fractorium/Source/EmberCL/RendererCL.cpp
mfeemster a4aae06b02 --User changes
-Add Simon Detheridge's name to the About Box.

--Bug fixes
 -Fix bug in OpenCL atomic string, which is never used.
 -Wrong hist and accum allocation size in RendererCL when using float-only buffers now.
 -Move some kernel initialization to a place where it's done once per render, rather than on every interactive iter chunk.

--Code changes
 -Make ConvertCarToRas() just assign to the member rather than return a struct.
 -Make kernel string accessor functions in IterOpenCLKernelCreator, FinalAccumOpenCLKernelCreator and DEOpenCLKernelCreator be const and return a const string reference.
 -Don't include atomic string unless locking on the GPU, which is never.
2015-08-12 18:51:07 -07:00

1505 lines
62 KiB
C++

#include "EmberCLPch.h"
#include "RendererCL.h"
namespace EmberCLns
{
/// <summary>
/// Constructor that inintializes various buffer names, block dimensions, image formats
/// and finally initializes OpenCL using the passed in parameters.
/// Kernel creators are set to be non-nvidia by default. Will be properly set in Init().
/// </summary>
/// <param name="platform">The index platform of the platform to use. Default: 0.</param>
/// <param name="device">The index device of the device to use. Default: 0.</param>
/// <param name="shared">True if shared with OpenGL, else false. Default: false.</param>
/// <param name="outputTexID">The texture ID of the shared OpenGL texture if shared. Default: 0.</param>
template <typename T, typename bucketT>
RendererCL<T, bucketT>::RendererCL(uint platform, uint device, bool shared, GLuint outputTexID)
:
m_IterOpenCLKernelCreator(),
m_DEOpenCLKernelCreator(typeid(T) == typeid(double), false),
m_FinalAccumOpenCLKernelCreator(typeid(T) == typeid(double))
{
m_Init = false;
m_NVidia = false;
m_DoublePrecision = typeid(T) == typeid(double);
m_NumChannels = 4;
m_Calls = 0;
//Buffer names.
m_EmberBufferName = "Ember";
m_XformsBufferName = "Xforms";
m_ParVarsBufferName = "ParVars";
m_SeedsBufferName = "Seeds";
m_DistBufferName = "Dist";
m_CarToRasBufferName = "CarToRas";
m_DEFilterParamsBufferName = "DEFilterParams";
m_SpatialFilterParamsBufferName = "SpatialFilterParams";
m_DECoefsBufferName = "DECoefs";
m_DEWidthsBufferName = "DEWidths";
m_DECoefIndicesBufferName = "DECoefIndices";
m_SpatialFilterCoefsBufferName = "SpatialFilterCoefs";
m_CurvesCsaName = "CurvesCsa";
m_HistBufferName = "Hist";
m_AccumBufferName = "Accum";
m_FinalImageName = "Final";
m_PointsBufferName = "Points";
//It's critical that these numbers never change. They are
//based on the cuburn model of each kernel launch containing
//256 threads. 32 wide by 8 high. Everything done in the OpenCL
//iteraion kernel depends on these dimensions.
m_IterCountPerKernel = 256;
m_IterBlockWidth = 32;
m_IterBlockHeight = 8;
m_IterBlocksWide = 64;
m_IterBlocksHigh = 2;
m_PaletteFormat.image_channel_order = CL_RGBA;
m_PaletteFormat.image_channel_data_type = CL_FLOAT;
m_FinalFormat.image_channel_order = CL_RGBA;
m_FinalFormat.image_channel_data_type = CL_UNORM_INT8;//Change if this ever supports 2BPC outputs for PNG.
FillSeeds();
Init(platform, device, shared, outputTexID);//Init OpenCL upon construction and create programs that will not change.
}
/// <summary>
/// Virtual destructor.
/// </summary>
template <typename T, typename bucketT>
RendererCL<T, bucketT>::~RendererCL()
{
}
/// <summary>
/// Non-virtual member functions for OpenCL specific tasks.
/// </summary>
/// <summary>
/// Initialize OpenCL.
/// In addition to initializing, this function will create the zeroization program,
/// as well as the basic log scale filtering programs. This is done to ensure basic
/// compilation works. Further compilation will be done later for iteration, density filtering,
/// and final accumulation.
/// </summary>
/// <param name="platform">The index platform of the platform to use</param>
/// <param name="device">The index device of the device to use</param>
/// <param name="shared">True if shared with OpenGL, else false.</param>
/// <param name="outputTexID">The texture ID of the shared OpenGL texture if shared</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::Init(uint platform, uint device, bool shared, GLuint outputTexID)
{
//Timing t;
bool b = true;
m_OutputTexID = outputTexID;
const char* loc = __FUNCTION__;
if (!m_Wrapper.Ok() || PlatformIndex() != platform || DeviceIndex() != device)
{
m_Init = false;
b = m_Wrapper.Init(platform, device, shared);
}
if (b && m_Wrapper.Ok() && !m_Init)
{
m_NVidia = ToLower(m_Wrapper.DeviceAndPlatformNames()).find_first_of("nvidia") != string::npos && m_Wrapper.LocalMemSize() > (32 * 1024);
m_WarpSize = m_NVidia ? 32 : 64;
m_IterOpenCLKernelCreator = IterOpenCLKernelCreator<T>();
m_DEOpenCLKernelCreator = DEOpenCLKernelCreator(m_DoublePrecision, m_NVidia);
string zeroizeProgram = m_IterOpenCLKernelCreator.ZeroizeKernel();
string logAssignProgram = m_DEOpenCLKernelCreator.LogScaleAssignDEKernel();//Build a couple of simple programs to ensure OpenCL is working right.
if (b && !(b = m_Wrapper.AddProgram(m_IterOpenCLKernelCreator.ZeroizeEntryPoint(), zeroizeProgram, m_IterOpenCLKernelCreator.ZeroizeEntryPoint(), m_DoublePrecision))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddProgram(m_DEOpenCLKernelCreator.LogScaleAssignDEEntryPoint(), logAssignProgram, m_DEOpenCLKernelCreator.LogScaleAssignDEEntryPoint(), m_DoublePrecision))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteImage("Palette", CL_MEM_READ_ONLY, m_PaletteFormat, 256, 1, 0, nullptr))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_SeedsBufferName, reinterpret_cast<void*>(m_Seeds.data()), SizeOf(m_Seeds)))) { this->m_ErrorReport.push_back(loc); }
//This is the maximum box dimension for density filtering which consists of (blockSize * blockSize) + (2 * filterWidth).
//These blocks must be square, and ideally, 32x32.
//Sadly, at the moment, Fermi runs out of resources at that block size because the DE filter function is so complex.
//The next best block size seems to be 24x24.
//AMD is further limited because of less local memory so these have to be 16 on AMD.
m_MaxDEBlockSizeW = m_NVidia ? 24 : 16;//These *must* both be divisible by 16 or else pixels will go missing.
m_MaxDEBlockSizeH = m_NVidia ? 24 : 16;
m_Init = true;
//t.Toc(loc);
}
return b;
}
/// <summary>
/// Set the shared output texture where final accumulation will be written to.
/// </summary>
/// <param name="outputTexID">The texture ID of the shared OpenGL texture if shared</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::SetOutputTexture(GLuint outputTexID)
{
bool success = true;
const char* loc = __FUNCTION__;
if (!m_Wrapper.Ok())
return false;
m_OutputTexID = outputTexID;
EnterResize();
if (!m_Wrapper.AddAndWriteImage(m_FinalImageName, CL_MEM_WRITE_ONLY, m_FinalFormat, FinalRasW(), FinalRasH(), 0, nullptr, m_Wrapper.Shared(), m_OutputTexID))
{
this->m_ErrorReport.push_back(loc);
success = false;
}
LeaveResize();
return success;
}
/// <summary>
/// OpenCL property accessors, getters only.
/// </summary>
//Iters per kernel/block/grid.
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::IterCountPerKernel() const { return m_IterCountPerKernel; }
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::IterCountPerBlock() const { return IterCountPerKernel() * IterBlockKernelCount(); }
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::IterCountPerGrid() const { return IterCountPerKernel() * IterGridKernelCount(); }
//Kernels per block.
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::IterBlockKernelWidth() const { return m_IterBlockWidth; }
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::IterBlockKernelHeight() const { return m_IterBlockHeight; }
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::IterBlockKernelCount() const { return IterBlockKernelWidth() * IterBlockKernelHeight(); }
//Kernels per grid.
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::IterGridKernelWidth() const { return IterGridBlockWidth() * IterBlockKernelWidth(); }
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::IterGridKernelHeight() const { return IterGridBlockHeight() * IterBlockKernelHeight(); }
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::IterGridKernelCount() const { return IterGridKernelWidth() * IterGridKernelHeight(); }
//Blocks per grid.
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::IterGridBlockWidth() const { return m_IterBlocksWide; }
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::IterGridBlockHeight() const { return m_IterBlocksHigh; }
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::IterGridBlockCount() const { return IterGridBlockWidth() * IterGridBlockHeight(); }
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::PlatformIndex() { return m_Wrapper.PlatformIndex(); }
template <typename T, typename bucketT> uint RendererCL<T, bucketT>::DeviceIndex() { return m_Wrapper.DeviceIndex(); }
/// <summary>
/// Read the histogram into the host side CPU buffer.
/// Used for debugging.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ReadHist()
{
if (Renderer<T, bucketT>::Alloc())//Allocate the memory to read into.
return m_Wrapper.ReadBuffer(m_HistBufferName, reinterpret_cast<void*>(HistBuckets()), SuperSize() * sizeof(v4bT));
return false;
}
/// <summary>
/// Read the density filtering buffer into the host side CPU buffer.
/// Used for debugging.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ReadAccum()
{
if (Renderer<T, bucketT>::Alloc())//Allocate the memory to read into.
return m_Wrapper.ReadBuffer(m_AccumBufferName, reinterpret_cast<void*>(AccumulatorBuckets()), SuperSize() * sizeof(v4bT));
return false;
}
/// <summary>
/// Read the temporary points buffer into a host side CPU buffer.
/// Used for debugging.
/// </summary>
/// <param name="vec">The host side buffer to read into</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ReadPoints(vector<PointCL<T>>& vec)
{
vec.resize(IterGridKernelCount());//Allocate the memory to read into.
if (vec.size() >= IterGridKernelCount())
return m_Wrapper.ReadBuffer(m_PointsBufferName, reinterpret_cast<void*>(vec.data()), IterGridKernelCount() * sizeof(PointCL<T>));
return false;
}
/// <summary>
/// Clear the histogram buffer with all zeroes.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ClearHist()
{
return ClearBuffer(m_HistBufferName, uint(SuperRasW()), uint(SuperRasH()), sizeof(v4bT));
}
/// <summary>
/// Clear the desnity filtering buffer with all zeroes.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ClearAccum()
{
return ClearBuffer(m_AccumBufferName, uint(SuperRasW()), uint(SuperRasH()), sizeof(v4bT));
}
/// <summary>
/// Write values from a host side CPU buffer into the temporary points buffer.
/// Used for debugging.
/// </summary>
/// <param name="vec">The host side buffer whose values to write</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::WritePoints(vector<PointCL<T>>& vec)
{
return m_Wrapper.WriteBuffer(m_PointsBufferName, reinterpret_cast<void*>(vec.data()), SizeOf(vec));
}
#ifdef TEST_CL
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::WriteRandomPoints()
{
size_t size = IterGridKernelCount();
vector<PointCL<T>> vec(size);
for (int i = 0; i < size; i++)
{
vec[i].m_X = m_Rand[0].Frand11<T>();
vec[i].m_Y = m_Rand[0].Frand11<T>();
vec[i].m_Z = 0;
vec[i].m_ColorX = m_Rand[0].Frand01<T>();
vec[i].m_LastXfUsed = 0;
}
return WritePoints(vec);
}
#endif
/// <summary>
/// Get the kernel string for the last built iter program.
/// </summary>
/// <returns>The string representation of the kernel for the last built iter program.</returns>
template <typename T, typename bucketT>
const string& RendererCL<T, bucketT>::IterKernel() const { return m_IterKernel; }
/// <summary>
/// Get the kernel string for the last built density filtering program.
/// </summary>
/// <returns>The string representation of the kernel for the last built density filtering program.</returns>
template <typename T, typename bucketT>
const string& RendererCL<T, bucketT>::DEKernel() const { return m_DEOpenCLKernelCreator.GaussianDEKernel(Supersample(), m_DensityFilterCL.m_FilterWidth); }
/// <summary>
/// Get the kernel string for the last built final accumulation program.
/// </summary>
/// <returns>The string representation of the kernel for the last built final accumulation program.</returns>
template <typename T, typename bucketT>
const string& RendererCL<T, bucketT>::FinalAccumKernel() const { return m_FinalAccumOpenCLKernelCreator.FinalAccumKernel(EarlyClip(), Renderer<T, bucketT>::NumChannels(), Transparency()); }
/// <summary>
/// Virtual functions overridden from RendererCLBase.
/// </summary>
/// <summary>
/// Read the final image buffer buffer into the host side CPU buffer.
/// This must be called before saving the final output image to file.
/// </summary>
/// <param name="pixels">The host side buffer to read into</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ReadFinal(byte* pixels)
{
if (pixels)
return m_Wrapper.ReadImage(m_FinalImageName, FinalRasW(), FinalRasH(), 0, m_Wrapper.Shared(), pixels);
return false;
}
/// <summary>
/// Clear the final image output buffer with all zeroes by copying a host side buffer.
/// Slow, but never used because the final output image is always completely overwritten.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ClearFinal()
{
vector<byte> v;
uint index = m_Wrapper.FindImageIndex(m_FinalImageName, m_Wrapper.Shared());
if (this->PrepFinalAccumVector(v))
{
bool b = m_Wrapper.WriteImage2D(index, m_Wrapper.Shared(), FinalRasW(), FinalRasH(), 0, v.data());
if (!b)
this->m_ErrorReport.push_back(__FUNCTION__);
return b;
}
else
return false;
}
/// <summary>
/// Public virtual functions overridden from Renderer or RendererBase.
/// </summary>
/// <summary>
/// The amount of video RAM available on the GPU to render with.
/// </summary>
/// <returns>An unsigned 64-bit integer specifying how much video memory is available</returns>
template <typename T, typename bucketT>
size_t RendererCL<T, bucketT>::MemoryAvailable()
{
return Ok() ? m_Wrapper.GlobalMemSize() : 0ULL;
}
/// <summary>
/// Return whether OpenCL has been properly initialized.
/// </summary>
/// <returns>True if OpenCL has been properly initialized, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::Ok() const
{
return m_Init;
}
/// <summary>
/// Override to force num channels to be 4 because RGBA is always used for OpenCL
/// since the output is actually an image rather than just a buffer.
/// </summary>
/// <param name="numChannels">The number of channels, ignored.</param>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::NumChannels(size_t numChannels)
{
m_NumChannels = 4;
}
/// <summary>
/// Dump the error report for this class as well as the OpenCLWrapper member.
/// </summary>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::DumpErrorReport()
{
EmberReport::DumpErrorReport();
m_Wrapper.DumpErrorReport();
}
/// <summary>
/// Clear the error report for this class as well as the OpenCLWrapper member.
/// </summary>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::ClearErrorReport()
{
EmberReport::ClearErrorReport();
m_Wrapper.ClearErrorReport();
}
/// <summary>
/// The sub batch size for OpenCL will always be how many
/// iterations are ran per kernel call. The caller can't
/// change this.
/// </summary>
/// <returns>The number of iterations ran in a single kernel call</returns>
template <typename T, typename bucketT>
size_t RendererCL<T, bucketT>::SubBatchSize() const
{
return IterCountPerGrid();
}
/// <summary>
/// The thread count for OpenCL is always considered to be 1, however
/// the kernel internally runs many threads.
/// </summary>
/// <returns>1</returns>
template <typename T, typename bucketT>
size_t RendererCL<T, bucketT>::ThreadCount() const
{
return 1;
}
/// <summary>
/// Create the density filter in the base class and copy the filter values
/// to the corresponding OpenCL buffers.
/// </summary>
/// <param name="newAlloc">True if a new filter instance was created, else false.</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::CreateDEFilter(bool& newAlloc)
{
bool b = true;
if (Renderer<T, bucketT>::CreateDEFilter(newAlloc))
{
//Copy coefs and widths here. Convert and copy the other filter params right before calling the filtering kernel.
if (newAlloc)
{
const char* loc = __FUNCTION__;
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_DECoefsBufferName, reinterpret_cast<void*>(const_cast<bucketT*>(m_DensityFilter->Coefs())), m_DensityFilter->CoefsSizeBytes()))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_DEWidthsBufferName, reinterpret_cast<void*>(const_cast<bucketT*>(m_DensityFilter->Widths())), m_DensityFilter->WidthsSizeBytes()))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_DECoefIndicesBufferName, reinterpret_cast<void*>(const_cast<uint*>(m_DensityFilter->CoefIndices())), m_DensityFilter->CoefsIndicesSizeBytes()))) { this->m_ErrorReport.push_back(loc); }
}
}
else
b = false;
return b;
}
/// <summary>
/// Create the spatial filter in the base class and copy the filter values
/// to the corresponding OpenCL buffers.
/// </summary>
/// <param name="newAlloc">True if a new filter instance was created, else false.</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::CreateSpatialFilter(bool& newAlloc)
{
bool b = true;
if (Renderer<T, bucketT>::CreateSpatialFilter(newAlloc))
{
if (newAlloc)
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_SpatialFilterCoefsBufferName, reinterpret_cast<void*>(m_SpatialFilter->Filter()), m_SpatialFilter->BufferSizeBytes()))) { this->m_ErrorReport.push_back(__FUNCTION__); }
}
else
b = false;
return b;
}
/// <summary>
/// Get the renderer type enum.
/// </summary>
/// <returns>OPENCL_RENDERER</returns>
template <typename T, typename bucketT>
eRendererType RendererCL<T, bucketT>::RendererType() const
{
return OPENCL_RENDERER;
}
/// <summary>
/// Concatenate and return the error report for this class and the
/// OpenCLWrapper member as a single string.
/// </summary>
/// <returns>The concatenated error report string</returns>
template <typename T, typename bucketT>
string RendererCL<T, bucketT>::ErrorReportString()
{
return EmberReport::ErrorReportString() + m_Wrapper.ErrorReportString();
}
/// <summary>
/// Concatenate and return the error report for this class and the
/// OpenCLWrapper member as a vector of strings.
/// </summary>
/// <returns>The concatenated error report vector of strings</returns>
template <typename T, typename bucketT>
vector<string> RendererCL<T, bucketT>::ErrorReport()
{
auto ours = EmberReport::ErrorReport();
auto wrappers = m_Wrapper.ErrorReport();
ours.insert(ours.end(), wrappers.begin(), wrappers.end());
return ours;
}
/// <summary>
/// Set the vector of random contexts.
/// Call the base, and reset the seeds vector.
/// </summary>
/// <param name="randVec">The vector of random contexts to assign</param>
/// <returns>True if the size of the vector matched the number of threads used for rendering and writing seeds to OpenCL succeeded, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::RandVec(vector<QTIsaac<ISAAC_SIZE, ISAAC_INT>>& randVec)
{
bool b = Renderer<T, bucketT>::RandVec(randVec);
const char* loc = __FUNCTION__;
if (m_Wrapper.Ok())
{
FillSeeds();
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_SeedsBufferName, reinterpret_cast<void*>(m_Seeds.data()), SizeOf(m_Seeds)))) { this->m_ErrorReport.push_back(loc); }
}
return b;
}
/// <summary>
/// Protected virtual functions overridden from Renderer.
/// </summary>
/// <summary>
/// Make the final palette used for iteration.
/// This override differs from the base in that it does not use
/// bucketT as the output palette type. This is because OpenCL
/// only supports floats for texture images.
/// </summary>
/// <param name="colorScalar">The color scalar to multiply the ember's palette by</param>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::MakeDmap(T colorScalar)
{
//m_Ember.m_Palette.MakeDmap<float>(m_DmapCL, colorScalar);
m_Ember.m_Palette.MakeDmap(m_DmapCL, colorScalar);
}
/// <summary>
/// Allocate all buffers required for running as well as the final
/// 2D image.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::Alloc()
{
if (!m_Wrapper.Ok())
return false;
EnterResize();
m_XformsCL.resize(m_Ember.TotalXformCount());
bool b = true;
size_t histLength = SuperSize() * sizeof(v4bT);
size_t accumLength = SuperSize() * sizeof(v4bT);
const char* loc = __FUNCTION__;
if (b && !(b = m_Wrapper.AddBuffer(m_EmberBufferName, sizeof(m_EmberCL)))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_XformsBufferName, SizeOf(m_XformsCL)))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_ParVarsBufferName, 128 * sizeof(T)))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_DistBufferName, CHOOSE_XFORM_GRAIN))) { this->m_ErrorReport.push_back(loc); }//Will be resized for xaos.
if (b && !(b = m_Wrapper.AddBuffer(m_CarToRasBufferName, sizeof(m_CarToRasCL)))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_DEFilterParamsBufferName, sizeof(m_DensityFilterCL)))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_SpatialFilterParamsBufferName, sizeof(m_SpatialFilterCL)))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_CurvesCsaName, SizeOf(m_Csa.m_Entries)))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_HistBufferName, histLength))) { this->m_ErrorReport.push_back(loc); }//Histogram. Will memset to zero later.
if (b && !(b = m_Wrapper.AddBuffer(m_AccumBufferName, accumLength))) { this->m_ErrorReport.push_back(loc); }//Accum buffer.
if (b && !(b = m_Wrapper.AddBuffer(m_PointsBufferName, IterGridKernelCount() * sizeof(PointCL<T>)))) { this->m_ErrorReport.push_back(loc); }//Points between iter calls.
LeaveResize();
if (b && !(b = SetOutputTexture(m_OutputTexID))) { this->m_ErrorReport.push_back(loc); }
return b;
}
/// <summary>
/// Clear OpenCL histogram and/or density filtering buffers to all zeroes.
/// </summary>
/// <param name="resetHist">Clear histogram if true, else don't.</param>
/// <param name="resetAccum">Clear density filtering buffer if true, else don't.</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ResetBuckets(bool resetHist, bool resetAccum)
{
bool b = true;
if (resetHist)
b &= ClearHist();
if (resetAccum)
b &= ClearAccum();
return b;
}
/// <summary>
/// Perform log scale density filtering.
/// </summary>
/// <returns>True if success and not aborted, else false.</returns>
template <typename T, typename bucketT>
eRenderStatus RendererCL<T, bucketT>::LogScaleDensityFilter()
{
return RunLogScaleFilter();
}
/// <summary>
/// Run gaussian density estimation filtering.
/// </summary>
/// <returns>True if success and not aborted, else false.</returns>
template <typename T, typename bucketT>
eRenderStatus RendererCL<T, bucketT>::GaussianDensityFilter()
{
//This commented section is for debugging density filtering by making it run on the CPU
//then copying the results back to the GPU.
//if (ReadHist())
//{
// uint accumLength = SuperSize() * sizeof(glm::detail::tvec4<T>);
// const char* loc = __FUNCTION__;
//
// Renderer<T, bucketT>::ResetBuckets(false, true);
// Renderer<T, bucketT>::GaussianDensityFilter();
//
// if (!m_Wrapper.WriteBuffer(m_AccumBufferName, AccumulatorBuckets(), accumLength)) { this->m_ErrorReport.push_back(loc); return RENDER_ERROR; }
// return RENDER_OK;
//}
//else
// return RENDER_ERROR;
//Timing t(4);
eRenderStatus status = RunDensityFilter();
//t.Toc(__FUNCTION__ " RunKernel()");
return status;
}
/// <summary>
/// Run final accumulation.
/// If pixels is nullptr, the output will remain in the OpenCL 2D image.
/// However, if pixels is not nullptr, the output will be copied. This is
/// useful when rendering in OpenCL, but saving the output to a file.
/// </summary>
/// <param name="pixels">The pixels to copy the final image to if not nullptr</param>
/// <param name="finalOffset">Offset in the buffer to store the pixels to</param>
/// <returns>True if success and not aborted, else false.</returns>
template <typename T, typename bucketT>
eRenderStatus RendererCL<T, bucketT>::AccumulatorToFinalImage(byte* pixels, size_t finalOffset)
{
eRenderStatus status = RunFinalAccum();
if (status == RENDER_OK && pixels != nullptr && !m_Wrapper.Shared())
{
pixels += finalOffset;
if (!ReadFinal(pixels))
status = RENDER_ERROR;
}
return status;
}
/// <summary>
/// Run the iteration algorithm for the specified number of iterations.
/// This is only called after all other setup has been done.
/// This will recompile the OpenCL program if this ember differs significantly
/// from the previous run.
/// Note that the bad value count is not recorded when running with OpenCL. If it's
/// needed, run on the CPU.
/// </summary>
/// <param name="iterCount">The number of iterations to run</param>
/// <param name="temporalSample">The temporal sample within the current pass this is running for</param>
/// <returns>Rendering statistics</returns>
template <typename T, typename bucketT>
EmberStats RendererCL<T, bucketT>::Iterate(size_t iterCount, size_t temporalSample)
{
bool b = true;
EmberStats stats;//Do not record bad vals with with GPU. If the user needs to investigate bad vals, use the CPU.
const char* loc = __FUNCTION__;
//Only need to do this once on the beginning of a new render. Last iter will always be 0 at the beginning of a full render or temporal sample.
if (m_LastIter == 0)
{
ConvertEmber(m_Ember, m_EmberCL, m_XformsCL);
ConvertCarToRas(*CoordMap());
if (b && !(b = m_Wrapper.WriteBuffer(m_EmberBufferName, reinterpret_cast<void*>(&m_EmberCL), sizeof(m_EmberCL)))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.WriteBuffer(m_XformsBufferName, reinterpret_cast<void*>(m_XformsCL.data()), sizeof(m_XformsCL[0]) * m_XformsCL.size()))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_DistBufferName, reinterpret_cast<void*>(const_cast<byte*>(XformDistributions())), XformDistributionsSize()))) { this->m_ErrorReport.push_back(loc); }//Will be resized for xaos.
if (b && !(b = m_Wrapper.WriteBuffer(m_CarToRasBufferName, reinterpret_cast<void*>(&m_CarToRasCL), sizeof(m_CarToRasCL)))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteImage("Palette", CL_MEM_READ_ONLY, m_PaletteFormat, m_DmapCL.m_Entries.size(), 1, 0, m_DmapCL.m_Entries.data()))) { this->m_ErrorReport.push_back(loc); }
if (b)
{
IterOpenCLKernelCreator<T>::ParVarIndexDefines(m_Ember, m_Params, true, false);//Always do this to get the values (but no string), regardless of whether a rebuild is necessary.
//Don't know the size of the parametric varations parameters buffer until the ember is examined.
//So set it up right before the run.
if (!m_Params.second.empty())
{
if (!m_Wrapper.AddAndWriteBuffer(m_ParVarsBufferName, m_Params.second.data(), m_Params.second.size() * sizeof(m_Params.second[0])))
{
m_Abort = true;
this->m_ErrorReport.push_back(loc);
return stats;
}
}
}
else
return stats;
}
//Rebuilding is expensive, so only do it if it's required.
if (IterOpenCLKernelCreator<T>::IsBuildRequired(m_Ember, m_LastBuiltEmber))
b = BuildIterProgramForEmber(true);
if (b)
{
m_IterTimer.Tic();//Tic() here to avoid including build time in iter time measurement.
if (m_LastIter == 0)//Only reset the call count on the beginning of a new render. Do not reset on KEEP_ITERATING.
m_Calls = 0;
b = RunIter(iterCount, temporalSample, stats.m_Iters);
if (!b || stats.m_Iters == 0)//If no iters were executed, something went catastrophically wrong.
m_Abort = true;
stats.m_IterMs = m_IterTimer.Toc();
}
else
{
m_Abort = true;
this->m_ErrorReport.push_back(loc);
}
return stats;
}
/// <summary>
/// Private functions for making and running OpenCL programs.
/// </summary>
/// <summary>
/// Build the iteration program for the current ember.
/// </summary>
/// <param name="doAccum">Whether to build in accumulation, only for debugging. Default: true.</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::BuildIterProgramForEmber(bool doAccum)
{
//Timing t;
const char* loc = __FUNCTION__;
IterOpenCLKernelCreator<T>::ParVarIndexDefines(m_Ember, m_Params, false, true);//Do with string and no vals.
m_IterKernel = m_IterOpenCLKernelCreator.CreateIterKernelString(m_Ember, m_Params.first, m_LockAccum, doAccum);
//cout << "Building: " << endl << iterProgram << endl;
//A program build is roughly .66s which will detract from the user experience.
//Need to experiment with launching this in a thread/task and returning once it's done.//TODO
if (m_Wrapper.AddProgram(m_IterOpenCLKernelCreator.IterEntryPoint(), m_IterKernel, m_IterOpenCLKernelCreator.IterEntryPoint(), m_DoublePrecision))
{
//t.Toc(__FUNCTION__ " program build");
//cout << string(loc) << "():\nBuilding the following program succeeded: \n" << iterProgram << endl;
m_LastBuiltEmber = m_Ember;
}
else
{
this->m_ErrorReport.push_back(string(loc) + "():\nBuilding the following program failed: \n" + m_IterKernel + "\n");
return false;
}
return true;
}
/// <summary>
/// Run the iteration kernel.
/// Fusing on the CPU is done once per sub batch, usually 10,000 iters. Here,
/// the same fusing frequency is kept, but is done per kernel thread.
/// </summary>
/// <param name="iterCount">The number of iterations to run</param>
/// <param name="temporalSample">The temporal sample this is running for</param>
/// <param name="itersRan">The storage for the number of iterations ran</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::RunIter(size_t iterCount, size_t temporalSample, size_t& itersRan)
{
Timing t;//, t2(4);
bool b = true;
uint fuse, argIndex;
uint iterCountPerKernel = IterCountPerKernel();
uint iterCountPerBlock = IterCountPerBlock();
uint supersize = uint(SuperSize());
int kernelIndex = m_Wrapper.FindKernelIndex(m_IterOpenCLKernelCreator.IterEntryPoint());
size_t fuseFreq = Renderer<T, bucketT>::SubBatchSize() / m_IterCountPerKernel;//Use the base sbs to determine when to fuse.
size_t itersRemaining;
double percent, etaMs;
const char* loc = __FUNCTION__;
itersRan = 0;
#ifdef TEST_CL
m_Abort = false;
#endif
if (kernelIndex != -1)
{
//If animating, treat each temporal sample as a newly started render for fusing purposes.
if (temporalSample > 0)
m_Calls = 0;
while (b && itersRan < iterCount && !m_Abort)
{
argIndex = 0;
#ifdef TEST_CL
fuse = 0;
#else
//fuse = 100;
//fuse = ((m_Calls % fuseFreq) == 0 ? (EarlyClip() ? 100u : 15u) : 0u);
fuse = uint((m_Calls % fuseFreq) == 0u ? FuseCount() : 0u);
//fuse = ((m_Calls % 4) == 0 ? 100u : 0u);
#endif
itersRemaining = iterCount - itersRan;
uint gridW = uint(std::min(ceil(double(itersRemaining) / double(iterCountPerBlock)), double(IterGridBlockWidth())));
uint gridH = uint(std::min(ceil(double(itersRemaining) / double(gridW * iterCountPerBlock)), double(IterGridBlockHeight())));
uint iterCountThisLaunch = iterCountPerBlock * gridW * gridH;
//Similar to what's done in the base class.
//The number of iters per thread must be adjusted if they've requested less iters than is normally ran in a block (256 * 256).
if (iterCountThisLaunch > iterCount)
{
iterCountPerKernel = uint(ceil(double(iterCount) / double(gridW * gridH * IterBlockKernelCount())));
iterCountThisLaunch = iterCountPerKernel * (gridW * gridH * IterBlockKernelCount());
}
if (b && !(b = m_Wrapper.SetArg (kernelIndex, argIndex++, iterCountPerKernel))) { this->m_ErrorReport.push_back(loc); }//Number of iters for each thread to run.
if (b && !(b = m_Wrapper.SetArg (kernelIndex, argIndex++, fuse))) { this->m_ErrorReport.push_back(loc); }//Number of iters to fuse.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_SeedsBufferName))) { this->m_ErrorReport.push_back(loc); }//Seeds.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_EmberBufferName))) { this->m_ErrorReport.push_back(loc); }//Ember.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_XformsBufferName))) { this->m_ErrorReport.push_back(loc); }//Xforms.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_ParVarsBufferName))) { this->m_ErrorReport.push_back(loc); }//Parametric variation parameters.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_DistBufferName))) { this->m_ErrorReport.push_back(loc); }//Xform distributions.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_CarToRasBufferName))) { this->m_ErrorReport.push_back(loc); }//Coordinate converter.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_HistBufferName))) { this->m_ErrorReport.push_back(loc); }//Histogram.
if (b && !(b = m_Wrapper.SetArg (kernelIndex, argIndex++, supersize))) { this->m_ErrorReport.push_back(loc); }//Histogram size.
if (b && !(b = m_Wrapper.SetImageArg (kernelIndex, argIndex++, false, "Palette"))) { this->m_ErrorReport.push_back(loc); }//Palette.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_PointsBufferName))) { this->m_ErrorReport.push_back(loc); }//Random start points.
if (b && !(b = m_Wrapper.RunKernel(kernelIndex,
gridW * IterBlockKernelWidth(),//Total grid dims.
gridH * IterBlockKernelHeight(),
1,
IterBlockKernelWidth(),//Individual block dims.
IterBlockKernelHeight(),
1)))
{
m_Abort = true;
this->m_ErrorReport.push_back(loc);
break;
}
itersRan += iterCountThisLaunch;
m_Calls++;
if (m_Callback)
{
percent = 100.0 *
double
(
double
(
double
(
double(m_LastIter + itersRan) / double(ItersPerTemporalSample())
) + temporalSample
) / double(TemporalSamples())
);
double percentDiff = percent - m_LastIterPercent;
double toc = m_ProgressTimer.Toc();
if (percentDiff >= 10 || (toc > 1000 && percentDiff >= 1))//Call callback function if either 10% has passed, or one second (and 1%).
{
etaMs = ((100.0 - percent) / percent) * m_RenderTimer.Toc();
if (!m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, percent, 0, etaMs))
Abort();
m_LastIterPercent = percent;
m_ProgressTimer.Tic();
}
}
}
}
else
{
b = false;
this->m_ErrorReport.push_back(loc);
}
//t2.Toc(__FUNCTION__);
return b;
}
/// <summary>
/// Run the log scale filter.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
eRenderStatus RendererCL<T, bucketT>::RunLogScaleFilter()
{
//Timing t(4);
bool b = true;
int kernelIndex = m_Wrapper.FindKernelIndex(m_DEOpenCLKernelCreator.LogScaleAssignDEEntryPoint());
const char* loc = __FUNCTION__;
if (kernelIndex != -1)
{
ConvertDensityFilter();
uint argIndex = 0;
uint blockW = m_WarpSize;
uint blockH = 4;//A height of 4 seems to run the fastest.
uint gridW = m_DensityFilterCL.m_SuperRasW;
uint gridH = m_DensityFilterCL.m_SuperRasH;
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_DEFilterParamsBufferName, reinterpret_cast<void*>(&m_DensityFilterCL), sizeof(m_DensityFilterCL)))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_HistBufferName))) { this->m_ErrorReport.push_back(loc); }//Histogram.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_AccumBufferName))) { this->m_ErrorReport.push_back(loc); }//Accumulator.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_DEFilterParamsBufferName))) { this->m_ErrorReport.push_back(loc); }//DensityFilterCL.
//t.Tic();
if (b && !(b = m_Wrapper.RunKernel(kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { this->m_ErrorReport.push_back(loc); }
//t.Toc(loc);
}
else
{
b = false;
this->m_ErrorReport.push_back(loc);
}
if (b && m_Callback && m_LastIterPercent >= 99.0)//Only update progress if we've really reached the end, not via forced output.
m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, 100.0, 1, 0.0);
return b ? RENDER_OK : RENDER_ERROR;
}
/// <summary>
/// Run the Gaussian density filter.
/// Method 7: Each block processes a 16x16(AMD) or 32x32(Nvidia) block and exits. No column or row advancements happen.
/// </summary>
/// <returns>True if success and not aborted, else false.</returns>
template <typename T, typename bucketT>
eRenderStatus RendererCL<T, bucketT>::RunDensityFilter()
{
bool b = true;
Timing t(4);// , t2(4);
ConvertDensityFilter();
int kernelIndex = MakeAndGetDensityFilterProgram(Supersample(), m_DensityFilterCL.m_FilterWidth);
const char* loc = __FUNCTION__;
if (kernelIndex != -1)
{
uint leftBound = m_DensityFilterCL.m_Supersample - 1;
uint rightBound = m_DensityFilterCL.m_SuperRasW - (m_DensityFilterCL.m_Supersample - 1);
uint topBound = leftBound;
uint botBound = m_DensityFilterCL.m_SuperRasH - (m_DensityFilterCL.m_Supersample - 1);
uint gridW = rightBound - leftBound;
uint gridH = botBound - topBound;
uint blockSizeW = m_MaxDEBlockSizeW;//These *must* both be divisible by 16 or else pixels will go missing.
uint blockSizeH = m_MaxDEBlockSizeH;
//OpenCL runs out of resources when using double or a supersample of 2.
//Remedy this by reducing the height of the block by 2.
if (m_DoublePrecision || m_DensityFilterCL.m_Supersample > 1)
blockSizeH -= 2;
//Can't just blindly pass in vals. Must adjust them first to evenly divide the block count
//into the total grid dimensions.
OpenCLWrapper::MakeEvenGridDims(blockSizeW, blockSizeH, gridW, gridH);
//t.Tic();
//The classic problem with performing DE on adjacent pixels is that the filter will overlap.
//This can be solved in 2 ways. One is to use atomics, which is unacceptably slow.
//The other is to proces the entire image in multiple passes, and each pass processes blocks of pixels
//that are far enough apart such that their filters do not overlap.
//Do the latter.
//Gap is in terms of blocks. How many blocks must separate two blocks running at the same time.
uint gapW = uint(ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / double(blockSizeW)));
uint chunkSizeW = gapW + 1;
uint gapH = uint(ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / double(blockSizeH)));
uint chunkSizeH = gapH + 1;
double totalChunks = chunkSizeW * chunkSizeH;
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_DEFilterParamsBufferName, reinterpret_cast<void*>(&m_DensityFilterCL), sizeof(m_DensityFilterCL)))) { this->m_ErrorReport.push_back(loc); }
#ifdef ROW_ONLY_DE
blockSizeW = 64;//These *must* both be divisible by 16 or else pixels will go missing.
blockSizeH = 1;
gapW = (uint)ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / (double)blockSizeW);
chunkSizeW = gapW + 1;
gapH = (uint)ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / (double)32);//Block height is 1, but iterates over 32 rows.
chunkSizeH = gapH + 1;
totalChunks = chunkSizeW * chunkSizeH;
OpenCLWrapper::MakeEvenGridDims(blockSizeW, blockSizeH, gridW, gridH);
gridW /= chunkSizeW;
gridH /= chunkSizeH;
for (uint rowChunk = 0; b && !m_Abort && rowChunk < chunkSizeH; rowChunk++)
{
for (uint colChunk = 0; b && !m_Abort && colChunk < chunkSizeW; colChunk++)
{
//t2.Tic();
if (b && !(b = RunDensityFilterPrivate(kernelIndex, gridW, gridH, blockSizeW, blockSizeH, chunkSizeW, chunkSizeH, colChunk, rowChunk))) { m_Abort = true; this->m_ErrorReport.push_back(loc); }
//t2.Toc(loc);
if (b && m_Callback)
{
double percent = (double((rowChunk * chunkSizeW) + (colChunk + 1)) / totalChunks) * 100.0;
double etaMs = ((100.0 - percent) / percent) * t.Toc();
if (!m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, percent, 1, etaMs))
Abort();
}
}
}
#else
gridW /= chunkSizeW;
gridH /= chunkSizeH;
OpenCLWrapper::MakeEvenGridDims(blockSizeW, blockSizeH, gridW, gridH);
for (uint rowChunk = 0; b && !m_Abort && rowChunk < chunkSizeH; rowChunk++)
{
for (uint colChunk = 0; b && !m_Abort && colChunk < chunkSizeW; colChunk++)
{
//t2.Tic();
if (b && !(b = RunDensityFilterPrivate(kernelIndex, gridW, gridH, blockSizeW, blockSizeH, chunkSizeW, chunkSizeH, colChunk, rowChunk))) { m_Abort = true; this->m_ErrorReport.push_back(loc); }
//t2.Toc(loc);
if (b && m_Callback)
{
double percent = (double((rowChunk * chunkSizeW) + (colChunk + 1)) / totalChunks) * 100.0;
double etaMs = ((100.0 - percent) / percent) * t.Toc();
if (!m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, percent, 1, etaMs))
Abort();
}
}
}
#endif
if (b && m_Callback)
m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, 100.0, 1, 0.0);
//t2.Toc(__FUNCTION__ " all passes");
}
else
{
b = false;
this->m_ErrorReport.push_back(loc);
}
return m_Abort ? RENDER_ABORT : (b ? RENDER_OK : RENDER_ERROR);
}
/// <summary>
/// Run final accumulation to the 2D output image.
/// </summary>
/// <returns>True if success and not aborted, else false.</returns>
template <typename T, typename bucketT>
eRenderStatus RendererCL<T, bucketT>::RunFinalAccum()
{
//Timing t(4);
bool b = true;
double alphaBase;
double alphaScale;
int accumKernelIndex = MakeAndGetFinalAccumProgram(alphaBase, alphaScale);
uint argIndex;
uint gridW;
uint gridH;
uint blockW;
uint blockH;
uint curvesSet = m_CurvesSet ? 1 : 0;
const char* loc = __FUNCTION__;
if (!m_Abort && accumKernelIndex != -1)
{
//This is needed with or without early clip.
ConvertSpatialFilter();
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_SpatialFilterParamsBufferName, reinterpret_cast<void*>(&m_SpatialFilterCL), sizeof(m_SpatialFilterCL)))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_CurvesCsaName, m_Csa.m_Entries.data(), SizeOf(m_Csa.m_Entries)))) { this->m_ErrorReport.push_back(loc); }
//Since early clip requires gamma correcting the entire accumulator first,
//it can't be done inside of the normal final accumulation kernel, so
//an additional kernel must be launched first.
if (b && EarlyClip())
{
int gammaCorrectKernelIndex = MakeAndGetGammaCorrectionProgram();
if (gammaCorrectKernelIndex != -1)
{
argIndex = 0;
blockW = m_WarpSize;
blockH = 4;//A height of 4 seems to run the fastest.
gridW = m_SpatialFilterCL.m_SuperRasW;//Using super dimensions because this processes the density filtering bufer.
gridH = m_SpatialFilterCL.m_SuperRasH;
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
if (b && !(b = m_Wrapper.SetBufferArg(gammaCorrectKernelIndex, argIndex++, m_AccumBufferName))) { this->m_ErrorReport.push_back(loc); }//Accumulator.
if (b && !(b = m_Wrapper.SetBufferArg(gammaCorrectKernelIndex, argIndex++, m_SpatialFilterParamsBufferName))) { this->m_ErrorReport.push_back(loc); }//SpatialFilterCL.
if (b && !(b = m_Wrapper.RunKernel(gammaCorrectKernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { this->m_ErrorReport.push_back(loc); }
}
else
{
b = false;
this->m_ErrorReport.push_back(loc);
}
}
argIndex = 0;
blockW = m_WarpSize;
blockH = 4;//A height of 4 seems to run the fastest.
gridW = m_SpatialFilterCL.m_FinalRasW;
gridH = m_SpatialFilterCL.m_FinalRasH;
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
if (b && !(b = m_Wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_AccumBufferName))) { this->m_ErrorReport.push_back(loc); }//Accumulator.
if (b && !(b = m_Wrapper.SetImageArg (accumKernelIndex, argIndex++, m_Wrapper.Shared(), m_FinalImageName))) { this->m_ErrorReport.push_back(loc); }//Final image.
if (b && !(b = m_Wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_SpatialFilterParamsBufferName))) { this->m_ErrorReport.push_back(loc); }//SpatialFilterCL.
if (b && !(b = m_Wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_SpatialFilterCoefsBufferName))) { this->m_ErrorReport.push_back(loc); }//Filter coefs.
if (b && !(b = m_Wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_CurvesCsaName))) { this->m_ErrorReport.push_back(loc); }//Curve points.
if (b && !(b = m_Wrapper.SetArg (accumKernelIndex, argIndex++, curvesSet))) { this->m_ErrorReport.push_back(loc); }//Do curves.
if (b && !(b = m_Wrapper.SetArg (accumKernelIndex, argIndex++, bucketT(alphaBase)))) { this->m_ErrorReport.push_back(loc); }//Alpha base.
if (b && !(b = m_Wrapper.SetArg (accumKernelIndex, argIndex++, bucketT(alphaScale)))) { this->m_ErrorReport.push_back(loc); }//Alpha scale.
if (b && m_Wrapper.Shared())
if (b && !(b = m_Wrapper.EnqueueAcquireGLObjects(m_FinalImageName))) { this->m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.RunKernel(accumKernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { this->m_ErrorReport.push_back(loc); }
if (b && m_Wrapper.Shared())
if (b && !(b = m_Wrapper.EnqueueReleaseGLObjects(m_FinalImageName))) { this->m_ErrorReport.push_back(loc); }
//t.Toc((char*)loc);
}
else
{
b = false;
this->m_ErrorReport.push_back(loc);
}
return b ? RENDER_OK : RENDER_ERROR;
}
/// <summary>
/// Zeroize a buffer of the specified size.
/// </summary>
/// <param name="bufferName">Name of the buffer to clear</param>
/// <param name="width">Width in elements</param>
/// <param name="height">Height in elements</param>
/// <param name="elementSize">Size of each element</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ClearBuffer(const string& bufferName, uint width, uint height, uint elementSize)
{
bool b = true;
int kernelIndex = m_Wrapper.FindKernelIndex(m_IterOpenCLKernelCreator.ZeroizeEntryPoint());
uint argIndex = 0;
const char* loc = __FUNCTION__;
if (kernelIndex != -1)
{
uint blockW = m_NVidia ? 32 : 16;//Max work group size is 256 on AMD, which means 16x16.
uint blockH = m_NVidia ? 32 : 16;
uint gridW = width * elementSize;
uint gridH = height;
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, bufferName))) { this->m_ErrorReport.push_back(loc); }//Buffer of byte.
if (b && !(b = m_Wrapper.SetArg (kernelIndex, argIndex++, width * elementSize))) { this->m_ErrorReport.push_back(loc); }//Width.
if (b && !(b = m_Wrapper.SetArg (kernelIndex, argIndex++, height))) { this->m_ErrorReport.push_back(loc); }//Height.
if (b && !(b = m_Wrapper.RunKernel(kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { this->m_ErrorReport.push_back(loc); }
}
else
{
b = false;
this->m_ErrorReport.push_back(loc);
}
return b;
}
/// <summary>
/// Private wrapper around calling Gaussian density filtering kernel.
/// The parameters are very specific to how the kernel is internally implemented.
/// </summary>
/// <param name="kernelIndex">Index of the kernel to call</param>
/// <param name="gridW">Grid width</param>
/// <param name="gridH">Grid height</param>
/// <param name="blockW">Block width</param>
/// <param name="blockH">Block height</param>
/// <param name="chunkSizeW">Chunk size width (gapW + 1)</param>
/// <param name="chunkSizeH">Chunk size height (gapH + 1)</param>
/// <param name="rowParity">Row parity</param>
/// <param name="colParity">Column parity</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::RunDensityFilterPrivate(uint kernelIndex, uint gridW, uint gridH, uint blockW, uint blockH, uint chunkSizeW, uint chunkSizeH, uint chunkW, uint chunkH)
{
//Timing t(4);
bool b = true;
uint argIndex = 0;
const char* loc = __FUNCTION__;
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex, m_HistBufferName))) { this->m_ErrorReport.push_back(loc); } argIndex++;//Histogram.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex, m_AccumBufferName))) { this->m_ErrorReport.push_back(loc); } argIndex++;//Accumulator.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex, m_DEFilterParamsBufferName))) { this->m_ErrorReport.push_back(loc); } argIndex++;//FlameDensityFilterCL.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex, m_DECoefsBufferName))) { this->m_ErrorReport.push_back(loc); } argIndex++;//Coefs.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex, m_DEWidthsBufferName))) { this->m_ErrorReport.push_back(loc); } argIndex++;//Widths.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex, m_DECoefIndicesBufferName))) { this->m_ErrorReport.push_back(loc); } argIndex++;//Coef indices.
if (b && !(b = m_Wrapper.SetArg( kernelIndex, argIndex, chunkSizeW))) { this->m_ErrorReport.push_back(loc); } argIndex++;//Chunk size width (gapW + 1).
if (b && !(b = m_Wrapper.SetArg( kernelIndex, argIndex, chunkSizeH))) { this->m_ErrorReport.push_back(loc); } argIndex++;//Chunk size height (gapH + 1).
if (b && !(b = m_Wrapper.SetArg( kernelIndex, argIndex, chunkW))) { this->m_ErrorReport.push_back(loc); } argIndex++;//Column chunk.
if (b && !(b = m_Wrapper.SetArg( kernelIndex, argIndex, chunkH))) { this->m_ErrorReport.push_back(loc); } argIndex++;//Row chunk.
//t.Toc(__FUNCTION__ " set args");
//t.Tic();
if (b && !(b = m_Wrapper.RunKernel(kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { this->m_ErrorReport.push_back(loc); }//Method 7, accumulating to temp box area.
//t.Toc(__FUNCTION__ " RunKernel()");
return b;
}
/// <summary>
/// Make the Gaussian density filter program and return its index.
/// </summary>
/// <param name="ss">The supersample being used for the current ember</param>
/// <param name="filterWidth">Width of the gaussian filter</param>
/// <returns>The kernel index if successful, else -1.</returns>
template <typename T, typename bucketT>
int RendererCL<T, bucketT>::MakeAndGetDensityFilterProgram(size_t ss, uint filterWidth)
{
auto& deEntryPoint = m_DEOpenCLKernelCreator.GaussianDEEntryPoint(ss, filterWidth);
int kernelIndex = m_Wrapper.FindKernelIndex(deEntryPoint);
const char* loc = __FUNCTION__;
if (kernelIndex == -1)//Has not been built yet.
{
auto& kernel = m_DEOpenCLKernelCreator.GaussianDEKernel(ss, filterWidth);
bool b = m_Wrapper.AddProgram(deEntryPoint, kernel, deEntryPoint, m_DoublePrecision);
if (b)
{
kernelIndex = m_Wrapper.FindKernelIndex(deEntryPoint);//Try to find it again, it will be present if successfully built.
}
else
{
this->m_ErrorReport.push_back(string(loc) + "():\nBuilding the following program failed: \n" + kernel + "\n");
}
}
return kernelIndex;
}
/// <summary>
/// Make the final accumulation program and return its index.
/// There are many different kernels for final accum, depending on early clip, alpha channel, and transparency.
/// Loading all of these in the beginning is too much, so only load the one for the current case being worked with.
/// </summary>
/// <param name="alphaBase">Storage for the alpha base value used in the kernel. 0 if transparency is true, else 255.</param>
/// <param name="alphaScale">Storage for the alpha scale value used in the kernel. 255 if transparency is true, else 0.</param>
/// <returns>The kernel index if successful, else -1.</returns>
template <typename T, typename bucketT>
int RendererCL<T, bucketT>::MakeAndGetFinalAccumProgram(double& alphaBase, double& alphaScale)
{
auto& finalAccumEntryPoint = m_FinalAccumOpenCLKernelCreator.FinalAccumEntryPoint(EarlyClip(), Renderer<T, bucketT>::NumChannels(), Transparency(), alphaBase, alphaScale);
int kernelIndex = m_Wrapper.FindKernelIndex(finalAccumEntryPoint);
const char* loc = __FUNCTION__;
if (kernelIndex == -1)//Has not been built yet.
{
auto& kernel = m_FinalAccumOpenCLKernelCreator.FinalAccumKernel(EarlyClip(), Renderer<T, bucketT>::NumChannels(), Transparency());
bool b = m_Wrapper.AddProgram(finalAccumEntryPoint, kernel, finalAccumEntryPoint, m_DoublePrecision);
if (b)
kernelIndex = m_Wrapper.FindKernelIndex(finalAccumEntryPoint);//Try to find it again, it will be present if successfully built.
else
this->m_ErrorReport.push_back(loc);
}
return kernelIndex;
}
/// <summary>
/// Make the gamma correction program for early clipping and return its index.
/// </summary>
/// <returns>The kernel index if successful, else -1.</returns>
template <typename T, typename bucketT>
int RendererCL<T, bucketT>::MakeAndGetGammaCorrectionProgram()
{
auto& gammaEntryPoint = m_FinalAccumOpenCLKernelCreator.GammaCorrectionEntryPoint(Renderer<T, bucketT>::NumChannels(), Transparency());
int kernelIndex = m_Wrapper.FindKernelIndex(gammaEntryPoint);
const char* loc = __FUNCTION__;
if (kernelIndex == -1)//Has not been built yet.
{
auto& kernel = m_FinalAccumOpenCLKernelCreator.GammaCorrectionKernel(Renderer<T, bucketT>::NumChannels(), Transparency());
bool b = m_Wrapper.AddProgram(gammaEntryPoint, kernel, gammaEntryPoint, m_DoublePrecision);
if (b)
kernelIndex = m_Wrapper.FindKernelIndex(gammaEntryPoint);//Try to find it again, it will be present if successfully built.
else
this->m_ErrorReport.push_back(loc);
}
return kernelIndex;
}
/// <summary>
/// Private functions passing data to OpenCL programs.
/// </summary>
/// <summary>
/// Convert the currently used host side DensityFilter object into a DensityFilterCL object
/// for passing to OpenCL.
/// </summary>
/// <returns>The DensityFilterCL object</returns>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::ConvertDensityFilter()
{
if (m_DensityFilter.get())
{
m_DensityFilterCL.m_Supersample = uint(Supersample());
m_DensityFilterCL.m_SuperRasW = uint(SuperRasW());
m_DensityFilterCL.m_SuperRasH = uint(SuperRasH());
m_DensityFilterCL.m_K1 = K1();
m_DensityFilterCL.m_K2 = K2();
m_DensityFilterCL.m_Curve = m_DensityFilter->Curve();
m_DensityFilterCL.m_KernelSize = uint(m_DensityFilter->KernelSize());
m_DensityFilterCL.m_MaxFilterIndex = uint(m_DensityFilter->MaxFilterIndex());
m_DensityFilterCL.m_MaxFilteredCounts = uint(m_DensityFilter->MaxFilteredCounts());
m_DensityFilterCL.m_FilterWidth = uint(m_DensityFilter->FilterWidth());
}
}
/// <summary>
/// Convert the currently used host side SpatialFilter object into a SpatialFilterCL object
/// for passing to OpenCL.
/// </summary>
/// <returns>The SpatialFilterCL object</returns>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::ConvertSpatialFilter()
{
bucketT g, linRange, vibrancy;
Color<bucketT> background;
if (m_SpatialFilter.get())
{
this->PrepFinalAccumVals(background, g, linRange, vibrancy);
m_SpatialFilterCL.m_SuperRasW = uint(SuperRasW());
m_SpatialFilterCL.m_SuperRasH = uint(SuperRasH());
m_SpatialFilterCL.m_FinalRasW = uint(FinalRasW());
m_SpatialFilterCL.m_FinalRasH = uint(FinalRasH());
m_SpatialFilterCL.m_Supersample = uint(Supersample());
m_SpatialFilterCL.m_FilterWidth = uint(m_SpatialFilter->FinalFilterWidth());
m_SpatialFilterCL.m_NumChannels = uint(Renderer<T, bucketT>::NumChannels());
m_SpatialFilterCL.m_BytesPerChannel = uint(BytesPerChannel());
m_SpatialFilterCL.m_DensityFilterOffset = uint(DensityFilterOffset());
m_SpatialFilterCL.m_Transparency = Transparency();
m_SpatialFilterCL.m_YAxisUp = uint(m_YAxisUp);
m_SpatialFilterCL.m_Vibrancy = vibrancy;
m_SpatialFilterCL.m_HighlightPower = HighlightPower();
m_SpatialFilterCL.m_Gamma = g;
m_SpatialFilterCL.m_LinRange = linRange;
m_SpatialFilterCL.m_Background = background;
}
}
/// <summary>
/// Convert the host side Ember object into an EmberCL object
/// and a vector of XformCL for passing to OpenCL.
/// </summary>
/// <param name="ember">The Ember object to convert</param>
/// <param name="emberCL">The converted EmberCL</param>
/// <param name="xformsCL">The converted vector of XformCL</param>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::ConvertEmber(Ember<T>& ember, EmberCL<T>& emberCL, vector<XformCL<T>>& xformsCL)
{
memset(&emberCL, 0, sizeof(EmberCL<T>));//Might not really be needed.
emberCL.m_RotA = m_RotMat.A();
emberCL.m_RotB = m_RotMat.B();
emberCL.m_RotD = m_RotMat.D();
emberCL.m_RotE = m_RotMat.E();
emberCL.m_CamMat = ember.m_CamMat;
emberCL.m_CenterX = CenterX();
emberCL.m_CenterY = ember.m_RotCenterY;
emberCL.m_CamZPos = ember.m_CamZPos;
emberCL.m_CamPerspective = ember.m_CamPerspective;
emberCL.m_CamYaw = ember.m_CamYaw;
emberCL.m_CamPitch = ember.m_CamPitch;
emberCL.m_CamDepthBlur = ember.m_CamDepthBlur;
emberCL.m_BlurCoef = ember.BlurCoef();
for (uint i = 0; i < ember.TotalXformCount() && i < xformsCL.size(); i++)
{
Xform<T>* xform = ember.GetTotalXform(i);
xformsCL[i].m_A = xform->m_Affine.A();
xformsCL[i].m_B = xform->m_Affine.B();
xformsCL[i].m_C = xform->m_Affine.C();
xformsCL[i].m_D = xform->m_Affine.D();
xformsCL[i].m_E = xform->m_Affine.E();
xformsCL[i].m_F = xform->m_Affine.F();
xformsCL[i].m_PostA = xform->m_Post.A();
xformsCL[i].m_PostB = xform->m_Post.B();
xformsCL[i].m_PostC = xform->m_Post.C();
xformsCL[i].m_PostD = xform->m_Post.D();
xformsCL[i].m_PostE = xform->m_Post.E();
xformsCL[i].m_PostF = xform->m_Post.F();
xformsCL[i].m_DirectColor = xform->m_DirectColor;
xformsCL[i].m_ColorSpeedCache = xform->ColorSpeedCache();
xformsCL[i].m_OneMinusColorCache = xform->OneMinusColorCache();
xformsCL[i].m_Opacity = xform->m_Opacity;
xformsCL[i].m_VizAdjusted = xform->VizAdjusted();
for (uint varIndex = 0; varIndex < xform->TotalVariationCount() && varIndex < MAX_CL_VARS; varIndex++)//Assign all variation weights for this xform, with a max of MAX_CL_VARS.
xformsCL[i].m_VariationWeights[varIndex] = xform->GetVariation(varIndex)->m_Weight;
}
}
/// <summary>
/// Convert the host side CarToRas object into a CarToRasCL object
/// for passing to OpenCL.
/// </summary>
/// <param name="carToRas">The CarToRas object to convert</param>
/// <returns>The CarToRasCL object</returns>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::ConvertCarToRas(const CarToRas<T>& carToRas)
{
m_CarToRasCL.m_RasWidth = uint(carToRas.RasWidth());
m_CarToRasCL.m_PixPerImageUnitW = carToRas.PixPerImageUnitW();
m_CarToRasCL.m_RasLlX = carToRas.RasLlX();
m_CarToRasCL.m_PixPerImageUnitH = carToRas.PixPerImageUnitH();
m_CarToRasCL.m_RasLlY = carToRas.RasLlY();
m_CarToRasCL.m_CarLlX = carToRas.CarLlX();
m_CarToRasCL.m_CarLlY = carToRas.CarLlY();
m_CarToRasCL.m_CarUrX = carToRas.CarUrX();
m_CarToRasCL.m_CarUrY = carToRas.CarUrY();
}
/// <summary>
/// Fill seeds buffer which gets passed to the iteration kernel.
/// The range of each seed will be spaced to ensure no duplicates are added.
/// Note, WriteBuffer() must be called after this to actually copy the
/// data from the host to the device.
/// </summary>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::FillSeeds()
{
double start, delta = std::floor((double)std::numeric_limits<uint>::max() / (IterGridKernelCount() * 2));
m_Seeds.resize(IterGridKernelCount());
start = delta;
for (auto& seed : m_Seeds)
{
seed.x = (uint)m_Rand[0].template Frand<double>(start, start + delta);
start += delta;
seed.y = (uint)m_Rand[0].template Frand<double>(start, start + delta);
start += delta;
}
}
template EMBERCL_API class RendererCL<float, float>;
#ifdef DO_DOUBLE
template EMBERCL_API class RendererCL<double, float>;
#endif
}