior is undefined.
/// </summary>
/// <param name="ember">The ember whose xforms will be used to populate the distribution vector</param>
/// <returns>True if success, else false.</returns>
bool InitDistributions(Ember<T>& ember)
{
size_t i;
size_t distribCount = ember.XaosPresent() ? ember.XformCount() + 1 : 1;
auto xforms = ember.Xforms();
if (m_XformDistributions.size() < CHOOSE_XFORM_GRAIN * distribCount)
m_XformDistributions.resize(CHOOSE_XFORM_GRAIN * distribCount);
if (m_XformDistributions.size() < CHOOSE_XFORM_GRAIN * distribCount)
return false;
for (size_t distrib = 0; distrib < distribCount; distrib++)
{
double totalDensity = 0;
//First find the total densities of all xforms.
for (i = 0; i < ember.XformCount(); i++)
{
double d = xforms[i].m_Weight;
if (distrib > 0)
d *= xforms[distrib - 1].Xaos(i);
totalDensity += d;
}
//Original returned false if all were 0, but it's allowed here
//which will just end up setting all elements to 0 which means
//only the first xform will get used.
//Calculate how much of a fraction of a the total density each element represents.
size_t j = 0;
//These must be double, else roundoff error will prevent the last element of m_XformDistributions from being set.
double tempDensity = 0, currentDensityLimit = 0, densityPerElement = totalDensity / CHOOSE_XFORM_GRAIN;
//Assign xform indices in order to each element of m_XformDistributions.
//The number of elements assigned a given index is proportional to that xform's
//density relative to the sum of all densities.
for (i = 0; i < ember.XformCount(); i++)
{
double temp = xforms[i].m_Weight;
if (distrib > 0)
temp *= xforms[distrib - 1].Xaos(i);
currentDensityLimit += temp;
//Populate points corresponding to this xform's weight/density.
//Also check that j is within the bounds of the distribution array just to be safe in the case of a rounding error.
while (tempDensity < currentDensityLimit && j < CHOOSE_XFORM_GRAIN)
{
#ifdef _DEBUG
//Ensure distribution contains no out of bounds indices.
if (byte(i) >= ember.XformCount())
throw "Out of bounds xform index in selection distribution.";
#endif
//cout << "offset = " << j << ", xform = " << i << ", running sum = " << tempDensity << "\n";
m_XformDistributions[(distrib * CHOOSE_XFORM_GRAIN) + j] = byte(i);
tempDensity += densityPerElement;
j++;
}
}
//If probability was zero, then nothing was filled in, so make all zero.
//If it was non zero but for some reason didn't fill all elements, then just make the remaining
//elements have the index of the last xform.
byte val = j ? byte(i - 1) : 0;
for (; j < CHOOSE_XFORM_GRAIN; j++)//Make absolutely sure they are set to a valid value.
m_XformDistributions[(distrib * CHOOSE_XFORM_GRAIN) + j] = val;
//Flam3 did this, which gives the same result.
//T t = xforms[0].m_Weight;
//
//if (distrib > 0)
// t *= xforms[distrib - 1].Xaos(0);
//
//T r = 0;
//
//for (i = 0; i < CHOOSE_XFORM_GRAIN; i++)
//{
// while (r >= t)
// {
// j++;
//
// if (distrib > 0)
// t += xforms[j].m_Weight * xforms[distrib - 1].Xaos(j);
// else
// t += xforms[j].m_Weight;
// }
//
// m_XformDistributions[(distrib * CHOOSE_XFORM_GRAIN) + i] = j;
// r += densityPerElement;
//}
}
return true;
}
protected:
/// <summary>
/// When iterating, if the computed location of the point is either very close to zero, or very close to infinity,
/// it's considered a bad value. In that case, a new random input point is fed into a new randomly chosen xform. This
/// process is repeated up to 5 times until a good value is computed. If after 5 tries, a good value is not found, then
/// the coordinates of the output point are just set to a random number between -1 and 1.
/// </summary>
/// <param name="xforms">The xforms array</param>
/// <param name="range">The range in the x and y directions from the center of the world spcae from which to select the new random point</param>
/// <param name="badVals">The counter for the total number of bad values this sub batch</param>
/// <param name="point">The point which initially had the bad values and which will store the newly computed values</param>
/// <param name="rand">The random context this iterator is using</param>
/// <returns>True if a good value was computed within 5 tries, else false</returns>
inline bool DoBadVals(Xform<T>* xforms, T range, size_t& badVals, Point<T>* point, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand)
{
size_t xformIndex, consec = 0;
Point<T> firstBadPoint;
while (consec < 5)
{
consec++;
badVals++;
firstBadPoint.m_X = rand.template Frand<T>(-range, range);//Re-randomize points, but keep the computed color and viz.
firstBadPoint.m_Y = rand.template Frand<T>(-range, range);
firstBadPoint.m_Z = 0;
firstBadPoint.m_ColorX = point->m_ColorX;
firstBadPoint.m_Opacity = point->m_Opacity;
xformIndex = NextXformFromIndex(rand.Rand());
if (!xforms[xformIndex].Apply(&firstBadPoint, point, rand))
return true;
}
//After 5 tries, nothing worked, so just assign random values between -1 and 1.
if (consec == 5)
{
point->m_X = rand.template Frand<T>(-range, range);
point->m_Y = rand.template Frand<T>(-range, range);
point->m_Z = 0;
}
return false;
}
/// <summary>
/// Apply the final xform.
/// Note that as stated in the paper, the output of the final xform is not fed back into the next iteration.
/// Rather, only the value computed from the randomly chosen xform is. However, the output of the final xform
/// is still saved in the output samples buffer and accumulated to the histogram later.
/// </summary>
/// <param name="ember">The ember being iterated</param>
/// <param name="tempPoint">The input point</param>
/// <param name="sample">The output point</param>
/// <param name="rand">The random context to use.</param>
inline void DoFinalXform(Ember<T>& ember, Point<T>& tempPoint, Point<T>* sample, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand)
{
if (IsClose<T>(ember.FinalXform()->m_Opacity, 1) || rand.Frand01<T>() < ember.FinalXform()->m_Opacity)
{
T tempOpacity = tempPoint.m_Opacity;
ember.NonConstFinalXform()->Apply(&tempPoint, sample, rand);
sample->m_Opacity = tempOpacity;
}
else
{
*sample = tempPoint;
}
}
/// <summary>
/// Retrieve an element in the distributions vector between 0 and CHOOSE_XFORM_GRAIN which will
/// contain the index of the next xform to use. When xaos is prsent, the offset is the index in
/// the ember of the previous xform used when.
/// </summary>
/// <param name="index">The index to retrieve</param>
/// <param name="distribOffset">When xaos is prsent, the index of the previous xform used. Default: 0 (xaos not present).</param>
/// <returns></returns>
size_t NextXformFromIndex(size_t index, size_t distribOffset = 0)
{
return size_t(m_XformDistributions[(index & CHOOSE_XFORM_GRAIN_M1) + (CHOOSE_XFORM_GRAIN * distribOffset)]);
}
vector<byte> m_XformDistributions;
};
/// <summary>
/// Derived iterator class for embers whose xforms do not use xaos.
/// </summary>
template <typename T>
class EMBER_API StandardIterator : public Iterator<T>
{
ITERATORUSINGS
public:
/// <summary>
/// Empty constructor.
/// </summary>
StandardIterator()
{
}
/// <summary>
/// Overridden virtual function which iterates an ember a given number of times and does not use xaos.
/// </summary>
/// <param name="ember">The ember whose xforms will be applied</param>
/// <param name="count">The number of iterations to do</param>
/// <param name="skip">The number of times to fuse</param>
/// <param name="samples">The buffer to store the output points</param>
/// <param name="rand">The random context to use</param>
/// <returns>The number of bad values</returns>
virtual size_t Iterate(Ember<T>& ember, IterParams<T>& params, Point<T>* samples, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
size_t i, badVals = 0;
Point<T> tempPoint, p1;
auto xforms = ember.NonConstXforms();
if (ember.ProjBits())//No xaos, 3D.
{
if (ember.UseFinalXform())//No xaos, 3D, final.
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &p1, rand))
DoBadVals(xforms, ember.m_RandPointRange, badVals, &p1, rand);
}
DoFinalXform(ember, p1, samples, rand);//Apply to last fuse point and store as the first element in samples.
ember.Proj(samples[0], rand);
for (i = 1; i < params.m_Count; i++)//Real loop.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &p1, rand))
DoBadVals(xforms, ember.m_RandPointRange, badVals, &p1, rand);
DoFinalXform(ember, p1, samples + i, rand);
ember.Proj(samples[i], rand);
}
}
else//No xaos, 3D, no final.
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &p1, rand))
DoBadVals(xforms, ember.m_RandPointRange, badVals, &p1, rand);
}
samples[0] = p1;
ember.Proj(samples[0], rand);
for (i = 1; i < params.m_Count; i++)//Real loop.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &samples[i], rand))
DoBadVals(xforms, ember.m_RandPointRange, badVals, samples + i, rand);
p1 = samples[i];
ember.Proj(samples[i], rand);
}
}
}
else//No xaos, no 3D.
{
if (ember.UseFinalXform())//No xaos, no 3D, final.
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &p1, rand))
DoBadVals(xforms, ember.m_RandPointRange, badVals, &p1, rand);
}
DoFinalXform(ember, p1, samples, rand);//Apply to last fuse point and store as the first element in samples.
for (i = 1; i < params.m_Count; i++)//Real loop.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &p1, rand))//Feed the resulting value of applying the randomly selected xform back into the next iter, and not the result of applying the final xform.
DoBadVals(xforms, ember.m_RandPointRange, badVals, &p1, rand);
DoFinalXform(ember, p1, samples + i, rand);
}
}
else//No xaos, no 3D, no final.
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &p1, rand))
DoBadVals(xforms, ember.m_RandPointRange, badVals, &p1, rand);
}
samples[0] = p1;
for (i = 0; i < params.m_Count - 1; i++)//Real loop.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(samples + i, samples + i + 1, rand))
DoBadVals(xforms, ember.m_RandPointRange, badVals, samples + i + 1, rand);
}
}
}
return badVals;
}
};
/// <summary>
/// Derived iterator class for embers whose xforms use xaos.
/// </summary>
template <typename T>
class EMBER_API XaosIterator : public Iterator<T>
{
ITERATORUSINGS
public:
/// <summary>
/// Empty constructor.
/// </summary>
XaosIterator()
{
}
/// <summary>
/// Handler for bad values similar to the one in the base class, except it takes the last xform used
/// as a parameter and saves the xform used back out because this iterator is meant to be used with xaos.
/// </summary>
/// <param name="xforms">The xforms array</param>
/// <param name="xformIndex">Index of the last used xform before calling this function</param>
/// <param name="range">The range in the x and y directions from the center of the world spcae from which to select the new random point</param>
/// <param name="lastXformUsed">The saved index of the last xform used within this function</param>
/// <param name="badVals">The counter for the total number of bad values this sub batch</param>
/// <param name="point">The point which initially had the bad values and which will store the newly computed values</param>
/// <param name="rand">The random context this iterator is using</param>
/// <returns>True if a good value was computed within 5 tries, else false</returns>
inline bool DoBadVals(Xform<T>* xforms, size_t& xformIndex, T range, size_t lastXformUsed, size_t& badVals, Point<T>* point, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand)
{
size_t consec = 0;
Point<T> firstBadPoint;
while (consec < 5)
{
consec++;
badVals++;
firstBadPoint.m_X = rand.template Frand<T>(-range, range);//Re-randomize points, but keep the computed color and viz.
firstBadPoint.m_Y = rand.template Frand<T>(-range, range);
firstBadPoint.m_Z = 0;
firstBadPoint.m_ColorX = point->m_ColorX;
firstBadPoint.m_Opacity = point->m_Opacity;
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (!xforms[xformIndex].Apply(&firstBadPoint, point, rand))
return true;
}
//After 5 tries, nothing worked, so just assign random.
if (consec == 5)
{
point->m_X = rand.template Frand<T>(-range, range);
point->m_Y = rand.template Frand<T>(-range, range);
point->m_Z = 0;
}
return false;
}
/// <summary>
/// Overridden virtual function which iterates an ember a given number of times and uses xaos.
/// </summary>
/// <param name="ember">The ember whose xforms will be applied</param>
/// <param name="count">The number of iterations to do</param>
/// <param name="skip">The number of times to fuse</param>
/// <param name="samples">The buffer to store the output points</param>
/// <param name="rand">The random context to use</param>
/// <returns>The number of bad values</returns>
virtual size_t Iterate(Ember<T>& ember, IterParams<T>& params, Point<T>* samples, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
size_t i, xformIndex;
size_t lastXformUsed = 0;
size_t badVals = 0;
Point<T> tempPoint, p1;
auto xforms = ember.NonConstXforms();
if (ember.ProjBits())//Xaos, 3D.
{
if (ember.UseFinalXform())//Xaos, 3D, final.
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))
DoBadVals(xforms, xformIndex, ember.m_RandPointRange, lastXformUsed, badVals, &p1, rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
DoFinalXform(ember, p1, samples, rand);//Apply to last fuse point and store as the first element in samples.
ember.Proj(samples[0], rand);
for (i = 1; i < params.m_Count; i++)//Real loop.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))//Feed the resulting value of applying the randomly selected xform back into the next iter, and not the result of applying the final xform.
DoBadVals(xforms, xformIndex, ember.m_RandPointRange, lastXformUsed, badVals, &p1, rand);
DoFinalXform(ember, p1, samples + i, rand);
ember.Proj(samples[i], rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
}
else//Xaos, 3D, no final.
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))
DoBadVals(xforms, xformIndex, ember.m_RandPointRange, lastXformUsed, badVals, &p1, rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
samples[0] = p1;
ember.Proj(samples[0], rand);
for (i = 1; i < params.m_Count; i++)//Real loop.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))
DoBadVals(xforms, xformIndex, ember.m_RandPointRange, lastXformUsed, badVals, &p1, rand);
samples[i] = p1;
ember.Proj(samples[i], rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
}
}
else//Xaos, no 3D.
{
if (ember.UseFinalXform())//Xaos, no 3D, final.
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))
DoBadVals(xforms, xformIndex, ember.m_RandPointRange, lastXformUsed, badVals, &p1, rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
DoFinalXform(ember, p1, samples, rand);//Apply to last fuse point and store as the first element in samples.
for (i = 1; i < params.m_Count; i++)//Real loop.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))//Feed the resulting value of applying the randomly selected xform back into the next iter, and not the result of applying the final xform.
DoBadVals(xforms, xformIndex, ember.m_RandPointRange, lastXformUsed, badVals, &p1, rand);
DoFinalXform(ember, p1, samples + i, rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
}
else//Xaos, no 3D, no final.
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))
DoBadVals(xforms, xformIndex, ember.m_RandPointRange, lastXformUsed, badVals, &p1, rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
samples[0] = p1;
for (i = 0; i < params.m_Count - 1; i++)//Real loop.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(samples + i, samples + i + 1, rand))
DoBadVals(xforms, xformIndex, ember.m_RandPointRange, lastXformUsed, badVals, samples + i + 1, rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
}
}
return badVals;
}
};
}