mirror of
https://bitbucket.org/mfeemster/fractorium.git
synced 2025-01-21 21:20:07 -05:00
8c66fa2c24
-Fix crash on palette editor when opening it with certain palette files in a particular order. -An xform with only a post variation in it might have showed up wrong. -The xforms combo box was obscuring the name of the xforms by not being wide enough. -Make variation state preservation be a little bit more correct in OpenCL. --Code changes -Make all iterators on the CPU use a temporary point.
1263 lines
39 KiB
C++
1263 lines
39 KiB
C++
#pragma once
|
||
|
||
#include "VariationList.h"
|
||
#include "Interpolate.h"
|
||
|
||
/// <summary>
|
||
/// Xform class.
|
||
/// </summary>
|
||
|
||
namespace EmberNs
|
||
{
|
||
/// <summary>
|
||
/// Xform and Ember need each other, but each can't include the other.
|
||
/// So Ember includes this file, and Ember is declared as a forward declaration here.
|
||
/// </summary>
|
||
template <typename T> class Ember;
|
||
|
||
/// <summary>
|
||
/// If both polymorphism and templating are needed, uncomment this, fill it out and derive from it.
|
||
/// </summary>
|
||
//class EMBER_API XformBase
|
||
//{
|
||
//};
|
||
|
||
/// <summary>
|
||
/// An xform is a pre affine transform, a list of variations, and an optional final affine transform.
|
||
/// This is what gets applied to a point for each iteration.
|
||
/// Template argument expected to be float or double.
|
||
/// </summary>
|
||
template <typename T>
|
||
class EMBER_API Xform
|
||
{
|
||
public:
|
||
/// <summary>
|
||
/// Default constructor which calls Init() to set default or out of bounds values.
|
||
/// When useDefaults is true, Pre and post affine are defaulted to the identity matrix.
|
||
/// </summary>
|
||
/// <param name="useDefaults">Use reasonable default if true, else use out of bounds values.</param>
|
||
Xform(bool useDefaults = true)
|
||
{
|
||
Init(useDefaults);
|
||
}
|
||
|
||
/// <summary>
|
||
/// Constructor that takes default arguments. Mostly used for testing.
|
||
/// Post affine is defaulted to the identity matrix.
|
||
/// </summary>
|
||
/// <param name="density">The probability that this xform is chosen</param>
|
||
/// <param name="colorX">The color index</param>
|
||
/// <param name="colorSpeed">The color speed</param>
|
||
/// <param name="opacity">The opacity</param>
|
||
/// <param name="a">The a value of the pre affine transform</param>
|
||
/// <param name="d">The d value of the pre affine transform</param>
|
||
/// <param name="b">The b value of the pre affine transform</param>
|
||
/// <param name="e">The e value of the pre affine transform</param>
|
||
/// <param name="c">The c value of the pre affine transform</param>
|
||
/// <param name="f">The f value of the pre affine transform</param>
|
||
/// <param name="pa">The a value of the post affine transform. Default: 1.</param>
|
||
/// <param name="pd">The d value of the post affine transform. Default: 0.</param>
|
||
/// <param name="pb">The b value of the post affine transform. Default: 0.</param>
|
||
/// <param name="pe">The e value of the post affine transform. Default: 1.</param>
|
||
/// <param name="pc">The c value of the post affine transform. Default: 0.</param>
|
||
/// <param name="pf">The f value of the post affine transform. Default: 0.</param>
|
||
Xform(T weight, T colorX, T colorSpeed, T opacity,
|
||
T a, T d, T b, T e, T c, T f,
|
||
T pa = 1,
|
||
T pd = 0,
|
||
T pb = 0,
|
||
T pe = 1,
|
||
T pc = 0,
|
||
T pf = 0)
|
||
: Xform()
|
||
|
||
{
|
||
m_Weight = weight;
|
||
m_ColorX = colorX;
|
||
m_ColorSpeed = colorSpeed;
|
||
m_Opacity = opacity;
|
||
m_Affine.A(a);
|
||
m_Affine.B(b);
|
||
m_Affine.C(c);
|
||
m_Affine.D(d);
|
||
m_Affine.E(e);
|
||
m_Affine.F(f);
|
||
m_Post.A(pa);
|
||
m_Post.B(pb);
|
||
m_Post.C(pc);
|
||
m_Post.D(pd);
|
||
m_Post.E(pe);
|
||
m_Post.F(pf);
|
||
m_HasPre = !m_Affine.IsID();
|
||
m_HasPost = !m_Post.IsID();
|
||
m_HasPreOrRegularVars = PreVariationCount() > 0 || VariationCount() > 0;
|
||
CacheColorVals();//Init already called this, but must call again since color was assigned above.
|
||
}
|
||
|
||
/// <summary>
|
||
/// Default copy constructor.
|
||
/// </summary>
|
||
/// <param name="xform">The Xform object to copy</param>
|
||
Xform(const Xform<T>& xform)
|
||
: m_ParentEmber(nullptr)//Hack.
|
||
{
|
||
Xform<T>::operator=<T>(xform);
|
||
}
|
||
|
||
/// <summary>
|
||
/// Copy constructor to copy an Xform object of type U.
|
||
/// </summary>
|
||
/// <param name="xform">The Xform object to copy</param>
|
||
template <typename U>
|
||
Xform(const Xform<U>& xform)
|
||
: m_ParentEmber(nullptr)//Hack.
|
||
{
|
||
Xform<T>::operator=<U>(xform);
|
||
}
|
||
|
||
/// <summary>
|
||
/// Deletes each element of the variation vector and clears it.
|
||
/// </summary>
|
||
~Xform()
|
||
{
|
||
ClearAndDeleteVariations();
|
||
}
|
||
|
||
/// <summary>
|
||
/// Default assignment operator.
|
||
/// </summary>
|
||
/// <param name="xform">The Xform object to copy</param>
|
||
Xform<T>& operator = (const Xform<T>& xform)
|
||
{
|
||
if (this != &xform)
|
||
Xform<T>::operator=<T>(xform);
|
||
|
||
return *this;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Assignment operator to assign a Xform object of type U.
|
||
/// This will delete all of the variations in the vector
|
||
/// and repopulate it with copes of the variation in xform's vector.
|
||
/// All other values are assigned directly.
|
||
/// </summary>
|
||
/// <param name="xform">The Xform object to copy.</param>
|
||
/// <returns>Reference to updated self</returns>
|
||
template <typename U>
|
||
Xform<T>& operator = (const Xform<U>& xform)
|
||
{
|
||
m_Affine = xform.m_Affine;
|
||
m_Post = xform.m_Post;
|
||
m_Weight = T(xform.m_Weight);
|
||
m_ColorX = T(xform.m_ColorX);
|
||
m_ColorY = T(xform.m_ColorY);
|
||
m_DirectColor = T(xform.m_DirectColor);
|
||
m_ColorSpeed = T(xform.m_ColorSpeed);
|
||
m_Animate = T(xform.m_Animate);
|
||
m_Opacity = T(xform.m_Opacity);
|
||
CacheColorVals();
|
||
m_HasPre = xform.HasPre();
|
||
m_HasPost = xform.HasPost();
|
||
m_HasPreOrRegularVars = xform.PreVariationCount() > 0 || xform.VariationCount() > 0;
|
||
m_Wind[0] = T(xform.m_Wind[0]);
|
||
m_Wind[1] = T(xform.m_Wind[1]);
|
||
m_MotionFreq = T(xform.m_MotionFreq);
|
||
m_MotionFunc = xform.m_MotionFunc;
|
||
m_MotionOffset = T(xform.m_MotionOffset);
|
||
ClearAndDeleteVariations();
|
||
|
||
//Must manually add them via the AddVariation() function so that
|
||
//the variation's m_IndexInXform member gets properly set to this.
|
||
for (size_t i = 0; i < xform.TotalVariationCount(); i++)
|
||
{
|
||
Variation<T>* var = nullptr;
|
||
|
||
if (Variation<U>* varOrig = xform.GetVariation(i))
|
||
{
|
||
varOrig->Copy(var);//Will convert from type U to type T.
|
||
AddVariation(var);//Will internally call SetPrecalcFlags().
|
||
}
|
||
}
|
||
|
||
if (TotalVariationCount() == 0)
|
||
SetPrecalcFlags();
|
||
|
||
//If this xform was already part of a different ember, then do not assign, else do.
|
||
if (!m_ParentEmber && (typeid(T) == typeid(U)))
|
||
m_ParentEmber = reinterpret_cast<Ember<T>*>(xform.ParentEmber());
|
||
|
||
CopyCont(m_Xaos, xform.XaosVec());
|
||
CopyCont(m_Motion, xform.m_Motion);
|
||
m_Name = xform.m_Name;
|
||
return *this;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Init default values.
|
||
/// Non default values are used to signify an uninitialized state. This is useful for
|
||
/// doing motion interpolation where we don't want to apply motion to all fields. By setting
|
||
/// unreasonable values before parsing, then only assigning the ones the motion tags specified,
|
||
/// it is clear which fields are intended to have motion applied to them.
|
||
/// </summary>
|
||
/// <param name="useDefaults">Use reasonable default if true, else use out of bounds values.</param>
|
||
void Init(bool useDefaults = true)
|
||
{
|
||
static size_t count = 0;
|
||
|
||
if (useDefaults)
|
||
{
|
||
m_Weight = 0;
|
||
m_ColorSpeed = T(0.5);
|
||
m_Animate = 1;
|
||
m_ColorX = T(count & 1);
|
||
m_ColorY = 0;
|
||
m_DirectColor = 1;
|
||
m_Opacity = 1;
|
||
m_Affine.A(1);
|
||
m_Affine.B(0);
|
||
m_Affine.C(0);
|
||
m_Affine.D(0);
|
||
m_Affine.E(1);
|
||
m_Affine.F(0);
|
||
m_Post.A(1);
|
||
m_Post.B(0);
|
||
m_Post.C(0);
|
||
m_Post.D(0);
|
||
m_Post.E(1);
|
||
m_Post.F(0);
|
||
m_Wind[0] = 0;
|
||
m_Wind[1] = 0;
|
||
m_MotionFreq = 0;
|
||
m_MotionOffset = 0;
|
||
}
|
||
else
|
||
{
|
||
m_Weight = EMPTYFIELD;
|
||
m_ColorSpeed = EMPTYFIELD;
|
||
m_Animate = EMPTYFIELD;
|
||
m_ColorX = EMPTYFIELD;
|
||
m_ColorY = EMPTYFIELD;
|
||
m_DirectColor = EMPTYFIELD;
|
||
m_Opacity = EMPTYFIELD;
|
||
m_Affine.A(EMPTYFIELD);
|
||
m_Affine.B(EMPTYFIELD);
|
||
m_Affine.C(EMPTYFIELD);
|
||
m_Affine.D(EMPTYFIELD);
|
||
m_Affine.E(EMPTYFIELD);
|
||
m_Affine.F(EMPTYFIELD);
|
||
m_Post.A(EMPTYFIELD);
|
||
m_Post.B(EMPTYFIELD);
|
||
m_Post.C(EMPTYFIELD);
|
||
m_Post.D(EMPTYFIELD);
|
||
m_Post.E(EMPTYFIELD);
|
||
m_Post.F(EMPTYFIELD);
|
||
m_Wind[0] = EMPTYFIELD;
|
||
m_Wind[1] = EMPTYFIELD;
|
||
m_MotionFreq = EMPTYFIELD;
|
||
m_MotionOffset = EMPTYFIELD;
|
||
}
|
||
|
||
m_MotionFunc = eMotion::MOTION_SIN;
|
||
m_Motion.clear();
|
||
m_NeedPrecalcSumSquares = false;
|
||
m_NeedPrecalcSqrtSumSquares = false;
|
||
m_NeedPrecalcAngles = false;
|
||
m_NeedPrecalcAtanXY = false;
|
||
m_NeedPrecalcAtanYX = false;
|
||
m_HasPre = false;
|
||
m_HasPost = false;
|
||
m_HasPreOrRegularVars = false;
|
||
m_ParentEmber = nullptr;
|
||
m_PreVariations.reserve(MAX_VARS_PER_XFORM);
|
||
m_Variations.reserve(MAX_VARS_PER_XFORM);
|
||
m_PostVariations.reserve(MAX_VARS_PER_XFORM);
|
||
CacheColorVals();
|
||
count++;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Add a pointer to a variation which will be deleted on destruction so the caller should not delete.
|
||
/// This checks if the total number of variations is less than or equal to MAX_VARS_PER_XFORM.
|
||
/// It also checks if the variation is already present, in which case it doesn't add.
|
||
/// If add, set all precalcs.
|
||
/// </summary>
|
||
/// <param name="variation">Pointer to a varation to add</param>
|
||
/// <returns>True if the successful, else false.</returns>
|
||
bool AddVariation(Variation<T>* variation)
|
||
{
|
||
if (variation && (GetVariationById(variation->VariationId()) == nullptr))
|
||
{
|
||
string name = variation->Name();
|
||
bool pre = name.find("pre_") == 0;
|
||
bool post = name.find("post_") == 0;
|
||
vector<Variation<T>*>* vec;
|
||
|
||
if (pre)
|
||
vec = &m_PreVariations;
|
||
else if (post)
|
||
vec = &m_PostVariations;
|
||
else
|
||
vec = &m_Variations;
|
||
|
||
if (vec->size() < MAX_VARS_PER_XFORM)
|
||
{
|
||
vec->push_back(variation);
|
||
|
||
//Flatten must always be last.
|
||
for (size_t i = 0; i < vec->size(); i++)
|
||
{
|
||
if ((i != vec->size() - 1) && ((*vec)[i]->Name().find("flatten") != string::npos))
|
||
{
|
||
std::swap((*vec)[i], (*vec)[vec->size() - 1]);
|
||
break;
|
||
}
|
||
}
|
||
|
||
SetPrecalcFlags();
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Get a pointer to the variation at the specified index.
|
||
/// </summary>
|
||
/// <param name="index">The index in the list to retrieve</param>
|
||
/// <returns>A pointer to the variation at the index if in range, else nullptr.</returns>
|
||
Variation<T>* GetVariation(size_t index) const
|
||
{
|
||
size_t count = 0;
|
||
Variation<T>* var = nullptr;
|
||
const_cast<Xform<T>*>(this)->AllVarsFunc([&] (vector<Variation<T>*>& variations, bool & keepGoing)
|
||
{
|
||
for (size_t i = 0; i < variations.size(); i++, count++)
|
||
{
|
||
if (count == index)
|
||
{
|
||
var = variations[i];
|
||
keepGoing = false;
|
||
break;
|
||
}
|
||
}
|
||
});
|
||
return var;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Get a pointer to the variation with the specified ID.
|
||
/// </summary>
|
||
/// <param name="id">The ID to search for</param>
|
||
/// <returns>A pointer to the variation if found, else nullptr.</returns>
|
||
Variation<T>* GetVariationById(eVariationId id) const
|
||
{
|
||
Variation<T>* var = nullptr;
|
||
const_cast<Xform<T>*>(this)->AllVarsFunc([&] (vector<Variation<T>*>& variations, bool & keepGoing)
|
||
{
|
||
for (auto v : variations)
|
||
{
|
||
if (v && v->VariationId() == id)
|
||
{
|
||
var = v;
|
||
keepGoing = false;
|
||
break;
|
||
}
|
||
}
|
||
});
|
||
return var;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Get a pointer to the variation with the specified name.
|
||
/// </summary>
|
||
/// <param name="name">The name to search for</param>
|
||
/// <returns>A pointer to the variation if found, else nullptr.</returns>
|
||
Variation<T>* GetVariationByName(const string& name) const
|
||
{
|
||
Variation<T>* var = nullptr;
|
||
const_cast<Xform<T>*>(this)->AllVarsFunc([&] (vector<Variation<T>*>& variations, bool & keepGoing)
|
||
{
|
||
for (auto v : variations)
|
||
{
|
||
if (v && v->Name() == name)
|
||
{
|
||
var = v;
|
||
keepGoing = false;
|
||
break;
|
||
}
|
||
}
|
||
});
|
||
return var;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Get the index in the list of the variation pointer.
|
||
/// Note this is searching for the exact pointer address and not the name or ID of the variation.
|
||
/// </summary>
|
||
/// <param name="var">A pointer to the variation to search for</param>
|
||
/// <returns>The index of the variation if found, else -1</returns>
|
||
intmax_t GetVariationIndex(Variation<T>* var) const
|
||
{
|
||
intmax_t count = 0, index = -1;
|
||
const_cast<Xform<T>*>(this)->AllVarsFunc([&] (vector<Variation<T>*>& variations, bool & keepGoing)
|
||
{
|
||
for (size_t i = 0; i < variations.size(); i++, count++)
|
||
{
|
||
if (variations[i] == var)
|
||
{
|
||
index = count;
|
||
keepGoing = false;
|
||
break;
|
||
}
|
||
}
|
||
});
|
||
return index;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Delete the variation with the matching ID.
|
||
/// Update precalcs if deletion successful.
|
||
/// </summary>
|
||
/// <param name="id">The ID to search for</param>
|
||
/// <returns>True if deletion successful, else false.</returns>
|
||
bool DeleteVariationById(eVariationId id)
|
||
{
|
||
bool found = false;
|
||
AllVarsFunc([&] (vector<Variation<T>*>& variations, bool & keepGoing)
|
||
{
|
||
for (size_t i = 0; i < variations.size(); i++)
|
||
{
|
||
if (variations[i] && variations[i]->VariationId() == id)
|
||
{
|
||
delete variations[i];
|
||
variations.erase(variations.begin() + i);
|
||
found = true;
|
||
}
|
||
}
|
||
});
|
||
|
||
if (found)
|
||
SetPrecalcFlags();
|
||
|
||
return found;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Delete the motion elements.
|
||
/// </summary>
|
||
void DeleteMotionElements()
|
||
{
|
||
m_Motion.clear();
|
||
}
|
||
|
||
/// <summary>
|
||
/// Delete all variations, clear the list and update precalc flags.
|
||
/// </summary>
|
||
void ClearAndDeleteVariations()
|
||
{
|
||
AllVarsFunc([&] (vector<Variation<T>*>& variations, bool & keepGoing) { ClearVec<Variation<T>>(variations); });
|
||
SetPrecalcFlags();
|
||
}
|
||
|
||
/// <summary>
|
||
/// Reset this xform to be totally empty by clearing all variations, resetting both affines to the
|
||
/// identity matrix, clearing xaos, color, visibility, wind, animate and setting name
|
||
/// to the empty string.
|
||
/// Note that this also sets the parent ember to nullptr, so if this xform is reused after calling Clear(),
|
||
/// the caller must reset the parent ember to whatever ember they add it to again.
|
||
/// </summary>
|
||
void Clear()
|
||
{
|
||
ClearAndDeleteVariations();
|
||
DeleteMotionElements();
|
||
m_Affine.MakeID();
|
||
m_Post.MakeID();
|
||
m_Xaos.clear();
|
||
m_ParentEmber = nullptr;
|
||
m_ColorSpeedCache = 0;
|
||
m_OneMinusColorCache = 0;
|
||
m_Opacity = 1;
|
||
m_Animate = 0;
|
||
m_Wind[0] = 0;
|
||
m_Wind[1] = 0;
|
||
m_Name = "";
|
||
}
|
||
|
||
/// <summary>
|
||
/// Compute color cache values: color speed and one minus color speed.
|
||
/// </summary>
|
||
void CacheColorVals()
|
||
{
|
||
//Figure out which is right. //TODO.
|
||
//m_ColorSpeedCache = m_ColorX * (1 - m_ColorSpeed) / 2;//Apo style.
|
||
//m_OneMinusColorCache = (1 + m_ColorSpeed) / 2;
|
||
m_ColorSpeedCache = m_ColorSpeed * m_ColorX;//Flam3 style.
|
||
m_OneMinusColorCache = T(1.0) - m_ColorSpeed;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Return the xaos value at the specified index.
|
||
/// If the index is out of range, return 1.
|
||
/// This has the convenient effect that xaos is not present
|
||
/// by default and only has a value if explicitly added.
|
||
/// </summary>
|
||
/// <param name="i">The xaos index to retrieve</param>
|
||
/// <returns>The value at the index if in range, else 1.</returns>
|
||
T Xaos(size_t i) const
|
||
{
|
||
return i < m_Xaos.size() ? m_Xaos[i] : 1;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Set the xaos value for a given xform index.
|
||
/// If the index is out of range, a 1 value will be added
|
||
/// to the xaos vector repeatedly until it's one less than the
|
||
/// requested index in length, then finally add the specified value.
|
||
/// </summary>
|
||
/// <param name="i">The index to set</param>
|
||
/// <param name="val">The xaos value to set it to</param>
|
||
void SetXaos(size_t i, T val)
|
||
{
|
||
if (i < m_Xaos.size())
|
||
{
|
||
m_Xaos[i] = val;
|
||
}
|
||
else
|
||
{
|
||
while (m_Xaos.size() <= i)
|
||
m_Xaos.push_back(1);
|
||
|
||
m_Xaos[i] = val;
|
||
}
|
||
}
|
||
|
||
/// <summary>
|
||
/// Determine if any xaos value in the vector up to the xform count
|
||
/// of the parent ember is anything other than 1.
|
||
/// </summary>
|
||
/// <returns>True if found, else false.</returns>
|
||
bool XaosPresent() const
|
||
{
|
||
if (m_ParentEmber)
|
||
for (size_t i = 0; i < m_Xaos.size(); i++)
|
||
if (i < m_ParentEmber->XformCount())
|
||
if (!IsClose<T>(m_Xaos[i], 1))
|
||
return true;//If at least one entry is not equal to 1, then xaos is present.
|
||
|
||
return false;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Truncate the xaos vector to match the xform count of the parent ember.
|
||
/// </summary>
|
||
void TruncateXaos()
|
||
{
|
||
if (m_ParentEmber)
|
||
while (m_Xaos.size() > m_ParentEmber->XformCount())
|
||
m_Xaos.pop_back();
|
||
}
|
||
|
||
/// <summary>
|
||
/// Remove all xaos from this xform.
|
||
/// </summary>
|
||
void ClearXaos()
|
||
{
|
||
m_Xaos.clear();
|
||
}
|
||
|
||
/// <summary>
|
||
/// Normalize the variation weights.
|
||
/// </summary>
|
||
void NormalizeVariationWeights()
|
||
{
|
||
AllVarsFunc([&] (vector<Variation<T>*>& variations, bool & keepGoing)
|
||
{
|
||
T norm = 0;
|
||
|
||
for (auto var : variations) norm += var->m_Weight;
|
||
|
||
for (auto var : variations) var->m_Weight /= Zeps(norm);//Ensure a divide by zero never happens.
|
||
});
|
||
}
|
||
|
||
/// <summary>
|
||
/// Applies this xform to the point passed in and saves the result in the out point.
|
||
/// It's important to understand what happens here since it's the inner core of the algorithm.
|
||
/// See the internal comments for step by step details.
|
||
/// </summary>
|
||
/// <param name="inPoint">The initial point from the previous iteration</param>
|
||
/// <param name="outPoint">The output point</param>
|
||
/// <param name="rand">The random context to use</param>
|
||
/// <returns>True if a bad value was calculated, else false.</returns>
|
||
bool Apply(Point<T>* inPoint, Point<T>* outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand)
|
||
{
|
||
size_t i;
|
||
//This must be local, rather than a member, because this function can be called
|
||
//from multiple threads. If it were a member, they'd be clobbering each others' values.
|
||
IteratorHelper<T> iterHelper;
|
||
//Calculate the color coordinate/index in the palette to look up later when accumulating the output point
|
||
//to the histogram. Calculate this value by interpolating between the index value of the
|
||
//last iteration with the one specified in this xform. Note that some cached values are used
|
||
//to reduce the amount of processing.
|
||
outPoint->m_Opacity = m_Opacity;
|
||
iterHelper.m_Color.x = outPoint->m_ColorX = m_ColorSpeedCache + (m_OneMinusColorCache * inPoint->m_ColorX);
|
||
|
||
//Compute the pre affine portion of the transform.
|
||
//These x, y values are what get passed to the variations below.
|
||
//Note that they are not changed after this, except in the case of pre_ variations.
|
||
if (m_HasPre)
|
||
{
|
||
iterHelper.m_TransX = (m_Affine.A() * inPoint->m_X) + (m_Affine.B() * inPoint->m_Y) + m_Affine.C();
|
||
iterHelper.m_TransY = (m_Affine.D() * inPoint->m_X) + (m_Affine.E() * inPoint->m_Y) + m_Affine.F();
|
||
}
|
||
else
|
||
{
|
||
iterHelper.m_TransX = inPoint->m_X;
|
||
iterHelper.m_TransY = inPoint->m_Y;
|
||
}
|
||
|
||
iterHelper.m_TransZ = inPoint->m_Z;
|
||
|
||
if (m_HasPreOrRegularVars)
|
||
{
|
||
//Apply pre_ variations, these don't affect outPoint, only iterHelper.m_TransX, Y, Z.
|
||
for (i = 0; i < PreVariationCount(); i++)
|
||
{
|
||
iterHelper.In.x = iterHelper.m_TransX;//Read must be done before every pre variation because transX/Y are changing.
|
||
iterHelper.In.y = iterHelper.m_TransY;
|
||
iterHelper.In.z = iterHelper.m_TransZ;
|
||
m_PreVariations[i]->PrePostPrecalcHelper(iterHelper);//Apply per-variation precalc, the second parameter is unused for pre variations.
|
||
m_PreVariations[i]->Func(iterHelper, *outPoint, rand);
|
||
WritePre(iterHelper, m_PreVariations[i]->AssignType());
|
||
}
|
||
|
||
if (VariationCount() > 0)
|
||
{
|
||
//The original calculates sumsq and sumsqrt every time, regardless if they're used or not.
|
||
//With Precalc(), only calculate those values if they're needed.
|
||
Precalc(iterHelper);//Only need per-xform precalc with regular variations.
|
||
iterHelper.In.x = iterHelper.m_TransX;//Only need to read once with regular variations, because transX/Y are fixed.
|
||
iterHelper.In.y = iterHelper.m_TransY;
|
||
iterHelper.In.z = iterHelper.m_TransZ;
|
||
//Since these get summed, initialize them to zero.
|
||
outPoint->m_X = outPoint->m_Y = outPoint->m_Z = 0;
|
||
|
||
//Apply variations to the transformed points, accumulating each time, and store the final value in outPoint.
|
||
//Using a virtual function is about 3% faster than using a large case statement like the original did.
|
||
//Although research says that using virtual functions is slow, experience says otherwise. They execute
|
||
//with the exact same speed as both regular and static member functions.
|
||
for (i = 0; i < VariationCount(); i++)
|
||
{
|
||
m_Variations[i]->Func(iterHelper, *outPoint, rand);
|
||
outPoint->m_X += iterHelper.Out.x;
|
||
outPoint->m_Y += iterHelper.Out.y;
|
||
outPoint->m_Z += iterHelper.Out.z;
|
||
}
|
||
}
|
||
else//Only pre variations are present, no regular ones, so assign the affine transformed points directly to the output points.
|
||
{
|
||
outPoint->m_X = iterHelper.m_TransX;
|
||
outPoint->m_Y = iterHelper.m_TransY;
|
||
outPoint->m_Z = iterHelper.m_TransZ;
|
||
}
|
||
}
|
||
//Return the affine transformed points if no variations are present.
|
||
//Note this differs from flam3, which would just return zero in that scenario.
|
||
else
|
||
{
|
||
//There are no variations, so the affine transformed points can be assigned directly to the output points.
|
||
T inX = inPoint->m_X;
|
||
outPoint->m_X = 0;//(m_Affine.A() * inX) + (m_Affine.B() * inPoint->m_Y) + m_Affine.C();
|
||
outPoint->m_Y = 0;//(m_Affine.D() * inX) + (m_Affine.E() * inPoint->m_Y) + m_Affine.F();
|
||
outPoint->m_Z = 0;//inPoint->m_Z;
|
||
}
|
||
|
||
//Apply post variations, these will modify outPoint.
|
||
for (i = 0; i < PostVariationCount(); i++)
|
||
{
|
||
iterHelper.In.x = outPoint->m_X;//Read must be done before every post variation because the out point is changing.
|
||
iterHelper.In.y = outPoint->m_Y;
|
||
iterHelper.In.z = outPoint->m_Z;
|
||
m_PostVariations[i]->PrePostPrecalcHelper(iterHelper);//Apply per-variation precalc.
|
||
m_PostVariations[i]->Func(iterHelper, *outPoint, rand);
|
||
WritePost(iterHelper, *outPoint, m_PostVariations[i]->AssignType());
|
||
}
|
||
|
||
//Optionally apply the post affine transform if it's present.
|
||
if (m_HasPost)
|
||
{
|
||
T postX = outPoint->m_X;
|
||
outPoint->m_X = (m_Post.A() * postX) + (m_Post.B() * outPoint->m_Y) + m_Post.C();
|
||
outPoint->m_Y = (m_Post.D() * postX) + (m_Post.E() * outPoint->m_Y) + m_Post.F();
|
||
}
|
||
|
||
outPoint->m_ColorX = iterHelper.m_Color.x + m_DirectColor * (outPoint->m_ColorX - iterHelper.m_Color.x);
|
||
|
||
if (std::isnan(outPoint->m_ColorX))
|
||
outPoint->m_ColorX = 0;
|
||
|
||
//Has the trajectory of x or y gone either to infinity, or too close to zero?
|
||
return BadVal(outPoint->m_X) || BadVal(outPoint->m_Y)/* || BadVal(outPoint->m_Z)*/;
|
||
}
|
||
|
||
//Why are we not using template with member var addr as arg here?//TODO
|
||
#define APPMOT(x) \
|
||
do \
|
||
{ \
|
||
if (currentMot.x != EMPTYFIELD) \
|
||
x += currentMot.x * Interpolater<T>::MotionFuncs(func, freq * (blend + offset)); \
|
||
} while (0)
|
||
|
||
/// <summary>
|
||
/// Apply the motion functions from the passed in xform to this xform.
|
||
/// </summary>
|
||
/// <param name="xform">The xform containing the motion functions</param>
|
||
/// <param name="blend">The time blending value 0-1</param>
|
||
void ApplyMotion(Xform<T>& xform, T blend)
|
||
{
|
||
//Loop over the motion elements and add their contribution to the original vals.
|
||
for (size_t i = 0; i < xform.m_Motion.size(); i++)
|
||
{
|
||
//Original only pulls these from the first motion xform which is a bug. Want to pull it from each one.
|
||
auto& currentMot = xform.m_Motion[i];
|
||
auto freq = currentMot.m_MotionFreq;
|
||
auto func = currentMot.m_MotionFunc;
|
||
auto offset = currentMot.m_MotionOffset;
|
||
auto cleanOffset = offset != EMPTYFIELD ? offset : 0;
|
||
//Clamp these to the appropriate range after all are applied.
|
||
APPMOT(m_Weight);
|
||
APPMOT(m_ColorX);
|
||
//APPMOT(m_ColorY);
|
||
APPMOT(m_DirectColor);
|
||
APPMOT(m_Opacity);
|
||
APPMOT(m_ColorSpeed);
|
||
APPMOT(m_Animate);
|
||
|
||
for (size_t j = 0; j < currentMot.TotalVariationCount(); j++)//For each variation in the motion xform.
|
||
{
|
||
Variation<T>* motVar = currentMot.GetVariation(j);//Get the variation, which may or may not be present in this xform.
|
||
ParametricVariation<T>* motParVar = dynamic_cast<ParametricVariation<T>*>(motVar);
|
||
Variation<T>* var = GetVariationById(motVar->VariationId());//See if the variation in the motion xform was present in the xform.
|
||
|
||
if (!var)//It wasn't present, so add it and set the weight.
|
||
{
|
||
Variation<T>* newVar = motVar->Copy();
|
||
newVar->m_Weight = motVar->m_Weight * Interpolater<T>::MotionFuncs(func, freq * (blend + cleanOffset));
|
||
AddVariation(newVar);
|
||
var = newVar;//Use this below for params.
|
||
}
|
||
else//It was present, so apply the motion func to the weight.
|
||
{
|
||
var->m_Weight += motVar->m_Weight * Interpolater<T>::MotionFuncs(func, freq * (blend + cleanOffset));
|
||
}
|
||
|
||
//At this point, we've added if needed, or just applied the motion func to the weight.
|
||
//Now apply the motion func to the params if needed.
|
||
if (motParVar)
|
||
{
|
||
auto parVar = dynamic_cast<ParametricVariation<T>*>(var);
|
||
auto params = parVar->Params();
|
||
auto motParams = motParVar->Params();
|
||
|
||
for (size_t k = 0; k < motParVar->ParamCount(); k++)
|
||
{
|
||
if (!motParams[k].IsPrecalc())
|
||
*(params[k].Param()) += motParams[k].ParamVal() * Interpolater<T>::MotionFuncs(func, freq * (blend + cleanOffset));
|
||
}
|
||
}
|
||
}
|
||
|
||
for (glm::length_t j = 0; j < 2; j++)
|
||
{
|
||
for (glm::length_t k = 0; k < 3; k++)
|
||
{
|
||
APPMOT(m_Affine.m_Mat[j][k]);
|
||
APPMOT(m_Post.m_Mat[j][k]);
|
||
}
|
||
}
|
||
}
|
||
|
||
//Make sure certain params are within reasonable bounds.
|
||
ClampRef<T>(m_ColorX, 0, 1);
|
||
//ClampRef<T>(m_ColorY, 0, 1);
|
||
ClampRef<T>(m_DirectColor, 0, 1);
|
||
ClampRef<T>(m_Opacity, 0, 1);//Original didn't clamp these, but do it here for correctness.
|
||
ClampRef<T>(m_ColorSpeed, -1, 1);
|
||
ClampGte0Ref<T>(m_Weight);
|
||
}
|
||
|
||
/// <summary>
|
||
/// Accessors.
|
||
/// The precalc flags are duplicated in each variation. Each value here
|
||
/// is true if any of the variations need it precalculated.
|
||
/// </summary>
|
||
inline bool NeedPrecalcSumSquares() const { return m_NeedPrecalcSumSquares; }
|
||
inline bool NeedPrecalcSqrtSumSquares() const { return m_NeedPrecalcSqrtSumSquares; }
|
||
inline bool NeedPrecalcAngles() const { return m_NeedPrecalcAngles; }
|
||
inline bool NeedPrecalcAtanXY() const { return m_NeedPrecalcAtanXY; }
|
||
inline bool NeedPrecalcAtanYX() const { return m_NeedPrecalcAtanYX; }
|
||
inline bool NeedAnyPrecalc() const { return NeedPrecalcSumSquares() || NeedPrecalcSqrtSumSquares() || NeedPrecalcAngles() || NeedPrecalcAtanXY() || NeedPrecalcAtanYX(); }
|
||
bool HasPre() const { return m_HasPre; }
|
||
bool HasPost() const { return m_HasPost; }
|
||
size_t PreVariationCount() const { return m_PreVariations.size(); }
|
||
size_t VariationCount() const { return m_Variations.size(); }
|
||
size_t PostVariationCount() const { return m_PostVariations.size(); }
|
||
size_t TotalVariationCount() const { return PreVariationCount() + VariationCount() + PostVariationCount(); }
|
||
bool Empty() const { return TotalVariationCount() == 0 && m_Affine.IsID(); }//Use this instead of padding like the original did.
|
||
T ColorSpeedCache() const { return m_ColorSpeedCache; }
|
||
T OneMinusColorCache() const { return m_OneMinusColorCache; }
|
||
const vector<T>& XaosVec() const { return m_Xaos; }
|
||
Ember<T>* ParentEmber() const { return m_ParentEmber; }
|
||
void ParentEmber(Ember<T>* ember) { m_ParentEmber = ember; }
|
||
intmax_t IndexInParentEmber() const { return m_ParentEmber ? m_ParentEmber->GetTotalXformIndex(const_cast<Xform<T>*>(this)) : -1; }
|
||
|
||
/// <summary>
|
||
/// Set the precalc flags based on whether any variation in the vector needs them.
|
||
/// Also call Precalc() virtual function on each variation, which will setup any needed
|
||
/// precalcs in parametric variations.
|
||
/// Set the parent xform of each variation to this.
|
||
/// </summary>
|
||
void SetPrecalcFlags()
|
||
{
|
||
m_NeedPrecalcSumSquares = false;
|
||
m_NeedPrecalcSqrtSumSquares = false;
|
||
m_NeedPrecalcAngles = false;
|
||
m_NeedPrecalcAtanXY = false;
|
||
m_NeedPrecalcAtanYX = false;
|
||
m_HasPre = !m_Affine.IsID();
|
||
m_HasPost = !m_Post.IsID();
|
||
m_HasPreOrRegularVars = PreVariationCount() > 0 || VariationCount() > 0;
|
||
|
||
//Only set precalcs for regular variations, they work differently for pre and post.
|
||
for (auto var : m_Variations)
|
||
{
|
||
if (var->NeedPrecalcSumSquares())
|
||
m_NeedPrecalcSumSquares = true;
|
||
|
||
if (var->NeedPrecalcSqrtSumSquares())
|
||
m_NeedPrecalcSqrtSumSquares = true;
|
||
|
||
if (var->NeedPrecalcAngles())
|
||
m_NeedPrecalcAngles = true;
|
||
|
||
if (var->NeedPrecalcAtanXY())
|
||
m_NeedPrecalcAtanXY = true;
|
||
|
||
if (var->NeedPrecalcAtanYX())
|
||
m_NeedPrecalcAtanYX = true;
|
||
}
|
||
|
||
AllVarsFunc([&] (vector<Variation<T>*>& variations, bool & keepGoing)
|
||
{
|
||
for (auto var : variations)
|
||
{
|
||
var->ParentXform(this);
|
||
var->Precalc();
|
||
}
|
||
});
|
||
}
|
||
|
||
/// <summary>
|
||
/// Based on the precalc flags determined in SetPrecalcFlags(), do the appropriate precalcs.
|
||
/// </summary>
|
||
/// <param name="helper">The iterator helper to store the precalculated values in</param>
|
||
void Precalc(IteratorHelper<T>& helper)
|
||
{
|
||
if (m_NeedPrecalcSumSquares)
|
||
{
|
||
helper.m_PrecalcSumSquares = SQR(helper.m_TransX) + SQR(helper.m_TransY);
|
||
|
||
if (m_NeedPrecalcSqrtSumSquares)
|
||
{
|
||
helper.m_PrecalcSqrtSumSquares = std::sqrt(helper.m_PrecalcSumSquares);
|
||
|
||
if (m_NeedPrecalcAngles)
|
||
{
|
||
helper.m_PrecalcCosa = helper.m_TransX / Zeps(helper.m_PrecalcSqrtSumSquares);
|
||
helper.m_PrecalcSina = helper.m_TransY / Zeps(helper.m_PrecalcSqrtSumSquares);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (m_NeedPrecalcAtanXY)
|
||
helper.m_PrecalcAtanxy = std::atan2(helper.m_TransX, helper.m_TransY);
|
||
|
||
if (m_NeedPrecalcAtanYX)
|
||
helper.m_PrecalcAtanyx = std::atan2(helper.m_TransY, helper.m_TransX);
|
||
}
|
||
|
||
/// <summary>
|
||
/// Flatten this xform by adding a flatten variation if none is present, and if none of the
|
||
/// variations or parameters in the vector are present.
|
||
/// </summary>
|
||
/// <param name="names">Vector of variation and parameter names that inhibit flattening</param>
|
||
/// <returns>True if flatten was added, false if it already was present or if at least one of the specified variations or parameters were present.</returns>
|
||
bool Flatten(vector<string>& names)
|
||
{
|
||
bool shouldFlatten = true;
|
||
auto vl = VariationList<T>::Instance();
|
||
|
||
if (GetVariationById(eVariationId::VAR_FLATTEN) == nullptr)
|
||
{
|
||
AllVarsFunc([&] (vector<Variation<T>*>& variations, bool & keepGoing)
|
||
{
|
||
for (auto var : variations)
|
||
{
|
||
if (var->m_Weight != 0)//This should never happen, but just to be safe.
|
||
{
|
||
if (FindIf(names, [&] (const string & s) -> bool { return !_stricmp(s.c_str(), var->Name().c_str()); })) //If any variation is present, don't flatten.
|
||
{
|
||
shouldFlatten = false;
|
||
keepGoing = false;
|
||
break;
|
||
}
|
||
}
|
||
|
||
//Now traverse the parameters for this variation.
|
||
if (auto parVar = dynamic_cast<ParametricVariation<T>*>(var))//If any parametric variation parameter is present and non-zero, don't flatten.
|
||
{
|
||
for (auto& s : names)
|
||
{
|
||
if (parVar->GetParamVal(s.c_str()) != 0)
|
||
{
|
||
shouldFlatten = false;
|
||
keepGoing = false;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
});
|
||
|
||
if (shouldFlatten)//Flatten was not present and neither was any variation name or parameter in the list.
|
||
{
|
||
auto varflatten = vl->GetVariationCopy(eVariationId::VAR_FLATTEN);
|
||
|
||
if (!AddVariation(varflatten))
|
||
{
|
||
delete varflatten;
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Generate the OpenCL string for reading input values to
|
||
/// be passed to a variation.
|
||
/// </summary>
|
||
/// <param name="varType">Type of the variation these values will be passed to.</param>
|
||
/// <returns>The OpenCL string</returns>
|
||
string ReadOpenCLString(eVariationType varType)
|
||
{
|
||
string s;
|
||
|
||
switch (varType)
|
||
{
|
||
case eVariationType::VARTYPE_REG:
|
||
case eVariationType::VARTYPE_PRE:
|
||
s =
|
||
"\tvIn.x = transX;\n"
|
||
"\tvIn.y = transY;\n"
|
||
"\tvIn.z = transZ;\n";
|
||
break;
|
||
|
||
case eVariationType::VARTYPE_POST:
|
||
default:
|
||
s =
|
||
"\tvIn.x = outPoint->m_X;\n"
|
||
"\tvIn.y = outPoint->m_Y;\n"
|
||
"\tvIn.z = outPoint->m_Z;\n";
|
||
break;
|
||
}
|
||
|
||
return s;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Assing output values from the result of a pre variation.
|
||
/// </summary>
|
||
/// <param name="helper">The helper to store the output values in</param>
|
||
/// <param name="assignType">The type of assignment this variation uses, assign or sum.</param>
|
||
inline void WritePre(IteratorHelper<T>& helper, eVariationAssignType assignType)
|
||
{
|
||
switch (assignType)
|
||
{
|
||
case eVariationAssignType::ASSIGNTYPE_SET:
|
||
{
|
||
helper.m_TransX = helper.Out.x;
|
||
helper.m_TransY = helper.Out.y;
|
||
helper.m_TransZ = helper.Out.z;
|
||
break;
|
||
}
|
||
|
||
case eVariationAssignType::ASSIGNTYPE_SUM:
|
||
default:
|
||
{
|
||
helper.m_TransX += helper.Out.x;
|
||
helper.m_TransY += helper.Out.y;
|
||
helper.m_TransZ += helper.Out.z;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/// <summary>
|
||
/// Assing output values from the result of a post variation.
|
||
/// </summary>
|
||
/// <param name="helper">The helper to store the output values in</param>
|
||
/// <param name="assignType">The type of assignment this variation uses, assign or sum.</param>
|
||
inline void WritePost(IteratorHelper<T>& helper, Point<T>& outPoint, eVariationAssignType assignType)
|
||
{
|
||
switch (assignType)
|
||
{
|
||
case eVariationAssignType::ASSIGNTYPE_SET:
|
||
{
|
||
outPoint.m_X = helper.Out.x;
|
||
outPoint.m_Y = helper.Out.y;
|
||
outPoint.m_Z = helper.Out.z;
|
||
break;
|
||
}
|
||
|
||
case eVariationAssignType::ASSIGNTYPE_SUM:
|
||
default:
|
||
{
|
||
outPoint.m_X += helper.Out.x;
|
||
outPoint.m_Y += helper.Out.y;
|
||
outPoint.m_Z += helper.Out.z;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/// <summary>
|
||
/// Generate the OpenCL string for writing output values from a call to a variation.
|
||
/// </summary>
|
||
/// <param name="varType">The type of variation these values were calculated from, pre, reg or post.</param>
|
||
/// <param name="assignType">The type of assignment used by the variation these values were calculated from, assign or sum.</param>
|
||
/// <returns>The OpenCL string</returns>
|
||
string WriteOpenCLString(eVariationType varType, eVariationAssignType assignType)
|
||
{
|
||
string s;
|
||
|
||
switch (varType)
|
||
{
|
||
case eVariationType::VARTYPE_REG:
|
||
{
|
||
s =
|
||
"\toutPoint->m_X += vOut.x;\n"
|
||
"\toutPoint->m_Y += vOut.y;\n"
|
||
"\toutPoint->m_Z += vOut.z;\n";
|
||
break;
|
||
}
|
||
|
||
case eVariationType::VARTYPE_PRE:
|
||
{
|
||
switch (assignType)
|
||
{
|
||
case eVariationAssignType::ASSIGNTYPE_SET:
|
||
{
|
||
s =
|
||
"\ttransX = vOut.x;\n"
|
||
"\ttransY = vOut.y;\n"
|
||
"\ttransZ = vOut.z;\n";
|
||
break;
|
||
}
|
||
|
||
case eVariationAssignType::ASSIGNTYPE_SUM:
|
||
default:
|
||
{
|
||
s =
|
||
"\ttransX += vOut.x;\n"
|
||
"\ttransY += vOut.y;\n"
|
||
"\ttransZ += vOut.z;\n";
|
||
break;
|
||
}
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
case eVariationType::VARTYPE_POST:
|
||
default:
|
||
{
|
||
switch (assignType)
|
||
{
|
||
case eVariationAssignType::ASSIGNTYPE_SET:
|
||
{
|
||
s =
|
||
"\toutPoint->m_X = vOut.x;\n"
|
||
"\toutPoint->m_Y = vOut.y;\n"
|
||
"\toutPoint->m_Z = vOut.z;\n";
|
||
break;
|
||
}
|
||
|
||
case eVariationAssignType::ASSIGNTYPE_SUM:
|
||
default:
|
||
{
|
||
s =
|
||
"\toutPoint->m_X += vOut.x;\n"
|
||
"\toutPoint->m_Y += vOut.y;\n"
|
||
"\toutPoint->m_Z += vOut.z;\n";
|
||
break;
|
||
}
|
||
}
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
return s;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Return a string representation of this xform.
|
||
/// It will include all pre affine values, and optionally post affine values if present.
|
||
/// Various variables, all variations as strings and xaos values if present.
|
||
/// </summary>
|
||
/// <returns>The string representation of this xform</returns>
|
||
string ToString() const
|
||
{
|
||
ostringstream ss;
|
||
ss << "A: " << m_Affine.A() << " "
|
||
<< "B: " << m_Affine.B() << " "
|
||
<< "C: " << m_Affine.C() << " "
|
||
<< "D: " << m_Affine.D() << " "
|
||
<< "E: " << m_Affine.E() << " "
|
||
<< "F: " << m_Affine.F() << " \n";
|
||
|
||
if (m_HasPost)
|
||
{
|
||
ss << "Post A: " << m_Post.A() << " "
|
||
<< "Post B: " << m_Post.B() << " "
|
||
<< "Post C: " << m_Post.C() << " "
|
||
<< "Post D: " << m_Post.D() << " "
|
||
<< "Post E: " << m_Post.E() << " "
|
||
<< "Post F: " << m_Post.F() << " \n";
|
||
}
|
||
|
||
ss << "Weight: " << m_Weight;
|
||
ss << "\nColorX: " << m_ColorX;
|
||
ss << "\nColorY: " << m_ColorY;
|
||
ss << "\nDirect Color: " << m_DirectColor;
|
||
ss << "\nColor Speed: " << m_ColorSpeed;
|
||
ss << "\nAnimate: " << m_Animate;
|
||
ss << "\nOpacity: " << m_Opacity;
|
||
ss << "\nWind: " << m_Wind[0] << ", " << m_Wind[1];
|
||
ss << "\nMotion Frequency: " << m_MotionFreq;
|
||
ss << "\nMotion Func: " << m_MotionFunc;
|
||
ss << "\nMotion Offset: " << m_MotionOffset;
|
||
const_cast<Xform<T>*>(this)->AllVarsFunc([&] (vector<Variation<T>*>& variations, bool & keepGoing)
|
||
{
|
||
for (auto var : variations)
|
||
ss << var->ToString() << "\n";
|
||
|
||
ss << "\n";
|
||
});
|
||
|
||
if (XaosPresent())
|
||
{
|
||
for (auto xaos : m_Xaos)
|
||
ss << xaos << " ";
|
||
|
||
ss << "\n";
|
||
}
|
||
|
||
return ss.str();
|
||
}
|
||
|
||
/// <summary>
|
||
/// Members are listed in the exact order they are used in Apply() to make them
|
||
/// as cache efficient as possible. Not all are public, so there is repeated public/private
|
||
/// access specifiers.
|
||
/// </summary>
|
||
|
||
private:
|
||
bool m_HasPreOrRegularVars;//Whethere there are any pre or regular variations present.
|
||
|
||
public:
|
||
//Color coordinates for this function. This is the index into the palette used to look up a color and add to the histogram for each iter.
|
||
//The original only allows for an x coord. Will eventually allow for a y coord like Fractron for 2D palettes.
|
||
T m_ColorX, m_ColorY;
|
||
|
||
private:
|
||
T m_ColorSpeedCache;//Cache of m_ColorSpeed * m_ColorX. Need to recalc cache values whenever anything relating to color is set. Made private because one affects the other.
|
||
T m_OneMinusColorCache;//Cache of 1 - m_ColorSpeedCache.
|
||
|
||
public:
|
||
//Coefficients for the affine portion of the transform.
|
||
//Discussed on page 3 of the paper:
|
||
//Fi(x, y) = (aix + biy + ci, dix + eiy + fi)
|
||
Affine2D<T> m_Affine;
|
||
|
||
private:
|
||
vector<Variation<T>*> m_PreVariations;//The list of pre variations to call when applying this xform.
|
||
vector<Variation<T>*> m_Variations;//The list of variations to call when applying this xform.
|
||
bool m_HasPre;//Whether a pre affine transform is present.
|
||
bool m_HasPost;//Whether a post affine transform is present.
|
||
|
||
public:
|
||
//Coefficients for the affine portion of the post transform.
|
||
//Discussed on page 5 of the paper:
|
||
//Pi(x, y) = (αix + βiy + γi, δix + ǫiy + ζi).
|
||
Affine2D<T> m_Post;
|
||
|
||
private:
|
||
vector<Variation<T>*> m_PostVariations;//The list of post variations to call when applying this xform.
|
||
|
||
public:
|
||
T m_DirectColor;//Used with direct color variations.
|
||
|
||
//Probability that this function is chosen. Can be greater than 1.
|
||
//Discussed on page 4 of the paper:
|
||
//Probability wi.
|
||
T m_Weight;
|
||
|
||
//Scaling factor on color added to current iteration, also known as color weight. Normally defaults to 0.5.
|
||
//Discussed on page 9 of the paper with a hard coded default value of 0.5:
|
||
//C = (C + Ci) * m_ColorSpeed.
|
||
T m_ColorSpeed;
|
||
T m_Opacity;//How much of this xform is seen. Range: 0.0 (invisible) - 1.0 (totally visible).
|
||
T m_Animate;//Whether or not this xform rotates during animation. 0 means stationary, > 0 means rotate. Use T instead of bool so it can be interpolated.
|
||
T m_Wind[2];
|
||
eMotion m_MotionFunc;
|
||
T m_MotionFreq;
|
||
T m_MotionOffset;
|
||
vector<Xform<T>> m_Motion;
|
||
string m_Name;
|
||
|
||
private:
|
||
/// <summary>
|
||
/// Perform an operation on all variation vectors.
|
||
/// The operation is supplied in the func parameter.
|
||
/// To stop performing the operation on vectors after the current one,
|
||
/// set the keepGoing parameter to false;
|
||
/// </summary>
|
||
/// <param name="func">The function to call for each variation vector.</param>
|
||
void AllVarsFunc(std::function<void (vector<Variation<T>*>&, bool&)> func)
|
||
{
|
||
bool keepGoing = true;
|
||
func(m_PreVariations, keepGoing);
|
||
|
||
if (keepGoing)
|
||
func(m_Variations, keepGoing);
|
||
|
||
if (keepGoing)
|
||
func(m_PostVariations, keepGoing);
|
||
}
|
||
|
||
vector<T> m_Xaos;//Xaos vector which affects the probability that this xform is chosen. Usually empty.
|
||
Ember<T>* m_ParentEmber;//The parent ember that contains this xform.
|
||
bool m_NeedPrecalcSumSquares;//Whether any variation uses the precalc sum squares value in its calculations.
|
||
bool m_NeedPrecalcSqrtSumSquares;//Whether any variation uses the sqrt precalc sum squares value in its calculations.
|
||
bool m_NeedPrecalcAngles;//Whether any variation uses the precalc sin and cos values in its calculations.
|
||
bool m_NeedPrecalcAtanXY;//Whether any variation uses the precalc atan XY value in its calculations.
|
||
bool m_NeedPrecalcAtanYX;//Whether any variation uses the precalc atan YX value in its calculations.
|
||
};
|
||
}
|