mirror of
https://bitbucket.org/mfeemster/fractorium.git
synced 2025-01-22 13:40:06 -05:00
5f98be7336
-Clear all color curves when clicking Reset while holding down Ctrl. -Interpolate color curves when generating a sequence. --Bug fixes -Undo a change made last year which gave the wrong color index for final xforms when generating a sequence. --Code changes -No longer assume palettes are 256 elements. Can now read longer palettes. -Ensure OpenCL images always get written when created.
1031 lines
35 KiB
C++
1031 lines
35 KiB
C++
#pragma once
|
|
|
|
#include "Ember.h"
|
|
#include "VariationList.h"
|
|
|
|
/// <summary>
|
|
/// Interpolater class.
|
|
/// </summary>
|
|
|
|
namespace EmberNs
|
|
{
|
|
/// <summary>
|
|
/// g++ needs a forward declaration here.
|
|
/// </summary>
|
|
template <typename T> class Ember;
|
|
template <typename T> class VariationList;
|
|
|
|
/// <summary>
|
|
/// Contains many static functions for handling interpolation and other miscellaneous operations on
|
|
/// embers and vectors of embers. This class is similar to, and used in conjunction with SheepTools.
|
|
/// Template argument expected to be float or double.
|
|
/// </summary>
|
|
template <typename T>
|
|
class EMBER_API Interpolater
|
|
{
|
|
public:
|
|
/// <summary>
|
|
/// Determine if the xform at a given index in an ember is a padding xform.
|
|
/// </summary>
|
|
/// <param name="ember">The ember whose xforms will be examined for padding</param>
|
|
/// <param name="xf">The index of the ember to examine</param>
|
|
/// <param name="isFinal">Whether the xform being examined is the final one</param>
|
|
/// <returns>True the xform at index xf is a padding one, else false.</returns>
|
|
static bool IsPadding(const Ember<T>& ember, size_t xf, bool isFinal)
|
|
{
|
|
if (!isFinal)//Either a final wasn't present in any ember, or if there was, this xform is a normal one, so do not include final in the index check.
|
|
{
|
|
return xf >= ember.XformCount();
|
|
}
|
|
else//There was a final present, and we are checking it, so just see if its presence differs.
|
|
{
|
|
return !ember.UseFinalXform();
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Aligns the specified array of embers and stores in the output array.
|
|
/// This is used to prepare embers before interpolating them.
|
|
/// Alignment means that every ember in a list will have the same number of xforms.
|
|
/// Each xform at a given position will have mostly the same variations as the xform
|
|
/// in the same position in the rest of the embers. However some
|
|
/// intelligence is applied to add or remove variations that wouldn't look good with
|
|
/// the others present.
|
|
/// After this function completes, sourceEmbers will remain unchanged and destEmbers
|
|
/// will contain the aligned list of embers from sourceEmbers.
|
|
/// </summary>
|
|
/// <param name="sourceEmbers">The array of embers to align</param>
|
|
/// <param name="destEmbers">The array which will contain the aligned embers </param>
|
|
/// <param name="count">The number of elements in sourceEmbers</param>
|
|
static void Align(const Ember<T>* sourceEmbers, Ember<T>* destEmbers, size_t count)
|
|
{
|
|
bool aligned = true;
|
|
bool currentFinal, hasFinal = sourceEmbers[0].UseFinalXform();
|
|
size_t xf, currentCount, maxCount = sourceEmbers[0].XformCount();
|
|
Xform<T>* destOtherXform;
|
|
auto variationList = VariationList<T>::Instance();
|
|
|
|
//Determine the max number of xforms present in sourceEmbers.
|
|
//Also check if final xforms are used in any of them.
|
|
for (size_t i = 1; i < count; i++)
|
|
{
|
|
currentCount = sourceEmbers[i].XformCount();
|
|
|
|
if (currentCount != maxCount)//Any difference, less or more, means unaligned.
|
|
{
|
|
aligned = false;
|
|
|
|
if (currentCount > maxCount)
|
|
maxCount = currentCount;
|
|
}
|
|
|
|
currentFinal = sourceEmbers[i].UseFinalXform();
|
|
|
|
if (hasFinal != currentFinal)//Check if any used final.
|
|
{
|
|
aligned = false;
|
|
hasFinal |= currentFinal;
|
|
}
|
|
}
|
|
|
|
//Copy them using the max xform count, and do final if any had final.
|
|
for (size_t i = 0; i < count; i++)
|
|
destEmbers[i] = sourceEmbers[i].Copy(maxCount, hasFinal);
|
|
|
|
if (hasFinal)
|
|
maxCount++;
|
|
|
|
std::array<size_t, 4> maxCurvePoints = { 0, 0, 0, 0 };
|
|
|
|
//Find the maximum number of points for each curve type in all curves.
|
|
for (size_t e = 0; e < count; e++)
|
|
for (size_t j = 0; j < sourceEmbers[0].m_Curves.m_Points.size(); j++)//Should always be 4 for every ember.
|
|
maxCurvePoints[j] = std::max(maxCurvePoints[j], sourceEmbers[e].m_Curves.m_Points[j].size());
|
|
|
|
//Check to see if there's a parametric variation present in one xform
|
|
//but not in an aligned xform. If this is the case, use the parameters
|
|
//from the xform with the variation as the defaults for the blank one.
|
|
//All embers will have the same number of xforms at this point.
|
|
for (size_t i = 0; i < count; i++)
|
|
{
|
|
intmax_t ii;
|
|
destEmbers[i].m_Curves = sourceEmbers[i].m_Curves;
|
|
|
|
for (size_t j = 0; j < sourceEmbers[0].m_Curves.m_Points.size(); j++)//Should always be 4 for every ember.
|
|
while (destEmbers[i].m_Curves.m_Points[j].size() < maxCurvePoints[j])
|
|
destEmbers[i].m_Curves.m_Points[j].push_back(sourceEmbers[i].m_Curves.m_Points[j].back());
|
|
|
|
for (xf = 0; xf < maxCount; xf++)//This will include both normal xforms and the final.
|
|
{
|
|
bool isFinal = hasFinal && (xf == maxCount - 1);
|
|
auto destXform = destEmbers[i].GetTotalXform(xf, hasFinal);
|
|
Variation<T>* dummyvar = nullptr;
|
|
|
|
//Ensure every parametric variation contained in every xform at either position i - 1 or i + 1 is also contained in the dest xform.
|
|
if (i > 0)
|
|
destOtherXform = destEmbers[i - 1].GetTotalXform(xf);
|
|
else if (i < count - 1)
|
|
destOtherXform = destEmbers[i + 1].GetTotalXform(xf);
|
|
else
|
|
destOtherXform = nullptr;//Should never happen
|
|
|
|
if (destOtherXform)
|
|
MergeXformVariations1Way(destOtherXform, destXform, true, true);
|
|
|
|
//This is a new xform. Let's see if it's possible to choose a better 'identity' xform.
|
|
//Check the neighbors to see if any of these variations are used:
|
|
//rings2, fan2, blob, perspective, julian, juliascope, ngon, curl, super_shape, split
|
|
//If so, can use a better starting point for these.
|
|
//If the current xform index is greater than what the original xform count was for this ember, then it's a padding xform.
|
|
if (IsPadding(sourceEmbers[i], xf, isFinal) && !aligned)
|
|
{
|
|
intmax_t found = 0;
|
|
//Remove linear.
|
|
destXform->DeleteVariationById(eVariationId::VAR_LINEAR);
|
|
|
|
//Only do the next substitution for log interpolation.
|
|
if ((i == 0 && destEmbers[i].m_AffineInterp == eAffineInterp::AFFINE_INTERP_LOG) ||
|
|
(i > 0 && destEmbers[i - 1].m_AffineInterp == eAffineInterp::AFFINE_INTERP_LOG))
|
|
{
|
|
for (ii = -1; ii <= 1; ii += 2)
|
|
{
|
|
//Skip if out of bounds.
|
|
if (i + ii < 0 || i + ii >= count)
|
|
continue;
|
|
|
|
//Skip if this is also padding.
|
|
if (IsPadding(sourceEmbers[i + ii], xf, isFinal))
|
|
continue;
|
|
|
|
if (destOtherXform = destEmbers[i + ii].GetTotalXform(xf))
|
|
{
|
|
//Spherical / Ngon (trumps all others due to holes)
|
|
//Interpolate these against a 180 degree rotated identity
|
|
//with weight -1.
|
|
//Added JULIAN/JULIASCOPE to get rid of black wedges.
|
|
|
|
//Testing for variation weight > 0 is to make the behavior match flam3 exactly, even though that doesn't really make sense in the modern era
|
|
//Because variations can use negative weights.
|
|
if (((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_SPHERICAL) ) && dummyvar->m_Weight > 0) ||
|
|
((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_NGON) ) && dummyvar->m_Weight > 0) ||
|
|
((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_JULIAN) ) && dummyvar->m_Weight > 0) ||
|
|
((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_JULIASCOPE) ) && dummyvar->m_Weight > 0) ||
|
|
((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_POLAR) ) && dummyvar->m_Weight > 0) ||
|
|
((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_WEDGE_SPH) ) && dummyvar->m_Weight > 0) ||
|
|
((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_WEDGE_JULIA)) && dummyvar->m_Weight > 0))
|
|
{
|
|
destXform->AddVariation(variationList->GetVariationCopy(eVariationId::VAR_LINEAR, -1));
|
|
//Set the coefs appropriately.
|
|
destXform->m_Affine.A(-1);
|
|
destXform->m_Affine.D(0);
|
|
destXform->m_Affine.B(0);
|
|
destXform->m_Affine.E(-1);
|
|
destXform->m_Affine.C(0);
|
|
destXform->m_Affine.F(0);
|
|
found = -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found == 0)
|
|
{
|
|
for (ii = -1; ii <= 1; ii += 2)
|
|
{
|
|
//Skip if out of bounds.
|
|
if (i + ii < 0 || i + ii >= count)
|
|
continue;
|
|
|
|
//Skip if this is also padding.
|
|
if (IsPadding(sourceEmbers[i + ii], xf, isFinal))
|
|
continue;
|
|
|
|
if (destOtherXform = destEmbers[i + ii].GetTotalXform(xf))
|
|
{
|
|
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_RECTANGLES)) && dummyvar->m_Weight > 0)
|
|
{
|
|
destXform->DeleteVariationById(eVariationId::VAR_RECTANGLES);//In case it was there, remove it first so the add below succeeds.
|
|
|
|
if (auto var = variationList->GetParametricVariationCopy(eVariationId::VAR_RECTANGLES))
|
|
{
|
|
var->SetParamVal("rectangles_x", 0);
|
|
var->SetParamVal("rectangles_y", 0);
|
|
|
|
if (!destXform->AddVariation(var))
|
|
delete var;
|
|
}
|
|
|
|
found++;
|
|
}
|
|
|
|
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_RINGS2)) && dummyvar->m_Weight > 0)
|
|
{
|
|
destXform->DeleteVariationById(eVariationId::VAR_RINGS2);
|
|
|
|
if (auto var = variationList->GetParametricVariationCopy(eVariationId::VAR_RINGS2))
|
|
{
|
|
var->SetParamVal("rings2_val", 0);
|
|
|
|
if (!destXform->AddVariation(var))
|
|
delete var;
|
|
}
|
|
|
|
found++;
|
|
}
|
|
|
|
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_FAN2)) && dummyvar->m_Weight > 0)
|
|
{
|
|
destXform->DeleteVariationById(eVariationId::VAR_FAN2);
|
|
|
|
if (auto var = variationList->GetVariationCopy(eVariationId::VAR_FAN2))
|
|
if (!destXform->AddVariation(var))
|
|
delete var;
|
|
|
|
found++;
|
|
}
|
|
|
|
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_BLOB)) && dummyvar->m_Weight > 0)
|
|
{
|
|
destXform->DeleteVariationById(eVariationId::VAR_BLOB);
|
|
|
|
if (auto var = variationList->GetParametricVariationCopy(eVariationId::VAR_BLOB))
|
|
{
|
|
var->SetParamVal("blob_low", 1);
|
|
|
|
if (!destXform->AddVariation(var))
|
|
delete var;
|
|
}
|
|
|
|
found++;
|
|
}
|
|
|
|
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_PERSPECTIVE)) && dummyvar->m_Weight > 0)
|
|
{
|
|
destXform->DeleteVariationById(eVariationId::VAR_PERSPECTIVE);
|
|
|
|
if (auto var = variationList->GetVariationCopy(eVariationId::VAR_PERSPECTIVE))
|
|
if (!destXform->AddVariation(var))
|
|
delete var;
|
|
|
|
found++;
|
|
}
|
|
|
|
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_CURL)) && dummyvar->m_Weight > 0)
|
|
{
|
|
destXform->DeleteVariationById(eVariationId::VAR_CURL);
|
|
|
|
if (auto var = variationList->GetParametricVariationCopy(eVariationId::VAR_CURL))
|
|
{
|
|
var->SetParamVal("curl_c1", 0);
|
|
|
|
if (!destXform->AddVariation(var))
|
|
delete var;
|
|
}
|
|
|
|
found++;
|
|
}
|
|
|
|
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_SUPER_SHAPE)) && dummyvar->m_Weight > 0)
|
|
{
|
|
destXform->DeleteVariationById(eVariationId::VAR_SUPER_SHAPE);
|
|
|
|
if (auto var = variationList->GetParametricVariationCopy(eVariationId::VAR_SUPER_SHAPE))
|
|
{
|
|
var->SetParamVal("super_shape_n1", 2);
|
|
var->SetParamVal("super_shape_n2", 2);
|
|
var->SetParamVal("super_shape_n3", 2);
|
|
|
|
if (!destXform->AddVariation(var))
|
|
delete var;
|
|
}
|
|
|
|
found++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//If none matched those, try the affine ones, fan and rings.
|
|
if (found == 0)
|
|
{
|
|
for (ii = -1; ii <= 1; ii += 2)
|
|
{
|
|
//Skip if out of bounds.
|
|
if (i + ii < 0 || i + ii >= count)
|
|
continue;
|
|
|
|
//Skip if this is also padding.
|
|
if (IsPadding(sourceEmbers[i + ii], xf, isFinal))
|
|
continue;
|
|
|
|
if (destOtherXform = destEmbers[i + ii].GetTotalXform(xf))
|
|
{
|
|
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_FAN)) && dummyvar->m_Weight > 0)
|
|
{
|
|
destXform->DeleteVariationById(eVariationId::VAR_FAN);
|
|
|
|
if (auto var = variationList->GetVariationCopy(eVariationId::VAR_FAN))
|
|
if (!destXform->AddVariation(var))
|
|
delete var;
|
|
|
|
found++;
|
|
}
|
|
|
|
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_RINGS)) && dummyvar->m_Weight > 0)
|
|
{
|
|
destXform->DeleteVariationById(eVariationId::VAR_RINGS);
|
|
|
|
if (auto var = variationList->GetVariationCopy(eVariationId::VAR_RINGS))
|
|
if (!destXform->AddVariation(var))
|
|
delete var;
|
|
|
|
found++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (destXform && (found > 0))
|
|
{
|
|
//Set the coefs appropriately.
|
|
destXform->m_Affine.A(0);
|
|
destXform->m_Affine.B(1);//This will be swapping x and y, seems strange, but it's what the original did.
|
|
destXform->m_Affine.C(0);
|
|
destXform->m_Affine.D(1);
|
|
destXform->m_Affine.E(0);
|
|
destXform->m_Affine.F(0);
|
|
}
|
|
}
|
|
|
|
//If there still are no matches, switch back to linear.
|
|
if (destXform)
|
|
{
|
|
if (found == 0)
|
|
{
|
|
destXform->DeleteVariationById(eVariationId::VAR_LINEAR);
|
|
|
|
if (auto var = variationList->GetVariationCopy(eVariationId::VAR_LINEAR))
|
|
if (!destXform->AddVariation(var))
|
|
delete var;
|
|
}
|
|
else if (found > 0)
|
|
{
|
|
destXform->NormalizeVariationWeights();//Otherwise, normalize the weights.
|
|
}
|
|
}
|
|
}
|
|
}//Xforms.
|
|
}//Embers.
|
|
}
|
|
|
|
/// <summary>
|
|
/// Thin wrapper around AnyXaosPresent().
|
|
/// </summary>
|
|
/// <param name="embers">The vector of embers to inspect for xaos</param>
|
|
/// <returns>True if at least one ember contained xaos, else false.</returns>
|
|
static bool AnyXaosPresent(const vector<Ember<T>>& embers)
|
|
{
|
|
return AnyXaosPresent(embers.data(), embers.size());
|
|
}
|
|
|
|
/// <summary>
|
|
/// Determine whether at least one ember in the array contained xaos.
|
|
/// </summary>
|
|
/// <param name="embers">The array of embers to inspect</param>
|
|
/// <param name="size">The size of the embers array</param>
|
|
/// <returns>True if at least one ember contained xaos, else false.</returns>
|
|
static bool AnyXaosPresent(const Ember<T>* embers, size_t size)
|
|
{
|
|
for (size_t i = 0; i < size; i++)
|
|
if (embers[i].XaosPresent())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Thin wrapper around MaxXformCount().
|
|
/// </summary>
|
|
/// <param name="embers">The vector of embers to inspect for the greatest xform count</param>
|
|
/// <returns>The greatest non-final xform count in any of the embers</returns>
|
|
static size_t MaxXformCount(vector<Ember<T>>& embers)
|
|
{
|
|
return MaxXformCount(embers.data(), embers.size());
|
|
}
|
|
|
|
/// <summary>
|
|
/// Find the maximum number of non-final xforms present in the array of embers.
|
|
/// </summary>
|
|
/// <param name="embers">The array of embers to inspect</param>
|
|
/// <param name="size">The size of the embers array</param>
|
|
/// <returns>The greatest non-final xform count in any of the embers</returns>
|
|
static size_t MaxXformCount(const Ember<T>* embers, size_t size)
|
|
{
|
|
size_t i, maxCount = 0;
|
|
|
|
for (i = 0; i < size; i++)
|
|
if (embers[i].XformCount() > maxCount)
|
|
maxCount = embers[i].XformCount();
|
|
|
|
return maxCount;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Thin wrapper around AnyFinalPresent().
|
|
/// </summary>
|
|
/// <param name="embers">The vector of embers to inspect the presence of a final xform</param>
|
|
/// <returns>True if any contained a non-empty final xform, else false.</returns>
|
|
static bool AnyFinalPresent(const vector<Ember<T>>& embers)
|
|
{
|
|
return AnyFinalPresent(embers.data(), embers.size());
|
|
}
|
|
|
|
/// <summary>
|
|
/// Determine whether at least one ember in the array contained a non-empty final xform.
|
|
/// </summary>
|
|
/// <param name="embers">The array of embers to inspect the presence of a final xform</param>
|
|
/// <param name="size">The size of the embers array</param>
|
|
/// <returns>True if any contained a final xform, else false.</returns>
|
|
static bool AnyFinalPresent(const Ember<T>* embers, size_t size)
|
|
{
|
|
for (size_t i = 0; i < size; i++)
|
|
if (embers[i].UseFinalXform())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Thin wrapper around Interpolate().
|
|
/// </summary>
|
|
/// <param name="embers">The vector of embers to interpolate</param>
|
|
/// <param name="time">The time position in the vector specifying the point of interpolation</param>
|
|
/// <param name="stagger">Stagger if > 0</param>
|
|
/// <param name="result">The interpolated result</param>
|
|
void Interpolate(const vector<Ember<T>>& embers, T time, T stagger, Ember<T>& result)
|
|
{
|
|
Interpolate(embers.data(), embers.size(), time, stagger, result);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Interpolates the array of embers at a specified time and stores the result.
|
|
/// </summary>
|
|
/// <param name="embers">The embers array</param>
|
|
/// <param name="size">The size of the embers array</param>
|
|
/// <param name="time">The time position in the vector specifying the point of interpolation</param>
|
|
/// <param name="stagger">Stagger if > 0</param>
|
|
/// <param name="result">The interpolated result</param>
|
|
void Interpolate(const Ember<T>* embers, size_t size, T time, T stagger, Ember<T>& result)
|
|
{
|
|
if (size == 1)
|
|
{
|
|
result = embers[0];//Deep copy.
|
|
return;
|
|
}
|
|
|
|
size_t i1, i2;
|
|
bool smoothFlag = false;
|
|
|
|
if (embers[0].m_Time >= time)
|
|
{
|
|
i1 = 0;
|
|
i2 = 1;
|
|
}
|
|
else if (embers[size - 1].m_Time <= time)
|
|
{
|
|
i1 = size - 2;
|
|
i2 = size - 1;
|
|
}
|
|
else
|
|
{
|
|
i1 = 0;
|
|
|
|
while (embers[i1].m_Time < time)
|
|
i1++;
|
|
|
|
i1--;
|
|
i2 = i1 + 1;
|
|
}
|
|
|
|
m_Coeffs[0] = (embers[i2].m_Time - time) / (embers[i2].m_Time - embers[i1].m_Time);
|
|
m_Coeffs[1] = 1 - m_Coeffs[0];
|
|
|
|
//To interpolate the xforms, make copies of the source embers
|
|
//and ensure that they both have the same number of xforms before progressing.
|
|
if (embers[i1].m_Interp == eInterp::EMBER_INTERP_LINEAR)
|
|
{
|
|
Align(&embers[i1], &m_Embers[0], 2);
|
|
smoothFlag = false;
|
|
}
|
|
else
|
|
{
|
|
if (i1 == 0)
|
|
{
|
|
Align(&embers[i1], &m_Embers[0], 2);
|
|
smoothFlag = false;
|
|
}
|
|
else if (i2 == size - 1)
|
|
{
|
|
Align(&embers[i1], &m_Embers[0], 2);
|
|
smoothFlag = false;
|
|
}
|
|
else
|
|
{
|
|
Align(&embers[i1 - 1], &m_Embers[0], 4);//Should really be doing some sort of checking here to ensure the ember vectors have 4 elements.
|
|
smoothFlag = true;
|
|
}
|
|
|
|
//smoothFlag = true;
|
|
}
|
|
|
|
result.m_Time = time;
|
|
result.m_Interp = eInterp::EMBER_INTERP_LINEAR;
|
|
result.m_AffineInterp = embers[0].m_AffineInterp;
|
|
result.m_PaletteInterp = ePaletteInterp::INTERP_HSV;
|
|
|
|
if (!smoothFlag)
|
|
result.Interpolate(&m_Embers[0], 2, m_Coeffs, stagger);
|
|
else
|
|
result.InterpolateCatmullRom(&m_Embers[0], 4, m_Coeffs[1]);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Merge the variations in a vector of xforms into a single xform so that
|
|
/// it contains one variation for each variation type that was present in the
|
|
/// vector of xforms.
|
|
/// </summary>
|
|
/// <param name="xforms">The xforms to merge</param>
|
|
/// <param name="clearWeights">Clear weights if true, else copy weights</param>
|
|
/// <returns>The xform whose variations are a result of the merge</returns>
|
|
static Xform<T> MergeXforms(vector<Xform<T>*>& xforms, bool clearWeights = false)
|
|
{
|
|
Xform<T> xform;
|
|
|
|
for (auto xf : xforms)
|
|
MergeXformVariations1Way(xf, &xform, false, clearWeights);
|
|
|
|
return xform;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Merges the xform variations from one xform to another, but not back.
|
|
/// </summary>
|
|
/// <param name="source">The source xform to merge from</param>
|
|
/// <param name="dest">The destination xform to merge to</param>
|
|
/// <param name="parVarsOnly">If true, only merge parametric variations, else merge all</param>
|
|
/// <param name="clearWeights">If true, set variation weights in dest to 0, else copy weights</param>
|
|
static void MergeXformVariations1Way(Xform<T>* source, Xform<T>* dest, bool parVarsOnly, bool clearWeights)
|
|
{
|
|
for (size_t i = 0; i < source->TotalVariationCount(); i++)//Iterate through the first xform's variations.
|
|
{
|
|
auto var = source->GetVariation(i);//Grab the variation at index in in the first xform.
|
|
auto var2 = dest->GetVariationById(var->VariationId());//See if the same variation exists in the second xform.
|
|
auto parVar = dynamic_cast<ParametricVariation<T>*>(var);//Parametric cast of the first var for later.
|
|
|
|
if (!var2)//Only take action if the second xform did not contain this variation.
|
|
{
|
|
if (parVarsOnly)//Only add if parametric.
|
|
{
|
|
if (parVar)
|
|
{
|
|
auto parVarCopy = parVar->Copy();
|
|
|
|
if (clearWeights)
|
|
parVarCopy->m_Weight = 0;
|
|
|
|
dest->AddVariation(parVarCopy);
|
|
}
|
|
}
|
|
else//Add regardless of type.
|
|
{
|
|
auto varCopy = var->Copy();
|
|
|
|
if (clearWeights)
|
|
varCopy->m_Weight = 0;
|
|
|
|
dest->AddVariation(varCopy);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Merges the xform variations from one xform to another, and back.
|
|
/// After this function completes, both xforms will have the same variations.
|
|
/// </summary>
|
|
/// <param name="source">The source xform to merge from, and to</param>
|
|
/// <param name="dest">The destination xform to merge to, and from</param>
|
|
/// <param name="parVarsOnly">If true, only merge parametric variations, else merge all</param>
|
|
/// <param name="clearWeights">If true, set variation weights in dest to 0, else copy weights</param>
|
|
static void MergeXformVariations2Way(Xform<T>* source, Xform<T>* dest, bool parVarsOnly, bool clearWeights)
|
|
{
|
|
MergeXformVariations1Way(source, dest, parVarsOnly, clearWeights);
|
|
MergeXformVariations1Way(dest, source, parVarsOnly, clearWeights);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Interpolate a vector of parametric variations by a vector of coefficients and store the ouput in a new parametric variation.
|
|
/// Elements in first which are not the same variation type as second will be ignored.
|
|
/// </summary>
|
|
/// <param name="first">The vector of parametric variations to interpolate</param>
|
|
/// <param name="second">The parametric variation to store the output. This must be initialized first to the desired type.</param>
|
|
/// <param name="c">The vector of coefficients used to interpolate</param>
|
|
static void InterpParametricVar(vector<ParametricVariation<T>*>& first, ParametricVariation<T>* second, vector<T>& c)
|
|
{
|
|
//First, make sure the variation vector is the same size as the coefficient vector.
|
|
if (second && first.size() == c.size())
|
|
{
|
|
second->Clear();
|
|
auto secondParams = second->Params();
|
|
|
|
//Iterate through each of the source variations.
|
|
for (size_t i = 0; i < first.size(); i++)
|
|
{
|
|
auto firstVar = first[i];
|
|
|
|
//Make sure the source variation at this index is the same type as the variation being written to.
|
|
if (firstVar->VariationId() == second->VariationId())
|
|
{
|
|
size_t size = firstVar->ParamCount();
|
|
auto firstParams = firstVar->Params();
|
|
|
|
//Multiply each parameter of the variation at this index by the coefficient at this index, and add
|
|
//the result to the corresponding parameter in second.
|
|
for (size_t j = 0; j < size; j++)
|
|
{
|
|
if (!firstParams[j].IsPrecalc())
|
|
*(secondParams[j].Param()) += c[i] * firstParams[j].ParamVal();
|
|
}
|
|
}
|
|
}
|
|
|
|
second->Precalc();
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Thin wrapper around ConvertLinearToPolar().
|
|
/// </summary>
|
|
/// <param name="embers">The vector of embers whose affine transforms will be copied and converted</param>
|
|
/// <param name="xfi">The xform index in each ember to convert</param>
|
|
/// <param name="cflag">If 0 convert pre affine, else post affine.</param>
|
|
/// <param name="cxAng">The vec2 vector to store the polar angular values</param>
|
|
/// <param name="cxMag">The vec2 vector to store the polar magnitude values</param>
|
|
/// <param name="cxTrn">The vec2 vector to store the polar translation values</param>
|
|
static void ConvertLinearToPolar(const vector<Ember<T>>& embers, size_t xfi, size_t cflag, vector<v2T>& cxAng, vector<v2T>& cxMag, vector<v2T>& cxTrn)
|
|
{
|
|
ConvertLinearToPolar(embers.data(), embers.size(), xfi, cflag, cxAng, cxMag, cxTrn);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Convert pre or post affine coordinates of the xform at a specific index in each ember from linear to polar and store as separate
|
|
/// vec2 components in the vector parameters cxAng, cxMag and cxTrn.
|
|
/// </summary>
|
|
/// <param name="embers">The array of embers whose affine transforms will be copied and converted</param>
|
|
/// <param name="size">The size of the embers array</param>
|
|
/// <param name="xfi">The xform index in each ember to convert</param>
|
|
/// <param name="cflag">If 0 convert pre affine, else post affine.</param>
|
|
/// <param name="cxAng">The vec2 vector to store the polar angular values</param>
|
|
/// <param name="cxMag">The vec2 vector to store the polar magnitude values</param>
|
|
/// <param name="cxTrn">The vec2 vector to store the polar translation values</param>
|
|
static void ConvertLinearToPolar(const Ember<T>* embers, size_t size, size_t xfi, size_t cflag, vector<v2T>& cxAng, vector<v2T>& cxMag, vector<v2T>& cxTrn)
|
|
{
|
|
const auto LOCALEPS = T(1e-10);//Even though EPS is defined elsewhere, need this here for full compatibility with flam3.
|
|
|
|
if (size == cxAng.size() &&
|
|
size == cxMag.size() &&
|
|
size == cxTrn.size())
|
|
{
|
|
T c1[2], d, t, refang;
|
|
glm::length_t col, k;
|
|
int zlm[2];
|
|
const char* loc = __FUNCTION__;
|
|
|
|
for (k = 0; k < size; k++)
|
|
{
|
|
//Establish the angles and magnitudes for each component.
|
|
//Keep translation linear.
|
|
zlm[0] = zlm[1] = 0;
|
|
|
|
if (auto xform = embers[k].GetTotalXform(xfi))
|
|
{
|
|
for (col = 0; col < 2; col++)
|
|
{
|
|
if (cflag == 0)
|
|
{
|
|
c1[0] = xform->m_Affine.m_Mat[0][col];//a or b.
|
|
c1[1] = xform->m_Affine.m_Mat[1][col];//d or e.
|
|
t = xform->m_Affine.m_Mat[col][2];//c or f.
|
|
}
|
|
else
|
|
{
|
|
c1[0] = xform->m_Post.m_Mat[0][col];
|
|
c1[1] = xform->m_Post.m_Mat[1][col];
|
|
t = xform->m_Post.m_Mat[col][2];
|
|
}
|
|
|
|
cxAng[k][col] = std::atan2(c1[1], c1[0]);
|
|
cxMag[k][col] = std::sqrt(c1[0] * c1[0] + c1[1] * c1[1]);
|
|
|
|
if (cxMag[k][col] == 0)
|
|
zlm[col] = 1;
|
|
|
|
cxTrn[k][col] = t;
|
|
}
|
|
|
|
if (zlm[0] == 1 && zlm[1] == 0)
|
|
cxAng[k][0] = cxAng[k][1];
|
|
else if (zlm[0] == 0 && zlm[1] == 1)
|
|
cxAng[k][1] = cxAng[k][0];
|
|
}
|
|
else
|
|
{
|
|
cout << loc << ": xform " << xfi << " is missing when it was expected, something is severely wrong.\n";
|
|
}
|
|
}
|
|
|
|
//Make sure the rotation is the shorter direction around the circle
|
|
//by adjusting each angle in succession, and rotate clockwise if 180 degrees.
|
|
for (col = 0; col < 2; col++)
|
|
{
|
|
for (k = 1; k < size; k++)
|
|
{
|
|
if (auto xform = embers[k].GetTotalXform(xfi))
|
|
{
|
|
//Adjust angles differently if an asymmetric case.
|
|
if (xform->m_Wind[col] > 0 && cflag == 0)
|
|
{
|
|
//Adjust the angles to make sure that it's within wind : wind + 2pi.
|
|
refang = xform->m_Wind[col] - M_2PI;
|
|
|
|
//Make sure both angles are within [refang refang + 2 * pi].
|
|
while (cxAng[k - 1][col] < refang)
|
|
cxAng[k - 1][col] += M_2PI;
|
|
|
|
while (cxAng[k - 1][col] > refang + M_2PI)
|
|
cxAng[k - 1][col] -= M_2PI;
|
|
|
|
while (cxAng[k][col] < refang)
|
|
cxAng[k][col] += M_2PI;
|
|
|
|
while (cxAng[k][col] > refang + M_2PI)
|
|
cxAng[k][col] -= M_2PI;
|
|
}
|
|
else
|
|
{
|
|
//Normal way of adjusting angles.
|
|
d = cxAng[k][col] - cxAng[k - 1][col];
|
|
|
|
//Adjust to avoid the -pi/pi discontinuity.
|
|
if (d > M_PI + LOCALEPS)
|
|
cxAng[k][col] -= M_2PI;
|
|
else if (d < -(M_PI - LOCALEPS))//Forces clockwise rotation at 180.
|
|
cxAng[k][col] += M_2PI;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cout << loc << ": xform " << xfi << " is missing when it was expected, something is severely wrong.\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Never really understood what this did, but it has to do with winding.
|
|
/// </summary>
|
|
/// <param name="embers">The array of embers</param>
|
|
/// <param name="count">The size of the embers array</param>
|
|
static void AsymmetricRefAngles(Ember<T>* embers, size_t count)
|
|
{
|
|
const auto LOCALEPS = T(1e-10);//Even though EPS is defined elsewhere, need this here for full compatibility with flam3.
|
|
size_t k, xfi;
|
|
T cxang[4][2], c1[2], d;
|
|
|
|
for (xfi = 0; xfi < embers[0].XformCount(); xfi++)//Final xforms don't rotate regardless of their symmetry.
|
|
{
|
|
for (k = 0; k < count; k++)
|
|
{
|
|
//Establish the angle for each component.
|
|
//Should potentially functionalize.
|
|
for (glm::length_t col = 0; col < 2; col++)
|
|
{
|
|
c1[0] = embers[k].GetXform(xfi)->m_Affine.m_Mat[0][col];//A,D then B,E.
|
|
c1[1] = embers[k].GetXform(xfi)->m_Affine.m_Mat[1][col];
|
|
cxang[k][col] = std::atan2(c1[1], c1[0]);
|
|
}
|
|
}
|
|
|
|
for (k = 1; k < count; k++)
|
|
{
|
|
for (size_t col = 0; col < 2; col++)
|
|
{
|
|
bool sym0, sym1, padSymFlag = false;
|
|
d = cxang[k][col] - cxang[k - 1][col];
|
|
|
|
//Adjust to avoid the -pi/pi discontinuity.
|
|
if (d > T(M_PI + LOCALEPS))
|
|
cxang[k][col] -= 2 * T(M_PI);
|
|
else if (d < -T(M_PI - LOCALEPS))
|
|
cxang[k][col] += 2 * T(M_PI);
|
|
|
|
//If this is an asymmetric case, store the NON-symmetric angle
|
|
//Check them pairwise and store the reference angle in the second
|
|
//to avoid overwriting if asymmetric on both sides.
|
|
sym0 = (embers[k - 1].GetXform(xfi)->m_Animate == 0 || (embers[k - 1].GetXform(xfi)->Empty() && padSymFlag));
|
|
sym1 = (embers[k ].GetXform(xfi)->m_Animate == 0 || (embers[k ].GetXform(xfi)->Empty() && padSymFlag));
|
|
|
|
if (sym1 && !sym0)
|
|
embers[k].GetXform(xfi)->m_Wind[col] = cxang[k - 1][col] + 2 * T(M_PI);
|
|
else if (sym0 && !sym1)
|
|
embers[k].GetXform(xfi)->m_Wind[col] = cxang[k][col] + 2 * T(M_PI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Never really understood what this did.
|
|
/// </summary>
|
|
/// <param name="coefs">The coefficients vector</param>
|
|
/// <param name="cxAng">The vec2 vector to store the polar angular values</param>
|
|
/// <param name="cxMag">The vec2 vector to store the polar magnitude values</param>
|
|
/// <param name="cxTrn">The vec2 vector to store the polar translation values</param>
|
|
/// <param name="store">The Affine2D to store the inerpolated values in</param>
|
|
static void InterpAndConvertBack(const vector<T>& coefs, const vector<v2T>& cxAng, const vector<v2T>& cxMag, const vector<v2T>& cxTrn, Affine2D<T>& store)
|
|
{
|
|
size_t size = coefs.size();
|
|
glm::length_t i, col, accmode[2] = { 0, 0 };
|
|
T expmag, accang[2] = { 0, 0 }, accmag[2] = { 0, 0 };
|
|
|
|
//Accumulation mode defaults to logarithmic, but in special
|
|
//cases switch to linear accumulation.
|
|
for (col = 0; col < 2; col++)
|
|
{
|
|
for (i = 0; i < size; i++)
|
|
{
|
|
if (std::log(cxMag[i][col]) < -10)
|
|
accmode[col] = 1;//Mode set to linear interp.
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < size; i++)
|
|
{
|
|
for (col = 0; col < 2; col++)
|
|
{
|
|
accang[col] += coefs[i] * cxAng[i][col];
|
|
|
|
if (accmode[col] == 0)
|
|
accmag[col] += coefs[i] * std::log(cxMag[i][col]);
|
|
else
|
|
accmag[col] += coefs[i] * (cxMag[i][col]);
|
|
|
|
//Translation is ready to go.
|
|
store.m_Mat[col][2] += coefs[i] * cxTrn[i][col];
|
|
}
|
|
}
|
|
|
|
//Convert the angle back to rectangular.
|
|
for (col = 0; col < 2; col++)
|
|
{
|
|
if (accmode[col] == 0)
|
|
expmag = std::exp(accmag[col]);
|
|
else
|
|
expmag = accmag[col];
|
|
|
|
store.m_Mat[0][col] = expmag * std::cos(accang[col]);
|
|
store.m_Mat[1][col] = expmag * std::sin(accang[col]);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Smooths the time values for animations.
|
|
/// </summary>
|
|
/// <param name="t">The time value to smooth</param>
|
|
/// <returns>the smoothed time value</returns>
|
|
static inline T Smoother(T t)
|
|
{
|
|
return 3 * t * t - 2 * t * t * t;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the stagger coef based on the position of the current xform among the others.
|
|
/// Never really understood what this did.
|
|
/// </summary>
|
|
/// <param name="t">The time value</param>
|
|
/// <param name="staggerPercent">The stagger percentage</param>
|
|
/// <param name="numXforms">The number xforms in the ember</param>
|
|
/// <param name="thisXform">The index of this xform within the ember</param>
|
|
/// <returns>The stagger coefficient</returns>
|
|
static inline T GetStaggerCoef(T t, T staggerPercent, size_t numXforms, size_t thisXform)
|
|
{
|
|
//maxStag is the spacing between xform start times if staggerPercent = 1.0.
|
|
T maxStag = T(numXforms - 1) / numXforms;
|
|
//Scale the spacing by staggerPercent.
|
|
T stagScaled = staggerPercent * maxStag;
|
|
//t ranges from 1 to 0 (the contribution of cp[0] to the blend).
|
|
//The first line below makes the first xform interpolate first.
|
|
//The second line makes the last xform interpolate first.
|
|
T st = stagScaled * (numXforms - 1 - thisXform) / (numXforms - 1);
|
|
T ett = st + (1 - stagScaled);
|
|
|
|
if (t <= st)
|
|
return 0;
|
|
else if (t >= ett)
|
|
return 1;
|
|
else
|
|
return Smoother((t - st) / (1 - stagScaled));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Apply the specified motion function to a value.
|
|
/// </summary>
|
|
/// <param name="funcNum">The function type to apply, sin, triangle, hill or saw.</param>
|
|
/// <param name="timeVal">The time value to apply the motion function to</param>
|
|
/// <returns>The new time value computed by applying the specified motion function to the time value</returns>
|
|
static T MotionFuncs(eMotion funcNum, T timeVal)
|
|
{
|
|
//Motion funcs should be cyclic, and equal to 0 at integral time values
|
|
//abs peak values should be not be greater than 1.
|
|
switch (funcNum)
|
|
{
|
|
case EmberNs::eMotion::MOTION_SIN:
|
|
{
|
|
return std::sin(T(2.0) * T(M_PI) * timeVal);
|
|
}
|
|
break;
|
|
|
|
case EmberNs::eMotion::MOTION_TRIANGLE:
|
|
{
|
|
T fr = fmod(timeVal, T(1.0));
|
|
|
|
if (fr < 0)
|
|
fr += 1;
|
|
|
|
if (fr <= T(0.25))
|
|
fr *= 4;
|
|
else if (fr <= T(0.75))
|
|
fr = -4 * fr + 2;
|
|
else
|
|
fr = 4 * fr - 4;
|
|
|
|
return fr;
|
|
}
|
|
break;
|
|
|
|
case EmberNs::eMotion::MOTION_HILL:
|
|
{
|
|
return ((1 - std::cos(T(2.0) * T(M_PI) * timeVal)) * T(0.5));
|
|
}
|
|
break;
|
|
|
|
case EmberNs::eMotion::MOTION_SAW:
|
|
{
|
|
return (T(2.0) * fmod(timeVal - T(0.5), T(1.0)) - T(1.0));
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return timeVal;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Compare xforms for sorting based first on color speed and second on determinants if
|
|
/// color speeds are equal.
|
|
/// </summary>
|
|
/// <param name="a">The first xform to compare</param>
|
|
/// <param name="b">The second xform to compare</param>
|
|
/// <returns>true if a > b, else false.</returns>
|
|
static inline bool CompareXforms(const Xform<T>& a, const Xform<T>& b)
|
|
{
|
|
if (a.m_ColorSpeed > b.m_ColorSpeed) return true;
|
|
|
|
if (a.m_ColorSpeed < b.m_ColorSpeed) return false;
|
|
|
|
//Original did this every time, even though it's only needed if the color speeds are equal.
|
|
m2T aMat2 = a.m_Affine.ToMat2ColMajor();
|
|
m2T bMat2 = b.m_Affine.ToMat2ColMajor();
|
|
T ad = glm::determinant(aMat2);
|
|
T bd = glm::determinant(bMat2);
|
|
|
|
if (a.m_ColorSpeed > 0)
|
|
{
|
|
if (ad < 0) return false;
|
|
|
|
if (bd < 0) return true;
|
|
|
|
ad = std::atan2(a.m_Affine.A(), a.m_Affine.D());
|
|
bd = std::atan2(b.m_Affine.A(), b.m_Affine.D());
|
|
}
|
|
|
|
return ad > bd;
|
|
}
|
|
|
|
private:
|
|
vector<T> m_Coeffs = vector<T>(2);
|
|
Ember<T> m_Embers[4];
|
|
};
|
|
}
|