fractorium/Source/Ember/Variations05.h
Person 90ec5b8246 --User changes:
-Show common folder locations such as documents, downloads, pictures in the sidebar in all file dialogs.
 -Warning message about exceeding memory in final render dialog now suggests strips as the solution to the problem.
 -Strips now has a tooltip explaining what it does.
 -Allow more digits in the spinners on the color section the flame tab.
 -Add manually adjustable size spinners in the final render dialog. Percentage scale and absolute size are fully synced.
 -Default prefix in final render is now the filename when doing animations (coming from sequence section of the library tab).
 -Changed the elliptic variation back to using a less precise version for float, and a more precise version for double. The last release had it always using double.
 -New applied xaos table that shows a read-only view of actual weights by taking the base xform weights and multiplying them by the xaos values.
 -New table in the xaos tab that gives a graphical representation of the probability that each xform is chosen, with and without xaos.
 -Add button to transpose the xaos rows and columns.
 -Add support for importing .chaos files from Chaotica.
 --Pasting back to Chaotica will work for most, but not all, variations due to incompatible parameter names in some.
 -Curves are now splines instead of Bezier. This adds compatibility with Chaotica, but breaks it for Apophysis. Xmls are still pastable, but the color curves will look different.
 --The curve editor on the palette tab can now add points by clicking on the lines and remove points by clicking on the points themselves, just like Chaotica.
 --Splines are saved in four new xml fields: overall_curve, red_curve, green_curve and blue_curve.
 -Allow for specifying the percentage of a sub batch each thread should iterate through per kernel call when running with OpenCL. This gives a roughly 1% performance increase due to having to make less kernel calls while iterating.
 --This field is present for interactive editing (where it's not very useful) and in the final render dialog.
 --On the command line, this is specified as --sbpctth for EmberRender and EmberAnimate.
 -Allow double clicking to toggle the supersample field in the flame tab between 1 and 2 for easily checking the effect of the field.
 -When showing affine values as polar coordinates, show angles normalized to 360 to match Chaotica.
 -Fuse Count spinner now toggles between 15 and 100 when double clicking for easily checking the effect of the field.
 -Added field for limiting the range in the x and y direction that the initial points are chosen from.
 -Added a field called K2 which is an alternative way to set brightness, ignored when zero.
 --This has no effect for many variations, but hs a noticeable effect for some.
 -Added new variations:
 arcsech
 arcsech2
 arcsinh
 arctanh
 asteria
 block
 bwraps_rand
 circlecrop2
 coth_spiral
 crackle2
 depth_blur
 depth_blur2
 depth_gaussian
 depth_gaussian2
 depth_ngon
 depth_ngon2
 depth_sine
 depth_sine2
 dragonfire
 dspherical
 dust
 excinis
 exp2
 flipx
 flowerdb
 foci_p
 gaussian
 glynnia2
 glynnsim4
 glynnsim5
 henon
 henon
 hex_rand
 hex_truchet
 hypershift
 lazyjess
 lens
 lozi
 lozi
 modulusx
 modulusy
 oscilloscope2
 point_symmetry
 pointsymmetry
 projective
 pulse
 rotate
 scry2
 shift
 smartshape
 spher
 squares
 starblur2
 swirl3
 swirl3r
 tanh_spiral
 target0
 target2
 tile_hlp
 truchet_glyph
 truchet_inv
 truchet_knot
 unicorngaloshen
 vibration
 vibration2
 --hex_truchet, hex_rand should always use double. They are extremely sensitive.

--Bug fixes:
 -Bounds sign was flipped for x coordinate of world space when center was not zero.
 -Right clicking and dragging spinner showed menu on mouse up, even if it was very far away.
 -Text boxes for size in final render dialog were hard to type in. Same bug as xform weight used to be so fix the same way.
 -Fix spelling to be plural in toggle color speed box.
 -Stop using the blank user palette to generate flames. Either put colored palettes in it, or exclude it from randoms.
 -Clicking the random palette button for a palette file with only one palette in it would freeze the program.
 -Clicking none scale in final render did not re-render the preview.
 -Use less precision on random xaos. No need for 12 decimal places.
 -The term sub batch is overloaded in the options dialog. Change the naming and tooltip of those settings for cpu and opencl.
 --Also made clear in the tooltip for the default opencl quality setting that the value is per device.
 -The arrows spinner in palette editor appears like a read-only label. Made it look like a spinner.
 -Fix border colors for various spin boxes and table headers in the style sheet. Requires reload.
 -Fix a bug in the bwraps variation which would produce different results than Chaotica and Apophysis.
 -Synth was allowed to be selected for random flame generation when using an Nvidia card but it shouldn't have been because Nvidia has a hard time compiling synth.
 -A casting bug in the OpenCL kernels for log scaling and density filtering was preventing successful compilations on Intel iGPUs. Fixed even though we don't support anything other than AMD and Nvidia.
 -Palette rotation (click and drag) position was not being reset when loading a new flame.
 -When the xform circles were hidden, opening and closing the options dialog would improperly reshow them.
 -Double click toggle was broken on integer spin boxes.
 -Fixed tab order of some controls.
 -Creating a palette from a jpg in the palette editor only produced a single color.
 --Needed to package imageformats/qjpeg.dll with the Windows installer.
 -The basic memory benchmark test flame was not really testing memory. Make it more spread out.
 -Remove the temporal samples field from the flame tab, it was never used because it's only an animation parameter which is specified in the final render dialog or on the command line with EmberAnimate.

--Code changes:
 -Add IsEmpty() to Palette to determine if a palette is all black.
 -Attempt to avoid selecting a blank palette in PaletteList::GetRandomPalette().
 -Add function ScanForChaosNodes() and some associated helper functions in XmlToEmber.
 -Make variation param name correction be case insensitive in XmlToEmber.
 -Report error when assigning a variation param value in XmlToEmber.
 -Add SubBatchPercentPerThread() method to RendererCL.
 -Override enterEvent() and leaveEvent() in DoubleSpinBox and SpinBox to prevent the context menu from showing up on right mouse up after already leaving the spinner.
 -Filtering the mouse wheel event in TableWidget no longer appears to be needed. It was probably an old Qt bug that has been fixed.
 -Gui/ember syncing code in the final render dialog needed to be reworked to accommodate absolute sizes.
2019-04-13 19:00:46 -07:00

4428 lines
149 KiB
C++

#pragma once
#include "Variation.h"
namespace EmberNs
{
/// <summary>
/// bubble2.
/// </summary>
template <typename T>
class Bubble2Variation : public ParametricVariation<T>
{
public:
Bubble2Variation(T weight = 1.0) : ParametricVariation<T>("bubble2", eVariationId::VAR_BUBBLE2, weight, true)
{
Init();
}
PARVARCOPY(Bubble2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T t = Zeps(T(0.25) * (helper.m_PrecalcSumSquares + SQR(helper.In.z)) + 1);
T r = m_Weight / t;
helper.Out.x = helper.In.x * r * m_X;
helper.Out.y = helper.In.y * r * m_Y;
if (helper.In.z >= 0)
helper.Out.z = m_Weight * (helper.In.z + m_Z);
else
helper.Out.z = m_Weight * (helper.In.z - m_Z);
helper.Out.z += helper.In.z * r * m_Z;//The += is intentional.
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t t = Zeps(fma((real_t)(0.25), fma(vIn.z, vIn.z, precalcSumSquares), (real_t)(1.0)));\n"
<< "\t\treal_t r = " << weight << " / t;\n"
<< "\n"
<< "\t\tvOut.x = vIn.x * r * " << x << ";\n"
<< "\t\tvOut.y = vIn.y * r * " << y << ";\n"
<< "\n"
<< "\t\tif (vIn.z >= 0)\n"
<< "\t\t vOut.z = " << weight << " * (vIn.z + " << z << ");\n"
<< "\t\telse\n"
<< "\t\t vOut.z = " << weight << " * (vIn.z - " << z << ");\n"
<< "\n"
<< "\t\tvOut.z += vIn.z * r * " << z << ";\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "bubble2_x", 1));//Original used a prefix of bubble_, which is incompatible with Ember's design.
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "bubble2_y", 1));
m_Params.push_back(ParamWithName<T>(&m_Z, prefix + "bubble2_z"));
}
private:
T m_X;
T m_Y;
T m_Z;
};
/// <summary>
/// CircleLinear.
/// </summary>
template <typename T>
class CircleLinearVariation : public ParametricVariation<T>
{
public:
CircleLinearVariation(T weight = 1.0) : ParametricVariation<T>("CircleLinear", eVariationId::VAR_CIRCLELINEAR, weight)
{
Init();
}
PARVARCOPY(CircleLinearVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
int m = int(Floor<T>(T(0.5) * helper.In.x / m_Sc));
int n = int(Floor<T>(T(0.5) * helper.In.y / m_Sc));
int m21 = m * 2 + 1;
int n21 = n * 2 + 1;
T x = helper.In.x - m21 * m_Sc;
T y = helper.In.y - n21 * m_Sc;
T u = Zeps(VarFuncs<T>::Hypot(x, y));
T v = (T(0.3) + T(0.7) * DiscreteNoise2(m + 10, n + 3)) * m_Sc;
T z1 = DiscreteNoise2(int(m + m_Seed), n);
if ((z1 < m_Dens1) && (u < v))
{
if (m_Reverse > 0)
{
if (z1 < m_Dens1 * m_Dens2)
{
x *= m_K;
y *= m_K;
}
else
{
T z = v / u * (1 - m_K) + m_K;
x *= z;
y *= z;
}
}
else
{
if (z1 > m_Dens1 * m_Dens2)
{
x *= m_K;
y *= m_K;
}
else
{
T z = v / u * (1 - m_K) + m_K;
x *= z;
y *= z;
}
}
}
helper.Out.x = m_Weight * (x + m21 * m_Sc);
helper.Out.y = m_Weight * (y + n21 * m_Sc);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string sc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string k = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dens1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dens2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string reverse = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seed = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tint m = (int)floor((real_t)(0.5) * vIn.x / " << sc << ");\n"
<< "\t\tint n = (int)floor((real_t)(0.5) * vIn.y / " << sc << ");\n"
<< "\t\tint m21 = m * 2 + 1;\n"
<< "\t\tint n21 = n * 2 + 1;\n"
<< "\t\treal_t x = vIn.x - m21 * " << sc << ";\n"
<< "\t\treal_t y = vIn.y - n21 * " << sc << ";\n"
<< "\t\treal_t u = Zeps(Hypot(x, y));\n"
<< "\t\treal_t v = fma(CircleLinearDiscreteNoise2(m + 10, n + 3), (real_t)(0.7), (real_t)(0.3)) * " << sc << ";\n"
<< "\t\treal_t z1 = CircleLinearDiscreteNoise2((int)(m + " << seed << "), n);\n"
<< "\n"
<< "\t\tif ((z1 < " << dens1 << ") && (u < v))\n"
<< "\t\t{\n"
<< "\t\t if (" << reverse << " > 0)\n"
<< "\t\t {\n"
<< "\t\t if (z1 < " << dens1 << " * " << dens2 << ")\n"
<< "\t\t {\n"
<< "\t\t x *= " << k << ";\n"
<< "\t\t y *= " << k << ";\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t real_t z = fma(v / u, (1 - " << k << "), " << k << ");\n"
<< "\n"
<< "\t\t x *= z;\n"
<< "\t\t y *= z;\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t if (z1 > " << dens1 << " * " << dens2 << ")\n"
<< "\t\t {\n"
<< "\t\t x *= " << k << ";\n"
<< "\t\t y *= " << k << ";\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t real_t z = fma(v / u, (1 - " << k << "), " << k << ");\n"
<< "\n"
<< "\t\t x *= z;\n"
<< "\t\t y *= z;\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * fma((real_t)m21, " << sc << ", x);\n"
<< "\t\tvOut.y = " << weight << " * fma((real_t)n21, " << sc << ", y);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot", "Zeps" };
}
virtual string OpenCLFuncsString() const override
{
return
"real_t CircleLinearDiscreteNoise2(int x, int y)\n"
"{\n"
" const real_t im = 2147483647;\n"
" const real_t am = 1 / im;\n"
"\n"
" int n = x + y * 57;\n"
" n = (n << 13) ^ n;\n"
" return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) * am;\n"
"}\n"
"\n";
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Sc, prefix + "CircleLinear_Sc", 1, eParamType::REAL_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_K, prefix + "CircleLinear_K", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Dens1, prefix + "CircleLinear_Dens1", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Dens2, prefix + "CircleLinear_Dens2", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Reverse, prefix + "CircleLinear_Reverse", 1));
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "CircleLinear_X", 10));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "CircleLinear_Y", 10));
m_Params.push_back(ParamWithName<T>(&m_Seed, prefix + "CircleLinear_Seed", 0, eParamType::INTEGER));
}
private:
T DiscreteNoise2(int x, int y)
{
const T im = T(2147483647);
const T am = (1 / im);
int n = x + y * 57;
n = (n << 13) ^ n;
return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) * am;
}
T m_Sc;
T m_K;
T m_Dens1;
T m_Dens2;
T m_Reverse;
T m_X;
T m_Y;
T m_Seed;
};
/// <summary>
/// CircleRand.
/// The original would loop infinitely as x and y approached zero, so put a check for a max of 10 iters.
/// </summary>
template <typename T>
class CircleRandVariation : public ParametricVariation<T>
{
public:
CircleRandVariation(T weight = 1.0) : ParametricVariation<T>("CircleRand", eVariationId::VAR_CIRCLERAND, weight)
{
Init();
}
PARVARCOPY(CircleRandVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
intmax_t m, n, iters = 0;
T x, y, u;
do
{
x = m_X * (1 - 2 * rand.Frand01<T>());
y = m_Y * (1 - 2 * rand.Frand01<T>());
m = Floor<T>(T(0.5) * x / m_Sc);
n = Floor<T>(T(0.5) * y / m_Sc);
x -= (m * 2 + 1) * m_Sc;
y -= (n * 2 + 1) * m_Sc;
u = VarFuncs<T>::Hypot(x, y);
if (++iters > 10)
break;
}
while ((DiscreteNoise2(int(m + m_Seed), int(n)) > m_Dens) || (u > (T(0.3) + T(0.7) * DiscreteNoise2(int(m + 10), int(n + 3))) * m_Sc));
helper.Out.x = m_Weight * (x + (m * 2 + 1) * m_Sc);
helper.Out.y = m_Weight * (y + (n * 2 + 1) * m_Sc);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string sc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dens = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seed = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tint m, n, iters = 0;\n"
<< "\t\treal_t x, y, u;\n"
<< "\n"
<< "\t\tdo\n"
<< "\t\t{\n"
<< "\t\t x = " << x << " * (1 - 2 * MwcNext01(mwc));\n"
<< "\t\t y = " << y << " * (1 - 2 * MwcNext01(mwc));\n"
<< "\t\t m = (int)floor((real_t)(0.5) * x / " << sc << ");\n"
<< "\t\t n = (int)floor((real_t)(0.5) * y / " << sc << ");\n"
<< "\t\t x = x - (m * 2 + 1) * " << sc << ";\n"
<< "\t\t y = y - (n * 2 + 1) * " << sc << ";\n"
<< "\t\t u = Hypot(x, y);\n"
<< "\n"
<< "\t\t if (++iters > 10)\n"
<< "\t\t break;\n"
<< "\t\t}\n"
<< "\t\twhile ((CircleRandDiscreteNoise2((int)(m + " << seed << "), n) > " << dens << ") || (u > fma(CircleRandDiscreteNoise2(m + 10, n + 3), (real_t)(0.7), (real_t)(0.3)) * " << sc << "));\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * fma((real_t)(m * 2 + 1), " << sc << ", x);\n"
<< "\t\tvOut.y = " << weight << " * fma((real_t)(n * 2 + 1), " << sc << ", y);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot" };
}
virtual string OpenCLFuncsString() const override
{
return
"real_t CircleRandDiscreteNoise2(int x, int y)\n"
"{\n"
" const real_t im = 2147483647;\n"
" const real_t am = 1 / im;\n"
"\n"
" int n = x + y * 57;\n"
" n = (n << 13) ^ n;\n"
" return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) * am;\n"
"}\n"
"\n";
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Sc, prefix + "CircleRand_Sc", 1, eParamType::REAL_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_Dens, prefix + "CircleRand_Dens", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "CircleRand_X", 10));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "CircleRand_Y", 10));
m_Params.push_back(ParamWithName<T>(&m_Seed, prefix + "CircleRand_Seed", 0, eParamType::INTEGER));
}
private:
T DiscreteNoise2(int x, int y)
{
const T im = T(2147483647);
const T am = (1 / im);
int n = x + y * 57;
n = (n << 13) ^ n;
return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) * am;
}
T m_Sc;
T m_Dens;
T m_X;
T m_Y;
T m_Seed;
};
/// <summary>
/// CircleTrans1.
/// The original would loop infinitely as x and y approached zero, so put a check for a max of 10 iters.
/// </summary>
template <typename T>
class CircleTrans1Variation : public ParametricVariation<T>
{
public:
CircleTrans1Variation(T weight = 1.0) : ParametricVariation<T>("CircleTrans1", eVariationId::VAR_CIRCLETRANS1, weight)
{
Init();
}
PARVARCOPY(CircleTrans1Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T ux, uy, u, x, y;
Trans(m_X, m_Y, helper.In.x, helper.In.y, &ux, &uy);
intmax_t m = Floor<T>(T(0.5) * ux / m_Sc);
intmax_t n = Floor<T>(T(0.5) * uy / m_Sc);
x = ux - (m * 2 + 1) * m_Sc;
y = uy - (n * 2 + 1) * m_Sc;
u = VarFuncs<T>::Hypot(x, y);
if ((DiscreteNoise2(int(m + m_Seed), int(n)) > m_Dens) || (u > (T(0.3) + T(0.7) * DiscreteNoise2(int(m + 10), int(n + 3))) * m_Sc))
{
ux = ux;
uy = uy;
}
else
{
CircleR(&ux, &uy, rand);
}
helper.Out.x = m_Weight * ux;
helper.Out.y = m_Weight * uy;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string sc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dens = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seed = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t ux, uy, u, x, y;\n"
<< "\n"
<< "\t\tCircleTrans1Trans(" << x << ", " << y << ", vIn.x, vIn.y, &ux, &uy);\n"
<< "\n"
<< "\t\tint m = (int)floor((real_t)(0.5) * ux / " << sc << ");\n"
<< "\t\tint n = (int)floor((real_t)(0.5) * uy / " << sc << ");\n"
<< "\n"
<< "\t\tx = ux - (m * 2 + 1) * " << sc << ";\n"
<< "\t\ty = uy - (n * 2 + 1) * " << sc << ";\n"
<< "\t\tu = Hypot(x, y);\n"
<< "\n"
<< "\t\tif ((CircleTrans1DiscreteNoise2((int)(m + " << seed << "), n) > " << dens << ") || (u > fma(CircleTrans1DiscreteNoise2(m + 10, n + 3), (real_t)(0.7), (real_t)(0.3)) * " << sc << "))\n"
<< "\t\t{\n"
<< "\t\t ux = ux;\n"
<< "\t\t uy = uy;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t CircleTrans1CircleR(" << x << ", " << y << ", " << sc << ", " << seed << ", " << dens << ", &ux, &uy, mwc);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * ux;\n"
<< "\t\tvOut.y = " << weight << " * uy;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual string OpenCLFuncsString() const override
{
return
"real_t CircleTrans1DiscreteNoise2(int x, int y)\n"
"{\n"
" const real_t im = 2147483647;\n"
" const real_t am = 1 / im;\n"
"\n"
" int n = x + y * 57;\n"
" n = (n << 13) ^ n;\n"
" return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) * am;\n"
"}\n"
"\n"
"void CircleTrans1Trans(real_t a, real_t b, real_t x, real_t y, real_t* x1, real_t* y1)\n"
"{\n"
" *x1 = fma((x - a), (real_t)(0.5), a);\n"
" *y1 = fma((y - b), (real_t)(0.5), b);\n"
"}\n"
"\n"
"void CircleTrans1CircleR(real_t mx, real_t my, real_t sc, real_t seed, real_t dens, real_t* ux, real_t* vy, uint2* mwc)\n"
"{\n"
" int m, n, iters = 0;\n"
" real_t x, y, alpha, u;\n"
"\n"
" do\n"
" {\n"
" x = fabs(mx) * (1 - 2 * MwcNext01(mwc));\n"
" y = fabs(my) * (1 - 2 * MwcNext01(mwc));\n"
" m = (int)floor((real_t)(0.5) * x / sc);\n"
" n = (int)floor((real_t)(0.5) * y / sc);\n"
" alpha = M_2PI * MwcNext01(mwc);\n"
" u = fma(CircleTrans1DiscreteNoise2(m + 10, n + 3), (real_t)(0.7), (real_t)(0.3));\n"
" x = u * cos(alpha);\n"
" y = u * sin(alpha);\n"
"\n"
" if (++iters > 10)\n"
" break;\n"
" }\n"
" while (CircleTrans1DiscreteNoise2((int)(m + seed), n) > dens);\n"
"\n"
" *ux = fma((real_t)(m * 2 + 1), sc, x);\n"
" *vy = fma((real_t)(n * 2 + 1), sc, y);\n"
"}\n"
"\n";
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Hypot" };
}
virtual void Precalc() override
{
m_Sc = Zeps(m_Sc);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Sc, prefix + "CircleTrans1_Sc", 1, eParamType::REAL_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_Dens, prefix + "CircleTrans1_Dens", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "CircleTrans1_X", 10));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "CircleTrans1_Y", 10));
m_Params.push_back(ParamWithName<T>(&m_Seed, prefix + "CircleTrans1_Seed", 0, eParamType::INTEGER));
}
private:
T DiscreteNoise2(int x, int y)
{
const T im = T(2147483647);
const T am = (1 / im);
int n = x + y * 57;
n = (n << 13) ^ n;
return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) * am;
}
void Trans(T a, T b, T x, T y, T* x1, T* y1)
{
*x1 = (x - a) * T(0.5) + a;
*y1 = (y - b) * T(0.5) + b;
}
void CircleR(T* ux, T* vy, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand)
{
intmax_t m, n, iters = 0;
T x, y, alpha, u;
do
{
x = std::abs(m_X) * (1 - 2 * rand.Frand01<T>());
y = std::abs(m_Y) * (1 - 2 * rand.Frand01<T>());
m = Floor<T>(T(0.5) * x / m_Sc);
n = Floor<T>(T(0.5) * y / m_Sc);
alpha = M_2PI * rand.Frand01<T>();
u = T(0.3) + T(0.7) * DiscreteNoise2(int(m + 10), int(n + 3));
x = u * std::cos(alpha);
y = u * std::sin(alpha);
if (++iters > 10)
break;
}
while (DiscreteNoise2(int(m + m_Seed), int(n)) > m_Dens);
*ux = x + (m * 2 + 1) * m_Sc;
*vy = y + (n * 2 + 1) * m_Sc;
}
T m_Sc;
T m_Dens;
T m_X;
T m_Y;
T m_Seed;
};
/// <summary>
/// cubic3D.
/// </summary>
template <typename T>
class Cubic3DVariation : public ParametricVariation<T>
{
public:
Cubic3DVariation(T weight = 1.0) : ParametricVariation<T>("cubic3D", eVariationId::VAR_CUBIC3D, weight)
{
Init();
}
PARVARCOPY(Cubic3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
int useNode = rand.Rand() & 7;//Faster than % 8.
T exnze, wynze, znxy;
T lattd = m_Weight * T(0.5);
T px, py, pz;
exnze = 1 - (m_SmoothStyle * (1 - (std::cos(std::atan2(helper.In.x, helper.In.z)))));
wynze = 1 - (m_SmoothStyle * (1 - (std::sin(std::atan2(helper.In.y, helper.In.z)))));
if (m_SmoothStyle > 1)
znxy = 1 - (m_SmoothStyle * (1 - ((exnze + wynze) / 2 * m_SmoothStyle)));
else
znxy = 1 - (m_SmoothStyle * (1 - ((exnze + wynze) * T(0.5))));
if (m_VarType == eVariationType::VARTYPE_PRE)
{
px = helper.In.x;
py = helper.In.y;
pz = helper.In.z;
}
else
{
px = outPoint.m_X;
py = outPoint.m_Y;
pz = outPoint.m_Z;
}
switch (useNode)
{
case 0:
helper.Out.x = ((px - (m_Smooth * (1 - m_Fill) * px * exnze)) + (helper.In.x * m_Smooth * m_Fill * exnze)) + lattd;
helper.Out.y = ((py - (m_Smooth * (1 - m_Fill) * py * wynze)) + (helper.In.y * m_Smooth * m_Fill * wynze)) + lattd;
helper.Out.z = ((pz - (m_Smooth * (1 - m_Fill) * pz * znxy)) + (helper.In.z * m_Smooth * m_Fill * znxy)) + lattd;
break;
case 1:
helper.Out.x = ((px - (m_Smooth * (1 - m_Fill) * px * exnze)) + (helper.In.x * m_Smooth * m_Fill * exnze)) + lattd;
helper.Out.y = ((py - (m_Smooth * (1 - m_Fill) * py * wynze)) + (helper.In.y * m_Smooth * m_Fill * wynze)) - lattd;
helper.Out.z = ((pz - (m_Smooth * (1 - m_Fill) * pz * znxy)) + (helper.In.z * m_Smooth * m_Fill * znxy)) + lattd;
break;
case 2:
helper.Out.x = ((px - (m_Smooth * (1 - m_Fill) * px * exnze)) + (helper.In.x * m_Smooth * m_Fill * exnze)) + lattd;
helper.Out.y = ((py - (m_Smooth * (1 - m_Fill) * py * wynze)) + (helper.In.y * m_Smooth * m_Fill * wynze)) + lattd;
helper.Out.z = ((pz - (m_Smooth * (1 - m_Fill) * pz * znxy)) + (helper.In.z * m_Smooth * m_Fill * znxy)) - lattd;
break;
case 3:
helper.Out.x = ((px - (m_Smooth * (1 - m_Fill) * px * exnze)) + (helper.In.x * m_Smooth * m_Fill * exnze)) + lattd;
helper.Out.y = ((py - (m_Smooth * (1 - m_Fill) * py * wynze)) + (helper.In.y * m_Smooth * m_Fill * wynze)) - lattd;
helper.Out.z = ((pz - (m_Smooth * (1 - m_Fill) * pz * znxy)) + (helper.In.z * m_Smooth * m_Fill * znxy)) - lattd;
break;
case 4:
helper.Out.x = ((px - (m_Smooth * (1 - m_Fill) * px * exnze)) + (helper.In.x * m_Smooth * m_Fill * exnze)) - lattd;
helper.Out.y = ((py - (m_Smooth * (1 - m_Fill) * py * wynze)) + (helper.In.y * m_Smooth * m_Fill * wynze)) + lattd;
helper.Out.z = ((pz - (m_Smooth * (1 - m_Fill) * pz * znxy)) + (helper.In.z * m_Smooth * m_Fill * znxy)) + lattd;
break;
case 5:
helper.Out.x = ((px - (m_Smooth * (1 - m_Fill) * px * exnze)) + (helper.In.x * m_Smooth * m_Fill * exnze)) - lattd;
helper.Out.y = ((py - (m_Smooth * (1 - m_Fill) * py * wynze)) + (helper.In.y * m_Smooth * m_Fill * wynze)) - lattd;
helper.Out.z = ((pz - (m_Smooth * (1 - m_Fill) * pz * znxy)) + (helper.In.z * m_Smooth * m_Fill * znxy)) + lattd;
break;
case 6:
helper.Out.x = ((px - (m_Smooth * (1 - m_Fill) * px * exnze)) + (helper.In.x * m_Smooth * m_Fill * exnze)) - lattd;
helper.Out.y = ((py - (m_Smooth * (1 - m_Fill) * py * wynze)) + (helper.In.y * m_Smooth * m_Fill * wynze)) + lattd;
helper.Out.z = ((pz - (m_Smooth * (1 - m_Fill) * pz * znxy)) + (helper.In.z * m_Smooth * m_Fill * znxy)) - lattd;
break;
case 7:
default:
helper.Out.x = ((px - (m_Smooth * (1 - m_Fill) * px * exnze)) + (helper.In.x * m_Smooth * m_Fill * exnze)) - lattd;
helper.Out.y = ((py - (m_Smooth * (1 - m_Fill) * py * wynze)) + (helper.In.y * m_Smooth * m_Fill * wynze)) - lattd;
helper.Out.z = ((pz - (m_Smooth * (1 - m_Fill) * pz * znxy)) + (helper.In.z * m_Smooth * m_Fill * znxy)) - lattd;
break;
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string xpand = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string style = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string fill = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string smooth = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string smoothStyle = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tint useNode = MwcNext(mwc) & 7;\n"
<< "\t\treal_t exnze, wynze, znxy;\n"
<< "\t\treal_t lattd = " << weight << " * (real_t)(0.5);\n"
<< "\t\treal_t px, py, pz;\n"
<< "\n"
<< "\t\texnze = 1 - (" << smoothStyle << " * (1 - (cos(atan2(vIn.x, vIn.z)))));\n"
<< "\t\twynze = 1 - (" << smoothStyle << " * (1 - (sin(atan2(vIn.y, vIn.z)))));\n"
<< "\n"
<< "\t\tif (" << smoothStyle << " > 1)\n"
<< "\t\t znxy = 1 - (" << smoothStyle << " * (1 - ((exnze + wynze) / 2 * " << smoothStyle << ")));\n"
<< "\t\telse\n"
<< "\t\t znxy = 1 - (" << smoothStyle << " * (1 - ((exnze + wynze) * (real_t)(0.5))));\n";
if (m_VarType == eVariationType::VARTYPE_PRE)
{
ss <<
"\t\tpx = vIn.x;\n"
"\t\tpy = vIn.y;\n"
"\t\tpz = vIn.z;\n";
}
else
{
ss <<
"\t\tpx = outPoint->m_X;\n"
"\t\tpy = outPoint->m_Y;\n"
"\t\tpz = outPoint->m_Z;\n";
}
ss <<
"\t\tswitch (useNode)\n"
"\t\t{\n"
"\t\t case 0 :\n"
"\t\t vOut.x = ((px - (" << smooth << " * (1 - " << fill << ") * px * exnze)) + (vIn.x * " << smooth << " * " << fill << " * exnze)) + lattd;\n"
"\t\t vOut.y = ((py - (" << smooth << " * (1 - " << fill << ") * py * wynze)) + (vIn.y * " << smooth << " * " << fill << " * wynze)) + lattd;\n"
"\t\t vOut.z = ((pz - (" << smooth << " * (1 - " << fill << ") * pz * znxy)) + (vIn.z * " << smooth << " * " << fill << " * znxy)) + lattd;\n"
"\t\t break;\n"
"\t\t case 1 :\n"
"\t\t vOut.x = ((px - (" << smooth << " *(1 - " << fill << ") * px * exnze)) + (vIn.x * " << smooth << " * " << fill << " * exnze)) + lattd;\n"
"\t\t vOut.y = ((py - (" << smooth << " *(1 - " << fill << ") * py * wynze)) + (vIn.y * " << smooth << " * " << fill << " * wynze)) - lattd;\n"
"\t\t vOut.z = ((pz - (" << smooth << " *(1 - " << fill << ") * pz * znxy)) + (vIn.z * " << smooth << " * " << fill << " * znxy)) + lattd;\n"
"\t\t break;\n"
"\t\t case 2 :\n"
"\t\t vOut.x = ((px - (" << smooth << " * (1 - " << fill << ") * px * exnze)) + (vIn.x * " << smooth << " * " << fill << " * exnze)) + lattd;\n"
"\t\t vOut.y = ((py - (" << smooth << " * (1 - " << fill << ") * py * wynze)) + (vIn.y * " << smooth << " * " << fill << " * wynze)) + lattd;\n"
"\t\t vOut.z = ((pz - (" << smooth << " * (1 - " << fill << ") * pz * znxy)) + (vIn.z * " << smooth << " * " << fill << " * znxy)) - lattd;\n"
"\t\t break;\n"
"\t\t case 3 :\n"
"\t\t vOut.x = ((px - (" << smooth << " * (1 - " << fill << ") * px * exnze)) + (vIn.x * " << smooth << " * " << fill << " * exnze)) + lattd;\n"
"\t\t vOut.y = ((py - (" << smooth << " * (1 - " << fill << ") * py * wynze)) + (vIn.y * " << smooth << " * " << fill << " * wynze)) - lattd;\n"
"\t\t vOut.z = ((pz - (" << smooth << " * (1 - " << fill << ") * pz * znxy)) + (vIn.z * " << smooth << " * " << fill << " * znxy)) - lattd;\n"
"\t\t break;\n"
"\t\t case 4 :\n"
"\t\t vOut.x = ((px - (" << smooth << " * (1 - " << fill << ") * px * exnze)) + (vIn.x * " << smooth << " * " << fill << " * exnze)) - lattd;\n"
"\t\t vOut.y = ((py - (" << smooth << " * (1 - " << fill << ") * py * wynze)) + (vIn.y * " << smooth << " * " << fill << " * wynze)) + lattd;\n"
"\t\t vOut.z = ((pz - (" << smooth << " * (1 - " << fill << ") * pz * znxy)) + (vIn.z * " << smooth << " * " << fill << " * znxy)) + lattd;\n"
"\t\t break;\n"
"\t\t case 5 :\n"
"\t\t vOut.x = ((px - (" << smooth << " * (1 - " << fill << ") * px * exnze)) + (vIn.x * " << smooth << " * " << fill << " * exnze)) - lattd;\n"
"\t\t vOut.y = ((py - (" << smooth << " * (1 - " << fill << ") * py * wynze)) + (vIn.y * " << smooth << " * " << fill << " * wynze)) - lattd;\n"
"\t\t vOut.z = ((pz - (" << smooth << " * (1 - " << fill << ") * pz * znxy)) + (vIn.z * " << smooth << " * " << fill << " * znxy)) + lattd;\n"
"\t\t break;\n"
"\t\t case 6 :\n"
"\t\t vOut.x = ((px - (" << smooth << " * (1 - " << fill << ") * px * exnze)) + (vIn.x * " << smooth << " * " << fill << " * exnze)) - lattd;\n"
"\t\t vOut.y = ((py - (" << smooth << " * (1 - " << fill << ") * py * wynze)) + (vIn.y * " << smooth << " * " << fill << " * wynze)) + lattd;\n"
"\t\t vOut.z = ((pz - (" << smooth << " * (1 - " << fill << ") * pz * znxy)) + (vIn.z * " << smooth << " * " << fill << " * znxy)) - lattd;\n"
"\t\t break;\n"
"\t\t case 7 :\n"
"\t\t vOut.x = ((px - (" << smooth << " * (1 - " << fill << ") * px * exnze)) + (vIn.x * " << smooth << " * " << fill << " * exnze)) - lattd;\n"
"\t\t vOut.y = ((py - (" << smooth << " * (1 - " << fill << ") * py * wynze)) + (vIn.y * " << smooth << " * " << fill << " * wynze)) - lattd;\n"
"\t\t vOut.z = ((pz - (" << smooth << " * (1 - " << fill << ") * pz * znxy)) + (vIn.z * " << smooth << " * " << fill << " * znxy)) - lattd;\n"
"\t\t break;\n"
"\t\t}\n"
"\t}\n";
return ss.str();
}
virtual void Precalc() override
{
if (std::abs(m_Xpand) <= 1)
m_Fill = m_Xpand * T(0.5);
else
m_Fill = std::sqrt(m_Xpand) * T(0.5);
if (std::abs(m_Weight) <= T(0.5))
m_Smooth = m_Weight * 2;//Causes full effect above m_Weight = 0.5.
else
m_Smooth = 1;
if (std::abs(m_Style) <= 1)
{
m_SmoothStyle = m_Style;
}
else
{
if (m_Style > 1)
m_SmoothStyle = 1 + (m_Style - 1) * T(0.25);
else
m_SmoothStyle = (m_Style + 1) * T(0.25) - 1;
}
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Xpand, prefix + "cubic3D_xpand", T(0.25)));
m_Params.push_back(ParamWithName<T>(&m_Style, prefix + "cubic3D_style"));
m_Params.push_back(ParamWithName<T>(true, &m_Fill, prefix + "cubic3D_fill"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Smooth, prefix + "cubic3D_smooth"));
m_Params.push_back(ParamWithName<T>(true, &m_SmoothStyle, prefix + "cubic3D_smooth_style"));
}
private:
T m_Xpand;
T m_Style;
T m_Fill;//Precalc.
T m_Smooth;
T m_SmoothStyle;
};
/// <summary>
/// cubicLattice_3D.
/// </summary>
template <typename T>
class CubicLattice3DVariation : public ParametricVariation<T>
{
public:
CubicLattice3DVariation(T weight = 1.0) : ParametricVariation<T>("cubicLattice_3D", eVariationId::VAR_CUBIC_LATTICE3D, weight)
{
Init();
}
PARVARCOPY(CubicLattice3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
int useNode = rand.Rand() & 7;//Faster than % 8.
T exnze, wynze, znxy, px, py, pz, lattd = m_Weight;
if (m_Style == 2)
{
exnze = std::cos(std::atan2(helper.In.x, helper.In.z));
wynze = std::sin(std::atan2(helper.In.y, helper.In.z));
znxy = (exnze + wynze) * T(0.5);
}
else
{
exnze = 1;
wynze = 1;
znxy = 1;
}
if (m_VarType == eVariationType::VARTYPE_PRE)
{
px = helper.In.x;
py = helper.In.y;
pz = helper.In.z;
}
else
{
px = outPoint.m_X;
py = outPoint.m_Y;
pz = outPoint.m_Z;
}
T pxtx = px + helper.In.x;
T pyty = py + helper.In.y;
T pztz = pz + helper.In.z;
switch (useNode)
{
case 0:
helper.Out.x = pxtx * m_Fill * exnze + lattd;
helper.Out.y = pyty * m_Fill * wynze + lattd;
helper.Out.z = pztz * m_Fill * znxy + lattd;
break;
case 1:
helper.Out.x = pxtx * m_Fill * exnze + lattd;
helper.Out.y = pyty * m_Fill * wynze - lattd;
helper.Out.z = pztz * m_Fill * znxy + lattd;
break;
case 2:
helper.Out.x = pxtx * m_Fill * exnze + lattd;
helper.Out.y = pyty * m_Fill * wynze + lattd;
helper.Out.z = pztz * m_Fill * znxy - lattd;
break;
case 3:
helper.Out.x = pxtx * m_Fill * exnze + lattd;
helper.Out.y = pyty * m_Fill * wynze - lattd;
helper.Out.z = pztz * m_Fill * znxy - lattd;
break;
case 4:
helper.Out.x = pxtx * m_Fill * exnze - lattd;
helper.Out.y = pyty * m_Fill * wynze + lattd;
helper.Out.z = pztz * m_Fill * znxy + lattd;
break;
case 5:
helper.Out.x = pxtx * m_Fill * exnze - lattd;
helper.Out.y = pyty * m_Fill * wynze - lattd;
helper.Out.z = pztz * m_Fill * znxy + lattd;
break;
case 6:
helper.Out.x = pxtx * m_Fill * exnze - lattd;
helper.Out.y = pyty * m_Fill * wynze + lattd;
helper.Out.z = pztz * m_Fill * znxy - lattd;
break;
case 7:
default:
helper.Out.x = pxtx * m_Fill * exnze - lattd;
helper.Out.y = pyty * m_Fill * wynze - lattd;
helper.Out.z = pztz * m_Fill * znxy - lattd;
break;
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string xpand = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string style = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string fill = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tint useNode = MwcNext(mwc) & 7;\n"
<< "\t\treal_t exnze, wynze, znxy, px, py, pz, lattd = " << weight << ";\n"
<< "\n"
<< "\t\tif (" << style << " == 2)\n"
<< "\t\t{\n"
<< "\t\t exnze = cos(atan2(vIn.x, vIn.z));\n"
<< "\t\t wynze = sin(atan2(vIn.y, vIn.z));\n"
<< "\t\t znxy = (exnze + wynze) * (real_t)(0.5);\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t exnze = 1;\n"
<< "\t\t wynze = 1;\n"
<< "\t\t znxy = 1;\n"
<< "\t\t}\n";
if (m_VarType == eVariationType::VARTYPE_PRE)
{
ss <<
"\t\tpx = vIn.x;\n"
"\t\tpy = vIn.y;\n"
"\t\tpz = vIn.z;\n";
}
else
{
ss <<
"\t\tpx = outPoint->m_X;\n"
"\t\tpy = outPoint->m_Y;\n"
"\t\tpz = outPoint->m_Z;\n";
}
ss << "\t\treal_t pxtx = px + vIn.x;\n"
<< "\t\treal_t pyty = py + vIn.y;\n"
<< "\t\treal_t pztz = pz + vIn.z;\n"
<< "\n"
<< "\t\tswitch (useNode)\n"
<< "\t\t{\n"
<< "\t\t case 0 :\n"
<< "\t\t vOut.x = fma(pxtx, " << fill << " * exnze, lattd);\n"
<< "\t\t vOut.y = fma(pyty, " << fill << " * wynze, lattd);\n"
<< "\t\t vOut.z = fma(pztz, " << fill << " * znxy , lattd);\n"
<< "\t\t break;\n"
<< "\t\t case 1 :\n"
<< "\t\t vOut.x = fma(pxtx, " << fill << " * exnze, lattd);\n"
<< "\t\t vOut.y = fma(pyty, " << fill << " * wynze, -lattd);\n"
<< "\t\t vOut.z = fma(pztz, " << fill << " * znxy, lattd);\n"
<< "\t\t break;\n"
<< "\t\t case 2 :\n"
<< "\t\t vOut.x = fma(pxtx, " << fill << " * exnze, lattd);\n"
<< "\t\t vOut.y = fma(pyty, " << fill << " * wynze, lattd);\n"
<< "\t\t vOut.z = fma(pztz, " << fill << " * znxy, -lattd);\n"
<< "\t\t break;\n"
<< "\t\t case 3 :\n"
<< "\t\t vOut.x = fma(pxtx, " << fill << " * exnze, lattd);\n"
<< "\t\t vOut.y = fma(pyty, " << fill << " * wynze, -lattd);\n"
<< "\t\t vOut.z = fma(pztz, " << fill << " * znxy, -lattd);\n"
<< "\t\t break;\n"
<< "\t\t case 4 :\n"
<< "\t\t vOut.x = fma(pxtx, " << fill << " * exnze, -lattd);\n"
<< "\t\t vOut.y = fma(pyty, " << fill << " * wynze, lattd);\n"
<< "\t\t vOut.z = fma(pztz, " << fill << " * znxy, lattd);\n"
<< "\t\t break;\n"
<< "\t\t case 5 :\n"
<< "\t\t vOut.x = fma(pxtx, " << fill << " * exnze, -lattd);\n"
<< "\t\t vOut.y = fma(pyty, " << fill << " * wynze, -lattd);\n"
<< "\t\t vOut.z = fma(pztz, " << fill << " * znxy, lattd);\n"
<< "\t\t break;\n"
<< "\t\t case 6 :\n"
<< "\t\t vOut.x = fma(pxtx, " << fill << " * exnze, -lattd);\n"
<< "\t\t vOut.y = fma(pyty, " << fill << " * wynze, lattd);\n"
<< "\t\t vOut.z = fma(pztz, " << fill << " * znxy, -lattd);\n"
<< "\t\t break;\n"
<< "\t\t case 7 :\n"
<< "\t\t vOut.x = fma(pxtx, " << fill << " * exnze, -lattd);\n"
<< "\t\t vOut.y = fma(pyty, " << fill << " * wynze, -lattd);\n"
<< "\t\t vOut.z = fma(pztz, " << fill << " * znxy, -lattd);\n"
<< "\t\t break;\n"
<< "\t\t}\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
if (std::abs(m_Xpand) <= 1)
m_Fill = m_Xpand * T(0.5);
else
m_Fill = std::sqrt(m_Xpand) * T(0.5);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Xpand, prefix + "cubicLattice_3D_xpand", T(0.2)));//Original used a prefix of cubic3D_, which is incompatible with Ember's design.
m_Params.push_back(ParamWithName<T>(&m_Style, prefix + "cubicLattice_3D_style", 1, eParamType::INTEGER, 1, 2));
m_Params.push_back(ParamWithName<T>(true, &m_Fill, prefix + "cubicLattice_3D_fill"));//Precalc.
}
private:
T m_Xpand;
T m_Style;
T m_Fill;//Precalc.
};
/// <summary>
/// foci_3D.
/// </summary>
template <typename T>
class Foci3DVariation : public Variation<T>
{
public:
Foci3DVariation(T weight = 1.0) : Variation<T>("foci_3D", eVariationId::VAR_FOCI3D, weight, false, false, false, false, true) { }
VARCOPY(Foci3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T expx = std::exp(helper.In.x) * T(0.5);
T expnx = T(0.25) / expx;
T boot = helper.In.z == 0 ? helper.m_PrecalcAtanyx : helper.In.z;
T tmp = m_Weight / Zeps(expx + expnx - (std::cos(helper.In.y) * std::cos(boot)));
helper.Out.x = (expx - expnx) * tmp;
helper.Out.y = std::sin(helper.In.y) * tmp;
helper.Out.z = std::sin(boot) * tmp;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t expx = exp(vIn.x) * (real_t)(0.5);\n"
<< "\t\treal_t expnx = (real_t)(0.25) / expx;\n"
<< "\t\treal_t boot = vIn.z == 0 ? precalcAtanyx : vIn.z;\n"
<< "\t\treal_t tmp = " << weight << " / Zeps(expx + expnx - (cos(vIn.y) * cos(boot)));\n"
<< "\n"
<< "\t\tvOut.x = (expx - expnx) * tmp;\n"
<< "\t\tvOut.y = sin(vIn.y) * tmp;\n"
<< "\t\tvOut.z = sin(boot) * tmp;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
};
/// <summary>
/// foci_p.
/// Idea by Chaosfissure.
/// </summary>
template <typename T>
class FociPVariation : public ParametricVariation<T>
{
public:
FociPVariation(T weight = 1.0) : ParametricVariation<T>("foci_p", eVariationId::VAR_FOCI_P, weight)
{
Init();
}
PARVARCOPY(FociPVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T exp_x = Zeps(std::exp(helper.In.x));
T exp_x_2 = exp_x * m_C1;
T exp_nz = m_C2 / exp_x;
T cos_y = std::cos(helper.In.y);
T sin_y = std::sin(helper.In.y);
T r = m_Weight / Zeps(exp_x_2 + exp_nz - cos_y);
helper.Out.x = (exp_x_2 - exp_nz) * r;
helper.Out.y = sin_y * r;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string c1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t exp_x = Zeps(exp(vIn.x));\n"
<< "\t\treal_t exp_x_2 = exp_x * " << c1 << ";\n"
<< "\t\treal_t exp_nz = " << c2 << " / exp_x;\n"
<< "\t\treal_t cos_y = cos(vIn.y);\n"
<< "\t\treal_t sin_y = sin(vIn.y);\n"
<< "\t\treal_t r = " << weight << " / Zeps(exp_x_2 + exp_nz - cos_y);\n"
<< "\n"
<< "\t\tvOut.x = (exp_x_2 - exp_nz) * r;\n"
<< "\t\tvOut.y = sin_y * r;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_C1, prefix + "foci_p_c1", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_C2, prefix + "foci_p_c2", T(0.5)));
}
private:
T m_C1;
T m_C2;
};
/// <summary>
/// ho.
/// </summary>
template <typename T>
class HoVariation : public ParametricVariation<T>
{
public:
HoVariation(T weight = 1.0) : ParametricVariation<T>("ho", eVariationId::VAR_HO, weight)
{
Init();
}
PARVARCOPY(HoVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T uu = SQR(helper.In.x);
T vv = SQR(helper.In.y);
T ww = SQR(helper.In.z);
T atOmegaX = std::atan2(vv, ww);
T atOmegaY = std::atan2(uu, ww);
T su = std::sin(helper.In.x);
T cu = std::cos(helper.In.x);
T sv = std::sin(helper.In.y);
T cv = std::cos(helper.In.y);
T cucv = cu * cv;
T sucv = su * cv;
T x = std::pow(std::abs(cucv), m_XPow) + (cucv * m_XPow) + (T(0.25) * atOmegaX);//Must fabs first argument to pow, because negative values will return NaN.
T y = std::pow(std::abs(sucv), m_YPow) + (sucv * m_YPow) + (T(0.25) * atOmegaY);//Original did not do this and would frequently return bad values.
T z = std::pow(std::abs(sv), m_ZPow) + sv * m_ZPow;
helper.Out.x = m_Weight * x;
helper.Out.y = m_Weight * y;
helper.Out.z = m_Weight * z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string xpow = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ypow = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string zpow = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t uu = SQR(vIn.x);\n"
<< "\t\treal_t vv = SQR(vIn.y);\n"
<< "\t\treal_t ww = SQR(vIn.z);\n"
<< "\t\treal_t atOmegaX = atan2(vv, ww);\n"
<< "\t\treal_t atOmegaY = atan2(uu, ww);\n"
<< "\t\treal_t su = sin(vIn.x);\n"
<< "\t\treal_t cu = cos(vIn.x);\n"
<< "\t\treal_t sv = sin(vIn.y);\n"
<< "\t\treal_t cv = cos(vIn.y);\n"
<< "\t\treal_t cucv = cu * cv;\n"
<< "\t\treal_t sucv = su * cv;\n"
<< "\t\treal_t x = pow(fabs(cucv), " << xpow << ") + fma(cucv, " << xpow << ", (real_t)(0.25) * atOmegaX);\n"
<< "\t\treal_t y = pow(fabs(sucv), " << ypow << ") + fma(sucv, " << ypow << ", (real_t)(0.25) * atOmegaY);\n"
<< "\t\treal_t z = fma(sv, " << zpow << ", pow(fabs(sv), " << zpow << "));\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * x;\n"
<< "\t\tvOut.y = " << weight << " * y;\n"
<< "\t\tvOut.z = " << weight << " * z;\n"
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_XPow, prefix + "ho_xpow", 3));
m_Params.push_back(ParamWithName<T>(&m_YPow, prefix + "ho_ypow", 3));
m_Params.push_back(ParamWithName<T>(&m_ZPow, prefix + "ho_zpow", 3));
}
private:
T m_XPow;
T m_YPow;
T m_ZPow;
};
/// <summary>
/// Julia3Dq.
/// </summary>
template <typename T>
class Julia3DqVariation : public ParametricVariation<T>
{
public:
Julia3DqVariation(T weight = 1.0) : ParametricVariation<T>("julia3Dq", eVariationId::VAR_JULIA3DQ, weight, true, true, false, false, true)
{
Init();
}
PARVARCOPY(Julia3DqVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T temp = helper.m_PrecalcAtanyx * m_InvPower + rand.Rand() * m_InvPower2pi;
T sina = std::sin(temp);
T cosa = std::cos(temp);
T z = helper.In.z * m_AbsInvPower;
T r2d = helper.m_PrecalcSumSquares;
T r = m_Weight * std::pow(r2d + SQR(z), m_HalfInvPower);
T rsss = r * helper.m_PrecalcSqrtSumSquares;
helper.Out.x = rsss * cosa;
helper.Out.y = rsss * sina;
helper.Out.z = r * z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string divisor = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invPower = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absInvPower = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string halfInvPower = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invPower2pi = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t temp = fma(precalcAtanyx, " << invPower << ", MwcNext(mwc) * " << invPower2pi << ");\n"
<< "\t\treal_t sina = sin(temp);\n"
<< "\t\treal_t cosa = cos(temp);\n"
<< "\t\treal_t z = vIn.z * " << absInvPower << ";\n"
<< "\t\treal_t r2d = precalcSumSquares;\n"
<< "\t\treal_t r = " << weight << " * pow(fma(z, z, r2d), " << halfInvPower << ");\n"
<< "\t\treal_t rsss = r * precalcSqrtSumSquares;\n"
<< "\n"
<< "\t\tvOut.x = rsss * cosa;\n"
<< "\t\tvOut.y = rsss * sina;\n"
<< "\t\tvOut.z = r * z;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_InvPower = m_Divisor / m_Power;
m_AbsInvPower = std::abs(m_InvPower);
m_HalfInvPower = T(0.5) * m_InvPower - T(0.5);
m_InvPower2pi = M_2PI / m_Power;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "julia3Dq_power", 3, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_Divisor, prefix + "julia3Dq_divisor", 2, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(true, &m_InvPower, prefix + "julia3Dq_inv_power"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_AbsInvPower, prefix + "julia3Dq_abs_inv_power"));
m_Params.push_back(ParamWithName<T>(true, &m_HalfInvPower, prefix + "julia3Dq_half_inv_power"));
m_Params.push_back(ParamWithName<T>(true, &m_InvPower2pi, prefix + "julia3Dq_inv_power_2pi"));
}
private:
T m_Power;
T m_Divisor;
T m_InvPower;//Precalc.
T m_AbsInvPower;
T m_HalfInvPower;
T m_InvPower2pi;
};
/// <summary>
/// line.
/// </summary>
template <typename T>
class LineVariation : public ParametricVariation<T>
{
public:
LineVariation(T weight = 1.0) : ParametricVariation<T>("line", eVariationId::VAR_LINE, weight)
{
Init();
}
PARVARCOPY(LineVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = rand.Frand01<T>() * m_Weight;
helper.Out.x = m_Ux * r;
helper.Out.y = m_Uy * r;
helper.Out.z = m_Uz * r;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string delta = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string phi = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ux = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string uy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string uz = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r = MwcNext01(mwc) * " << weight << ";\n"
<< "\n"
<< "\t\tvOut.x = " << ux << " * r;\n"
<< "\t\tvOut.y = " << uy << " * r;\n"
<< "\t\tvOut.z = " << uz << " * r;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
//Unit vector of the line.
m_Ux = std::cos(m_Delta * T(M_PI)) * std::cos(m_Phi * T(M_PI));
m_Uy = std::sin(m_Delta * T(M_PI)) * std::cos(m_Phi * T(M_PI));
m_Uz = std::sin(m_Phi * T(M_PI));
T r = std::sqrt(SQR(m_Ux) + SQR(m_Uy) + SQR(m_Uz));
//Normalize.
m_Ux /= r;
m_Uy /= r;
m_Uz /= r;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Delta, prefix + "line_delta"));
m_Params.push_back(ParamWithName<T>(&m_Phi, prefix + "line_phi"));
m_Params.push_back(ParamWithName<T>(true, &m_Ux, prefix + "line_ux"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Uy, prefix + "line_uy"));
m_Params.push_back(ParamWithName<T>(true, &m_Uz, prefix + "line_uz"));
}
private:
T m_Delta;
T m_Phi;
T m_Ux;//Precalc.
T m_Uy;
T m_Uz;
};
/// <summary>
/// Loonie2.
/// </summary>
template <typename T>
class Loonie2Variation : public ParametricVariation<T>
{
public:
Loonie2Variation(T weight = 1.0) : ParametricVariation<T>("loonie2", eVariationId::VAR_LOONIE2, weight, true, true)
{
Init();
}
PARVARCOPY(Loonie2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
int i;
T xrt = helper.In.x, yrt = helper.In.y, swp;
T r2 = xrt * m_Coss + std::abs(yrt) * m_Sins;
T circle = helper.m_PrecalcSqrtSumSquares;
for (i = 0; i < m_Sides - 1; i++)
{
swp = xrt * m_Cosa - yrt * m_Sina;
yrt = xrt * m_Sina + yrt * m_Cosa;
xrt = swp;
r2 = std::max(r2, xrt * m_Coss + std::abs(yrt) * m_Sins);
}
r2 = r2 * m_Cosc + circle * m_Sinc;
if (i > 1)
r2 = SQR(r2);
else
r2 = std::abs(r2) * r2;
if (r2 > 0 && (r2 < m_W2))
{
T r = m_Weight * std::sqrt(std::abs(m_W2 / r2 - 1));
helper.Out.x = r * helper.In.x;
helper.Out.y = r * helper.In.y;
}
else if (r2 < 0)
{
T r = m_Weight / std::sqrt(std::abs(m_W2 / r2) - 1);
helper.Out.x = r * helper.In.x;
helper.Out.y = r * helper.In.y;
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string weight = WeightDefineString();
string index = ss2.str();
string sides = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string star = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string circle = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string w2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sina = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cosa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sins = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string coss = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sinc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cosc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tint i;\n"
<< "\t\treal_t xrt = vIn.x, yrt = vIn.y, swp;\n"
<< "\t\treal_t r2 = fma(xrt, " << coss << ", fabs(yrt) * " << sins << ");\n"
<< "\t\treal_t circle = precalcSqrtSumSquares;\n"
<< "\n"
<< "\t\tfor (i = 0; i < " << sides << " - 1; i++)\n"
<< "\t\t{\n"
<< "\t\t swp = fma(xrt, " << cosa << ", -(yrt * " << sina << "));\n"
<< "\t\t yrt = fma(xrt, " << sina << ", yrt * " << cosa << ");\n"
<< "\t\t xrt = swp;\n"
<< "\n"
<< "\t\t r2 = max(r2, fma(xrt, " << coss << ", fabs(yrt) * " << sins << "));\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tr2 = fma(r2, " << cosc << ", circle * " << sinc << ");\n"
<< "\n"
<< "\t\tif (i > 1)\n"
<< "\t\t r2 = SQR(r2);\n"
<< "\t\telse\n"
<< "\t\t r2 = fabs(r2) * r2;\n"
<< "\n"
<< "\t\tif (r2 > 0 && (r2 < " << w2 << "))\n"
<< "\t\t{\n"
<< "\t\t real_t r = " << weight << " * sqrt(fabs(" << w2 << " / r2 - 1));\n"
<< "\n"
<< "\t\t vOut.x = r * vIn.x;\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t}\n"
<< "\t\telse if (r2 < 0)\n"
<< "\t\t{\n"
<< "\t\t real_t r = " << weight << " / sqrt(fabs(" << w2 << " / r2) - 1);\n"
<< "\n"
<< "\t\t vOut.x = r * vIn.x;\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
auto a = M_2PI / m_Sides;
auto s = T(-M_PI_2) * m_Star;
auto c = T(M_PI_2) * m_Circle;
m_W2 = SQR(m_Weight);
sincos(a, &m_Sina, &m_Cosa);
sincos(s, &m_Sins, &m_Coss);
sincos(c, &m_Sinc, &m_Cosc);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Sides, prefix + "loonie2_sides", 4, eParamType::INTEGER, 1, 50));
m_Params.push_back(ParamWithName<T>(&m_Star, prefix + "loonie2_star", 0, eParamType::REAL, -1, 1));
m_Params.push_back(ParamWithName<T>(&m_Circle, prefix + "loonie2_circle", 0, eParamType::REAL, -1, 1));
m_Params.push_back(ParamWithName<T>(true, &m_W2, prefix + "loonie2_w2"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Sina, prefix + "loonie2_sina"));
m_Params.push_back(ParamWithName<T>(true, &m_Cosa, prefix + "loonie2_cosa"));
m_Params.push_back(ParamWithName<T>(true, &m_Sins, prefix + "loonie2_sins"));
m_Params.push_back(ParamWithName<T>(true, &m_Coss, prefix + "loonie2_coss"));
m_Params.push_back(ParamWithName<T>(true, &m_Sinc, prefix + "loonie2_sinc"));
m_Params.push_back(ParamWithName<T>(true, &m_Cosc, prefix + "loonie2_cosc"));
}
private:
T m_Sides;
T m_Star;
T m_Circle;
T m_W2;//Precalc.
T m_Sina;
T m_Cosa;
T m_Sins;
T m_Coss;
T m_Sinc;
T m_Cosc;
};
/// <summary>
/// Loonie3.
/// </summary>
template <typename T>
class Loonie3Variation : public ParametricVariation<T>
{
public:
Loonie3Variation(T weight = 1.0) : ParametricVariation<T>("loonie3", eVariationId::VAR_LOONIE3, weight, true)
{
Init();
}
PARVARCOPY(Loonie3Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r2;
if (helper.In.x > EPS)
r2 = SQR(helper.m_PrecalcSumSquares / helper.In.x);
else
r2 = 2 * m_W2;
if (r2 < m_W2)
{
T r = m_Weight * std::sqrt(m_W2 / r2 - 1);
helper.Out.x = r * helper.In.x;
helper.Out.y = r * helper.In.y;
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string w2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r2;\n"
<< "\n"
<< "\t\tif (vIn.x > EPS)\n"
<< "\t\t r2 = SQR(precalcSumSquares / vIn.x);\n"
<< "\t\telse\n"
<< "\t\t r2 = 2 * " << w2 << ";\n"
<< "\n"
<< "\t\tif (r2 < " << w2 << ")\n"
<< "\t\t{\n"
<< "\t\t real_t r = " << weight << " * sqrt(" << w2 << " / r2 - 1);\n"
<< "\n"
<< "\t\t vOut.x = r * vIn.x;\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_W2 = SQR(m_Weight);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_W2, prefix + "loonie3_w2"));//Precalc.
}
private:
T m_W2;//Precalc.
};
/// <summary>
/// loonie_3D.
/// </summary>
template <typename T>
class Loonie3DVariation : public ParametricVariation<T>
{
public:
Loonie3DVariation(T weight = 1.0) : ParametricVariation<T>("loonie_3D", eVariationId::VAR_LOONIE3D, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(Loonie3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T kikr = helper.m_PrecalcAtanyx;
T efTez = helper.In.z == 0 ? kikr : helper.In.z;
T r2 = helper.m_PrecalcSumSquares + SQR(efTez);
if (r2 < m_Vv)
{
T r = m_Weight * std::sqrt(m_Vv / r2 - 1);
helper.Out.x = r * helper.In.x;
helper.Out.y = r * helper.In.y;
helper.Out.z = r * efTez * T(0.5);
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
helper.Out.z = m_Weight * efTez * T(0.5);
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string vv = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t kikr = precalcAtanyx;\n"
<< "\t\treal_t efTez = vIn.z == 0 ? kikr : vIn.z;\n"
<< "\t\treal_t r2 = fma(efTez, efTez, precalcSumSquares);\n"
<< "\n"
<< "\t\tif (r2 < " << vv << ")\n"
<< "\t\t{\n"
<< "\t\t real_t r = " << weight << " * sqrt(" << vv << " / r2 - 1);\n"
<< "\n"
<< "\t\t vOut.x = r * vIn.x;\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t vOut.z = r * efTez * (real_t)(0.5);\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t vOut.z = " << weight << " * efTez * (real_t)(0.5);\n"
<< "\t\t}\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Vv = SQR(m_Weight);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_Vv, prefix + "loonie_3D_vv"));//Precalcs only, no params.
}
private:
T m_Vv;//Precalcs only, no params.
};
/// <summary>
/// mcarpet.
/// </summary>
template <typename T>
class McarpetVariation : public ParametricVariation<T>
{
public:
McarpetVariation(T weight = 1.0) : ParametricVariation<T>("mcarpet", eVariationId::VAR_MCARPET, weight, true)
{
Init();
}
PARVARCOPY(McarpetVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T t = helper.m_PrecalcSumSquares * T(0.25) + 1;
T r = m_Weight / t;
helper.Out.x = helper.In.x * r * m_X;
helper.Out.y = helper.In.y * r * m_Y;
helper.Out.x += (1 - (m_Twist * SQR(helper.In.x)) + helper.In.y) * m_Weight;//The += is intentional.
helper.Out.y += m_Tilt * helper.In.x * m_Weight;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string twist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string tilt = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t t = fma(precalcSumSquares, (real_t)(0.25), (real_t)(1.0));\n"
<< "\t\treal_t r = " << weight << " / t;\n"
<< "\n"
<< "\t\tvOut.x = vIn.x * r * " << x << ";\n"
<< "\t\tvOut.y = vIn.y * r * " << y << ";\n"
<< "\t\tvOut.x += (1 - (" << twist << " * SQR(vIn.x)) + vIn.y) * " << weight << ";\n"
<< "\t\tvOut.y += " << tilt << " * vIn.x * " << weight << ";\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "mcarpet_x"));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "mcarpet_y"));
m_Params.push_back(ParamWithName<T>(&m_Twist, prefix + "mcarpet_twist"));
m_Params.push_back(ParamWithName<T>(&m_Tilt, prefix + "mcarpet_tilt"));
}
private:
T m_X;
T m_Y;
T m_Twist;
T m_Tilt;
};
/// <summary>
/// waves2_3D.
/// Original used a precalc for the input points, but it doesn't
/// work with Ember's design (and is also likely wrong), so it gets calculated on every iter
/// which is slightly slower, but more correct.
/// </summary>
template <typename T>
class Waves23DVariation : public ParametricVariation<T>
{
public:
Waves23DVariation(T weight = 1.0) : ParametricVariation<T>("waves2_3D", eVariationId::VAR_WAVES23D, weight)
{
Init();
}
PARVARCOPY(Waves23DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T avgxy = (helper.In.x + helper.In.y) * T(0.5);
helper.Out.x = m_Weight * (helper.In.x + m_Scale * std::sin(helper.In.y * m_Freq));
helper.Out.y = m_Weight * (helper.In.y + m_Scale * std::sin(helper.In.x * m_Freq));
helper.Out.z = m_Weight * (helper.In.z + m_Scale * std::sin(avgxy * m_Freq));//Averages the XY to get Z.
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string freq = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t avgxy = (vIn.x + vIn.y) * (real_t)(0.5);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * fma(" << scale << ", sin(vIn.y * " << freq << "), vIn.x);\n"
<< "\t\tvOut.y = " << weight << " * fma(" << scale << ", sin(vIn.x * " << freq << "), vIn.y);\n"
<< "\t\tvOut.z = " << weight << " * fma(" << scale << ", sin(avgxy * " << freq << "), vIn.z);\n"
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Freq, prefix + "waves2_3D_freq", 2));
m_Params.push_back(ParamWithName<T>(&m_Scale, prefix + "waves2_3D_scale", 1));
}
private:
T m_Freq;
T m_Scale;
};
/// <summary>
/// Pie3D.
/// </summary>
template <typename T>
class Pie3DVariation : public ParametricVariation<T>
{
public:
Pie3DVariation(T weight = 1.0) : ParametricVariation<T>("pie3D", eVariationId::VAR_PIE3D, weight)
{
Init();
}
PARVARCOPY(Pie3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
int sl = int(rand.Frand01<T>() * m_Slices + T(0.5));
T a = m_Rotation + M_2PI * (sl + rand.Frand01<T>() * m_Thickness) / m_Slices;
T r = m_Weight * rand.Frand01<T>();
helper.Out.x = r * std::cos(a);
helper.Out.y = r * std::sin(a);
helper.Out.z = m_Weight * std::sin(r);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string slices = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rotation = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string thickness = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tint sl = (int)fma(MwcNext01(mwc), " << slices << ", (real_t)(0.5));\n"
<< "\t\treal_t a = fma(M_2PI, fma(MwcNext01(mwc), " << thickness << ", (real_t)(sl)) / " << slices << ", " << rotation << ");\n"
<< "\t\treal_t r = " << weight << " * MwcNext01(mwc);\n"
<< "\n"
<< "\t\tvOut.x = r * cos(a);\n"
<< "\t\tvOut.y = r * sin(a);\n"
<< "\t\tvOut.z = " << weight << " * sin(r);\n"
<< "\t}\n";
return ss.str();
}
virtual void Random(QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
m_Params[0].Set(10 * rand.Frand01<T>());//Slices.
m_Params[1].Set(M_2PI * rand.Frand11<T>());//Rotation.
m_Thickness = rand.Frand01<T>();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Slices, prefix + "pie3D_slices", 6, eParamType::INTEGER_NONZERO, 1));
m_Params.push_back(ParamWithName<T>(&m_Rotation, prefix + "pie3D_rotation", T(0.5), eParamType::REAL_CYCLIC, 0, M_2PI));
m_Params.push_back(ParamWithName<T>(&m_Thickness, prefix + "pie3D_thickness", T(0.5), eParamType::REAL, 0, 1));
}
private:
T m_Slices;
T m_Rotation;
T m_Thickness;
};
/// <summary>
/// popcorn2_3D.
/// </summary>
template <typename T>
class Popcorn23DVariation : public ParametricVariation<T>
{
public:
Popcorn23DVariation(T weight = 1.0) : ParametricVariation<T>("popcorn2_3D", eVariationId::VAR_POPCORN23D, weight, false, false, false, false, true)
{
Init();
}
PARVARCOPY(Popcorn23DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T otherZ, tempPZ = 0;
T tempTZ = helper.In.z == 0 ? m_Vv * m_SinTanC * helper.m_PrecalcAtanyx : helper.In.z;
if (m_VarType == eVariationType::VARTYPE_PRE)
otherZ = helper.In.z;
else
otherZ = outPoint.m_Z;
if (otherZ == 0)
tempPZ = m_Vv * m_SinTanC * helper.m_PrecalcAtanyx;
helper.Out.x = m_HalfWeight * (helper.In.x + m_X * std::sin(SafeTan<T>(m_C * helper.In.y)));
helper.Out.y = m_HalfWeight * (helper.In.y + m_Y * std::sin(SafeTan<T>(m_C * helper.In.x)));
helper.Out.z = tempPZ + m_Vv * (m_Z * m_SinTanC * tempTZ);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string stc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string hw = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vv = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t otherZ, tempPZ = 0;\n"
<< "\t\treal_t tempTZ = vIn.z == 0 ? " << vv << " * " << stc << " * precalcAtanyx : vIn.z;\n";
if (m_VarType == eVariationType::VARTYPE_PRE)
ss << "\t\totherZ = vIn.z;\n";
else
ss << "\t\totherZ = outPoint->m_Z;\n";
ss << "\t\tif (otherZ == 0)\n"
<< "\t\t tempPZ = " << vv << " * " << stc << " * precalcAtanyx;\n"
<< "\n"
<< "\t\tvOut.x = " << hw << " * fma(" << x << ", sin(tan(" << c << " * vIn.y)), vIn.x);\n"
<< "\t\tvOut.y = " << hw << " * fma(" << y << ", sin(tan(" << c << " * vIn.x)), vIn.y);\n"
<< "\t\tvOut.z = fma(" << vv << ", (" << z << " * " << stc << " * tempTZ), tempPZ);\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Sqr" };
}
virtual void Precalc() override
{
m_SinTanC = std::sin(SafeTan<T>(m_C));
m_HalfWeight = m_Weight * T(0.5);
if (std::abs(m_Weight) <= 1)
m_Vv = std::abs(m_Weight) * m_Weight;//Sqr(m_Weight) value retaining sign.
else
m_Vv = m_Weight;
}
virtual void Random(QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
m_X = T(0.2) + rand.Frand01<T>();
m_Y = T(0.2) * rand.Frand01<T>();
m_Z = T(0.2) * rand.Frand01<T>();
m_C = 5 * rand.Frand01<T>();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "popcorn2_3D_x", T(0.1)));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "popcorn2_3D_y", T(0.1)));
m_Params.push_back(ParamWithName<T>(&m_Z, prefix + "popcorn2_3D_z", T(0.1)));
m_Params.push_back(ParamWithName<T>(&m_C, prefix + "popcorn2_3D_c", 3));
m_Params.push_back(ParamWithName<T>(true, &m_SinTanC, prefix + "popcorn2_3D_sintanc"));
m_Params.push_back(ParamWithName<T>(true, &m_HalfWeight, prefix + "popcorn2_3D_half_weight"));
m_Params.push_back(ParamWithName<T>(true, &m_Vv, prefix + "popcorn2_3D_vv"));
}
private:
T m_X;
T m_Y;
T m_Z;
T m_C;
T m_SinTanC;//Precalcs.
T m_HalfWeight;
T m_Vv;
};
/// <summary>
/// sinusoidal3d.
/// </summary>
template <typename T>
class Sinusoidal3DVariation : public Variation<T>
{
public:
Sinusoidal3DVariation(T weight = 1.0) : Variation<T>("sinusoidal3D", eVariationId::VAR_SINUSOIDAL3D, weight) { }
VARCOPY(Sinusoidal3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = m_Weight * std::sin(helper.In.x);
helper.Out.y = m_Weight * std::sin(helper.In.y);
helper.Out.z = m_Weight * (std::atan2(SQR(helper.In.x), SQR(helper.In.y)) * std::cos(helper.In.z));
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\tvOut.x = " << weight << " * sin(vIn.x);\n"
<< "\t\tvOut.y = " << weight << " * sin(vIn.y);\n"
<< "\t\tvOut.z = " << weight << " * (atan2(SQR(vIn.x), SQR(vIn.y)) * cos(vIn.z));\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// scry_3D.
/// </summary>
template <typename T>
class Scry3DVariation : public ParametricVariation<T>
{
public:
Scry3DVariation(T weight = 1.0) : ParametricVariation<T>("scry_3D", eVariationId::VAR_SCRY3D, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(Scry3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T t = helper.m_PrecalcSumSquares + SQR(helper.In.z);
T r = 1 / Zeps(std::sqrt(t) * (t + m_InvWeight));
T z = helper.In.z == 0 ? helper.m_PrecalcAtanyx : helper.In.z;
helper.Out.x = helper.In.x * r;
helper.Out.y = helper.In.y * r;
helper.Out.z = z * r;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string invWeight = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t t = fma(vIn.z, vIn.z, precalcSumSquares);\n"
<< "\t\treal_t r = 1 / Zeps(sqrt(t) * (t + " << invWeight << "));\n"
<< "\t\treal_t z = vIn.z == 0 ? precalcAtanyx : vIn.z;\n"
<< "\n"
<< "\t\tvOut.x = vIn.x * r;\n"
<< "\t\tvOut.y = vIn.y * r;\n"
<< "\t\tvOut.z = z * r;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_InvWeight = 1 / Zeps(m_Weight);
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_InvWeight, prefix + "scry_3D_inv_weight"));//Precalcs only, no params.
}
private:
T m_InvWeight;//Precalcs only, no params.
};
/// <summary>
/// shredlin.
/// </summary>
template <typename T>
class ShredlinVariation : public ParametricVariation<T>
{
public:
ShredlinVariation(T weight = 1.0) : ParametricVariation<T>("shredlin", eVariationId::VAR_SHRED_LIN, weight)
{
Init();
}
PARVARCOPY(ShredlinVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
const int xpos = helper.In.x < 0;
const int ypos = helper.In.y < 0;
const T xrng = helper.In.x / m_XDistance;
const T yrng = helper.In.y / m_YDistance;
helper.Out.x = m_Xw * ((xrng - int(xrng)) * m_XWidth + int(xrng) + (T(0.5) - xpos) * m_1mX);
helper.Out.y = m_Yw * ((yrng - int(yrng)) * m_YWidth + int(yrng) + (T(0.5) - ypos) * m_1mY);
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string xdist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string xwidth = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ydist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ywidth = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string xw = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string yw = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string onemx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string onemy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tconst int xpos = vIn.x < 0;\n"
<< "\t\tconst int ypos = vIn.y < 0;\n"
<< "\t\tconst real_t xrng = vIn.x / " << xdist << ";\n"
<< "\t\tconst real_t yrng = vIn.y / " << ydist << ";\n"
<< "\n"
<< "\t\tvOut.x = " << xw << " * fma((xrng - (int)xrng), " << xwidth << ", (int)xrng + ((real_t)(0.5) - xpos) * " << onemx << ");\n"
<< "\t\tvOut.y = " << yw << " * fma((yrng - (int)yrng), " << ywidth << ", (int)yrng + ((real_t)(0.5) - ypos) * " << onemy << ");\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Xw = m_Weight * m_XDistance;
m_Yw = m_Weight * m_YDistance;
m_1mX = 1 - m_XWidth;
m_1mY = 1 - m_YWidth;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_XDistance, prefix + "shredlin_xdistance", 1, eParamType::REAL_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_XWidth, prefix + "shredlin_xwidth", T(0.5), eParamType::REAL, -1, 1));
m_Params.push_back(ParamWithName<T>(&m_YDistance, prefix + "shredlin_ydistance", 1, eParamType::REAL_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_YWidth, prefix + "shredlin_ywidth", T(0.5), eParamType::REAL, -1, 1));
m_Params.push_back(ParamWithName<T>(true, &m_Xw, prefix + "shredlin_xw"));
m_Params.push_back(ParamWithName<T>(true, &m_Yw, prefix + "shredlin_yw"));
m_Params.push_back(ParamWithName<T>(true, &m_1mX, prefix + "shredlin_1mx"));
m_Params.push_back(ParamWithName<T>(true, &m_1mY, prefix + "shredlin_1my"));
}
private:
T m_XDistance;
T m_XWidth;
T m_YDistance;
T m_YWidth;
T m_Xw;//Precalc.
T m_Yw;
T m_1mX;
T m_1mY;
};
/// <summary>
/// splitbrdr.
/// </summary>
template <typename T>
class SplitBrdrVariation : public ParametricVariation<T>
{
public:
SplitBrdrVariation(T weight = 1.0) : ParametricVariation<T>("SplitBrdr", eVariationId::VAR_SPLIT_BRDR, weight, true)
{
Init();
}
PARVARCOPY(SplitBrdrVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T b = m_Weight / (helper.m_PrecalcSumSquares * T(0.25) + 1);
T roundX = std::rint(helper.In.x);
T roundY = std::rint(helper.In.y);
T offsetX = helper.In.x - roundX;
T offsetY = helper.In.y - roundY;
helper.Out.x = helper.In.x * b;
helper.Out.y = helper.In.y * b;
if (rand.Frand01<T>() >= T(0.75))
{
helper.Out.x += m_Weight * (offsetX * T(0.5) + roundX);
helper.Out.y += m_Weight * (offsetY * T(0.5) + roundY);
}
else
{
if (std::abs(offsetX) >= std::abs(offsetY))
{
if (offsetX >= 0)
{
helper.Out.x += m_Weight * (offsetX * T(0.5) + roundX + m_X);
helper.Out.y += m_Weight * (offsetY * T(0.5) + roundY + m_Y * offsetY / Zeps(offsetX));
}
else
{
helper.Out.x += m_Weight * (offsetX * T(0.5) + roundX - m_Y);
helper.Out.y += m_Weight * (offsetY * T(0.5) + roundY - m_Y * offsetY / Zeps(offsetX));
}
}
else
{
if (offsetY >= 0)
{
helper.Out.y += m_Weight * (offsetY * T(0.5) + roundY + m_Y);
helper.Out.x += m_Weight * (offsetX * T(0.5) + roundX + offsetX / Zeps(offsetY) * m_Y);
}
else
{
helper.Out.y += m_Weight * (offsetY * T(0.5) + roundY - m_Y);
helper.Out.x += m_Weight * (offsetX * T(0.5) + roundX - offsetX / Zeps(offsetY) * m_X);
}
}
}
helper.Out.x += helper.In.x * m_Px;
helper.Out.y += helper.In.y * m_Py;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string px = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string py = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t b = " << weight << " / fma(precalcSumSquares, (real_t)(0.25), (real_t)(1.0));\n"
<< "\t\treal_t roundX = rint(vIn.x);\n"
<< "\t\treal_t roundY = rint(vIn.y);\n"
<< "\t\treal_t offsetX = vIn.x - roundX;\n"
<< "\t\treal_t offsetY = vIn.y - roundY;\n"
<< "\n"
<< "\t\tvOut.x = vIn.x * b;\n"
<< "\t\tvOut.y = vIn.y * b;\n"
<< "\n"
<< "\t\tif (MwcNext01(mwc) >= (real_t)(0.75))\n"
<< "\t\t{\n"
<< "\t\t vOut.x += " << weight << " * fma(offsetX, (real_t)(0.5), roundX);\n"
<< "\t\t vOut.y += " << weight << " * fma(offsetY, (real_t)(0.5), roundY);\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (fabs(offsetX) >= fabs(offsetY))\n"
<< "\t\t {\n"
<< "\t\t if (offsetX >= 0)\n"
<< "\t\t {\n"
<< "\t\t vOut.x += " << weight << " * fma(offsetX, (real_t)(0.5), roundX + " << x << ");\n"
<< "\t\t vOut.y += " << weight << " * fma(offsetY, (real_t)(0.5), fma(" << y << ", offsetY / Zeps(offsetX), roundY));\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x += " << weight << " * fma(offsetX, (real_t)(0.5), roundX - " << y << ");\n"
<< "\t\t vOut.y += " << weight << " * fma(offsetY, (real_t)(0.5), roundY - " << y << " * offsetY / Zeps(offsetX));\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t if (offsetY >= 0)\n"
<< "\t\t {\n"
<< "\t\t vOut.y += " << weight << " * fma(offsetY, (real_t)(0.5), roundY + " << y << ");\n"
<< "\t\t vOut.x += " << weight << " * fma(offsetX, (real_t)(0.5), roundX + offsetX / Zeps(offsetY) * " << y << ");\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.y += " << weight << " * fma(offsetY, (real_t)(0.5), roundY - " << y << ");\n"
<< "\t\t vOut.x += " << weight << " * fma(offsetX, (real_t)(0.5), roundX - offsetX / Zeps(offsetY) * " << x << ");\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x += vIn.x * " << px << ";\n"
<< "\t\tvOut.y += vIn.y * " << py << ";\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "SplitBrdr_x", T(0.25)));//Original used a prefix of splitb_, which is incompatible with Ember's design.
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "SplitBrdr_y", T(0.25)));
m_Params.push_back(ParamWithName<T>(&m_Px, prefix + "SplitBrdr_px"));
m_Params.push_back(ParamWithName<T>(&m_Py, prefix + "SplitBrdr_py"));
}
private:
T m_X;
T m_Y;
T m_Px;
T m_Py;
};
/// <summary>
/// wdisc.
/// </summary>
template <typename T>
class WdiscVariation : public Variation<T>
{
public:
WdiscVariation(T weight = 1.0) : Variation<T>("wdisc", eVariationId::VAR_WDISC, weight, true, true, false, false, true) { }
VARCOPY(WdiscVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T a = T(M_PI) / (helper.m_PrecalcSqrtSumSquares + 1);
T r = helper.m_PrecalcAtanyx * T(M_1_PI);
if (r > 0)
a = T(M_PI) - a;
helper.Out.x = m_Weight * r * std::cos(a);
helper.Out.y = m_Weight * r * std::sin(a);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t a = MPI / (precalcSqrtSumSquares + 1);\n"
<< "\t\treal_t r = precalcAtanyx * M1PI;\n"
<< "\n"
<< "\t\tif (r > 0)\n"
<< "\t\t a = MPI - a;\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * r * cos(a);\n"
<< "\t\tvOut.y = " << weight << " * r * sin(a);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// falloff.
/// </summary>
template <typename T>
class FalloffVariation : public ParametricVariation<T>
{
public:
FalloffVariation(T weight = 1.0) : ParametricVariation<T>("falloff", eVariationId::VAR_FALLOFF, weight, false, false, false, false, true)
{
Init();
}
PARVARCOPY(FalloffVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
const T ax = rand.Frand<T>(T(-0.5), T(0.5));
const T ay = rand.Frand<T>(T(-0.5), T(0.5));
const T az = rand.Frand<T>(T(-0.5), T(0.5));
const T r = std::sqrt(Sqr(helper.In.x - m_X0) + Sqr(helper.In.y - m_Y0) + Sqr(helper.In.z - m_Z0));
const T rc = ((m_Invert != 0 ? std::max<T>(1 - r, 0) : std::max<T>(r, 0)) - m_MinDist) * m_InternalScatter;//Original called a macro named min, which internally performed max.
const T rs = std::max<T>(rc, 0);
T sigma, phi, rad, sigmas, sigmac, phis, phic;
T scale, denom;
switch (int(m_Type))
{
case 0://Linear.
helper.Out.x = m_Weight * (helper.In.x + m_MulX * ax * rs);
helper.Out.y = m_Weight * (helper.In.y + m_MulY * ay * rs);
helper.Out.z = m_Weight * (helper.In.z + m_MulZ * az * rs);
break;
case 1://Radial.
rad = r + m_MulX * ax * rs;
phi = helper.m_PrecalcAtanyx + m_MulY * ay * rs;
sigma = std::asin(r == 0 ? 0 : helper.In.z / r) + m_MulZ * az * rs;
sigmas = std::sin(sigma);
sigmac = std::cos(sigma);
phis = std::sin(phi);
phic = std::cos(phi);
helper.Out.x = m_Weight * (rad * sigmac * phic);
helper.Out.y = m_Weight * (rad * sigmac * phis);
helper.Out.z = m_Weight * (rad * sigmas);
break;
case 2://Box.
default:
scale = Clamp<T>(rs, 0, T(0.9)) + T(0.1);
denom = 1 / scale;
helper.Out.x = m_Weight * Lerp<T>(helper.In.x, std::floor(helper.In.x * denom) + scale * ax, m_MulX * rs) + m_MulX * std::pow(ax, m_BoxPow) * rs * denom;//m_BoxPow should be an integer value held in T,
helper.Out.y = m_Weight * Lerp<T>(helper.In.y, std::floor(helper.In.y * denom) + scale * ay, m_MulY * rs) + m_MulY * std::pow(ay, m_BoxPow) * rs * denom;//so std::abs() shouldn't be necessary.
helper.Out.z = m_Weight * Lerp<T>(helper.In.z, std::floor(helper.In.z * denom) + scale * az, m_MulZ * rs) + m_MulZ * std::pow(az, m_BoxPow) * rs * denom;
break;
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string scatter = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string minDist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mulX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mulY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mulZ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x0 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y0 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string z0 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invert = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string type = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string boxPow = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string internalScatter = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tconst real_t ax = MwcNext0505(mwc);\n"
<< "\t\tconst real_t ay = MwcNext0505(mwc);\n"
<< "\t\tconst real_t az = MwcNext0505(mwc);\n"
<< "\t\tconst real_t xmx = vIn.x - " << x0 << ";\n"
<< "\t\tconst real_t ymy = vIn.y - " << y0 << ";\n"
<< "\t\tconst real_t zmz = vIn.z - " << z0 << ";\n"
<< "\t\tconst real_t r = sqrt(fma(xmx, xmx, fma(ymy, ymy, SQR(zmz))));\n"
<< "\t\tconst real_t rc = ((" << invert << " != 0 ? max(1 - r, (real_t)(0.0)) : max(r, (real_t)(0.0))) - " << minDist << ") * " << internalScatter << ";\n"
<< "\t\tconst real_t rs = max(rc, (real_t)(0.0));\n"
<< "\n"
<< "\t\treal_t sigma, phi, rad, sigmas, sigmac, phis, phic;\n"
<< "\t\treal_t scale, denom;\n"
<< "\n"
<< "\t\tswitch ((int)" << type << ")\n"
<< "\t\t{\n"
<< "\t\t case 0:\n"
<< "\t\t vOut.x = " << weight << " * fma(" << mulX << ", ax * rs, vIn.x);\n"
<< "\t\t vOut.y = " << weight << " * fma(" << mulY << ", ay * rs, vIn.y);\n"
<< "\t\t vOut.z = " << weight << " * fma(" << mulZ << ", az * rs, vIn.z);\n"
<< "\t\t break;\n"
<< "\t\t case 1:\n"
<< "\t\t rad = fma(" << mulX << ", ax * rs, r);\n"
<< "\t\t phi = fma(" << mulY << ", ay * rs, precalcAtanyx);\n"
<< "\t\t sigma = fma(" << mulZ << ", az * rs, asin(r == 0 ? 0 : vIn.z / r));\n"
<< "\n"
<< "\t\t sigmas = sin(sigma);\n"
<< "\t\t sigmac = cos(sigma);\n"
<< "\t\t phis = sin(phi);\n"
<< "\t\t phic = cos(phi);\n"
<< "\n"
<< "\t\t vOut.x = " << weight << " * (rad * sigmac * phic);\n"
<< "\t\t vOut.y = " << weight << " * (rad * sigmac * phis);\n"
<< "\t\t vOut.z = " << weight << " * (rad * sigmas);\n"
<< "\t\t break;\n"
<< "\t\t case 2:\n"
<< "\t\t scale = clamp(rs, (real_t)(0.0), (real_t)(0.9)) + (real_t)(0.1);\n"
<< "\t\t denom = 1 / scale;\n"
<< "\t\t vOut.x = fma(" << weight << ", Lerp(vIn.x, fma(scale, ax, floor(vIn.x * denom)), " << mulX << " * rs), " << mulX << " * pow(ax, " << boxPow << ") * rs * denom);\n"
<< "\t\t vOut.y = fma(" << weight << ", Lerp(vIn.y, fma(scale, ay, floor(vIn.y * denom)), " << mulY << " * rs), " << mulY << " * pow(ay, " << boxPow << ") * rs * denom);\n"
<< "\t\t vOut.z = fma(" << weight << ", Lerp(vIn.z, fma(scale, az, floor(vIn.z * denom)), " << mulZ << " * rs), " << mulZ << " * pow(az, " << boxPow << ") * rs * denom);\n"
<< "\t\t break;\n"
<< "\t\t}\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Sqr", "Lerp" };
}
virtual void Precalc() override
{
m_InternalScatter = T(0.04) * m_Scatter;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Scatter, prefix + "falloff_scatter", 1, eParamType::REAL, EPS, TMAX));
m_Params.push_back(ParamWithName<T>(&m_MinDist, prefix + "falloff_mindist", T(0.5), eParamType::REAL, 0, TMAX));
m_Params.push_back(ParamWithName<T>(&m_MulX, prefix + "falloff_mul_x", 1, eParamType::REAL, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_MulY, prefix + "falloff_mul_y", 1, eParamType::REAL, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_MulZ, prefix + "falloff_mul_z", 0, eParamType::REAL, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_X0, prefix + "falloff_x0"));
m_Params.push_back(ParamWithName<T>(&m_Y0, prefix + "falloff_y0"));
m_Params.push_back(ParamWithName<T>(&m_Z0, prefix + "falloff_z0"));
m_Params.push_back(ParamWithName<T>(&m_Invert, prefix + "falloff_invert", 0, eParamType::INTEGER, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_Type, prefix + "falloff_type", 0, eParamType::INTEGER, 0, 2));
m_Params.push_back(ParamWithName<T>(&m_BoxPow, prefix + "falloff_boxpow", 2, eParamType::INTEGER, 2, 32));//Original defaulted this to 0 which directly contradicts the specified range of 2-32.
m_Params.push_back(ParamWithName<T>(true, &m_InternalScatter, prefix + "falloff_internal_scatter"));
}
private:
T m_Scatter;
T m_MinDist;
T m_MulX;
T m_MulY;
T m_MulZ;
T m_X0;
T m_Y0;
T m_Z0;
T m_Invert;
T m_Type;
T m_BoxPow;
T m_InternalScatter;
};
/// <summary>
/// falloff2.
/// </summary>
template <typename T>
class Falloff2Variation : public ParametricVariation<T>
{
public:
Falloff2Variation(T weight = 1.0) : ParametricVariation<T>("falloff2", eVariationId::VAR_FALLOFF2, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(Falloff2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
const v4T random(rand.Frand<T>(T(-0.5), T(0.5)), rand.Frand<T>(T(-0.5), T(0.5)), rand.Frand<T>(T(-0.5), T(0.5)), rand.Frand<T>(T(-0.5), T(0.5)));
const T distA = std::sqrt(Sqr(helper.In.x - m_X0) + Sqr(helper.In.y - m_Y0) + Sqr(helper.In.z - m_Z0));
const T distB = m_Invert != 0 ? std::max<T>(1 - distA, 0) : std::max<T>(distA, 0);//Original called a macro named min, which internally performed max.
const T dist = std::max<T>((distB - m_MinDist) * m_RMax, 0);
switch (int(m_Type))
{
case 0://Linear.
{
helper.Out.x = helper.In.x + m_MulX * random.x * dist;
helper.Out.y = helper.In.y + m_MulY * random.y * dist;
helper.Out.z = helper.In.z + m_MulZ * random.z * dist;
outPoint.m_ColorX = std::abs(fmod(outPoint.m_ColorX + m_MulC * random.w * dist, T(1)));
}
break;
case 1://Radial.
if (helper.In.x == 0 && helper.In.y == 0 && helper.In.z == 0)
{
helper.Out.x = helper.In.x;
helper.Out.y = helper.In.y;
helper.Out.z = helper.In.z;
}
else
{
const T rIn = Zeps(std::sqrt(helper.m_PrecalcSumSquares + SQR(helper.In.z)));
const T r = rIn + m_MulX * random.x * dist;
const T phi = helper.m_PrecalcAtanyx + m_MulY * random.y * dist;
const T sigma = std::asin(helper.In.z / rIn) + m_MulZ * random.z * dist;
const T sigmas = std::sin(sigma);
const T sigmac = std::cos(sigma);
const T phis = std::sin(phi);
const T phic = std::cos(phi);
helper.Out.x = r * sigmac * phic;
helper.Out.y = r * sigmac * phis;
helper.Out.z = r * sigmas;
outPoint.m_ColorX = std::abs(fmod(outPoint.m_ColorX + m_MulC * random.w * dist, T(1)));
}
break;
case 2://Gaussian.
default:
{
const T sigma = dist * random.y * M_2PI;
const T phi = dist * random.z * T(M_PI);
const T rad = dist * random.x;
const T sigmas = std::sin(sigma);
const T sigmac = std::cos(sigma);
const T phis = std::sin(phi);
const T phic = std::cos(phi);
helper.Out.x = helper.In.x + m_MulX * rad * sigmac * phic;
helper.Out.y = helper.In.y + m_MulY * rad * sigmac * phis;
helper.Out.z = helper.In.z + m_MulZ * rad * sigmas;
outPoint.m_ColorX = std::abs(fmod(outPoint.m_ColorX + m_MulC * random.w * dist, T(1)));
}
break;
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string scatter = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string minDist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mulX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mulY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mulZ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mulC = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x0 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y0 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string z0 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invert = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string type = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rMax = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tconst real_t randx = MwcNext0505(mwc);\n"
<< "\t\tconst real_t randy = MwcNext0505(mwc);\n"
<< "\t\tconst real_t randz = MwcNext0505(mwc);\n"
<< "\t\tconst real_t randc = MwcNext0505(mwc);\n"
<< "\t\tconst real_t xmx = vIn.x - " << x0 << ";\n"
<< "\t\tconst real_t ymy = vIn.y - " << y0 << ";\n"
<< "\t\tconst real_t zmz = vIn.z - " << z0 << ";\n"
<< "\t\tconst real_t distA = sqrt(fma(xmx, xmx, fma(ymy, ymy, SQR(zmz))));\n"
<< "\t\tconst real_t distB = " << invert << " != 0 ? max(1 - distA, (real_t)(0.0)) : max(distA, (real_t)(0.0));\n"
<< "\t\tconst real_t dist = max((distB - " << minDist << ") * " << rMax << ", (real_t)(0.0));\n"
<< "\n"
<< "\t\tswitch ((int)" << type << ")\n"
<< "\t\t{\n"
<< "\t\t case 0:\n"
<< "\t\t vOut.x = fma(" << mulX << ", randx * dist, vIn.x);\n"
<< "\t\t vOut.y = fma(" << mulY << ", randy * dist, vIn.y);\n"
<< "\t\t vOut.z = fma(" << mulZ << ", randz * dist, vIn.z);\n"
<< "\t\t outPoint->m_ColorX = fabs(fmod(fma(" << mulC << ", randc * dist, outPoint->m_ColorX), (real_t)(1.0)));\n"
<< "\t\t break;\n"
<< "\t\t case 1:\n"
<< "\t\t if (vIn.x == 0 && vIn.y == 0 && vIn.z == 0)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = vIn.x;\n"
<< "\t\t vOut.y = vIn.y;\n"
<< "\t\t vOut.z = vIn.z;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t real_t rIn = Zeps(sqrt(fma(vIn.z, vIn.z, precalcSumSquares)));\n"
<< "\t\t real_t r = fma(" << mulX << ", randx * dist, rIn);\n"
<< "\t\t real_t phi = fma(" << mulY << ", randy * dist, precalcAtanyx);\n"
<< "\t\t real_t sigma = fma(" << mulZ << ", randz * dist, asin(vIn.z / rIn));\n"
<< "\t\t real_t sigmas = sin(sigma);\n"
<< "\t\t real_t sigmac = cos(sigma);\n"
<< "\t\t real_t phis = sin(phi);\n"
<< "\t\t real_t phic = cos(phi);\n"
<< "\n"
<< "\t\t vOut.x = r * sigmac * phic;\n"
<< "\t\t vOut.y = r * sigmac * phis;\n"
<< "\t\t vOut.z = r * sigmas;\n"
<< "\t\t outPoint->m_ColorX = fabs(fmod(fma(" << mulC << ", randc * dist, outPoint->m_ColorX), (real_t)(1.0)));\n"
<< "\t\t }\n"
<< "\t\t break;\n"
<< "\t\t case 2:\n"
<< "\t\t {\n"
<< "\t\t real_t sigma = dist * randy * M_2PI;\n"
<< "\t\t real_t phi = dist * randz * MPI;\n"
<< "\t\t real_t rad = dist * randx;\n"
<< "\t\t real_t sigmas = sin(sigma);\n"
<< "\t\t real_t sigmac = cos(sigma);\n"
<< "\t\t real_t phis = sin(phi);\n"
<< "\t\t real_t phic = cos(phi);\n"
<< "\n"
<< "\t\t vOut.x = fma(" << mulX << " * rad, sigmac * phic, vIn.x);\n"
<< "\t\t vOut.y = fma(" << mulY << " * rad, sigmac * phis, vIn.y);\n"
<< "\t\t vOut.z = fma(" << mulZ << " * rad, sigmas, vIn.z);\n"
<< "\t\t outPoint->m_ColorX = fabs(fmod(fma(" << mulC << ", randc * dist, outPoint->m_ColorX), (real_t)(1.0)));\n"
<< "\t\t break;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Sqr", "Zeps" };
}
virtual void Precalc() override
{
m_RMax = T(0.04) * m_Scatter;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Scatter, prefix + "falloff2_scatter", 1, eParamType::REAL, EPS, TMAX));
m_Params.push_back(ParamWithName<T>(&m_MinDist, prefix + "falloff2_mindist", T(0.5), eParamType::REAL, 0, TMAX));
m_Params.push_back(ParamWithName<T>(&m_MulX, prefix + "falloff2_mul_x", 1, eParamType::REAL, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_MulY, prefix + "falloff2_mul_y", 1, eParamType::REAL, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_MulZ, prefix + "falloff2_mul_z", 0, eParamType::REAL, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_MulC, prefix + "falloff2_mul_c", 0, eParamType::REAL, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_X0, prefix + "falloff2_x0"));
m_Params.push_back(ParamWithName<T>(&m_Y0, prefix + "falloff2_y0"));
m_Params.push_back(ParamWithName<T>(&m_Z0, prefix + "falloff2_z0"));
m_Params.push_back(ParamWithName<T>(&m_Invert, prefix + "falloff2_invert", 0, eParamType::INTEGER, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_Type, prefix + "falloff2_type", 0, eParamType::INTEGER, 0, 2));
m_Params.push_back(ParamWithName<T>(true, &m_RMax, prefix + "falloff2_rmax"));
}
private:
T m_Scatter;
T m_MinDist;
T m_MulX;
T m_MulY;
T m_MulZ;
T m_MulC;
T m_X0;
T m_Y0;
T m_Z0;
T m_Invert;
T m_Type;
T m_RMax;
};
/// <summary>
/// falloff3.
/// </summary>
template <typename T>
class Falloff3Variation : public ParametricVariation<T>
{
public:
Falloff3Variation(T weight = 1.0) : ParametricVariation<T>("falloff3", eVariationId::VAR_FALLOFF3, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(Falloff3Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
const v4T random(rand.Frand<T>(T(-0.5), T(0.5)), rand.Frand<T>(T(-0.5), T(0.5)), rand.Frand<T>(T(-0.5), T(0.5)), rand.Frand<T>(T(-0.5), T(0.5)));
T radius;
switch (int(m_BlurShape))
{
case 0://Circle.
radius = std::sqrt(Sqr(helper.In.x - m_CenterX) + Sqr(helper.In.y - m_CenterY) + Sqr(helper.In.z - m_CenterZ));
break;
case 1://Square.
default:
radius = std::max(std::abs(helper.In.x - m_CenterX), std::max(std::abs(helper.In.y - m_CenterY), (std::abs(helper.In.z - m_CenterZ))));//Original called a macro named min, which internally performed max.
break;
}
const T dist = std::max<T>(((m_InvertDistance != 0 ? std::max<T>(1 - radius, 0) : std::max<T>(radius, 0)) - m_MinDistance) * m_RMax, 0);
switch (int(m_BlurType))
{
case 0://Gaussian.
{
const T sigma = dist * random.y * M_2PI;
const T phi = dist * random.z * T(M_PI);
const T rad = dist * random.x;
const T sigmas = std::sin(sigma);
const T sigmac = std::cos(sigma);
const T phis = std::sin(phi);
const T phic = std::cos(phi);
helper.Out.x = helper.In.x + m_MulX * rad * sigmac * phic;
helper.Out.y = helper.In.y + m_MulY * rad * sigmac * phis;
helper.Out.z = helper.In.z + m_MulZ * rad * sigmas;
outPoint.m_ColorX = std::abs(fmod(outPoint.m_ColorX + m_MulC * random.w * dist, T(1)));
}
break;
case 1://Radial.
if (helper.In.x == 0 && helper.In.y == 0 && helper.In.z == 0)
{
helper.Out.x = helper.In.x;
helper.Out.y = helper.In.y;
helper.Out.z = helper.In.z;
}
else
{
const T rIn = std::sqrt(helper.m_PrecalcSumSquares + SQR(helper.In.z));
const T r = rIn + m_MulX * random.x * dist;
const T phi = helper.m_PrecalcAtanyx + m_MulY * random.y * dist;
const T sigma = std::asin(helper.In.z / rIn) + m_MulZ * random.z * dist;
const T sigmas = std::sin(sigma);
const T sigmac = std::cos(sigma);
const T phis = std::sin(phi);
const T phic = std::cos(phi);
helper.Out.x = r * sigmac * phic;
helper.Out.y = r * sigmac * phis;
helper.Out.z = r * sigmas;
outPoint.m_ColorX = std::abs(fmod(outPoint.m_ColorX + m_MulC * random.w * dist, T(1)));
}
break;
case 2://Log.
default:
{
const T coeff = m_RMax <= EPS ? dist : dist + m_Alpha * (VarFuncs<T>::LogMap(dist) - dist);
helper.Out.x = helper.In.x + VarFuncs<T>::LogMap(m_MulX) * VarFuncs<T>::LogScale(random.x) * coeff;
helper.Out.y = helper.In.y + VarFuncs<T>::LogMap(m_MulY) * VarFuncs<T>::LogScale(random.y) * coeff;
helper.Out.z = helper.In.z + VarFuncs<T>::LogMap(m_MulZ) * VarFuncs<T>::LogScale(random.z) * coeff;
outPoint.m_ColorX = std::abs(fmod(outPoint.m_ColorX + VarFuncs<T>::LogMap(m_MulC) * VarFuncs<T>::LogScale(random.w) * coeff, T(1)));
}
break;
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string blurType = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blurShape = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blurStrength = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string minDist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invertDist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mulX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mulY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mulZ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string mulC = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centerX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centerY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centerZ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string alpha = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rMax = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tconst real_t randx = MwcNext0505(mwc);\n"
<< "\t\tconst real_t randy = MwcNext0505(mwc);\n"
<< "\t\tconst real_t randz = MwcNext0505(mwc);\n"
<< "\t\tconst real_t randc = MwcNext0505(mwc);\n"
<< "\t\tconst real_t xmx = vIn.x - " << centerX << ";\n"
<< "\t\tconst real_t ymy = vIn.y - " << centerY << ";\n"
<< "\t\tconst real_t zmz = vIn.z - " << centerZ << ";\n"
<< "\t\treal_t radius;\n"
<< "\n"
<< "\t\tswitch ((int)" << blurShape << ")\n"
<< "\t\t{\n"
<< "\t\t case 0:\n"
<< "\t\t radius = sqrt(fma(xmx, xmx, fma(ymy, ymy, SQR(zmz))));\n"
<< "\t\t break;\n"
<< "\t\t case 1:\n"
<< "\t\t radius = max(fabs(xmx), max(fabs(ymy), (fabs(zmz))));\n"
<< "\t\t break;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tconst real_t dist = max(((" << invertDist << " != 0 ? max(1 - radius, (real_t)(0.0)) : max(radius, (real_t)(0.0))) - " << minDist << ") * " << rMax << ", (real_t)(0.0));\n"
<< "\n"
<< "\t\tswitch ((int)" << blurType << ")\n"
<< "\t\t{\n"
<< "\t\tcase 0:\n"
<< "\t\t {\n"
<< "\t\t real_t sigma = dist * randy * M_2PI;\n"
<< "\t\t real_t phi = dist * randz * MPI;\n"
<< "\t\t real_t rad = dist * randx;\n"
<< "\t\t real_t sigmas = sin(sigma);\n"
<< "\t\t real_t sigmac = cos(sigma);\n"
<< "\t\t real_t phis = sin(phi);\n"
<< "\t\t real_t phic = cos(phi);\n"
<< "\n"
<< "\t\t vOut.x = fma(" << mulX << " * rad, sigmac * phic, vIn.x);\n"
<< "\t\t vOut.y = fma(" << mulY << " * rad, sigmac * phis, vIn.y);\n"
<< "\t\t vOut.z = fma(" << mulZ << " * rad, sigmas, vIn.z);\n"
<< "\t\t outPoint->m_ColorX = fabs(fmod(fma(" << mulC << ", randc * dist, outPoint->m_ColorX), (real_t)(1.0)));\n"
<< "\t\t }\n"
<< "\t\t break;\n"
<< "\t\tcase 1:\n"
<< "\t\t if (vIn.x == 0 && vIn.y == 0 && vIn.z == 0)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = vIn.x;\n"
<< "\t\t vOut.y = vIn.y;\n"
<< "\t\t vOut.z = vIn.z;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t real_t rIn = Zeps(sqrt(fma(vIn.z, vIn.z, precalcSumSquares)));\n"
<< "\t\t real_t r = fma(" << mulX << ", randx * dist, rIn);\n"
<< "\t\t real_t phi = fma(" << mulY << ", randy * dist, precalcAtanyx);\n"
<< "\t\t real_t sigma = fma(" << mulZ << ", randz * dist, asin(vIn.z / rIn));\n"
<< "\t\t real_t sigmas = sin(sigma);\n"
<< "\t\t real_t sigmac = cos(sigma);\n"
<< "\t\t real_t phis = sin(phi);\n"
<< "\t\t real_t phic = cos(phi);\n"
<< "\n"
<< "\t\t vOut.x = r * sigmac * phic;\n"
<< "\t\t vOut.y = r * sigmac * phis;\n"
<< "\t\t vOut.z = r * sigmas;\n"
<< "\t\t outPoint->m_ColorX = fabs(fmod(fma(" << mulC << ", randc * dist, outPoint->m_ColorX), (real_t)(1.0)));\n"
<< "\t\t }\n"
<< "\t\t break;\n"
<< "\t\tcase 2:\n"
<< "\t\t {\n"
<< "\t\t real_t coeff = " << rMax << " <= EPS ? dist : fma(" << alpha << ", (LogMap(dist) - dist), dist);\n"
<< "\n"
<< "\t\t vOut.x = fma(LogMap(" << mulX << "), LogScale(randx) * coeff, vIn.x);\n"
<< "\t\t vOut.y = fma(LogMap(" << mulY << "), LogScale(randy) * coeff, vIn.y);\n"
<< "\t\t vOut.z = fma(LogMap(" << mulZ << "), LogScale(randz) * coeff, vIn.z);\n"
<< "\t\t outPoint->m_ColorX = fabs(fmod(fma(LogMap(" << mulC << "), LogScale(randc) * coeff, outPoint->m_ColorX), (real_t)(1.0)));\n"
<< "\t\t }\n"
<< "\t\t break;\n"
<< "\t\t}\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "SignNz", "LogMap", "LogScale", "Sqr", "Zeps" };
}
virtual void Precalc() override
{
m_RMax = T(0.04) * m_BlurStrength;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_BlurType, prefix + "falloff3_blur_type", 0, eParamType::INTEGER, 0, 3));
m_Params.push_back(ParamWithName<T>(&m_BlurShape, prefix + "falloff3_blur_shape", 0, eParamType::INTEGER, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_BlurStrength, prefix + "falloff3_blur_strength", 1, eParamType::REAL, EPS, TMAX));
m_Params.push_back(ParamWithName<T>(&m_MinDistance, prefix + "falloff3_min_distance", T(0.5), eParamType::REAL, 0, TMAX));
m_Params.push_back(ParamWithName<T>(&m_InvertDistance, prefix + "falloff3_invert_distance", 0, eParamType::INTEGER, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_MulX, prefix + "falloff3_mul_x", 1, eParamType::REAL, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_MulY, prefix + "falloff3_mul_y", 1, eParamType::REAL, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_MulZ, prefix + "falloff3_mul_z", 0, eParamType::REAL, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_MulC, prefix + "falloff3_mul_c", 0, eParamType::REAL, 0, 1));
m_Params.push_back(ParamWithName<T>(&m_CenterX, prefix + "falloff3_center_x"));
m_Params.push_back(ParamWithName<T>(&m_CenterY, prefix + "falloff3_center_y"));
m_Params.push_back(ParamWithName<T>(&m_CenterZ, prefix + "falloff3_center_z"));
m_Params.push_back(ParamWithName<T>(&m_Alpha, prefix + "falloff3_alpha"));
m_Params.push_back(ParamWithName<T>(true, &m_RMax, prefix + "falloff3_rmax"));
}
private:
T m_BlurType;
T m_BlurShape;
T m_BlurStrength;
T m_MinDistance;
T m_InvertDistance;
T m_MulX;
T m_MulY;
T m_MulZ;
T m_MulC;
T m_CenterX;
T m_CenterY;
T m_CenterZ;
T m_Alpha;
T m_RMax;
};
/// <summary>
/// xtrb.
/// </summary>
template <typename T>
class XtrbVariation : public ParametricVariation<T>
{
public:
XtrbVariation(T weight = 1.0) : ParametricVariation<T>("xtrb", eVariationId::VAR_XTRB, weight)
{
Init();
}
PARVARCOPY(XtrbVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
intmax_t m, n;
T alpha, beta, offsetAl, offsetBe, offsetGa, x, y;
//Transfer to trilinear coordinates, normalized to real distances from triangle sides.
DirectTrilinear(helper.In.x, helper.In.y, alpha, beta);
m = Floor<T>(alpha / m_S2a);
offsetAl = alpha - m * m_S2a;
n = Floor<T>(beta / m_S2b);
offsetBe = beta - n * m_S2b;
offsetGa = m_S2c - m_Ac * offsetAl - m_Bc * offsetBe;
if (offsetGa > 0)
{
Hex(offsetAl, offsetBe, offsetGa, alpha, beta, rand);
}
else
{
offsetAl = m_S2a - offsetAl;
offsetBe = m_S2b - offsetBe;
offsetGa = -offsetGa;
Hex(offsetAl, offsetBe, offsetGa, alpha, beta, rand);
alpha = m_S2a - alpha;
beta = m_S2b - beta;
}
alpha += m * m_S2a;
beta += n * m_S2b;
InverseTrilinear(alpha, beta, x, y, rand);
helper.Out.x = m_Weight * x;
helper.Out.y = m_Weight * y;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string radius = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string width = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sinC = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cosC = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ha = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string hb = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string hc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ab = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ac = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ba = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ca = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cb = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2b = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2ab = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2ac = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2bc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string width1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string width2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string width3 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absN = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tint m, n;\n"
<< "\t\treal_t alpha, beta, offsetAl, offsetBe, offsetGa, x, y;\n"
<< "\n"
<< "\t\t{\n"//DirectTrilinear function extracted out here.
<< "\t\t alpha = vIn.y + " << radius << ";\n"
<< "\t\t beta = fma(vIn.x, " << sinC << ", fma(-vIn.y, " << cosC << ", " << radius << "));\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tm = floor(alpha / " << s2a << ");\n"
<< "\t\toffsetAl = alpha - m * " << s2a << ";\n"
<< "\t\tn = floor(beta / " << s2b << ");\n"
<< "\t\toffsetBe = beta - n * " << s2b << ";\n"
<< "\t\toffsetGa = " << s2c << " + fma(-" << ac << ", offsetAl, -" << bc << " * offsetBe);\n"
<< "\n"
<< "\t\tif (offsetGa > 0)\n"
<< "\t\t{\n"
<< "\n"
<< "\t\t Hex(offsetAl, offsetBe, offsetGa,\n"
<< "\t\t " << width << ",\n"
<< "\t\t " << ha << ",\n"
<< "\t\t " << hb << ",\n"
<< "\t\t " << hc << ",\n"
<< "\t\t " << ab << ",\n"
<< "\t\t " << ba << ",\n"
<< "\t\t " << bc << ",\n"
<< "\t\t " << ca << ",\n"
<< "\t\t " << cb << ",\n"
<< "\t\t " << s2a << ",\n"
<< "\t\t " << s2b << ",\n"
<< "\t\t " << s2ab << ",\n"
<< "\t\t " << s2ac << ",\n"
<< "\t\t " << s2bc << ",\n"
<< "\t\t " << width1 << ",\n"
<< "\t\t " << width2 << ",\n"
<< "\t\t " << width3 << ",\n"
<< "\t\t &alpha, &beta, mwc);\n"
<< "\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t offsetAl = " << s2a << " - offsetAl;\n"
<< "\t\t offsetBe = " << s2b << " - offsetBe;\n"
<< "\t\t offsetGa = -offsetGa;\n"
<< "\n"
<< "\t\t Hex(offsetAl, offsetBe, offsetGa,\n"
<< "\t\t " << width << ",\n"
<< "\t\t " << ha << ",\n"
<< "\t\t " << hb << ",\n"
<< "\t\t " << hc << ",\n"
<< "\t\t " << ab << ",\n"
<< "\t\t " << ba << ",\n"
<< "\t\t " << bc << ",\n"
<< "\t\t " << ca << ",\n"
<< "\t\t " << cb << ",\n"
<< "\t\t " << s2a << ",\n"
<< "\t\t " << s2b << ",\n"
<< "\t\t " << s2ab << ",\n"
<< "\t\t " << s2ac << ",\n"
<< "\t\t " << s2bc << ",\n"
<< "\t\t " << width1 << ",\n"
<< "\t\t " << width2 << ",\n"
<< "\t\t " << width3 << ",\n"
<< "\t\t &alpha, &beta, mwc);\n"
<< "\n"
<< "\t\t alpha = " << s2a << " - alpha;\n"
<< "\t\t beta = " << s2b << " - beta;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\talpha += m * " << s2a << ";\n"
<< "\t\tbeta += n * " << s2b << ";\n"
<< "\n"
<< "\t\t{\n"//InverseTrilinear function extracted out here.
<< "\t\t real_t inx = fma(alpha - " << radius << ", " << cosC << ", beta - " << radius << ") / " << sinC << ";\n"
<< "\t\t real_t iny = alpha - " << radius << ";\n"
<< "\t\t real_t angle = fma(M_2PI, (real_t)MwcNextRange(mwc, (int)" << absN << "), atan2(iny, inx)) / " << power << ";\n"
<< "\t\t real_t r = " << weight << " * pow(fma(inx, inx, SQR(iny)), " << cn << ");\n"
<< "\n"
<< "\t\t x = r * cos(angle);\n"
<< "\t\t y = r * sin(angle);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * x;\n"
<< "\t\tvOut.y = " << weight << " * y;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual string OpenCLFuncsString() const override
{
return
"\n"
"void Hex(real_t al, real_t be, real_t ga,\n"
" real_t width,\n"
" real_t ha,\n"
" real_t hb,\n"
" real_t hc,\n"
" real_t ab,\n"
" real_t ba,\n"
" real_t bc,\n"
" real_t ca,\n"
" real_t cb,\n"
" real_t s2a,\n"
" real_t s2b,\n"
" real_t s2ab,\n"
" real_t s2ac,\n"
" real_t s2bc,\n"
" real_t width1,\n"
" real_t width2,\n"
" real_t width3,\n"
" real_t* al1, real_t* be1, uint2* mwc)\n"
"{\n"
" real_t ga1, de1, r = MwcNext01(mwc);\n"
"\n"
" if (be < al)\n"
" {\n"
" if (ga < be)\n"
" {\n"
" if (r >= width3)\n"
" {\n"
" de1 = width * be;\n"
" ga1 = width * ga;\n"
" }\n"
" else\n"
" {\n"
" ga1 = fma(width1, ga, width2 * hc * ga / be);\n"
" de1 = fma(width1, be, width2 * s2ab * (3 - ga / be));\n"
" }\n"
"\n"
" *al1 = s2a + fma(-ba, de1, - ca * ga1);\n"
" *be1 = de1;\n"
" }\n"
" else\n"
" {\n"
" if (ga < al)\n"
" {\n"
" if (r >= width3)\n"
" {\n"
" ga1 = width * ga;\n"
" de1 = width * be;\n"
" }\n"
" else\n"
" {\n"
" de1 = fma(width1, be, width2 * hb * be / ga);\n"
" ga1 = fma(width1, ga, width2 * s2ac * (3 - be / ga));\n"
" }\n"
"\n"
" *al1 = s2a + fma(-ba, de1, -ca * ga1);\n"
" *be1 = de1;\n"
" }\n"
" else\n"
" {\n"
" if (r >= width3)\n"
" {\n"
" *al1 = width * al;\n"
" *be1 = width * be;\n"
" }\n"
" else\n"
" {\n"
" *be1 = fma(width1, be, width2 * hb * be / al);\n"
" *al1 = fma(width1, al, width2 * s2ac * (3 - be / al));\n"
" }\n"
" }\n"
" }\n"
" }\n"
" else\n"
" {\n"
" if (ga < al)\n"
" {\n"
" if (r >= width3)\n"
" {\n"
" de1 = width * al;\n"
" ga1 = width * ga;\n"
" }\n"
" else\n"
" {\n"
" ga1 = fma(width1, ga, width2 * hc * ga / al);\n"
" de1 = fma(width1, al, width2 * s2ab * (3 - ga / al));\n"
" }\n"
"\n"
" *be1 = s2b + fma(-ab, de1, -cb * ga1);\n"
" *al1 = de1;\n"
" }\n"
" else\n"
" {\n"
" if (ga < be)\n"
" {\n"
" if (r >= width3)\n"
" {\n"
" ga1 = width * ga;\n"
" de1 = width * al;\n"
" }\n"
" else\n"
" {\n"
" de1 = fma(width1, al, width2 * ha * al / ga);\n"
" ga1 = fma(width1, ga, width2 * s2bc * (3 - al / ga));\n"
" }\n"
"\n"
" *be1 = s2b + fma(-ab, de1, -cb * ga1);\n"
" *al1 = de1;\n"
" }\n"
" else\n"
" {\n"
" if (r >= width3)\n"
" {\n"
" *be1 = width * be;\n"
" *al1 = width * al;\n"
" }\n"
" else\n"
" {\n"
" *al1 = fma(width1, al, width2 * ha * al / be);\n"
" *be1 = fma(width1, be, width2 * s2bc * (3 - al / be));\n"
" }\n"
" }\n"
" }\n"
" }\n"
"}\n"
"\n"
;
}
virtual void Precalc() override
{
T s2, sinA2, cosA2, sinB2, cosB2, sinC2, cosC2;
T br = T(0.047) + m_A;
T cr = T(0.047) + m_B;
T ar = T(M_PI) - br - cr;
T temp = ar / 2;
sincos(temp, &sinA2, &cosA2);
temp = br / 2;
sincos(temp, &sinB2, &cosB2);
temp = cr / 2;
sincos(temp, &sinC2, &cosC2);
sincos(cr, &m_SinC, &m_CosC);
T a = m_Radius * (sinC2 / cosC2 + sinB2 / cosB2);
T b = m_Radius * (sinC2 / cosC2 + sinA2 / cosA2);
T c = m_Radius * (sinB2 / cosB2 + sinA2 / cosA2);
m_Width1 = 1 - m_Width;
m_Width2 = 2 * m_Width;
m_Width3 = 1 - m_Width * m_Width;
s2 = m_Radius * (a + b + c);
m_Ha = s2 / a / 6;
m_Hb = s2 / b / 6;
m_Hc = s2 / c / 6;
m_Ab = a / b;// a div on b
m_Ac = a / c;
m_Ba = b / a;
m_Bc = b / c;
m_Ca = c / a;
m_Cb = c / b;
m_S2a = 6 * m_Ha;
m_S2b = 6 * m_Hb;
m_S2c = 6 * m_Hc;
m_S2bc = s2 / (b + c) / 6;
m_S2ab = s2 / (a + b) / 6;
m_S2ac = s2 / (a + c) / 6;
if (m_Power == 0)
m_Power = 2;
m_AbsN = T(int(std::abs(m_Power)));
m_Cn = m_Dist / m_Power / 2;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "xtrb_power", 2, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_Radius, prefix + "xtrb_radius", 1));
m_Params.push_back(ParamWithName<T>(&m_Width, prefix + "xtrb_width", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Dist, prefix + "xtrb_dist", 1));
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "xtrb_a", 1));
m_Params.push_back(ParamWithName<T>(&m_B, prefix + "xtrb_b", 1));
m_Params.push_back(ParamWithName<T>(true, &m_SinC, prefix + "xtrb_sinc"));//Precalcs.
m_Params.push_back(ParamWithName<T>(true, &m_CosC, prefix + "xtrb_cosc"));
m_Params.push_back(ParamWithName<T>(true, &m_Ha, prefix + "xtrb_ha"));
m_Params.push_back(ParamWithName<T>(true, &m_Hb, prefix + "xtrb_hb"));
m_Params.push_back(ParamWithName<T>(true, &m_Hc, prefix + "xtrb_hc"));
m_Params.push_back(ParamWithName<T>(true, &m_Ab, prefix + "xtrb_ab"));
m_Params.push_back(ParamWithName<T>(true, &m_Ac, prefix + "xtrb_ac"));
m_Params.push_back(ParamWithName<T>(true, &m_Ba, prefix + "xtrb_ba"));
m_Params.push_back(ParamWithName<T>(true, &m_Bc, prefix + "xtrb_bc"));
m_Params.push_back(ParamWithName<T>(true, &m_Ca, prefix + "xtrb_ca"));
m_Params.push_back(ParamWithName<T>(true, &m_Cb, prefix + "xtrb_cb"));
m_Params.push_back(ParamWithName<T>(true, &m_S2a, prefix + "xtrb_s2a"));
m_Params.push_back(ParamWithName<T>(true, &m_S2b, prefix + "xtrb_s2b"));
m_Params.push_back(ParamWithName<T>(true, &m_S2c, prefix + "xtrb_s2c"));
m_Params.push_back(ParamWithName<T>(true, &m_S2ab, prefix + "xtrb_s2ab"));
m_Params.push_back(ParamWithName<T>(true, &m_S2ac, prefix + "xtrb_s2ac"));
m_Params.push_back(ParamWithName<T>(true, &m_S2bc, prefix + "xtrb_s2bc"));
m_Params.push_back(ParamWithName<T>(true, &m_Width1, prefix + "xtrb_width1"));
m_Params.push_back(ParamWithName<T>(true, &m_Width2, prefix + "xtrb_width2"));
m_Params.push_back(ParamWithName<T>(true, &m_Width3, prefix + "xtrb_width3"));
m_Params.push_back(ParamWithName<T>(true, &m_AbsN, prefix + "xtrb_absn"));
m_Params.push_back(ParamWithName<T>(true, &m_Cn, prefix + "xtrb_cn"));
}
private:
inline void DirectTrilinear(T x, T y, T& al, T& be)
{
al = y + m_Radius;
be = x * m_SinC - y * m_CosC + m_Radius;
}
inline void InverseTrilinear(T al, T be, T& x, T& y, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand)
{
T inx = (be - m_Radius + (al - m_Radius) * m_CosC) / m_SinC;
T iny = al - m_Radius;
T angle = (std::atan2(iny, inx) + M_2PI * (rand.Rand(int(m_AbsN)))) / m_Power;
T r = m_Weight * std::pow(SQR(inx) + SQR(iny), m_Cn);
x = r * std::cos(angle);
y = r * std::sin(angle);
}
void Hex(T al, T be, T ga, T& al1, T& be1, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand)
{
T ga1, de1, r = rand.Frand01<T>();
if (be < al)
{
if (ga < be)
{
if (r >= m_Width3)
{
de1 = m_Width * be;
ga1 = m_Width * ga;
}
else
{
ga1 = m_Width1 * ga + m_Width2 * m_Hc * ga / be;
de1 = m_Width1 * be + m_Width2 * m_S2ab * (3 - ga / be);
}
al1 = m_S2a - m_Ba * de1 - m_Ca * ga1;
be1 = de1;
}
else
{
if (ga < al)
{
if (r >= m_Width3)
{
ga1 = m_Width * ga;
de1 = m_Width * be;
}
else
{
de1 = m_Width1 * be + m_Width2 * m_Hb * be / ga;
ga1 = m_Width1 * ga + m_Width2 * m_S2ac * (3 - be / ga);
}
al1 = m_S2a - m_Ba * de1 - m_Ca * ga1;
be1 = de1;
}
else
{
if (r >= m_Width3)
{
al1 = m_Width * al;
be1 = m_Width * be;
}
else
{
be1 = m_Width1 * be + m_Width2 * m_Hb * be / al;
al1 = m_Width1 * al + m_Width2 * m_S2ac * (3 - be / al);
}
}
}
}
else
{
if (ga < al)
{
if (r >= m_Width3)
{
de1 = m_Width * al;
ga1 = m_Width * ga;
}
else
{
ga1 = m_Width1 * ga + m_Width2 * m_Hc * ga / al;
de1 = m_Width1 * al + m_Width2 * m_S2ab * (3 - ga / al);
}
be1 = m_S2b - m_Ab * de1 - m_Cb * ga1;
al1 = de1;
}
else
{
if (ga < be)
{
if (r >= m_Width3)
{
ga1 = m_Width * ga;
de1 = m_Width * al;
}
else
{
de1 = m_Width1 * al + m_Width2 * m_Ha * al / ga;
ga1 = m_Width1 * ga + m_Width2 * m_S2bc * (3 - al / ga);
}
be1 = m_S2b - m_Ab * de1 - m_Cb * ga1;
al1 = de1;
}
else
{
if (r >= m_Width3)
{
be1 = m_Width * be;
al1 = m_Width * al;
}
else
{
al1 = m_Width1 * al + m_Width2 * m_Ha * al / be;
be1 = m_Width1 * be + m_Width2 * m_S2bc * (3 - al / be);
}
}
}
}
}
T m_Power;
T m_Radius;
T m_Width;
T m_Dist;
T m_A;
T m_B;
T m_SinC;//Precalcs.
T m_CosC;
T m_Ha;
T m_Hb;
T m_Hc;
T m_Ab;
T m_Ac;
T m_Ba;
T m_Bc;
T m_Ca;
T m_Cb;
T m_S2a;
T m_S2b;
T m_S2c;
T m_S2ab;
T m_S2ac;
T m_S2bc;
T m_Width1;
T m_Width2;
T m_Width3;
T m_AbsN;
T m_Cn;
};
/// <summary>
/// hexaplay3D.
/// This uses state and the OpenCL version looks different and better than the CPU.
/// </summary>
template <typename T>
class Hexaplay3DVariation : public ParametricVariation<T>
{
public:
Hexaplay3DVariation(T weight = 1.0) : ParametricVariation<T>("hexaplay3D", eVariationId::VAR_HEXAPLAY3D, weight)
{
Init();
}
PARVARCOPY(Hexaplay3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_FCycle > 5)
{
m_FCycle = 0;
m_RSwtch = std::trunc(rand.Frand01<T>() * 3);//Chooses 6 or 3 nodes.
}
if (m_BCycle > 2)
{
m_BCycle = 0;
m_RSwtch = std::trunc(rand.Frand01<T>() * 3);//Chooses 6 or 3 nodes.
}
int posNeg = 1;
int loc;
T tempx, tempy;
T lrmaj = m_Weight;//Sets hexagon length radius - major plane.
T boost = 1;//Boost is the separation distance between the two planes.
T sumX, sumY;
if (m_VarType == eVariationType::VARTYPE_REG)
{
sumX = outPoint.m_X;
sumY = outPoint.m_Y;
outPoint.m_X = 0;//Only need to clear regular, pre and post will overwrite by default.
outPoint.m_Y = 0;
}
else
{
sumX = helper.In.x;
sumY = helper.In.y;
}
if (rand.Frand01<T>() < T(0.5))
posNeg = -1;
//Determine whether one or two major planes.
int majplane = 1;
T abmajp = std::abs(m_MajP);
if (abmajp <= 1)
{
majplane = 1;//Want either 1 or 2.
}
else
{
majplane = 2;
boost = (abmajp - 1) * T(0.5);//Distance above and below XY plane.
}
//Creating Z factors relative to the planes. These will be added, whereas x and y will be assigned.
//Original does += z *, so using z on the right side of = is intentional.
if (majplane == 2)
helper.Out.z = helper.In.z * T(0.5) * m_ZLift + (posNeg * boost);
else
helper.Out.z = helper.In.z * T(0.5) * m_ZLift;
//Work out the segments and hexagonal nodes.
if (m_RSwtch <= 1)//Occasion to build using 60 degree segments.
{
loc = int(m_FCycle);//Sequential nodes selection.
tempx = m_Seg60[loc].x;
tempy = m_Seg60[loc].y;
m_FCycle++;
}
else//Occasion to build on 120 degree segments.
{
loc = int(m_BCycle);//Sequential nodes selection.
tempx = m_Seg120[loc].x;
tempy = m_Seg120[loc].y;
m_BCycle++;
}
helper.Out.x = ((sumX + helper.In.x) * m_HalfScale) + (lrmaj * tempx);
helper.Out.y = ((sumY + helper.In.y) * m_HalfScale) + (lrmaj * tempy);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber();
string weight = WeightDefineString();
string index = ss2.str() + "]";
string stateIndex = ss2.str();
string majp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string zlift = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seg60xStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 6;//Precalc.
string seg60yStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 6;
string seg120xStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 3;
string seg120yStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 3;
string halfScale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rswtch = "varState->" + m_Params[i++].Name() + stateIndex;//State.
string fcycle = "varState->" + m_Params[i++].Name() + stateIndex;
string bcycle = "varState->" + m_Params[i++].Name() + stateIndex;
ss << "\t{\n"
<< "\t\tif (" << fcycle << " > 5)\n"
<< "\t\t{\n"
<< "\t\t " << fcycle << " = 0;\n"
<< "\t\t " << rswtch << " = trunc(MwcNext01(mwc) * 3.0);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (" << bcycle << " > 2)\n"
<< "\t\t{\n"
<< "\t\t " << bcycle << " = 0;\n"
<< "\t\t " << rswtch << " = trunc(MwcNext01(mwc) * 3.0);\n"
<< "\t\t}\n"
<< "\t\t\n"
<< "\t\tint posNeg = 1;\n"
<< "\t\tint loc;\n"
<< "\t\treal_t tempx, tempy;\n"
<< "\t\treal_t lrmaj = " << weight << ";\n"
<< "\t\treal_t boost = 1;\n"
<< "\t\treal_t sumX, sumY;\n\n";
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss
<< "\t\tsumX = outPoint->m_X;\n"
<< "\t\tsumY = outPoint->m_Y;\n"
<< "\t\toutPoint->m_X = 0;\n"
<< "\t\toutPoint->m_Y = 0;\n";
}
else
{
ss
<< "\t\tsumX = vIn.x;\n"
<< "\t\tsumY = vIn.y;\n";
}
ss
<< "\t\t\n"
<< "\t\tif (MwcNext01(mwc) < 0.5)\n"
<< "\t\t posNeg = -1;\n"
<< "\n"
<< "\t\tint majplane = 1;\n"
<< "\t\treal_t abmajp = fabs(" << majp << ");\n"
<< "\n"
<< "\t\tif (abmajp <= 1)\n"
<< "\t\t{\n"
<< "\t\t majplane = 1;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t majplane = 2;\n"
<< "\t\t boost = (abmajp - 1) * 0.5;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (majplane == 2)\n"
<< "\t\t vOut.z = fma(vIn.z * 0.5, " << zlift << ", (posNeg * boost));\n"
<< "\t\telse\n"
<< "\t\t vOut.z = vIn.z * 0.5 * " << zlift << ";\n"
<< "\n"
<< "\t\tif (" << rswtch << " <= 1)\n"
<< "\t\t{\n"
<< "\t\t loc = (int)" << fcycle << ";\n"
<< "\t\t tempx = parVars[" << seg60xStartIndex << " + loc];\n"
<< "\t\t tempy = parVars[" << seg60yStartIndex << " + loc];\n"
<< "\t\t " << fcycle << " = " << fcycle << " + 1;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t loc = (int)" << bcycle << ";\n"
<< "\t\t tempx = parVars[" << seg120xStartIndex << " + loc];\n"
<< "\t\t tempy = parVars[" << seg120yStartIndex << " + loc];\n"
<< "\t\t " << bcycle << " = " << bcycle << " + 1;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = fma((sumX + vIn.x), " << halfScale << ", (lrmaj * tempx));\n"
<< "\t\tvOut.y = fma((sumY + vIn.y), " << halfScale << ", (lrmaj * tempy));\n"
<< "\t}\n";
return ss.str();
}
virtual string StateInitOpenCLString() const override
{
ostringstream ss, ss2;
ss2 << "_" << XformIndexInEmber();
string stateIndex = ss2.str();
string prefix = Prefix();
//CPU sets fycle and bcycle to 0 at the beginning in Precalc().
//Set to random in OpenCL since a value can't be set once and kept between kernel launches without writing it back to an OpenCL buffer.
ss << "\n\tvarState." << prefix << "hexaplay3D_rswtch" << stateIndex << " = trunc(MwcNext01(&mwc) * 3.0);";
ss << "\n\tvarState." << prefix << "hexaplay3D_fcycle" << stateIndex << " = trunc(MwcNext01(&mwc) * 5.0);";
ss << "\n\tvarState." << prefix << "hexaplay3D_bcycle" << stateIndex << " = trunc(MwcNext01(&mwc) * 2.0);";
return ss.str();
}
virtual void Precalc() override
{
T hlift = std::sin(T(M_PI) / 3);
m_RSwtch = std::trunc(QTIsaac<ISAAC_SIZE, ISAAC_INT>::LockedFrand01<T>() * 3);//Chooses 6 or 3 nodes.
m_FCycle = 0;
m_BCycle = 0;
m_Seg60[0].x = 1;
m_Seg60[1].x = T(0.5);
m_Seg60[2].x = T(-0.5);
m_Seg60[3].x = -1;
m_Seg60[4].x = T(-0.5);
m_Seg60[5].x = T(0.5);
m_Seg60[0].y = 0;
m_Seg60[1].y = hlift;
m_Seg60[2].y = hlift;
m_Seg60[3].y = 0;
m_Seg60[4].y = -hlift;
m_Seg60[5].y = -hlift;
m_Seg120[0].x = 1;
m_Seg120[1].x = T(-0.5);
m_Seg120[2].x = T(-0.5);
m_Seg120[0].y = 0;
m_Seg120[1].y = hlift;
m_Seg120[2].y = -hlift;
m_HalfScale = m_Scale * T(0.5);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.reserve(25);
m_Params.push_back(ParamWithName<T>(&m_MajP, prefix + "hexaplay3D_majp", 1, eParamType::REAL));
m_Params.push_back(ParamWithName<T>(&m_Scale, prefix + "hexaplay3D_scale", T(0.25), eParamType::REAL));
m_Params.push_back(ParamWithName<T>(&m_ZLift, prefix + "hexaplay3D_zlift", T(0.25), eParamType::REAL));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[0].x, prefix + "hexaplay3D_seg60x0"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[1].x, prefix + "hexaplay3D_seg60x1"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[2].x, prefix + "hexaplay3D_seg60x2"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[3].x, prefix + "hexaplay3D_seg60x3"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[4].x, prefix + "hexaplay3D_seg60x4"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[5].x, prefix + "hexaplay3D_seg60x5"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[0].y, prefix + "hexaplay3D_seg60y0"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[1].y, prefix + "hexaplay3D_seg60y1"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[2].y, prefix + "hexaplay3D_seg60y2"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[3].y, prefix + "hexaplay3D_seg60y3"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[4].y, prefix + "hexaplay3D_seg60y4"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[5].y, prefix + "hexaplay3D_seg60y5"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg120[0].x, prefix + "hexaplay3D_seg120x0"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg120[1].x, prefix + "hexaplay3D_seg120x1"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg120[2].x, prefix + "hexaplay3D_seg120x2"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg120[0].y, prefix + "hexaplay3D_seg120y0"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg120[1].y, prefix + "hexaplay3D_seg120y1"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg120[2].y, prefix + "hexaplay3D_seg120y2"));
m_Params.push_back(ParamWithName<T>(true, &m_HalfScale, prefix + "hexaplay3D_halfscale"));
m_Params.push_back(ParamWithName<T>(true, true, &m_RSwtch, prefix + "hexaplay3D_rswtch"));//State.
m_Params.push_back(ParamWithName<T>(true, true, &m_FCycle, prefix + "hexaplay3D_fcycle"));
m_Params.push_back(ParamWithName<T>(true, true, &m_BCycle, prefix + "hexaplay3D_bcycle"));
}
private:
T m_MajP;
T m_Scale;
T m_ZLift;
v2T m_Seg60[6];//Precalc.
v2T m_Seg120[3];
T m_HalfScale;
T m_RSwtch;//State.
T m_FCycle;
T m_BCycle;
};
/// <summary>
/// hexnix3D.
/// This uses state and the OpenCL version looks different and better than the CPU.
/// It takes care of doing either a sum or product of the output variables internally,
/// rather than relying on the calling code of Xform::Apply() to do it.
/// This is because different paths do different things to helper.Out.z
/// </summary>
template <typename T>
class Hexnix3DVariation : public ParametricVariation<T>
{
public:
Hexnix3DVariation(T weight = 1.0) : ParametricVariation<T>("hexnix3D", eVariationId::VAR_HEXNIX3D, weight)
{
Init();
}
PARVARCOPY(Hexnix3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_FCycle > 5)
{
m_FCycle = 0;
m_RSwtch = std::trunc(rand.Frand01<T>() * 3);//Chooses 6 or 3 nodes.
}
if (m_BCycle > 2)
{
m_BCycle = 0;
m_RSwtch = std::trunc(rand.Frand01<T>() * 3);//Chooses 6 or 3 nodes.
}
T lrmaj = m_Weight;
T smooth = 1;
T smRotxFP = 0;
T smRotyFP = 0;
T smRotxFT = 0;
T smRotyFT = 0;
T gentleZ = 0;
T sumX, sumY, sumZ;
if (m_VarType == eVariationType::VARTYPE_REG)
{
sumX = outPoint.m_X;
sumY = outPoint.m_Y;
sumZ = outPoint.m_Z;
outPoint.m_X = 0;
outPoint.m_Y = 0;//Z is optionally cleared and assigned to below.
}
else
{
sumX = helper.In.x;
sumY = helper.In.y;
sumZ = helper.In.z;
}
if (std::abs(m_Weight) <= 0.5)
smooth = m_Weight * 2;
else
smooth = 1;
int posNeg = 1;
int loc;
T boost = 0;
T scale = m_Scale;
T scale3;
T tempx, tempy;
if (rand.Frand01<T>() < T(0.5))
posNeg = -1;
int majplane = 0;
T abmajp = std::abs(m_MajP);
if (abmajp <= 1)
{
majplane = 0;
boost = 0;
}
else if (abmajp > 1 && abmajp < 2)
{
majplane = 1;
boost = 0;
}
else
{
majplane = 2;
boost = (abmajp - 2) * T(0.5);
}
if (majplane == 0)
{
helper.Out.z = smooth * helper.In.z * scale * m_ZLift;
}
else if (majplane == 1 && m_MajP < 0)
{
if (m_MajP < -1 && m_MajP >= -2)
gentleZ = (abmajp - 1);
else
gentleZ = 1;
if (posNeg < 0)
helper.Out.z = -2 * (sumZ * gentleZ);
}
if (majplane == 2 && m_MajP < 0)
{
if (posNeg > 0)
{
helper.Out.z = (smooth * (helper.In.z * scale * m_ZLift + boost));
}
else//For this case when reg, assign and zero out. For all others, sum as usual.
{
helper.Out.z = (sumZ - (2 * smooth * sumZ)) + (smooth * posNeg * (helper.In.z * scale * m_ZLift + boost));
if (m_VarType == eVariationType::VARTYPE_REG)
outPoint.m_Z = 0;
}
}
else
helper.Out.z = smooth * (helper.In.z * scale * m_ZLift + (posNeg * boost));
if (m_RSwtch <= 1)
{
loc = int(rand.Frand01<T>() * 6);
tempx = m_Seg60[loc].x;
tempy = m_Seg60[loc].y;
scale3 = 1;
m_FCycle++;
}
else
{
loc = int(rand.Frand01<T>() * 3);
tempx = m_Seg120[loc].x;
tempy = m_Seg120[loc].y;
scale3 = m_3side;
m_BCycle++;
}
smRotxFP = (smooth * scale * sumX * tempx) - (smooth * scale * sumY * tempy);
smRotyFP = (smooth * scale * sumY * tempx) + (smooth * scale * sumX * tempy);
smRotxFT = (helper.In.x * smooth * scale * tempx) - (helper.In.y * smooth * scale * tempy);
smRotyFT = (helper.In.y * smooth * scale * tempx) + (helper.In.x * smooth * scale * tempy);
helper.Out.x = sumX * (1 - smooth) + smRotxFP + smRotxFT + smooth * lrmaj * scale3 * tempx;
helper.Out.y = sumY * (1 - smooth) + smRotyFP + smRotyFT + smooth * lrmaj * scale3 * tempy;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber();
string weight = WeightDefineString();
string index = ss2.str() + "]";
string stateIndex = ss2.str();
string majp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string zlift = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string side3 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seg60xStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 6;//Precalc.
string seg60yStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 6;
string seg120xStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 3;
string seg120yStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 3;
string rswtch = "varState->" + m_Params[i++].Name() + stateIndex;//State.
string fcycle = "varState->" + m_Params[i++].Name() + stateIndex;
string bcycle = "varState->" + m_Params[i++].Name() + stateIndex;
ss << "\t{\n"
<< "\t\tif (" << fcycle << " > 5)\n"
<< "\t\t{\n"
<< "\t\t " << fcycle << " = 0;\n"
<< "\t\t " << rswtch << " = trunc(MwcNext01(mwc) * 3.0);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (" << bcycle << " > 2)\n"
<< "\t\t{\n"
<< "\t\t " << bcycle << " = 0;\n"
<< "\t\t " << rswtch << " = trunc(MwcNext01(mwc) * 3.0);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\treal_t lrmaj = " << weight << ";\n"
<< "\t\treal_t smooth = 1;\n"
<< "\t\treal_t smRotxFP = 0;\n"
<< "\t\treal_t smRotyFP = 0;\n"
<< "\t\treal_t smRotxFT = 0;\n"
<< "\t\treal_t smRotyFT = 0;\n"
<< "\t\treal_t gentleZ = 0;\n"
<< "\t\treal_t sumX, sumY, sumZ;\n\n";
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss
<< "\t\tsumX = outPoint->m_X;\n"
<< "\t\tsumY = outPoint->m_Y;\n"
<< "\t\tsumZ = outPoint->m_Z;\n"
<< "\t\toutPoint->m_X = 0;\n"
<< "\t\toutPoint->m_Y = 0;\n";
}
else
{
ss
<< "\t\tsumX = vIn.x;\n"
<< "\t\tsumY = vIn.y;\n"
<< "\t\tsumZ = vIn.z;\n";
}
ss
<< "\n"
<< "\t\tif (fabs(lrmaj) <= 0.5)\n"
<< "\t\t smooth = lrmaj * 2;\n"
<< "\t\telse\n"
<< "\t\t smooth = 1;\n"
<< "\n"
<< "\t\tint posNeg = 1;\n"
<< "\t\tint loc;\n"
<< "\t\treal_t boost = 0;\n"
<< "\t\treal_t scale = " << scale << ";\n"//Temp will be used from here on.
<< "\t\treal_t scale3;\n"
<< "\t\treal_t tempx, tempy;\n"
<< "\n"
<< "\t\tif (MwcNext01(mwc) < 0.5)\n"
<< "\t\t posNeg = -1;\n"
<< "\n"
<< "\t\tint majplane = 0;\n"
<< "\t\treal_t abmajp = fabs(" << majp << ");\n"
<< "\n"
<< "\t\tif (abmajp <= 1)\n"
<< "\t\t{\n"
<< "\t\t majplane = 0;\n"
<< "\t\t boost = 0;\n"
<< "\t\t}\n"
<< "\t\telse if (abmajp > 1 && abmajp < 2)\n"
<< "\t\t{\n"
<< "\t\t majplane = 1;\n"
<< "\t\t boost = 0;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t majplane = 2;\n"
<< "\t\t boost = (abmajp - 2) * 0.5;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (majplane == 0)\n"
<< "\t\t{\n"
<< "\t\t vOut.z = smooth * vIn.z * scale * " << zlift << ";\n"
<< "\t\t}\n"
<< "\t\telse if (majplane == 1 && " << majp << " < 0)\n"
<< "\t\t{\n"
<< "\t\t if (" << majp << " < -1 && " << majp << " >= -2)\n"
<< "\t\t gentleZ = (abmajp - 1);\n"
<< "\t\t else\n"
<< "\t\t gentleZ = 1;\n"
<< "\n"
<< "\t\t if (posNeg < 0)\n"
<< "\t\t vOut.z = -2 * (sumZ * gentleZ);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (majplane == 2 && " << majp << " < 0)\n"
<< "\t\t{\n"
<< "\t\t if (posNeg > 0)\n"
<< "\t\t {\n"
<< "\t\t vOut.z = (smooth * fma(vIn.z * scale, " << zlift << ", boost));\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.z = fma(smooth * posNeg, fma(vIn.z * scale, " << zlift << ", boost), sumZ - (2 * smooth * sumZ));\n";
if (m_VarType == eVariationType::VARTYPE_REG)
ss << "\t\t outPoint->m_Z = 0;\n";
ss
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t vOut.z = smooth * fma(vIn.z * scale, " << zlift << ", (posNeg * boost));\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (" << rswtch << " <= 1)\n"
<< "\t\t{\n"
<< "\t\t loc = (int)(MwcNext01(mwc) * 6);\n"
<< "\t\t tempx = parVars[" << seg60xStartIndex << " + loc];\n"
<< "\t\t tempy = parVars[" << seg60yStartIndex << " + loc];\n"
<< "\t\t scale3 = 1;\n"
<< "\t\t " << fcycle << " = " << fcycle << " + 1;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t loc = (int)(MwcNext01(mwc) * 3);\n"
<< "\t\t tempx = parVars[" << seg120xStartIndex << " + loc];\n"
<< "\t\t tempy = parVars[" << seg120yStartIndex << " + loc];\n"
<< "\t\t scale3 = " << side3 << ";\n"
<< "\t\t " << bcycle << " = " << bcycle << " + 1;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tsmRotxFP = fma(smooth * scale, sumX * tempx, -(smooth * scale * sumY * tempy));\n"
<< "\t\tsmRotyFP = fma(smooth * scale, sumY * tempx, (smooth * scale * sumX * tempy));\n"
<< "\t\tsmRotxFT = fma(vIn.x * smooth, scale * tempx, -(vIn.y * smooth * scale * tempy));\n"
<< "\t\tsmRotyFT = fma(vIn.y * smooth, scale * tempx, (vIn.x * smooth * scale * tempy));\n"
<< "\t\tvOut.x = fma(sumX, (1 - smooth), fma(smooth * lrmaj, scale3 * tempx, smRotxFP + smRotxFT));\n"
<< "\t\tvOut.y = fma(sumY, (1 - smooth), fma(smooth * lrmaj, scale3 * tempy, smRotyFP + smRotyFT));\n"
<< "\t}\n";
return ss.str();
}
virtual string StateInitOpenCLString() const override
{
ostringstream ss, ss2;
ss2 << "_" << XformIndexInEmber();
string stateIndex = ss2.str();
string prefix = Prefix();
//CPU sets fycle and bcycle to 0 at the beginning in Precalc().
//Set to random in OpenCL since a value can't be set once and kept between kernel launches without writing it back to an OpenCL buffer.
//This doesn't seem to make a difference from setting them to 0, but do it anyway because it seems more correct.
ss << "\n\tvarState." << prefix << "hexnix3D_rswtch" << stateIndex << " = trunc(MwcNext01(&mwc) * 3.0);";
ss << "\n\tvarState." << prefix << "hexnix3D_fcycle" << stateIndex << " = trunc(MwcNext01(&mwc) * 5.0);";
ss << "\n\tvarState." << prefix << "hexnix3D_bcycle" << stateIndex << " = trunc(MwcNext01(&mwc) * 2.0);";
return ss.str();
}
virtual void Precalc() override
{
T hlift = std::sin(T(M_PI) / 3);
m_RSwtch = std::trunc(QTIsaac<ISAAC_SIZE, ISAAC_INT>::LockedFrand01<T>() * 3);//Chooses 6 or 3 nodes.
m_FCycle = 0;
m_BCycle = 0;
m_Seg60[0].x = 1;
m_Seg60[1].x = T(0.5);
m_Seg60[2].x = T(-0.5);
m_Seg60[3].x = -1;
m_Seg60[4].x = T(-0.5);
m_Seg60[5].x = T(0.5);
m_Seg60[0].y = 0;
m_Seg60[1].y = -hlift;
m_Seg60[2].y = -hlift;
m_Seg60[3].y = 0;
m_Seg60[4].y = hlift;
m_Seg60[5].y = hlift;
m_Seg120[0].x = 0;
m_Seg120[1].x = std::cos(7 * T(M_PI) / 6);
m_Seg120[2].x = std::cos(11 * T(M_PI) / 6);
m_Seg120[0].y = -1;
m_Seg120[1].y = T(0.5);
m_Seg120[2].y = T(0.5);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.reserve(25);
m_Params.push_back(ParamWithName<T>(&m_MajP, prefix + "hexnix3D_majp", 1, eParamType::REAL));
m_Params.push_back(ParamWithName<T>(&m_Scale, prefix + "hexnix3D_scale", T(0.25), eParamType::REAL));
m_Params.push_back(ParamWithName<T>(&m_ZLift, prefix + "hexnix3D_zlift"));
m_Params.push_back(ParamWithName<T>(&m_3side, prefix + "hexnix3D_3side", T(0.667), eParamType::REAL));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[0].x, prefix + "hexnix3D_seg60x0"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[1].x, prefix + "hexnix3D_seg60x1"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[2].x, prefix + "hexnix3D_seg60x2"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[3].x, prefix + "hexnix3D_seg60x3"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[4].x, prefix + "hexnix3D_seg60x4"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[5].x, prefix + "hexnix3D_seg60x5"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[0].y, prefix + "hexnix3D_seg60y0"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[1].y, prefix + "hexnix3D_seg60y1"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[2].y, prefix + "hexnix3D_seg60y2"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[3].y, prefix + "hexnix3D_seg60y3"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[4].y, prefix + "hexnix3D_seg60y4"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg60[5].y, prefix + "hexnix3D_seg60y5"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg120[0].x, prefix + "hexnix3D_seg120x0"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg120[1].x, prefix + "hexnix3D_seg120x1"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg120[2].x, prefix + "hexnix3D_seg120x2"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg120[0].y, prefix + "hexnix3D_seg120y0"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg120[1].y, prefix + "hexnix3D_seg120y1"));
m_Params.push_back(ParamWithName<T>(true, &m_Seg120[2].y, prefix + "hexnix3D_seg120y2"));
m_Params.push_back(ParamWithName<T>(true, true, &m_RSwtch, prefix + "hexnix3D_rswtch"));//State.
m_Params.push_back(ParamWithName<T>(true, true, &m_FCycle, prefix + "hexnix3D_fcycle"));
m_Params.push_back(ParamWithName<T>(true, true, &m_BCycle, prefix + "hexnix3D_bcycle"));
}
private:
T m_MajP;
T m_Scale;
T m_ZLift;
T m_3side;
v2T m_Seg60[6];//Precalc.
v2T m_Seg120[3];
T m_RSwtch;//State.
T m_FCycle;
T m_BCycle;
};
/// <summary>
/// hexcrop.
/// </summary>
template <typename T>
class HexcropVariation : public ParametricVariation<T>
{
public:
HexcropVariation(T weight = 1.0) : ParametricVariation<T>("hexcrop", eVariationId::VAR_HEXCROP, weight)
{
Init();
}
PARVARCOPY(HexcropVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
v2T i;
int c = 0, n = -1, j = 5;
i.x = helper.In.x + m_CenterX;
i.y = helper.In.y + m_CenterY;
while (++n < 6)
{
if ((m_P[n].y <= i.y && i.y < m_P[j].y) || (m_P[j].y <= i.y && i.y < m_P[n].y))
if (i.x < (m_P[j].x - m_P[n].x) * (i.y - m_P[n].y) / Zeps(m_P[j].y - m_P[n].y) + m_P[n].x)
c ^= 1;
j = n;
}
if (m_VarType == eVariationType::VARTYPE_REG)
{
helper.Out.x = c != 0 ? outPoint.m_X + i.x * m_Weight : m_Dropoff;
helper.Out.y = c != 0 ? outPoint.m_Y + i.y * m_Weight : m_Dropoff;
outPoint.m_X = 0;
outPoint.m_Y = 0;
}
else
{
helper.Out.x = c != 0 ? i.x * m_Weight : m_Dropoff;
helper.Out.y = c != 0 ? i.y * m_Weight : m_Dropoff;
}
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber();
string weight = WeightDefineString();
string index = ss2.str() + "]";
string stateIndex = ss2.str();
string scalex = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scaley = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centerx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centery = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dropoff = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pxStartIndex = ToUpper(m_Params[i].Name()) + stateIndex; i += 6;//Precalc.
string pyStartIndex = ToUpper(m_Params[i].Name()) + stateIndex;
ss << "\t{\n"
<< "\t\treal2 i;\n"
<< "\t\tint c = 0, n = -1, j = 5;\n"
<< "\n"
<< "\t\ti.x = vIn.x + " << centerx << ";\n"
<< "\t\ti.y = vIn.y + " << centery << ";\n"
<< "\n"
<< "\t\twhile (++n < 6)\n"
<< "\t\t{\n"
<< "\t\t int xjoff = " << pxStartIndex << " + j;\n"
<< "\t\t int xnoff = " << pxStartIndex << " + n;\n"
<< "\t\t int yjoff = " << pyStartIndex << " + j;\n"
<< "\t\t int ynoff = " << pyStartIndex << " + n;\n"
<< "\n"
<< "\t\t if ((parVars[ynoff] <= i.y && i.y < parVars[yjoff]) || (parVars[yjoff] <= i.y && i.y < parVars[ynoff]))\n"
<< "\t\t if (i.x < (parVars[xjoff] - parVars[xnoff]) * (i.y - parVars[ynoff]) / Zeps(parVars[yjoff] - parVars[ynoff]) + parVars[xnoff])\n"
<< "\t\t c ^= 1;\n"
<< "\n"
<< "\t\t j = n;\n"
<< "\t\t}\n"
<< "\n";
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss
<< "\t\tvOut.x = c != 0 ? fma(i.x, " << weight << ", outPoint->m_X) : " << dropoff << ";\n"
<< "\t\tvOut.y = c != 0 ? fma(i.y, " << weight << ", outPoint->m_Y) : " << dropoff << ";\n"
<< "\t\toutPoint->m_X = 0;\n"
<< "\t\toutPoint->m_Y = 0;\n";
}
else
{
ss
<< "\t\tvOut.x = c != 0 ? i.x * " << weight << " : " << dropoff << ";\n"
<< "\t\tvOut.y = c != 0 ? i.y * " << weight << " : " << dropoff << ";\n";
}
ss
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_P[0].x = T(-0.5000000000000000000000000000000) * m_ScaleX;
m_P[0].y = T(1.0606601717798212866012665431573) * m_ScaleY;
m_P[1].x = T(0.5000000000000000000000000000000) * m_ScaleX;
m_P[1].y = T(1.0606601717798212866012665431573) * m_ScaleY;
m_P[2].x = T(1.4142135623730950488016887242097) * m_ScaleX;
m_P[2].y = T(0.0000000000000000000000000000000) * m_ScaleY;
m_P[3].x = T(0.5000000000000000000000000000000) * m_ScaleX;
m_P[3].y = T(-1.0606601717798212866012665431573) * m_ScaleY;
m_P[4].x = T(-0.5000000000000000000000000000000) * m_ScaleX;
m_P[4].y = T(-1.0606601717798212866012665431573) * m_ScaleY;
m_P[5].x = T(-1.4142135623730950488016887242097) * m_ScaleX;
m_P[5].y = T(0.0000000000000000000000000000000) * m_ScaleY;
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.reserve(17);
m_Params.push_back(ParamWithName<T>(&m_ScaleX, prefix + "hexcrop_scale_x", 1));
m_Params.push_back(ParamWithName<T>(&m_ScaleY, prefix + "hexcrop_scale_y", 1));
m_Params.push_back(ParamWithName<T>(&m_CenterX, prefix + "hexcrop_center_x"));
m_Params.push_back(ParamWithName<T>(&m_CenterY, prefix + "hexcrop_center_y"));
m_Params.push_back(ParamWithName<T>(&m_Dropoff, prefix + "hexcrop_dropoff", T(1E10)));
m_Params.push_back(ParamWithName<T>(true, &m_P[0].x, prefix + "hexcrop_px0"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_P[1].x, prefix + "hexcrop_px1"));
m_Params.push_back(ParamWithName<T>(true, &m_P[2].x, prefix + "hexcrop_px2"));
m_Params.push_back(ParamWithName<T>(true, &m_P[3].x, prefix + "hexcrop_px3"));
m_Params.push_back(ParamWithName<T>(true, &m_P[4].x, prefix + "hexcrop_px4"));
m_Params.push_back(ParamWithName<T>(true, &m_P[5].x, prefix + "hexcrop_px5"));
m_Params.push_back(ParamWithName<T>(true, &m_P[0].y, prefix + "hexcrop_py0"));
m_Params.push_back(ParamWithName<T>(true, &m_P[1].y, prefix + "hexcrop_py1"));
m_Params.push_back(ParamWithName<T>(true, &m_P[2].y, prefix + "hexcrop_py2"));
m_Params.push_back(ParamWithName<T>(true, &m_P[3].y, prefix + "hexcrop_py3"));
m_Params.push_back(ParamWithName<T>(true, &m_P[4].y, prefix + "hexcrop_py4"));
m_Params.push_back(ParamWithName<T>(true, &m_P[5].y, prefix + "hexcrop_py5"));
}
private:
T m_ScaleX;
T m_ScaleY;
T m_CenterX;
T m_CenterY;
T m_Dropoff;
v2T m_P[6];//Precalc.
};
MAKEPREPOSTPARVAR(Bubble2, bubble2, BUBBLE2)
MAKEPREPOSTPARVAR(CircleLinear, CircleLinear, CIRCLELINEAR)
MAKEPREPOSTPARVARASSIGN(CircleRand, CircleRand, CIRCLERAND, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTPARVAR(CircleTrans1, CircleTrans1, CIRCLETRANS1)
MAKEPREPOSTPARVAR(Cubic3D, cubic3D, CUBIC3D)
MAKEPREPOSTPARVAR(CubicLattice3D, cubicLattice_3D, CUBIC_LATTICE3D)
MAKEPREPOSTVAR(Foci3D, foci_3D, FOCI3D)
MAKEPREPOSTPARVAR(FociP, foci_p, FOCI_P)
MAKEPREPOSTPARVAR(Ho, ho, HO)
MAKEPREPOSTPARVAR(Julia3Dq, julia3Dq, JULIA3DQ)
MAKEPREPOSTPARVARASSIGN(Line, line, LINE, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTPARVAR(Loonie2, loonie2, LOONIE2)
MAKEPREPOSTPARVAR(Loonie3, loonie3, LOONIE3)
MAKEPREPOSTPARVAR(Loonie3D, loonie_3D, LOONIE3D)
MAKEPREPOSTPARVAR(Mcarpet, mcarpet, MCARPET)
MAKEPREPOSTPARVAR(Waves23D, waves2_3D, WAVES23D)
MAKEPREPOSTPARVARASSIGN(Pie3D, pie3D, PIE3D, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTPARVAR(Popcorn23D, popcorn2_3D, POPCORN23D)
MAKEPREPOSTVAR(Sinusoidal3D, sinusoidal3D, SINUSOIDAL3D)
MAKEPREPOSTPARVAR(Scry3D, scry_3D, SCRY3D)
MAKEPREPOSTPARVAR(Shredlin, shredlin, SHRED_LIN)
MAKEPREPOSTPARVAR(SplitBrdr, SplitBrdr, SPLIT_BRDR)
MAKEPREPOSTVAR(Wdisc, wdisc, WDISC)
MAKEPREPOSTPARVAR(Falloff, falloff, FALLOFF)
MAKEPREPOSTPARVAR(Falloff2, falloff2, FALLOFF2)
MAKEPREPOSTPARVAR(Falloff3, falloff3, FALLOFF3)
MAKEPREPOSTPARVAR(Xtrb, xtrb, XTRB)
MAKEPREPOSTPARVAR(Hexaplay3D, hexaplay3D, HEXAPLAY3D)
MAKEPREPOSTPARVAR(Hexnix3D, hexnix3D, HEXNIX3D)
MAKEPREPOSTPARVAR(Hexcrop, hexcrop, HEXCROP)
}