fractorium/Source/Ember/Variation.h
Person 1dfbd4eff2 --User changes
-Add new preset dimensions to the right click menu of the width and height fields in the editor.
-Change QSS stylesheets to properly handle tabs.
-Make tabs rectangular by default. For some reason, they had always been triangular.

--Bug fixes
 -Incremental rendering times in the editor were wrong.

--Code changes
 -Migrate to Qt6. There is probably more work to be done here.
-Migrate to VS2022.
-Migrate to Wix 4 installer.
-Change installer to install to program files for all users.
-Fix many VS2022 code analysis warnings.
-No longer use byte typedef, because std::byte is now a type. Revert all back to unsigned char.
-Upgrade OpenCL headers to version 3.0 and keep locally now rather than trying to look for system files.
-No longer link to Nvidia or AMD specific OpenCL libraries. Use the generic installer located at OCL_ROOT too.
-Add the ability to change OpenCL grid dimensions. This was attempted for investigating possible performance improvments, but made no difference.

This has not been verified on Linux or Mac yet.
2023-04-25 17:59:54 -06:00

2639 lines
68 KiB
C++

#pragma once
#include "Point.h"
#include "Isaac.h"
#include "VarFuncs.h"
/// <summary>
/// Base variation classes. Individual variations will be grouped into files of roughly 50
/// to avoid a single file becoming too unweildy.
/// </summary>
namespace EmberNs
{
/// <summary>
/// Xform and Variation need each other, but each can't include the other.
/// So Xform includes this file, and use a forward declaration here.
/// </summary>
template <typename T> class Xform;
/// <summary>
/// The type of variation: regular, pre or post.
/// </summary>
enum class eVariationType : et
{
VARTYPE_REG,
VARTYPE_PRE,
VARTYPE_POST,
};
/// <summary>
/// How to handle the results of the variation when it's a pre or post.
/// If the calculation involved the input points, then it should be directly assigned
/// to the output. However, if they did not involve the input points, they should be added
/// to the output.
/// </summary>
enum class eVariationAssignType : et
{
ASSIGNTYPE_SET,
ASSIGNTYPE_SUM
};
#define WEIGHT_PREFIX "parVars[WEIGHT_"
/// <summary>
/// Complete list of every variation class ID.
/// </summary>
enum class eVariationId : glm::uint
{
VAR_ARCH,
VAR_ARCSECH,
VAR_ARCSECH2,
VAR_ARCSINH,
VAR_ARCTANH,
VAR_ASTERIA,
VAR_AUGER ,
VAR_BARYCENTROID,
VAR_BCIRCLE ,
VAR_BCOLLIDE ,
VAR_BENT ,
VAR_BENT2 ,
VAR_BIPOLAR ,
VAR_BISPLIT ,
VAR_BLADE ,
VAR_BLADE3D ,
VAR_BLOB ,
VAR_BLOB2 ,
VAR_BLOB3D ,
VAR_BLOCK ,
VAR_BLOCKY ,
VAR_BLUR ,
VAR_BLUR_CIRCLE ,
VAR_BLUR_HEART,
VAR_BLUR_LINEAR ,
VAR_BLUR_PIXELIZE,
VAR_BLUR_SQUARE ,
VAR_BLUR_ZOOM ,
VAR_BLUR3D ,
VAR_BMOD ,
VAR_BOARDERS ,
VAR_BOARDERS2 ,
VAR_BSWIRL ,
VAR_BTRANSFORM ,
VAR_BUBBLE ,
VAR_BUBBLE2 ,
VAR_BUBBLET3D ,
VAR_BUTTERFLY ,
VAR_BWRAPS ,
VAR_BWRAPS_RAND ,
VAR_CARDIOID ,
VAR_CELL ,
VAR_CHECKS ,
VAR_CIRCLEBLUR ,
VAR_CIRCLECROP,
VAR_CIRCLECROP2,
VAR_CIRCLELINEAR,
VAR_CIRCLERAND,
VAR_CIRCLESPLIT,
VAR_CIRCLETRANS1,
VAR_CIRCLIZE ,
VAR_CIRCLIZE2 ,
VAR_CIRCUS,
VAR_COLLIDEOSCOPE,
VAR_CONCENTRIC ,
VAR_CONIC ,
VAR_COS ,
VAR_COS_WRAP ,
VAR_COSH ,
VAR_COSHQ,
VAR_COSINE ,
VAR_COSQ,
VAR_COT ,
VAR_COTH ,
VAR_COTH_SPIRAL,
VAR_COTHQ ,
VAR_COTQ ,
VAR_CPOW ,
VAR_CPOW2 ,
VAR_CPOW3 ,
VAR_CRACKLE ,
VAR_CRACKLE2 ,
VAR_CRESCENTS ,
VAR_CROB ,
VAR_CROP ,
VAR_CROPN ,
VAR_CROSS ,
VAR_CSC ,
VAR_CSCH ,
VAR_CSCHQ ,
VAR_CSCQ ,
VAR_CUBIC3D ,
VAR_CUBIC_LATTICE3D,
VAR_CURL ,
VAR_CURL3D ,
VAR_CURL_SP,
VAR_CURVATURE,
VAR_CURVE ,
VAR_CYLINDER ,
VAR_CYLINDER2,
VAR_DELTA_A ,
VAR_DEPTH,
VAR_DEPTH_BLUR,
VAR_DEPTH_BLUR2,
VAR_DEPTH_GAUSSIAN,
VAR_DEPTH_GAUSSIAN2,
VAR_DEPTH_NGON,
VAR_DEPTH_NGON2,
VAR_DEPTH_SINE,
VAR_DEPTH_SINE2,
VAR_DIAMOND ,
VAR_DISC ,
VAR_DISC2 ,
VAR_DISC3D ,
VAR_DRAGONFIRE,
VAR_DUST ,
VAR_D_SPHERICAL ,
VAR_ECLIPSE ,
VAR_ECOLLIDE ,
VAR_EDISC ,
VAR_EJULIA ,
VAR_ELLIPTIC ,
VAR_EMOD ,
VAR_EMOTION ,
VAR_ENNEPERS ,
VAR_EPISPIRAL ,
VAR_EPUSH ,
VAR_ERF ,
VAR_EROTATE ,
VAR_ESCALE ,
VAR_ESCHER ,
VAR_ESTIQ,
VAR_ESWIRL ,
VAR_EX ,
VAR_EXCINIS ,
VAR_EXP ,
VAR_EXP2 ,
VAR_EXPO ,
VAR_EXPONENTIAL ,
VAR_EXTRUDE ,
VAR_EYEFISH ,
VAR_FALLOFF ,
VAR_FALLOFF2 ,
VAR_FALLOFF3 ,
VAR_FAN ,
VAR_FAN2 ,
VAR_FARBLUR,
VAR_FDISC ,
VAR_FIBONACCI ,
VAR_FIBONACCI2 ,
VAR_FISHEYE ,
VAR_FLATTEN ,
VAR_FLIP_CIRCLE ,
VAR_FLIP_X ,
VAR_FLIP_Y ,
VAR_FLOWER ,
VAR_FLOWER_DB ,
VAR_FLUX ,
VAR_FOCI ,
VAR_FOCI3D ,
VAR_FOCI_P ,
VAR_FOURTH,
VAR_FUNNEL ,
VAR_GAMMA ,
VAR_GAUSSIAN,
VAR_GAUSSIAN_BLUR,
VAR_GDOFFS,
VAR_GLYNNIA ,
VAR_GLYNNIA2 ,
VAR_GLYNNSIM1 ,
VAR_GLYNNSIM2 ,
VAR_GLYNNSIM3 ,
VAR_GLYNNSIM4 ,
VAR_GLYNNSIM5 ,
VAR_GNARLY,
VAR_GRIDOUT ,
VAR_HANDKERCHIEF,
VAR_HEART ,
VAR_HEAT,
VAR_HELICOID,
VAR_HELIX,
VAR_HEMISPHERE ,
VAR_HENON ,
VAR_HEXAPLAY3D ,
VAR_HEXCROP ,
VAR_HEXES ,
VAR_HEXNIX3D ,
VAR_HEX_MODULUS,
VAR_HEX_RAND,
VAR_HEX_TRUCHET,
VAR_HO ,
VAR_HOLE ,
VAR_HORSESHOE ,
VAR_HYPERBOLIC ,
VAR_HYPERCROP ,
VAR_HYPERSHIFT ,
VAR_HYPERSHIFT2 ,
VAR_HYPERTILE ,
VAR_HYPERTILE1 ,
VAR_HYPERTILE2 ,
VAR_HYPERTILE3D ,
VAR_HYPERTILE3D1,
VAR_HYPERTILE3D2,
VAR_IDISC ,
VAR_INKDROP,
VAR_INTERFERENCE2,
VAR_JAC_CN ,
VAR_JAC_DN ,
VAR_JAC_SN ,
VAR_JULIA ,
VAR_JULIA3D ,
VAR_JULIA3DQ ,
VAR_JULIA3DZ ,
VAR_JULIAC,
VAR_JULIAN ,
VAR_JULIAN2 ,
VAR_JULIAN3DX,
VAR_JULIANAB,
VAR_JULIAQ ,
VAR_JULIASCOPE ,
VAR_KALEIDOSCOPE,
VAR_LAZYJESS ,
VAR_LAZYSUSAN ,
VAR_LAZY_TRAVIS ,
VAR_LENS ,
VAR_LINE ,
VAR_LINEAR ,
VAR_LINEAR_T ,
VAR_LINEAR_T3D ,
//VAR_LINEAR_XZ ,
//VAR_LINEAR_YZ ,
VAR_LINEAR3D ,
VAR_LISSAJOUS ,
VAR_LOG ,
VAR_LOG_DB ,
VAR_LOQ ,
VAR_LOONIE ,
VAR_LOONIE2 ,
VAR_LOONIE3 ,
VAR_LOONIE3D ,
VAR_LOZI ,
VAR_MASK ,
VAR_MCARPET ,
VAR_MIRROR_X,
VAR_MIRROR_Y,
VAR_MIRROR_Z,
VAR_MOBIQ,
VAR_MOBIUS ,
VAR_MOBIUS_STRIP,
VAR_MOBIUSN ,
VAR_MODULUS ,
VAR_MODULUSX ,
VAR_MODULUSY ,
VAR_MURL ,
VAR_MURL2 ,
VAR_NBLUR ,
VAR_NGON ,
VAR_NOISE ,
VAR_NPOLAR ,
VAR_OCTAGON ,
VAR_OCTAPOL ,
VAR_ORTHO ,
VAR_OSCILLOSCOPE,
VAR_OSCILLOSCOPE2,
VAR_OVOID ,
VAR_OVOID3D ,
VAR_PANORAMA1 ,
VAR_PANORAMA2 ,
VAR_PARABOLA ,
VAR_PDJ ,
VAR_PERSPECTIVE ,
VAR_PETAL ,
VAR_PHOENIX_JULIA,
VAR_PIE ,
VAR_PIE3D ,
VAR_PIXEL_FLOW ,
VAR_POINCARE ,
VAR_POINCARE2 ,
VAR_POINCARE3D ,
VAR_POINT_SYMMETRY,
VAR_POLAR ,
VAR_POLAR2 ,
VAR_POLYNOMIAL ,
VAR_POPCORN ,
VAR_POPCORN2 ,
VAR_POPCORN23D ,
VAR_POW_BLOCK ,
VAR_POWER ,
VAR_PRESSURE_WAVE,
VAR_PROJECTIVE ,
VAR_PROSE3D ,
VAR_PSPHERE ,
VAR_PULSE ,
VAR_Q_ODE,
VAR_RADIAL_BLUR ,
//VAR_RADIAL_GAUSSIAN,
VAR_RAND_CUBES ,
VAR_RATIONAL3 ,
VAR_RAYS ,
VAR_RAYS1 ,
VAR_RAYS2 ,
VAR_RAYS3 ,
VAR_RBLUR,
VAR_RECTANGLES ,
VAR_RINGS ,
VAR_RINGS2 ,
VAR_RIPPLE ,
VAR_RIPPLED ,
VAR_ROTATE,
VAR_ROTATE_X,
VAR_ROTATE_Y,
VAR_ROTATE_Z,
VAR_ROUNDSPHER ,
VAR_ROUNDSPHER3D,
VAR_SCRY ,
VAR_SCRY2 ,
VAR_SCRY3D ,
VAR_SEC ,
VAR_SECANT2 ,
VAR_SECH ,
VAR_SECHQ,
VAR_SECQ,
VAR_SEPARATION ,
VAR_SHIFT ,
VAR_SHRED_RAD ,
VAR_SHRED_LIN ,
VAR_SIGMOID ,
VAR_SIN ,
VAR_SINEBLUR ,
VAR_SINH ,
VAR_SINHQ ,
VAR_SINQ ,
VAR_SINTRANGE,
VAR_SINUS_GRID ,
VAR_SINUSOIDAL ,
VAR_SINUSOIDAL3D,
VAR_SMARTSHAPE,
//VAR_SMARTCROP ,
VAR_SPHER ,
VAR_SPHEREBLUR ,
VAR_SPHERICAL ,
VAR_SPHERICAL3D ,
VAR_SPHERICALN ,
VAR_SPHERIVOID,
VAR_SPHYP3D ,
VAR_SPIRAL ,
VAR_SPIRAL_WING ,
VAR_SPIROGRAPH ,
VAR_SPLIT ,
VAR_SPLIT_BRDR,
VAR_SPLITS ,
VAR_SPLITS3D ,
VAR_SQUARE ,
VAR_SQUARES ,
VAR_SQUARE3D ,
VAR_SQUARIZE ,
VAR_SQUIRREL ,
VAR_SQUISH,
VAR_SSCHECKS ,
VAR_STARBLUR ,
VAR_STARBLUR2 ,
VAR_STRIPES ,
VAR_STWIN ,
VAR_SUPER_SHAPE ,
VAR_SUPER_SHAPE3D,
VAR_SVF ,
VAR_SWIRL ,
VAR_SWIRL3 ,
VAR_SWIRL3R ,
VAR_SYNTH ,
VAR_TAN ,
VAR_TANCOS,
VAR_TANGENT ,
VAR_TANH ,
VAR_TANHQ ,
VAR_TANH_SPIRAL ,
VAR_TANQ ,
VAR_TARGET ,
VAR_TARGET0 ,
VAR_TARGET2 ,
VAR_TAURUS ,
VAR_TILE_HLP,
VAR_TILE_LOG,
VAR_TRADE ,
VAR_TRUCHET,
VAR_TRUCHET_FILL,
VAR_TRUCHET_HEX_FILL,
VAR_TRUCHET_HEX_CROP,
VAR_TRUCHET_GLYPH,
VAR_TRUCHET_INV,
VAR_TRUCHET_KNOT,
VAR_TWINTRIAN ,
VAR_TWO_FACE ,
VAR_UNICORNGALOSHEN,
VAR_UNPOLAR ,
VAR_VIBRATION,
VAR_VIBRATION2,
VAR_VIGNETTE,
VAR_VORON,
VAR_W ,
VAR_WAFFLE,
VAR_WAVES ,
VAR_WAVES2 ,
VAR_WAVES22,
VAR_WAVES23,
VAR_WAVES23D ,
VAR_WAVES2B ,
VAR_WAVES2_RADIAL,
VAR_WAVES3,
VAR_WAVES4,
VAR_WAVES42,
VAR_WAVESN ,
VAR_WDISC ,
VAR_WEDGE ,
VAR_WEDGE_JULIA ,
VAR_WEDGE_SPH ,
VAR_WHORL ,
VAR_X ,
VAR_XERF ,
VAR_XHEART ,
VAR_XTRB ,
VAR_Y ,
VAR_Z ,
VAR_ZBLUR ,
VAR_ZCONE ,
VAR_ZSCALE ,
VAR_ZTRANSLATE,
VAR_PRE_ARCH,
VAR_PRE_ARCSECH,
VAR_PRE_ARCSECH2,
VAR_PRE_ARCSINH,
VAR_PRE_ARCTANH,
VAR_PRE_ASTERIA,
VAR_PRE_AUGER,
VAR_PRE_BARYCENTROID,
VAR_PRE_BCIRCLE,
VAR_PRE_BCOLLIDE,
VAR_PRE_BENT,
VAR_PRE_BENT2,
VAR_PRE_BIPOLAR,
VAR_PRE_BISPLIT,
VAR_PRE_BLADE,
VAR_PRE_BLADE3D,
VAR_PRE_BLOB,
VAR_PRE_BLOB2,
VAR_PRE_BLOB3D,
VAR_PRE_BLOCK,
VAR_PRE_BLOCKY,
VAR_PRE_BLUR,
VAR_PRE_BLUR_CIRCLE,
VAR_PRE_BLUR_HEART,
VAR_PRE_BLUR_LINEAR,
VAR_PRE_BLUR_PIXELIZE,
VAR_PRE_BLUR_SQUARE,
VAR_PRE_BLUR_ZOOM,
VAR_PRE_BLUR3D,
VAR_PRE_BMOD,
VAR_PRE_BOARDERS,
VAR_PRE_BOARDERS2,
VAR_PRE_BSWIRL,
VAR_PRE_BTRANSFORM,
VAR_PRE_BUBBLE,
VAR_PRE_BUBBLE2,
VAR_PRE_BUBBLET3D,
VAR_PRE_BUTTERFLY,
VAR_PRE_BWRAPS,
VAR_PRE_BWRAPS_RAND,
VAR_PRE_CARDIOID,
VAR_PRE_CELL,
VAR_PRE_CHECKS,
VAR_PRE_CIRCLEBLUR,
VAR_PRE_CIRCLECROP,
VAR_PRE_CIRCLECROP2,
VAR_PRE_CIRCLELINEAR,
VAR_PRE_CIRCLERAND,
VAR_PRE_CIRCLESPLIT,
VAR_PRE_CIRCLETRANS1,
VAR_PRE_CIRCLIZE,
VAR_PRE_CIRCLIZE2,
VAR_PRE_CIRCUS,
VAR_PRE_COLLIDEOSCOPE,
VAR_PRE_CONCENTRIC,
VAR_PRE_CONIC,
VAR_PRE_COS,
VAR_PRE_COS_WRAP,
VAR_PRE_COSH,
VAR_PRE_COSHQ,
VAR_PRE_COSINE,
VAR_PRE_COSQ,
VAR_PRE_COT,
VAR_PRE_COTH,
VAR_PRE_COTH_SPIRAL,
VAR_PRE_COTHQ,
VAR_PRE_COTQ,
VAR_PRE_CPOW,
VAR_PRE_CPOW2,
VAR_PRE_CPOW3,
VAR_PRE_CRACKLE,
VAR_PRE_CRACKLE2,
VAR_PRE_CRESCENTS,
VAR_PRE_CROB,
VAR_PRE_CROP,
VAR_PRE_CROPN,
VAR_PRE_CROSS,
VAR_PRE_CSC,
VAR_PRE_CSCH,
VAR_PRE_CSCHQ,
VAR_PRE_CSCQ,
VAR_PRE_CUBIC3D,
VAR_PRE_CUBIC_LATTICE3D,
VAR_PRE_CURL,
VAR_PRE_CURL3D,
VAR_PRE_CURL_SP,
VAR_PRE_CURVATURE,
VAR_PRE_CURVE,
VAR_PRE_CYLINDER,
VAR_PRE_CYLINDER2,
VAR_PRE_DELTA_A,
VAR_PRE_DEPTH,
VAR_PRE_DEPTH_BLUR,
VAR_PRE_DEPTH_BLUR2,
VAR_PRE_DEPTH_GAUSSIAN,
VAR_PRE_DEPTH_GAUSSIAN2,
VAR_PRE_DEPTH_NGON,
VAR_PRE_DEPTH_NGON2,
VAR_PRE_DEPTH_SINE,
VAR_PRE_DEPTH_SINE2,
VAR_PRE_DIAMOND,
VAR_PRE_DISC,
VAR_PRE_DISC2,
VAR_PRE_DISC3D,
VAR_PRE_DRAGONFIRE,
VAR_PRE_DUST,
VAR_PRE_D_SPHERICAL,
VAR_PRE_ECLIPSE,
VAR_PRE_ECOLLIDE,
VAR_PRE_EDISC,
VAR_PRE_EJULIA,
VAR_PRE_ELLIPTIC,
VAR_PRE_EMOD,
VAR_PRE_EMOTION,
VAR_PRE_ENNEPERS,
VAR_PRE_EPISPIRAL,
VAR_PRE_EPUSH,
VAR_PRE_ERF,
VAR_PRE_EROTATE,
VAR_PRE_ESCALE,
VAR_PRE_ESCHER,
VAR_PRE_ESTIQ,
VAR_PRE_ESWIRL,
VAR_PRE_EX,
VAR_PRE_EXCINIS,
VAR_PRE_EXP,
VAR_PRE_EXP2,
VAR_PRE_EXPO,
VAR_PRE_EXPONENTIAL,
VAR_PRE_EXTRUDE,
VAR_PRE_EYEFISH,
VAR_PRE_FALLOFF,
VAR_PRE_FALLOFF2,
VAR_PRE_FALLOFF3,
VAR_PRE_FAN,
VAR_PRE_FAN2,
VAR_PRE_FARBLUR,
VAR_PRE_FDISC,
VAR_PRE_FIBONACCI,
VAR_PRE_FIBONACCI2,
VAR_PRE_FISHEYE,
VAR_PRE_FLATTEN,
VAR_PRE_FLIP_CIRCLE,
VAR_PRE_FLIP_X,
VAR_PRE_FLIP_Y,
VAR_PRE_FLOWER,
VAR_PRE_FLOWER_DB,
VAR_PRE_FLUX,
VAR_PRE_FOCI,
VAR_PRE_FOCI3D,
VAR_PRE_FOCI_P,
VAR_PRE_FOURTH,
VAR_PRE_FUNNEL,
VAR_PRE_GAMMA,
VAR_PRE_GAUSSIAN,
VAR_PRE_GAUSSIAN_BLUR,
VAR_PRE_GDOFFS,
VAR_PRE_GLYNNIA,
VAR_PRE_GLYNNIA2,
VAR_PRE_GLYNNSIM1,
VAR_PRE_GLYNNSIM2,
VAR_PRE_GLYNNSIM3,
VAR_PRE_GLYNNSIM4,
VAR_PRE_GLYNNSIM5,
VAR_PRE_GNARLY,
VAR_PRE_GRIDOUT,
VAR_PRE_HANDKERCHIEF,
VAR_PRE_HEART,
VAR_PRE_HEAT,
VAR_PRE_HELICOID,
VAR_PRE_HELIX,
VAR_PRE_HEMISPHERE,
VAR_PRE_HENON,
VAR_PRE_HEXAPLAY3D,
VAR_PRE_HEXCROP,
VAR_PRE_HEXES,
VAR_PRE_HEXNIX3D,
VAR_PRE_HEX_MODULUS,
VAR_PRE_HEX_RAND,
VAR_PRE_HEX_TRUCHET,
VAR_PRE_HO,
VAR_PRE_HOLE,
VAR_PRE_HORSESHOE,
VAR_PRE_HYPERBOLIC,
VAR_PRE_HYPERCROP,
VAR_PRE_HYPERSHIFT,
VAR_PRE_HYPERSHIFT2,
VAR_PRE_HYPERTILE,
VAR_PRE_HYPERTILE1,
VAR_PRE_HYPERTILE2,
VAR_PRE_HYPERTILE3D,
VAR_PRE_HYPERTILE3D1,
VAR_PRE_HYPERTILE3D2,
VAR_PRE_IDISC,
VAR_PRE_INKDROP,
VAR_PRE_INTERFERENCE2,
VAR_PRE_JAC_CN,
VAR_PRE_JAC_DN,
VAR_PRE_JAC_SN,
VAR_PRE_JULIA,
VAR_PRE_JULIA3D,
VAR_PRE_JULIA3DQ,
VAR_PRE_JULIA3DZ,
VAR_PRE_JULIAC,
VAR_PRE_JULIAN,
VAR_PRE_JULIAN2,
VAR_PRE_JULIAN3DX,
VAR_PRE_JULIANAB,
VAR_PRE_JULIAQ,
VAR_PRE_JULIASCOPE,
VAR_PRE_KALEIDOSCOPE,
VAR_PRE_LAZYJESS,
VAR_PRE_LAZYSUSAN,
VAR_PRE_LAZY_TRAVIS,
VAR_PRE_LENS,
VAR_PRE_LINE,
VAR_PRE_LINEAR,
VAR_PRE_LINEAR_T,
VAR_PRE_LINEAR_T3D,
//eVariationId::VAR_PRE_LINEAR_XZ,
//eVariationId::VAR_PRE_LINEAR_YZ,
VAR_PRE_LINEAR3D,
VAR_PRE_LISSAJOUS,
VAR_PRE_LOG,
VAR_PRE_LOG_DB,
VAR_PRE_LOQ,
VAR_PRE_LOONIE,
VAR_PRE_LOONIE2,
VAR_PRE_LOONIE3,
VAR_PRE_LOONIE3D,
VAR_PRE_LOZI,
VAR_PRE_MASK,
VAR_PRE_MCARPET,
VAR_PRE_MIRROR_X,
VAR_PRE_MIRROR_Y,
VAR_PRE_MIRROR_Z,
VAR_PRE_MOBIQ,
VAR_PRE_MOBIUS,
VAR_PRE_MOBIUS_STRIP,
VAR_PRE_MOBIUSN,
VAR_PRE_MODULUS,
VAR_PRE_MODULUSX,
VAR_PRE_MODULUSY,
VAR_PRE_MURL,
VAR_PRE_MURL2,
VAR_PRE_NBLUR,
VAR_PRE_NGON,
VAR_PRE_NOISE,
VAR_PRE_NPOLAR,
VAR_PRE_OCTAGON,
VAR_PRE_OCTAPOL,
VAR_PRE_ORTHO,
VAR_PRE_OSCILLOSCOPE,
VAR_PRE_OSCILLOSCOPE2,
VAR_PRE_OVOID,
VAR_PRE_OVOID3D,
VAR_PRE_PANORAMA1,
VAR_PRE_PANORAMA2,
VAR_PRE_PARABOLA,
VAR_PRE_PDJ,
VAR_PRE_PERSPECTIVE,
VAR_PRE_PETAL,
VAR_PRE_PHOENIX_JULIA,
VAR_PRE_PIE,
VAR_PRE_PIE3D,
VAR_PRE_PIXEL_FLOW,
VAR_PRE_POINCARE,
VAR_PRE_POINCARE2,
VAR_PRE_POINCARE3D,
VAR_PRE_POINT_SYMMETRY,
VAR_PRE_POLAR,
VAR_PRE_POLAR2,
VAR_PRE_POLYNOMIAL,
VAR_PRE_POPCORN,
VAR_PRE_POPCORN2,
VAR_PRE_POPCORN23D,
VAR_PRE_POW_BLOCK,
VAR_PRE_POWER,
VAR_PRE_PRESSURE_WAVE,
VAR_PRE_PROJECTIVE,
VAR_PRE_PROSE3D,
VAR_PRE_PSPHERE,
VAR_PRE_PULSE,
VAR_PRE_Q_ODE,
VAR_PRE_RADIAL_BLUR,
VAR_PRE_RAND_CUBES,
VAR_PRE_RATIONAL3,
VAR_PRE_RAYS,
VAR_PRE_RAYS1,
VAR_PRE_RAYS2,
VAR_PRE_RAYS3,
VAR_PRE_RBLUR,
VAR_PRE_RECTANGLES,
VAR_PRE_RINGS,
VAR_PRE_RINGS2,
VAR_PRE_RIPPLE,
VAR_PRE_RIPPLED,
VAR_PRE_ROTATE,
VAR_PRE_ROTATE_X,
VAR_PRE_ROTATE_Y,
VAR_PRE_ROTATE_Z,
VAR_PRE_ROUNDSPHER,
VAR_PRE_ROUNDSPHER3D,
VAR_PRE_SCRY,
VAR_PRE_SCRY2,
VAR_PRE_SCRY3D,
VAR_PRE_SEC,
VAR_PRE_SECANT2,
VAR_PRE_SECH,
VAR_PRE_SECHQ,
VAR_PRE_SECQ,
VAR_PRE_SEPARATION,
VAR_PRE_SHIFT,
VAR_PRE_SHRED_RAD,
VAR_PRE_SHRED_LIN,
VAR_PRE_SIGMOID,
VAR_PRE_SIN,
VAR_PRE_SINEBLUR,
VAR_PRE_SINH,
VAR_PRE_SINHQ,
VAR_PRE_SINQ,
VAR_PRE_SINTRANGE,
VAR_PRE_SINUS_GRID,
VAR_PRE_SINUSOIDAL,
VAR_PRE_SINUSOIDAL3D,
VAR_PRE_SMARTSHAPE,
//VAR_PRE_SMARTCROP,
VAR_PRE_SPHER,
VAR_PRE_SPHEREBLUR,
VAR_PRE_SPHERICAL,
VAR_PRE_SPHERICAL3D,
VAR_PRE_SPHERICALN,
VAR_PRE_SPHERIVOID,
VAR_PRE_SPHYP3D,
VAR_PRE_SPIRAL,
VAR_PRE_SPIRAL_WING,
VAR_PRE_SPIROGRAPH,
VAR_PRE_SPLIT,
VAR_PRE_SPLIT_BRDR,
VAR_PRE_SPLITS,
VAR_PRE_SPLITS3D,
VAR_PRE_SQUARE,
VAR_PRE_SQUARES,
VAR_PRE_SQUARE3D,
VAR_PRE_SQUARIZE,
VAR_PRE_SQUIRREL,
VAR_PRE_SQUISH,
VAR_PRE_SSCHECKS,
VAR_PRE_STARBLUR,
VAR_PRE_STARBLUR2,
VAR_PRE_STRIPES,
VAR_PRE_STWIN,
VAR_PRE_SUPER_SHAPE,
VAR_PRE_SUPER_SHAPE3D,
VAR_PRE_SVF,
VAR_PRE_SWIRL,
VAR_PRE_SWIRL3,
VAR_PRE_SWIRL3R,
VAR_PRE_SYNTH,
VAR_PRE_TAN,
VAR_PRE_TANCOS,
VAR_PRE_TANGENT,
VAR_PRE_TANH,
VAR_PRE_TANHQ,
VAR_PRE_TANH_SPIRAL,
VAR_PRE_TANQ,
VAR_PRE_TARGET,
VAR_PRE_TARGET0,
VAR_PRE_TARGET2,
VAR_PRE_TAURUS,
VAR_PRE_TILE_HLP,
VAR_PRE_TILE_LOG,
VAR_PRE_TRADE,
VAR_PRE_TRUCHET,
VAR_PRE_TRUCHET_FILL,
VAR_PRE_TRUCHET_HEX_FILL,
VAR_PRE_TRUCHET_HEX_CROP,
VAR_PRE_TRUCHET_GLYPH,
VAR_PRE_TRUCHET_INV,
VAR_PRE_TRUCHET_KNOT,
VAR_PRE_TWINTRIAN,
VAR_PRE_TWO_FACE,
VAR_PRE_UNICORNGALOSHEN,
VAR_PRE_UNPOLAR,
VAR_PRE_VIBRATION,
VAR_PRE_VIBRATION2,
VAR_PRE_VIGNETTE,
VAR_PRE_VORON,
VAR_PRE_W,
VAR_PRE_WAFFLE,
VAR_PRE_WAVES,
VAR_PRE_WAVES2,
VAR_PRE_WAVES22,
VAR_PRE_WAVES23,
VAR_PRE_WAVES23D,
VAR_PRE_WAVES2B,
VAR_PRE_WAVES2_RADIAL,
VAR_PRE_WAVES3,
VAR_PRE_WAVES4,
VAR_PRE_WAVES42,
VAR_PRE_WAVESN,
VAR_PRE_WDISC,
VAR_PRE_WEDGE,
VAR_PRE_WEDGE_JULIA,
VAR_PRE_WEDGE_SPH,
VAR_PRE_WHORL,
VAR_PRE_X,
VAR_PRE_XERF,
VAR_PRE_XHEART,
VAR_PRE_XTRB,
VAR_PRE_Y,
VAR_PRE_Z,
VAR_PRE_ZBLUR,
VAR_PRE_ZCONE,
VAR_PRE_ZSCALE,
VAR_PRE_ZTRANSLATE,
VAR_POST_ARCH,
VAR_POST_ARCSECH,
VAR_POST_ARCSECH2,
VAR_POST_ARCSINH,
VAR_POST_ARCTANH,
VAR_POST_ASTERIA,
VAR_POST_AUGER,
VAR_POST_BARYCENTROID,
VAR_POST_BCIRCLE,
VAR_POST_BCOLLIDE,
VAR_POST_BENT,
VAR_POST_BENT2,
VAR_POST_BIPOLAR,
VAR_POST_BISPLIT,
VAR_POST_BLADE,
VAR_POST_BLADE3D,
VAR_POST_BLOB,
VAR_POST_BLOB2,
VAR_POST_BLOB3D,
VAR_POST_BLOCK,
VAR_POST_BLOCKY,
VAR_POST_BLUR,
VAR_POST_BLUR_CIRCLE,
VAR_POST_BLUR_HEART,
VAR_POST_BLUR_LINEAR,
VAR_POST_BLUR_PIXELIZE,
VAR_POST_BLUR_SQUARE,
VAR_POST_BLUR_ZOOM,
VAR_POST_BLUR3D,
VAR_POST_BMOD,
VAR_POST_BOARDERS,
VAR_POST_BOARDERS2,
VAR_POST_BSWIRL,
VAR_POST_BTRANSFORM,
VAR_POST_BUBBLE,
VAR_POST_BUBBLE2,
VAR_POST_BUBBLET3D,
VAR_POST_BUTTERFLY,
VAR_POST_BWRAPS,
VAR_POST_BWRAPS_RAND,
VAR_POST_CARDIOID,
VAR_POST_CELL,
VAR_POST_CHECKS,
VAR_POST_CIRCLEBLUR,
VAR_POST_CIRCLECROP,
VAR_POST_CIRCLECROP2,
VAR_POST_CIRCLELINEAR,
VAR_POST_CIRCLERAND,
VAR_POST_CIRCLESPLIT,
VAR_POST_CIRCLETRANS1,
VAR_POST_CIRCLIZE,
VAR_POST_CIRCLIZE2,
VAR_POST_CIRCUS,
VAR_POST_COLLIDEOSCOPE,
VAR_POST_CONCENTRIC,
VAR_POST_CONIC,
VAR_POST_COS,
VAR_POST_COS_WRAP,
VAR_POST_COSH,
VAR_POST_COSHQ,
VAR_POST_COSINE,
VAR_POST_COSQ,
VAR_POST_COT,
VAR_POST_COTH,
VAR_POST_COTH_SPIRAL,
VAR_POST_COTHQ,
VAR_POST_COTQ,
VAR_POST_CPOW,
VAR_POST_CPOW2,
VAR_POST_CPOW3,
VAR_POST_CRACKLE,
VAR_POST_CRACKLE2,
VAR_POST_CRESCENTS,
VAR_POST_CROB,
VAR_POST_CROP,
VAR_POST_CROPN,
VAR_POST_CROSS,
VAR_POST_CSC,
VAR_POST_CSCH,
VAR_POST_CSCHQ,
VAR_POST_CSCQ,
VAR_POST_CUBIC3D,
VAR_POST_CUBIC_LATTICE3D,
VAR_POST_CURL,
VAR_POST_CURL3D,
VAR_POST_CURL_SP,
VAR_POST_CURVATURE,
VAR_POST_CURVE,
VAR_POST_CYLINDER,
VAR_POST_CYLINDER2,
VAR_POST_DELTA_A,
VAR_POST_DEPTH,
VAR_POST_DEPTH_BLUR,
VAR_POST_DEPTH_BLUR2,
VAR_POST_DEPTH_GAUSSIAN,
VAR_POST_DEPTH_GAUSSIAN2,
VAR_POST_DEPTH_NGON,
VAR_POST_DEPTH_NGON2,
VAR_POST_DEPTH_SINE,
VAR_POST_DEPTH_SINE2,
VAR_POST_DIAMOND,
VAR_POST_DISC,
VAR_POST_DISC2,
VAR_POST_DISC3D,
VAR_POST_DRAGONFIRE,
VAR_POST_DUST,
VAR_POST_D_SPHERICAL,
VAR_POST_ECLIPSE,
VAR_POST_ECOLLIDE,
VAR_POST_EDISC,
VAR_POST_EJULIA,
VAR_POST_ELLIPTIC,
VAR_POST_EMOD,
VAR_POST_EMOTION,
VAR_POST_ENNEPERS,
VAR_POST_EPISPIRAL,
VAR_POST_EPUSH,
VAR_POST_ERF,
VAR_POST_EROTATE,
VAR_POST_ESCALE,
VAR_POST_ESCHER,
VAR_POST_ESTIQ,
VAR_POST_ESWIRL,
VAR_POST_EX,
VAR_POST_EXCINIS,
VAR_POST_EXP,
VAR_POST_EXP2,
VAR_POST_EXPO,
VAR_POST_EXPONENTIAL,
VAR_POST_EXTRUDE,
VAR_POST_EYEFISH,
VAR_POST_FALLOFF,
VAR_POST_FALLOFF2,
VAR_POST_FALLOFF3,
VAR_POST_FAN,
VAR_POST_FAN2,
VAR_POST_FARBLUR,
VAR_POST_FDISC,
VAR_POST_FIBONACCI,
VAR_POST_FIBONACCI2,
VAR_POST_FISHEYE,
VAR_POST_FLATTEN,
VAR_POST_FLIP_CIRCLE,
VAR_POST_FLIP_X,
VAR_POST_FLIP_Y,
VAR_POST_FLOWER,
VAR_POST_FLOWER_DB,
VAR_POST_FLUX,
VAR_POST_FOCI,
VAR_POST_FOCI3D,
VAR_POST_FOCI_P,
VAR_POST_FOURTH,
VAR_POST_FUNNEL,
VAR_POST_GAMMA,
VAR_POST_GAUSSIAN,
VAR_POST_GAUSSIAN_BLUR,
VAR_POST_GDOFFS,
VAR_POST_GLYNNIA,
VAR_POST_GLYNNIA2,
VAR_POST_GLYNNSIM1,
VAR_POST_GLYNNSIM2,
VAR_POST_GLYNNSIM3,
VAR_POST_GLYNNSIM4,
VAR_POST_GLYNNSIM5,
VAR_POST_GNARLY,
VAR_POST_GRIDOUT,
VAR_POST_HANDKERCHIEF,
VAR_POST_HEART,
VAR_POST_HEAT,
VAR_POST_HELICOID,
VAR_POST_HELIX,
VAR_POST_HEMISPHERE,
VAR_POST_HENON,
VAR_POST_HEXAPLAY3D,
VAR_POST_HEXCROP,
VAR_POST_HEXES,
VAR_POST_HEXNIX3D,
VAR_POST_HEX_MODULUS,
VAR_POST_HEX_RAND,
VAR_POST_HEX_TRUCHET,
VAR_POST_HO,
VAR_POST_HOLE,
VAR_POST_HORSESHOE,
VAR_POST_HYPERBOLIC,
VAR_POST_HYPERCROP,
VAR_POST_HYPERSHIFT,
VAR_POST_HYPERSHIFT2,
VAR_POST_HYPERTILE,
VAR_POST_HYPERTILE1,
VAR_POST_HYPERTILE2,
VAR_POST_HYPERTILE3D,
VAR_POST_HYPERTILE3D1,
VAR_POST_HYPERTILE3D2,
VAR_POST_IDISC,
VAR_POST_INKDROP,
VAR_POST_INTERFERENCE2,
VAR_POST_JAC_CN,
VAR_POST_JAC_DN,
VAR_POST_JAC_SN,
VAR_POST_JULIA,
VAR_POST_JULIA3D,
VAR_POST_JULIA3DQ,
VAR_POST_JULIA3DZ,
VAR_POST_JULIAC,
VAR_POST_JULIAN,
VAR_POST_JULIAN2,
VAR_POST_JULIAN3DX,
VAR_POST_JULIANAB,
VAR_POST_JULIAQ,
VAR_POST_JULIASCOPE,
VAR_POST_KALEIDOSCOPE,
VAR_POST_LAZYJESS,
VAR_POST_LAZYSUSAN,
VAR_POST_LAZY_TRAVIS,
VAR_POST_LENS,
VAR_POST_LINE,
VAR_POST_LINEAR,
VAR_POST_LINEAR_T,
VAR_POST_LINEAR_T3D,
//VAR_POST_LINEAR_XZ,
//VAR_POST_LINEAR_YZ,
VAR_POST_LINEAR3D,
VAR_POST_LISSAJOUS,
VAR_POST_LOG,
VAR_POST_LOG_DB,
VAR_POST_LOQ,
VAR_POST_LOONIE,
VAR_POST_LOONIE2,
VAR_POST_LOONIE3,
VAR_POST_LOONIE3D,
VAR_POST_LOZI,
VAR_POST_MASK,
VAR_POST_MCARPET,
VAR_POST_MIRROR_X,
VAR_POST_MIRROR_Y,
VAR_POST_MIRROR_Z,
VAR_POST_MOBIQ,
VAR_POST_MOBIUS,
VAR_POST_MOBIUS_STRIP,
VAR_POST_MOBIUSN,
VAR_POST_MODULUS,
VAR_POST_MODULUSX,
VAR_POST_MODULUSY,
VAR_POST_MURL,
VAR_POST_MURL2,
VAR_POST_NBLUR,
VAR_POST_NGON,
VAR_POST_NOISE,
VAR_POST_NPOLAR,
VAR_POST_OCTAGON,
VAR_POST_OCTAPOL,
VAR_POST_ORTHO,
VAR_POST_OSCILLOSCOPE,
VAR_POST_OSCILLOSCOPE2,
VAR_POST_OVOID,
VAR_POST_OVOID3D,
VAR_POST_PANORAMA1,
VAR_POST_PANORAMA2,
VAR_POST_PARABOLA,
VAR_POST_PDJ,
VAR_POST_PERSPECTIVE,
VAR_POST_PETAL,
VAR_POST_PHOENIX_JULIA,
VAR_POST_PIE,
VAR_POST_PIE3D,
VAR_POST_PIXEL_FLOW,
VAR_POST_POINCARE,
VAR_POST_POINCARE2,
VAR_POST_POINCARE3D,
VAR_POST_POINT_SYMMETRY,
VAR_POST_POLAR,
VAR_POST_POLAR2,
VAR_POST_POLYNOMIAL,
VAR_POST_POPCORN,
VAR_POST_POPCORN2,
VAR_POST_POPCORN23D,
VAR_POST_POW_BLOCK,
VAR_POST_POWER,
VAR_POST_PRESSURE_WAVE,
VAR_POST_PROJECTIVE,
VAR_POST_PROSE3D,
VAR_POST_PSPHERE,
VAR_POST_PULSE,
VAR_POST_Q_ODE,
VAR_POST_RADIAL_BLUR,
VAR_POST_RAND_CUBES,
VAR_POST_RATIONAL3,
VAR_POST_RAYS,
VAR_POST_RAYS1,
VAR_POST_RAYS2,
VAR_POST_RAYS3,
VAR_POST_RBLUR,
VAR_POST_RECTANGLES,
VAR_POST_RINGS,
VAR_POST_RINGS2,
VAR_POST_RIPPLE,
VAR_POST_RIPPLED,
VAR_POST_ROTATE,
VAR_POST_ROTATE_X,
VAR_POST_ROTATE_Y,
VAR_POST_ROTATE_Z,
VAR_POST_ROUNDSPHER,
VAR_POST_ROUNDSPHER3D,
VAR_POST_SCRY,
VAR_POST_SCRY2,
VAR_POST_SCRY3D,
VAR_POST_SEC,
VAR_POST_SECANT2,
VAR_POST_SECH,
VAR_POST_SECHQ,
VAR_POST_SECQ,
VAR_POST_SEPARATION,
VAR_POST_SHIFT,
VAR_POST_SHRED_RAD,
VAR_POST_SHRED_LIN,
VAR_POST_SIGMOID,
VAR_POST_SIN,
VAR_POST_SINEBLUR,
VAR_POST_SINH,
VAR_POST_SINHQ,
VAR_POST_SINQ,
VAR_POST_SINTRANGE,
VAR_POST_SINUS_GRID,
VAR_POST_SINUSOIDAL,
VAR_POST_SINUSOIDAL3D,
VAR_POST_SMARTSHAPE,
VAR_POST_SMARTCROP,
VAR_POST_SPHER,
VAR_POST_SPHEREBLUR,
VAR_POST_SPHERICAL,
VAR_POST_SPHERICAL3D,
VAR_POST_SPHERICALN,
VAR_POST_SPHERIVOID,
VAR_POST_SPHYP3D,
VAR_POST_SPIRAL,
VAR_POST_SPIRAL_WING,
VAR_POST_SPIROGRAPH,
VAR_POST_SPLIT,
VAR_POST_SPLIT_BRDR,
VAR_POST_SPLITS,
VAR_POST_SPLITS3D,
VAR_POST_SQUARE,
VAR_POST_SQUARES,
VAR_POST_SQUARE3D,
VAR_POST_SQUARIZE,
VAR_POST_SQUIRREL,
VAR_POST_SQUISH,
VAR_POST_SSCHECKS,
VAR_POST_STARBLUR,
VAR_POST_STARBLUR2,
VAR_POST_STRIPES,
VAR_POST_STWIN,
VAR_POST_SUPER_SHAPE,
VAR_POST_SUPER_SHAPE3D,
VAR_POST_SVF,
VAR_POST_SWIRL,
VAR_POST_SWIRL3,
VAR_POST_SWIRL3R,
VAR_POST_SYNTH,
VAR_POST_TAN,
VAR_POST_TANCOS,
VAR_POST_TANGENT,
VAR_POST_TANH,
VAR_POST_TANHQ,
VAR_POST_TANH_SPIRAL,
VAR_POST_TANQ,
VAR_POST_TARGET,
VAR_POST_TARGET0,
VAR_POST_TARGET2,
VAR_POST_TAURUS,
VAR_POST_TILE_HLP,
VAR_POST_TILE_LOG,
VAR_POST_TRADE,
VAR_POST_TRUCHET,
VAR_POST_TRUCHET_FILL,
VAR_POST_TRUCHET_HEX_FILL,
VAR_POST_TRUCHET_HEX_CROP,
VAR_POST_TRUCHET_GLYPH,
VAR_POST_TRUCHET_INV,
VAR_POST_TRUCHET_KNOT,
VAR_POST_TWINTRIAN,
VAR_POST_TWO_FACE,
VAR_POST_UNICORNGALOSHEN,
VAR_POST_UNPOLAR,
VAR_POST_VIBRATION,
VAR_POST_VIBRATION2,
VAR_POST_VIGNETTE,
VAR_POST_VORON,
VAR_POST_W,
VAR_POST_WAFFLE,
VAR_POST_WAVES,
VAR_POST_WAVES2,
VAR_POST_WAVES22,
VAR_POST_WAVES23,
VAR_POST_WAVES23D,
VAR_POST_WAVES2B,
VAR_POST_WAVES2_RADIAL,
VAR_POST_WAVES3,
VAR_POST_WAVES4,
VAR_POST_WAVES42,
VAR_POST_WAVESN,
VAR_POST_WDISC,
VAR_POST_WEDGE,
VAR_POST_WEDGE_JULIA,
VAR_POST_WEDGE_SPH,
VAR_POST_WHORL,
VAR_POST_X,
VAR_POST_XERF,
VAR_POST_XHEART,
VAR_POST_XTRB,
VAR_POST_Y,
VAR_POST_Z,
VAR_POST_ZBLUR,
VAR_POST_ZCONE,
VAR_POST_ZSCALE,
VAR_POST_ZTRANSLATE,
//Direct color variations are special.
VAR_DC_BUBBLE,
VAR_DC_CARPET,
VAR_DC_CUBE,
VAR_DC_CYLINDER,
VAR_DC_GRIDOUT,
VAR_DC_LINEAR,
VAR_DC_PERLIN,
VAR_DC_TRIANGLE,
VAR_DC_ZTRANSL,
VAR_PRE_DC_BUBBLE,
VAR_PRE_DC_CARPET,
VAR_PRE_DC_CUBE,
VAR_PRE_DC_CYLINDER,
VAR_PRE_DC_GRIDOUT,
VAR_PRE_DC_LINEAR,
VAR_PRE_DC_PERLIN,
VAR_PRE_DC_TRIANGLE,
VAR_PRE_DC_ZTRANSL,
VAR_POST_DC_BUBBLE,
VAR_POST_DC_CARPET,
VAR_POST_DC_CUBE,
VAR_POST_DC_CYLINDER,
VAR_POST_DC_GRIDOUT,
VAR_POST_DC_LINEAR,
VAR_POST_DC_PERLIN,
VAR_POST_DC_TRIANGLE,
VAR_POST_DC_ZTRANSL,
LAST_VAR = eVariationId::VAR_POST_DC_ZTRANSL + 1
};
/// <summary>
/// Translated and precalculated values that get passed to each variation's virtual function.
/// Note that this must be passed in and not a member because multiple threads will be calling
/// the variation functions simultaneously. Each thread will get its own IteratorHelper object.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
class EMBER_API IteratorHelper
{
public:
v2T m_Color;
T m_TransX, m_TransY, m_TransZ;//Translated point gotten by applying the affine transform to the input point gotten from the output of the previous iteration (excluding final).
T m_PrecalcSumSquares;//Precalculated value of the sum of the squares of the translated point.
T m_PrecalcSqrtSumSquares;//Precalculated value of the square root of m_PrecalcSumSquares.
T m_PrecalcCosa;//Precalculated value of m_TransY / m_PrecalcSqrtSumSquares.
T m_PrecalcSina;//Precalculated value of m_TransX / m_PrecalcSqrtSumSquares.
T m_PrecalcAtanxy;//Precalculated value of atan2(m_TransX, m_TransY).
T m_PrecalcAtanyx;//Precalculated value of atan2(m_TransY, m_TransX).
v4T In, Out;
};
/// <summary>
/// The base variation class from which all variations will derive.
/// Each has a unique ID, name and weight, as well as a virtual function Func() which
/// does the actual calculations.
/// Each also has boolean values that specify whether precalculations are needed.
/// These precalc flags are used by the parent Xform to determine which values to
/// precalculate in each iteration.
/// Template argument expected to be float or double.
/// </summary>
template <class T>
class EMBER_API Variation
{
public:
/// <summary>
/// Constructor which takes parameters.
/// </summary>
/// <param name="name">The unique name of the variation</param>
/// <param name="id">The unique ID of the variation</param>
/// <param name="weight">The weight. Default: 1.</param>
/// <param name="needPrecalcSumSquares">Whether it uses the precalc sum squares value in its calculations. Default: false.</param>
/// <param name="needPrecalcSqrtSumSquares">Whether it uses the sqrt precalc sum squares value in its calculations. Default: false.</param>
/// <param name="needPrecalcAngles">Whether it uses the precalc sin and cos values in its calculations. Default: false.</param>
/// <param name="needPrecalcAtanXY">Whether it uses the precalc atan XY value in its calculations. Default: false.</param>
/// <param name="needPrecalcAtanYX">Whether it uses the precalc atan YX value in its calculations. Default: false.</param>
Variation(const char* name, eVariationId id, T weight = 1.0,
bool needPrecalcSumSquares = false,
bool needPrecalcSqrtSumSquares = false,
bool needPrecalcAngles = false,
bool needPrecalcAtanXY = false,
bool needPrecalcAtanYX = false)
: m_Name(name)//Omit unnecessary default constructor call.
{
m_Xform = nullptr;
m_VariationId = id;
m_Weight = weight;
m_NeedPrecalcSumSquares = needPrecalcSumSquares;
m_NeedPrecalcSqrtSumSquares = needPrecalcSqrtSumSquares;
m_NeedPrecalcAngles = needPrecalcAngles;
m_NeedPrecalcAtanXY = needPrecalcAtanXY;
m_NeedPrecalcAtanYX = needPrecalcAtanYX;
//Make absolutely sure that flag logic makes sense.
if (m_NeedPrecalcSqrtSumSquares)
m_NeedPrecalcSumSquares = true;
if (m_NeedPrecalcAngles)
{
m_NeedPrecalcSumSquares = true;
m_NeedPrecalcSqrtSumSquares = true;
}
m_PrePostAssignType = eVariationAssignType::ASSIGNTYPE_SET;
SetType();
}
/// <summary>
/// Default copy constructor.
/// </summary>
/// <param name="variation">The Variation object to copy</param>
Variation(const Variation<T>& variation)
{
Variation<T>::operator=<T>(variation);
}
/// <summary>
/// Copy constructor to copy a Variation object of type U.
/// </summary>
/// <param name="variation">The Variation object to copy</param>
template <typename U>
Variation(const Variation<U>& variation)
{
Variation<T>::operator=<U>(variation);
}
/// <summary>
/// Empty virtual destructor.
/// Note that even though this is empty, it must be present
/// and be virtual for the derived classes to properly get destroyed.
/// </summary>
virtual ~Variation()
{
}
/// <summary>
/// Default assignment operator.
/// </summary>
/// <param name="variation">The Variation object to copy</param>
Variation<T>& operator = (const Variation<T>& variation)
{
if (this != &variation)
Variation<T>::operator=<T>(variation);
return *this;
}
/// <summary>
/// Assignment operator to assign a Variation object of type U.
/// </summary>
/// <param name="variation">The Variation object to copy.</param>
/// <returns>Reference to updated self</returns>
template <typename U>
Variation<T>& operator = (const Variation<U>& variation)
{
m_Name = variation.Name();
m_VarType = variation.VarType();
m_PrePostAssignType = variation.AssignType();
m_VariationId = variation.VariationId();
m_Weight = T(variation.m_Weight);
m_Xform = typeid(T) == typeid(U) ? const_cast<Xform<T>*>(reinterpret_cast<const Xform<T>*>(variation.ParentXform())) : nullptr;
m_NeedPrecalcSumSquares = variation.NeedPrecalcSumSquares();
m_NeedPrecalcSqrtSumSquares = variation.NeedPrecalcSqrtSumSquares();
m_NeedPrecalcAngles = variation.NeedPrecalcAngles();
m_NeedPrecalcAtanXY = variation.NeedPrecalcAtanXY();
m_NeedPrecalcAtanYX = variation.NeedPrecalcAtanYX();
return *this;
}
/// <summary>
/// Per-variation precalc used for pre and post variations.
/// </summary>
/// <param name="iteratorHelper">The helper to read values from in the case of pre, and store precalc values to in both cases.</param>
void PrePostPrecalcHelper(IteratorHelper<T>& iteratorHelper)
{
if (m_NeedPrecalcSumSquares)
{
iteratorHelper.m_PrecalcSumSquares = SQR(iteratorHelper.In.x) + SQR(iteratorHelper.In.y);
if (m_NeedPrecalcSqrtSumSquares)
{
iteratorHelper.m_PrecalcSqrtSumSquares = std::sqrt(iteratorHelper.m_PrecalcSumSquares);
if (m_NeedPrecalcAngles)
{
iteratorHelper.m_PrecalcSina = iteratorHelper.In.y / Zeps(iteratorHelper.m_PrecalcSqrtSumSquares);
iteratorHelper.m_PrecalcCosa = iteratorHelper.In.x / Zeps(iteratorHelper.m_PrecalcSqrtSumSquares);
}
}
}
if (m_NeedPrecalcAtanXY)
iteratorHelper.m_PrecalcAtanxy = std::atan2(iteratorHelper.In.x, iteratorHelper.In.y);
if (m_NeedPrecalcAtanYX)
iteratorHelper.m_PrecalcAtanyx = std::atan2(iteratorHelper.In.y, iteratorHelper.In.x);
}
/// <summary>
/// Per-variation precalc OpenCL string used for pre and post variations.
/// </summary>
/// <returns>The per-variation OpenCL precalc string</returns>
string PrePostPrecalcOpenCLString() const
{
ostringstream ss;
if (m_NeedPrecalcSumSquares)
{
ss << "\tprecalcSumSquares = SQR(vIn.x) + SQR(vIn.y);\n";
if (m_NeedPrecalcSqrtSumSquares)
{
ss << "\tprecalcSqrtSumSquares = sqrt(precalcSumSquares);\n";
if (m_NeedPrecalcAngles)
{
ss << "\tprecalcSina = vIn.y / Zeps(precalcSqrtSumSquares);\n";
ss << "\tprecalcCosa = vIn.x / Zeps(precalcSqrtSumSquares);\n";
}
}
}
if (m_NeedPrecalcAtanXY)
ss << "\tprecalcAtanxy = atan2(vIn.x, vIn.y);\n";
if (m_NeedPrecalcAtanYX)
ss << "\tprecalcAtanyx = atan2(vIn.y, vIn.x);\n";
if (NeedAnyPrecalc())
ss << "\n";
return ss.str();
}
/// <summary>
/// Returns an OpenCL string for the fields in this variation
/// that change during iterations.
/// Note these are different than regular variation parameters,
/// and thus require a completely different solution.
/// </summary>
/// <returns></returns>
virtual string StateOpenCLString() const
{
return "";
}
/// <summary>
/// Initialize the state variables contained in the passed in array.
/// </summary>
/// <param name="t">The pointer to the state variables.</param>
/// <param name="index">The offset in the pointer where the data begins.</param>
virtual void InitStateVars(T* t, size_t& index)
{
}
/// <summary>
/// Returns an OpenCL string for the initialization of the fields in this variation
/// that change during iterations.
/// Note these are different than regular variation parameters,
/// and thus require a completely different solution.
/// </summary>
/// <returns></returns>
virtual string StateInitOpenCLString() const
{
return "";
}
/// <summary>
/// Return the name and weight of the variation as a string.
/// </summary>
/// <returns>The name and weight of the variation</returns>
virtual string ToString() const
{
ostringstream ss;
ss << m_Name << "(" << m_Weight << ")";
return ss.str();
}
/// <summary>
/// Abstract copy function. Derived classes must implement.
/// </summary>
/// <returns>A copy of this object</returns>
virtual Variation<T>* Copy() const = 0;
/// <summary>
/// Create a new Variation<float>, store it in the pointer reference passed in and
/// copy the this Variation's values into it.
/// Note this is a severe hack to overcome two shortcomings in C++.
/// One is that templated functions cannot be virtual.
/// The second is that function overloading only works when parameters differ, not just return types.
/// In an ideal world, all copy functionality would be consolidated into a single function that looked like:
/// template <typename U> virtual Variation<U> Copy();
/// Since that isn't possible, the only way to do what's needed is to create two functions to do this, one for
/// Variation<float> and another for Variation<double>.
/// This further offends design sensiblities since it requires this template class to know which types it's going to
/// be instantiated for. Sadly, there is no alternative and it must be done this way. Fortunately, we know it will
/// only ever be used with float and double.
/// </summary>
/// <param name="var">A reference to a pointer which will store the newly created Variation<float>*</param>
virtual void Copy(Variation<float>*& var) const = 0;
#ifdef DO_DOUBLE
/// <summary>
/// See description for Copy(Variation<float>*& var).
/// </summary>
/// <param name="var">A reference to a pointer which will store the newly created Variation<double>*</param>
virtual void Copy(Variation<double>*& var) const = 0;
#endif
/// <summary>
/// Abstract function where the actual work takes place. Derived classes must implement.
/// </summary>
/// <param name="helper">The IteratorHelper object which holds translated and precalculated values</param>
/// <param name="outPoint">The point to store the result in</param>
/// <param name="rand">The random number generator to use.</param>
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) = 0;
/// <summary>
/// Return a string which performs the equivalent calculation in Func(), but on the GPU in OpenCL.
/// Derived classes will implement this.
/// </summary>
/// <returns>The OpenCL string to perform the equivalent calculation on the GPU in OpenCL</returns>
virtual string OpenCLString() const { return ""; }
/// <summary>
/// If the OpenCL string depends on any global functions specific to this variation, return their names.
/// </summary>
/// <returns>The names for global OpenCL functions specific to this variation</returns>
virtual vector<string> OpenCLGlobalFuncNames() const { return vector<string>(); }
/// <summary>
/// If the OpenCL string depends on any global static data specific to this variation, and possibly shared among others, return their names.
/// </summary>
/// <returns>The names for global OpenCL data specific to this variation</returns>
virtual vector<string> OpenCLGlobalDataNames() const { return vector<string>(); }
/// <summary>
/// If the OpenCL string depends on any functions specific to this variation, return them.
/// </summary>
/// <returns>The OpenCL string for functions specific to this variation</returns>
virtual string OpenCLFuncsString() const { return ""; }
/// <summary>
/// In addition to the standard precalculation stored in the IteratorHelper object, some
/// variations have additional precalculation work to do that can save processing time while iterating.
/// For most this is left empty, however a few will override.
/// </summary>
virtual void Precalc() { }
/// <summary>
/// When creating random embers, the variations are placed in a random state.
/// For most this base implementation will be used, however a few will override.
/// </summary>
/// <param name="rand">The rand.</param>
virtual void Random(QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand)
{
m_Weight = rand.Frand11<T>();
}
/// <summary>
/// Returns the string prefix to be used with params and the variation name.
/// </summary>
/// <returns>pre_, post_ or the empty string</returns>
string Prefix() const
{
if (m_VarType == eVariationType::VARTYPE_PRE)
return "pre_";
else if (m_VarType == eVariationType::VARTYPE_POST)
return "post_";
else
return "";
}
/// <summary>
/// Returns the base name of the variation without the "pre_" or "post_" prefix.
/// </summary>
/// <returns>The base name of the variation</returns>
string BaseName() const
{
string prefix = Prefix();
if (prefix != "" && m_Name.find(prefix) == 0)
return m_Name.substr(prefix.size(), m_Name.size() - prefix.size());
else
return m_Name;
}
/// <summary>
/// Accessors.
/// </summary>
inline bool NeedPrecalcSumSquares() const { return m_NeedPrecalcSumSquares; }
inline bool NeedPrecalcSqrtSumSquares() const { return m_NeedPrecalcSqrtSumSquares; }
inline bool NeedPrecalcAngles() const { return m_NeedPrecalcAngles; }
inline bool NeedPrecalcAtanXY() const { return m_NeedPrecalcAtanXY; }
inline bool NeedPrecalcAtanYX() const { return m_NeedPrecalcAtanYX; }
inline bool NeedAnyPrecalc() const { return NeedPrecalcSumSquares() || NeedPrecalcSqrtSumSquares() || NeedPrecalcAngles() || NeedPrecalcAtanXY() || NeedPrecalcAtanYX(); }
eVariationId VariationId() const { return m_VariationId; }
string Name() const { return m_Name; }
eVariationType VarType() const { return m_VarType; }
eVariationAssignType AssignType() const { return m_PrePostAssignType; }
const Xform<T>* ParentXform() const { return m_Xform; }
void ParentXform(Xform<T>* xform) { m_Xform = xform; }
intmax_t IndexInXform() const { return m_Xform ? m_Xform->GetVariationIndex(const_cast<Variation<T>*>(this)) : -1; }
intmax_t XformIndexInEmber() const { return m_Xform ? m_Xform->IndexInParentEmber() : -1; }
virtual size_t StateParamCount() const { return 0; }
T m_Weight;//The weight of the variation.
protected:
/// <summary>
/// Sets the type of the variation depending on whether the name starts with "pre_",
/// "post_" or neither.
/// </summary>
void SetType()
{
if (m_Name.find("pre_") == 0)
m_VarType = eVariationType::VARTYPE_PRE;
else if (m_Name.find("post_") == 0)
m_VarType = eVariationType::VARTYPE_POST;
else
m_VarType = eVariationType::VARTYPE_REG;
}
/// <summary>
/// Return the default Z coordinate assignment value depending on the type of variation and its assign type.
/// </summary>
/// <param name="helper">The helper used to retrieve the input Z coordinate.</param>
/// <returns>The appropriate Z value.</returns>
T DefaultZ(const IteratorHelper<T>& helper) const
{
return m_VarType == eVariationType::VARTYPE_REG ? 0 : (m_PrePostAssignType == eVariationAssignType::ASSIGNTYPE_SET ? helper.In.z : 0);
}
/// <summary>
/// OpenCL equivalent of DefaultZ().
/// </summary>
/// <returns>The OpenCL string needed to make the proper Z coordinate assignment</returns>
string DefaultZCl() const
{
return m_VarType == eVariationType::VARTYPE_REG ? "0;\n" : (m_PrePostAssignType == eVariationAssignType::ASSIGNTYPE_SET ? "vIn.z;\n" : "0;\n");
}
string WeightDefineString() const
{
return WEIGHT_PREFIX + std::to_string(XformIndexInEmber()) + "_" + std::to_string(IndexInXform()) + "]";
}
Xform<T>* m_Xform;//The parent Xform that this variation is a child of.
eVariationId m_VariationId;//The unique ID of this variation.
string m_Name;//The unique name of this variation.
eVariationType m_VarType;//The type of variation: regular, pre or post.
eVariationAssignType m_PrePostAssignType;//Whether to assign the results for pre/post, or sum them.
private:
bool m_NeedPrecalcSumSquares;//Whether this variation uses the precalc sum squares value in its calculations.
bool m_NeedPrecalcSqrtSumSquares;//Whether it uses the sqrt precalc sum squares value in its calculations.
bool m_NeedPrecalcAngles;//Whether it uses the precalc sin and cos values in its calculations.
bool m_NeedPrecalcAtanXY;//Whether it uses the precalc atan XY value in its calculations.
bool m_NeedPrecalcAtanYX;//Whether it uses the precalc atan YX value in its calculations.
};
/// <summary>
/// The type of parameter represented by ParamWithName<T>.
/// This allows restricting of certain parameters to sensible values.
/// </summary>
enum class eParamType : et
{
REAL,
REAL_CYCLIC,
REAL_NONZERO,
INTEGER,
INTEGER_NONZERO
};
/// <summary>
/// Thin wrapper to allow << operator on param type.
/// </summary>
/// <param name="stream">The stream to insert into</param>
/// <param name="t">The type whose string representation will be inserted into the stream</param>
/// <returns></returns>
static std::ostream& operator<<(std::ostream& stream, const eParamType& t)
{
switch (t)
{
case eParamType::REAL:
stream << "real";
break;
case eParamType::REAL_CYCLIC:
stream << "cyclic";
break;
case eParamType::REAL_NONZERO:
stream << "non-zero";
break;
case eParamType::INTEGER:
stream << "integer";
break;
case eParamType::INTEGER_NONZERO:
stream << "integer non-zero";
break;
default:
stream << "error";
break;
}
return stream;
}
template <typename T> class ParametricVariation;
/// <summary>
/// Parametric variations use parameters in addition to weight.
/// These values are stored in members of classes derived from ParametricVariation,
/// however for easy access, pointers to them are also stored in a vector
/// of ParamWithName in ParametricVariation.
/// Each of these takes the form of a name string and a pointer to a value.
/// Also, some of them can be considered precalculated values, rather than
/// formal parameters.
/// Further, some can change state between iterations.
/// The constructors for each case are deliberately different to prevent errors.
/// This class encapsulates a single parameter.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
class EMBER_API ParamWithName
{
friend ParametricVariation<T>;
public:
/// <summary>
/// Default constructor.
/// </summary>
ParamWithName()
{
Init(nullptr, "", 0, eParamType::REAL, TLOW, TMAX);
}
/// <summary>
/// Constructor for a precalc param that takes arguments.
/// </summary>
/// <param name="isPrecalc">Whether the parameter is actually a precalculated value. Always true.</param>
/// <param name="param">A pointer to the parameter</param>
/// <param name="name">The name of the parameter</param>
/// <param name="size">The length of the underlying memory in bytes. Needed for array types. Default: sizeof(T).</param>
ParamWithName(bool isPrecalc,
T* param,
string name,
size_t size = sizeof(T))
{
Init(param, name, 0, eParamType::REAL, TLOW, TMAX, true, false, size);
}
/// <summary>
/// Constructor for a state param that takes arguments.
/// </summary>
/// <param name="isPrecalc">Whether the parameter is actually a precalculated value. Always true.</param>
/// <param name="isState">Whether the parameter changes state between iterations. Always true.</param>
/// <param name="param">A pointer to the parameter</param>
/// <param name="name">The name of the parameter</param>
ParamWithName(bool isPrecalc,
bool isState,
T* param,
string name)
{
Init(param, name, 0, eParamType::REAL, TLOW, TMAX, true, true);
}
/// <summary>
/// Constructor for a non-precalc param that takes arguments.
/// </summary>
/// <param name="param">A pointer to the parameter</param>
/// <param name="name">The name of the parameter</param>
/// <param name="def">The default value of the parameter</param>
/// <param name="type">The type of the parameter</param>
/// <param name="min">The minimum value the parameter can be</param>
/// <param name="max">The maximum value the parameter can be</param>
ParamWithName(T* param, const string& name, T def = 0, eParamType type = eParamType::REAL, T min = TLOW, T max = TMAX)
{
Init(param, name, def, type, min, max);
}
/// <summary>
/// Copy constructor.
/// Note this constructor does not take an additional template parameter
/// like the others do. This is because there is not way to assign the
/// param pointer from one type to another. Luckily, such functionality is not needed
/// with this class.
/// </summary>
/// <param name="paramWithName">The ParamWithName object to copy</param>
ParamWithName(const ParamWithName<T>& paramWithName)
{
*this = paramWithName;
}
/// <summary>
/// Assignment operator.
/// Note this assignment operator does not take an additional template parameter
/// like the others do. This is because there is not way to assign the
/// param pointer from one type to another. Luckily, such functionality is not needed
/// with this class.
/// </summary>
/// <param name="paramWithName">The ParamWithName object to copy.</param>
/// <returns>Reference to updated self</returns>
ParamWithName<T>& operator = (const ParamWithName<T>& paramWithName)
{
if (this != &paramWithName)
{
m_Param = paramWithName.m_Param;
m_Def = paramWithName.m_Def;
m_Min = paramWithName.m_Min;
m_Max = paramWithName.m_Max;
m_Type = paramWithName.m_Type;
m_Name = paramWithName.m_Name;
m_IsPrecalc = paramWithName.m_IsPrecalc;
m_IsState = paramWithName.m_IsState;
m_Size = paramWithName.m_Size;
}
return *this;
}
/// <summary>
/// Constructor that takes arguments.
/// </summary>
/// <param name="param">A pointer to the parameter</param>
/// <param name="name">The name of the parameter</param>
/// <param name="def">The default value of the parameter</param>
/// <param name="type">The type of the parameter</param>
/// <param name="min">The minimum value the parameter can be</param>
/// <param name="max">The maximum value the parameter can be</param>
/// <param name="isPrecalc">Whether the parameter is actually a precalculated value. Default: false.</param>
/// <param name="isState">Whether the parameter changes state between iterations. Default: false.</param>
/// <param name="size">The length of the underlying memory in bytes. Needed for array types. Default: sizeof(T).</param>
void Init(T* param, const string& name, T def = 0, eParamType type = eParamType::REAL, T min = TLOW, T max = TMAX, bool isPrecalc = false, bool isState = false, size_t size = sizeof(T))
{
m_Param = param;
m_Def = def;
m_Min = min;
m_Max = max;
m_Type = type;
m_Name = name;
m_IsPrecalc = isPrecalc;
m_IsState = isState;
m_Size = size;
Set(m_Def);//Initial value.
}
/// <summary>
/// Set this parameter to the val.
/// Depending on the type that was specified in the constructor, various restrictions
/// will be put on the value.
/// </summary>
/// <param name="val">The value to set the parameter to</param>
void Set(T val)
{
switch (m_Type)
{
case eParamType::REAL:
{
*m_Param = std::max(std::min(val, m_Max), m_Min);
break;
}
case eParamType::REAL_CYCLIC :
{
if (val > m_Max)
*m_Param = m_Min + fmod(val - m_Min, m_Max - m_Min);
else if (val < m_Min)
*m_Param = m_Max - fmod(m_Max - val, m_Max - m_Min);
else
*m_Param = val;
break;
}
case eParamType::REAL_NONZERO :
{
T vd = std::max(std::min(val, m_Max), m_Min);
if (IsNearZero(vd))
*m_Param = EPS * VarFuncs<T>::SignNz(vd);
else
*m_Param = vd;
break;
}
case eParamType::INTEGER :
{
*m_Param = T(int(std::max(std::min<T>(T(Floor<T>(val + T(0.5))), m_Max), m_Min)));
break;
}
case eParamType::INTEGER_NONZERO :
default:
{
int vi = int(std::max(std::min<T>(T(Floor<T>(val + T(0.5))), m_Max), m_Min));
if (vi == 0)
vi = int(VarFuncs<T>::SignNz(val));
*m_Param = T(vi);
break;
}
}
}
/// <summary>
/// Return the values of the ParamWithName as a string.
/// </summary>
/// <returns>The ParamWithName values as a string</returns>
string ToString() const
{
ostringstream ss;
ss << "Param Name: " << m_Name << "\n"
<< "Param Pointer: " << m_Param << "\n"
<< "Param Value: " << *m_Param << "\n"
<< "Param Def: " << m_Def << "\n"
<< "Param Min: " << m_Min << "\n"
<< "Param Max: " << m_Max << "\n"
<< "Param Type: " << m_Type << "\n"
<< "Is Precalc: " << m_IsPrecalc << "\n"
<< "Is State: " << m_IsState << "\n"
<< "Size: " << m_Size << "\n";
return ss.str();
}
/// <summary>
/// Accessors.
/// </summary>
T* Param() const { return m_Param; }
T ParamVal() const { return *m_Param; }
T Def() const { return m_Def; }
T Min() const { return m_Min; }
T Max() const { return m_Max; }
eParamType Type() const { return m_Type; }
string Name() const { return m_Name; }
bool IsPrecalc() const { return m_IsPrecalc; }
bool IsState() const { return m_IsState; }
size_t Size() const { return m_Size; }
private:
T* m_Param;//Pointer to the parameter value.
T m_Def;//The default value of the parameter.
T m_Min;//The minimum value the parameter can be.
T m_Max;//The maximum value the parameter can be.
eParamType m_Type;//The type of the parameter.
string m_Name;//Name of the parameter.
bool m_IsPrecalc;//Whether the parameter is actually a precalculated value.
bool m_IsState;//Whether the parameter changes state between iterations. This is also considered precalc.
size_t m_Size;//The size of the field in bytes. Default: sizeof(T).
};
#define VARUSINGS \
using Variation<T>::m_Weight; \
using Variation<T>::m_Xform; \
using Variation<T>::m_VariationId; \
using Variation<T>::m_Name; \
using Variation<T>::m_VarType; \
using Variation<T>::m_PrePostAssignType; \
using Variation<T>::SetType; \
using Variation<T>::IndexInXform; \
using Variation<T>::XformIndexInEmber; \
using Variation<T>::Prefix; \
using Variation<T>::Precalc; \
using Variation<T>::StateOpenCLString; \
using Variation<T>::InitStateVars; \
using Variation<T>::WeightDefineString; \
using Variation<T>::DefaultZ; \
using Variation<T>::DefaultZCl;
/// <summary>
/// Parametric variations use parameters in addition to weight.
/// These values are stored in members of derived classes, however
/// for easy access, pointers to them are also stored in a vector
/// of ParamWithName in this class.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
class EMBER_API ParametricVariation : public Variation<T>
{
public:
VARUSINGS
/// <summary>
/// Constructor which takes arguments and just passes them to the base class.
/// </summary>
/// <param name="name">The unique name of the variation</param>
/// <param name="id">The unique ID of the variation</param>
/// <param name="weight">The weight. Default: 1.</param>
/// <param name="needPrecalcSumSquares">Whether it uses the precalc sum squares value in its calculations. Default: false.</param>
/// <param name="needPrecalcSqrtSumSquares">Whether it uses the sqrt precalc sum squares value in its calculations. Default: false.</param>
/// <param name="needPrecalcAngles">Whether it uses the precalc sin and cos values in its calculations. Default: false.</param>
/// <param name="needPrecalcAtanXY">Whether it uses the precalc atan XY value in its calculations. Default: false.</param>
/// <param name="needPrecalcAtanYX">Whether it uses the precalc atan YX value in its calculations. Default: false.</param>
ParametricVariation(const char* name, eVariationId id, T weight = 1.0,
bool needPrecalcSumSquares = false,
bool needPrecalcSqrtSumSquares = false,
bool needPrecalcAngles = false,
bool needPrecalcAtanXY = false,
bool needPrecalcAtanYX = false)
: Variation<T>(name, id, weight,
needPrecalcSumSquares,
needPrecalcSqrtSumSquares,
needPrecalcAngles,
needPrecalcAtanXY,
needPrecalcAtanYX)
{
m_Params.reserve(5);
}
/// <summary>
/// Default copy constructor.
/// </summary>
/// <param name="var">The ParametricVariation object to copy</param>
ParametricVariation(const ParametricVariation<T>& var)
: Variation<T>(var)
{
//Derived classes will have to initialize the m_Params vector
//to the addresses of its members and then assign values from var.
m_Params.reserve(5);
}
/// <summary>
/// Copy constructor to copy a ParametricVariation object of type U.
/// </summary>
/// <param name="var">The ParametricVariation object to copy</param>
template <typename U>
ParametricVariation(const ParametricVariation<U>& var)
: Variation<T>(var)
{
//Derived classes will have to initialize the m_Params vector
//to the addresses of its members and then assign values from var.
m_Params.reserve(5);
}
/// <summary>
/// Empty virtual destructor.
/// Needed to eliminate warnings about inlining.
/// </summary>
virtual ~ParametricVariation()
{
}
/// <summary>
/// Determine whether the params vector contains a parameter with the specified name.
/// </summary>
/// <param name="name">The name to search for</param>
/// <returns>True if found, else false.</returns>
bool ContainsParam(const char* name)
{
bool b = false;
for (auto& param : m_Params)
{
if (!_stricmp(param.Name().c_str(), name))
{
b = true;
break;
}
}
return b;
}
/// <summary>
/// Get a pointer to a parameter value with the specified name.
/// </summary>
/// <param name="name">The name to search for</param>
/// <returns>A pointer to the parameter value if the name matched, else null.</returns>
T* GetParam(const char* name) const
{
for (auto& param : m_Params)
if (!_stricmp(param.Name().c_str(), name))
return param.Param();
return nullptr;
}
/// <summary>
/// Get a parameter value with the specified name.
/// </summary>
/// <param name="name">The name to search for</param>
/// <returns>A parameter value if the name matched, else 0.</returns>
T GetParamVal(const char* name) const
{
for (auto& param : m_Params)
if (!_stricmp(param.Name().c_str(), name))
return param.ParamVal();
return 0;
}
/// <summary>
/// Assign a value to the parameter with the specified name and call virtual Precalc() if found.
/// </summary>
/// <param name="name">The name of the parameter to assign to</param>
/// <param name="val">The value to assign</param>
/// <returns>True if the name matched, else false.</returns>
virtual bool SetParamVal(const char* name, T val)
{
bool b = false;
for (auto& param : m_Params)
{
if (!_stricmp(param.Name().c_str(), name))
{
param.Set(val);
b = true;
break;
}
}
if (b)
this->Precalc();
return b;
}
/// <summary>
/// Assign a value to the parameter at the specified index and call virtual Precalc() if found.
/// </summary>
/// <param name="index">The index of the parameter to assign to</param>
/// <param name="val">The value to assign</param>
/// <returns>True if the index was in range, else false.</returns>
virtual bool SetParamVal(int index, T val)
{
bool b = false;
if (index < m_Params.size())
m_Params[index].Set(val);
if (b)
this->Precalc();
return b;
}
/// <summary>
/// Severe hack to get g++ to compile this.
/// </summary>
virtual void Precalc() override { }
/// <summary>
/// Place the parametric variation in a random state by setting all of the
/// non-precalc params to values between -1 and 1;
/// </summary>
/// <param name="rand">The rand.</param>
virtual void Random(QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
Variation<T>::Random(rand);
for (auto& param : m_Params) param.Set(rand.Frand11<T>());
this->Precalc();
}
/// <summary>
/// Assign all 0 to all parameters and call virtual Precalc().
/// </summary>
void Clear()
{
for (auto& param : m_Params) *(param.Param()) = 0;
this->Precalc();
}
/// <summary>
/// Return a vector of all parameter names, optionally including precalcs.
/// </summary>
/// <param name="includePrecalcs">Whether to include the names of precalcs in the returned vector</param>
/// <returns>A vector of all parameter names</returns>
vector<string> ParamNames(bool includePrecalcs = false)
{
vector<string> vec;
vec.reserve(m_Params.size());
for (auto& param : m_Params)
if ((includePrecalcs && param.IsPrecalc()) || !param.IsPrecalc())
vec.push_back(param.Name());
return vec;
}
/// <summary>
/// Returns an OpenCL string for the fields in this variation
/// that change during iterations.
/// Note these are different than regular variation parameters,
/// and thus require a completely different solution.
/// </summary>
/// <returns>The OpenCL string for the state variables</returns>
virtual string StateOpenCLString() const override
{
ostringstream os, os2;
os2 << "_" << XformIndexInEmber() << ";";
string index = os2.str();
for (auto& param : m_Params)
if (param.IsState())
os << "\n\treal_t " << param.Name() << index;
return os.str();
}
/// <summary>
/// Returns the number of state variables present for this variation.
/// </summary>
/// <returns>The number of state variables</returns>
virtual size_t StateParamCount() const override
{
size_t count = 0;
for (auto& param : m_Params)
if (param.IsState())
count++;
return count;
}
/// <summary>
/// Initialize the state variables contained in the passed in array.
/// This is meant to be used only with OpenCL to initialize a state struct for every thread before
/// starting iteration.
/// </summary>
/// <param name="t">The pointer to the state variables.</param>
/// <param name="index">The offset in the pointer where the data begins.</param>
virtual void InitStateVars(T* t, size_t& index) override
{
for (auto& param : m_Params)
if (param.IsState())
t[index++] = param.ParamVal();
}
/// <summary>
/// Return the name, weight and parameters of the variation as a string.
/// </summary>
/// <returns>The name, weight and parameters of the variation</returns>
virtual string ToString() const override
{
ostringstream ss;
ss << Variation<T>::ToString() << "\n";
for (auto& param : m_Params) ss << param.ToString() << "\n";
return ss.str();
}
/// <summary>
/// Accessors.
/// </summary>
const ParamWithName<T>* Params() const { return m_Params.data(); }
size_t ParamCount() const { return m_Params.size(); }
const vector<ParamWithName<T>>& ParamsVec() const { return m_Params; }
protected:
/// <summary>
/// Copy the non-precalc parameter values of type U to the pointer locations stored in the params vector of type T,
/// where T is usually the same type as U.
/// This will copy the values to the members of derived classes.
/// </summary>
/// <param name="params">The vector of parameters whose values will be copied</param>
template <typename U>
void CopyParamVals(const vector<ParamWithName<U>>& params)
{
if (m_Params.size() == params.size())
{
for (size_t i = 0; i < m_Params.size(); i++)
if (!m_Params[i].IsPrecalc())
m_Params[i].Set(T(params[i].ParamVal()));
this->Precalc();
}
}
/// <summary>
/// Get a pointer to the underlying ParamWithName object with the specified name.
/// </summary>
/// <param name="name">The name to search for</param>
/// <returns>A pointer to the underlying ParamWithName object if the name matched, else null.</returns>
const ParamWithName<T>* GetUnderlyingParam(const char* name) const
{
for (auto& param : m_Params)
if (!_stricmp(param.Name().c_str(), name))
return &param;
return nullptr;
}
vector<ParamWithName<T>> m_Params;//The params pointer vector which stores pointer to parameter members of derived classes.
};
/// <summary>
/// Macro to define a default copy constructor, a copy constructor for a different template type, and a virtual Copy() function
/// for classes derived directly from Variation.
/// Defining assignment operators isn't really needed because Variations are always held as pointers.
/// </summary>
#ifdef DO_DOUBLE
#define VARCOPYDOUBLE(name) \
virtual void Copy(Variation<double>*& var) const override \
{ \
if (var) \
delete var; \
\
var = new name<double>(*this); \
} \
#else
#define VARCOPYDOUBLE(name)
#endif // DO_DOUBLE
#define VARCOPY(name) \
VARUSINGS \
public: \
name(const name<T>& var) \
: Variation<T>(var) \
{ \
} \
\
template <typename U> \
name(const name<U>& var) \
: Variation<T>(var) \
{ \
} \
\
virtual Variation<T>* Copy() const override \
{ \
return new name<T>(*this); \
} \
\
virtual void Copy(Variation<float>*& var) const override \
{ \
if (var) \
delete var; \
\
var = new name<float>(*this); \
} \
\
VARCOPYDOUBLE(name) \
#define PREPOSTVARCOPY(name, base) \
name(const name<T>& var) \
: base<T>(var) \
{ \
} \
\
template <typename U> \
name(const name<U>& var) \
: base<T>(var) \
{ \
} \
\
virtual Variation<T>* Copy() const override \
{ \
return new name<T>(*this); \
} \
\
virtual void Copy(Variation<float>*& var) const override \
{ \
if (var) \
delete var; \
\
var = new name<float>(*this); \
} \
\
VARCOPYDOUBLE(name) \
/// <summary>
/// Macro to create pre and post counterparts to a variation.
/// Assign type defaults to set.
/// </summary>
#define MAKEPREPOSTVAR(varName, stringName, enumName) MAKEPREPOSTVARASSIGN(varName, stringName, enumName, eVariationAssignType::ASSIGNTYPE_SET)
#define MAKEPREPOSTVARASSIGN(varName, stringName, enumName, assignType) \
template <typename T> \
class EMBER_API Pre##varName##Variation : public varName##Variation<T> \
{ \
VARUSINGS \
public: \
Pre##varName##Variation(T weight = 1.0) : varName##Variation<T>(weight) \
{ \
m_VariationId = eVariationId::VAR_PRE_##enumName; \
m_Name = "pre_"#stringName; \
m_PrePostAssignType = assignType; \
SetType(); \
} \
\
PREPOSTVARCOPY(Pre##varName##Variation, varName##Variation) \
}; \
\
template <typename T> \
class EMBER_API Post##varName##Variation : public varName##Variation<T> \
{ \
VARUSINGS \
public:\
Post##varName##Variation(T weight = 1.0) : varName##Variation<T>(weight) \
{ \
m_VariationId = eVariationId::VAR_POST_##enumName; \
m_Name = "post_"#stringName; \
m_PrePostAssignType = assignType; \
SetType(); \
} \
\
PREPOSTVARCOPY(Post##varName##Variation, varName##Variation) \
};
/// <summary>
/// Macro to define a copy constructor, a copy constructor for a different template type, and a virtual Copy() function
/// for classes derived from ParametricVariation.
/// Another major shortcoming of C++: Ideally, Init() should be a virtual function defined in ParametricVariation.
/// It would be called in that constructor, and defined in each derived class. However, that can't be done because the vtable
/// is not setup during construction.
/// Instead, every class must define it as a non-virtual function and explicitly call it in its constructor.
/// </summary>
#define PARVARUSINGS \
using ParametricVariation<T>::m_Params; \
using ParametricVariation<T>::CopyParamVals;
#define PARVARCOPY(name) \
VARUSINGS \
PARVARUSINGS \
public: \
name(const name<T>& var) \
: ParametricVariation<T>(var) \
{ \
Init(); /* Assign the addresses of the members to the vector. */ \
CopyParamVals(var.ParamsVec()); /* Copy values from var's vector and precalc. */ \
} \
\
template <typename U> \
name(const name<U>& var) \
: ParametricVariation<T>(var) \
{ \
Init(); /* Assign the addresses of the members to the vector. */ \
CopyParamVals(var.ParamsVec()); /* Copy values from var's vector and precalc. */ \
} \
\
virtual Variation<T>* Copy() const override \
{ \
return new name<T>(*this); \
} \
\
virtual void Copy(Variation<float>*& var) const override \
{ \
if (var) \
delete var; \
\
var = new name<float>(*this); \
} \
\
VARCOPYDOUBLE(name) \
#define PREPOSTPARVARCOPY(name, base) \
name(const name<T>& var) \
: base<T>(var) \
{ \
Init(); /* Assign the addresses of the members to the vector. */ \
CopyParamVals(var.ParamsVec()); /* Copy values from var's vector and precalc. */ \
} \
\
template <typename U> \
name(const name<U>& var) \
: base<T>(var) \
{ \
Init(); /* Assign the addresses of the members to the vector. */ \
CopyParamVals(var.ParamsVec()); /* Copy values from var's vector and precalc. */ \
} \
\
virtual Variation<T>* Copy() const override \
{ \
return new name<T>(*this); \
} \
\
virtual void Copy(Variation<float>*& var) const override \
{ \
if (var) \
delete var; \
\
var = new name<float>(*this); \
} \
\
VARCOPYDOUBLE(name)
/// <summary>
/// Macro to create pre and post counterparts to a parametric variation.
/// Assign type defaults to set.
/// This uses the severe hack of calling Init() again after the type has been set
/// avoid having to change the constructor arguments for about 300 variations.
/// </summary>
#define MAKEPREPOSTPARVAR(varName, stringName, enumName) MAKEPREPOSTPARVARASSIGN(varName, stringName, enumName, eVariationAssignType::ASSIGNTYPE_SET)
#define MAKEPREPOSTPARVARASSIGN(varName, stringName, enumName, assignType) \
template <typename T> \
class EMBER_API Pre##varName##Variation : public varName##Variation <T> \
{ \
VARUSINGS \
PARVARUSINGS \
using varName##Variation<T>::Init; \
public:\
Pre##varName##Variation(T weight = 1.0) : varName##Variation<T>(weight) \
{ \
m_VariationId = eVariationId::VAR_PRE_##enumName; \
m_Name = "pre_"#stringName; \
m_PrePostAssignType = assignType; \
SetType(); \
Init(); \
} \
\
PREPOSTPARVARCOPY(Pre##varName##Variation, varName##Variation) \
}; \
\
template <typename T> \
class EMBER_API Post##varName##Variation : public varName##Variation<T> \
{ \
VARUSINGS \
PARVARUSINGS \
using varName##Variation<T>::Init; \
public:\
Post##varName##Variation(T weight = 1.0) : varName##Variation<T>(weight) \
{ \
m_VariationId = eVariationId::VAR_POST_##enumName; \
m_Name = "post_"#stringName; \
m_PrePostAssignType = assignType; \
SetType(); \
Init(); \
} \
\
PREPOSTPARVARCOPY(Post##varName##Variation, varName##Variation) \
};
}