fractorium/Source/EmberCL/EmberCLFunctions.h
mfeemster a5d69c75a2 0.4.0.8 Beta 07/26/2014
0.4.0.8 Beta 07/26/2014
--Bug Fixes
Fix falloff, falloff2, falloff3.
2014-07-26 17:26:15 -07:00

419 lines
10 KiB
C++

#pragma once
#include "EmberCLPch.h"
#include "EmberCLStructs.h"
/// <summary>
/// OpenCL global function strings.
/// </summary>
namespace EmberCLns
{
/// <summary>
/// OpenCL equivalent of Palette::RgbToHsv().
/// </summary>
static const char* RgbToHsvFunctionString =
//rgb 0 - 1,
//h 0 - 6, s 0 - 1, v 0 - 1
"static inline void RgbToHsv(real4* rgb, real4* hsv)\n"
"{\n"
" real_t max, min, del, rc, gc, bc;\n"
"\n"
//Compute maximum of r, g, b.
" if ((*rgb).x >= (*rgb).y)\n"
" {\n"
" if ((*rgb).x >= (*rgb).z)\n"
" max = (*rgb).x;\n"
" else\n"
" max = (*rgb).z;\n"
" }\n"
" else\n"
" {\n"
" if ((*rgb).y >= (*rgb).z)\n"
" max = (*rgb).y;\n"
" else\n"
" max = (*rgb).z;\n"
" }\n"
"\n"
//Compute minimum of r, g, b.
" if ((*rgb).x <= (*rgb).y)\n"
" {\n"
" if ((*rgb).x <= (*rgb).z)\n"
" min = (*rgb).x;\n"
" else\n"
" min = (*rgb).z;\n"
" }\n"
" else\n"
" {\n"
" if ((*rgb).y <= (*rgb).z)\n"
" min = (*rgb).y;\n"
" else\n"
" min = (*rgb).z;\n"
" }\n"
"\n"
" del = max - min;\n"
" (*hsv).z = max;\n"
"\n"
" if (max != 0)\n"
" (*hsv).y = del / max;\n"
" else\n"
" (*hsv).y = 0;\n"
"\n"
" (*hsv).x = 0;\n"
" if ((*hsv).y != 0)\n"
" {\n"
" rc = (max - (*rgb).x) / del;\n"
" gc = (max - (*rgb).y) / del;\n"
" bc = (max - (*rgb).z) / del;\n"
"\n"
" if ((*rgb).x == max)\n"
" (*hsv).x = bc - gc;\n"
" else if ((*rgb).y == max)\n"
" (*hsv).x = 2 + rc - bc;\n"
" else if ((*rgb).z == max)\n"
" (*hsv).x = 4 + gc - rc;\n"
"\n"
" if ((*hsv).x < 0)\n"
" (*hsv).x += 6;\n"
" }\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of Palette::HsvToRgb().
/// </summary>
static const char* HsvToRgbFunctionString =
//h 0 - 6, s 0 - 1, v 0 - 1
//rgb 0 - 1
"static inline void HsvToRgb(real4* hsv, real4* rgb)\n"
"{\n"
" int j;\n"
" real_t f, p, q, t;\n"
"\n"
" while ((*hsv).x >= 6)\n"
" (*hsv).x = (*hsv).x - 6;\n"
"\n"
" while ((*hsv).x < 0)\n"
" (*hsv).x = (*hsv).x + 6;\n"
"\n"
" j = (int)floor((*hsv).x);\n"
" f = (*hsv).x - j;\n"
" p = (*hsv).z * (1 - (*hsv).y);\n"
" q = (*hsv).z * (1 - ((*hsv).y * f));\n"
" t = (*hsv).z * (1 - ((*hsv).y * (1 - f)));\n"
"\n"
" switch (j)\n"
" {\n"
" case 0: (*rgb).x = (*hsv).z; (*rgb).y = t; (*rgb).z = p; break;\n"
" case 1: (*rgb).x = q; (*rgb).y = (*hsv).z; (*rgb).z = p; break;\n"
" case 2: (*rgb).x = p; (*rgb).y = (*hsv).z; (*rgb).z = t; break;\n"
" case 3: (*rgb).x = p; (*rgb).y = q; (*rgb).z = (*hsv).z; break;\n"
" case 4: (*rgb).x = t; (*rgb).y = p; (*rgb).z = (*hsv).z; break;\n"
" case 5: (*rgb).x = (*hsv).z; (*rgb).y = p; (*rgb).z = q; break;\n"
" default: (*rgb).x = (*hsv).z; (*rgb).y = t; (*rgb).z = p; break;\n"
" }\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of Palette::CalcAlpha().
/// </summary>
static const char* CalcAlphaFunctionString =
"static inline real_t CalcAlpha(real_t density, real_t gamma, real_t linrange)\n"//Not the slightest clue what this is doing.//DOC
"{\n"
" real_t frac, alpha, funcval = pow(linrange, gamma);\n"
"\n"
" if (density > 0)\n"
" {\n"
" if (density < linrange)\n"
" {\n"
" frac = density / linrange;\n"
" alpha = (1.0 - frac) * density * (funcval / linrange) + frac * pow(density, gamma);\n"
" }\n"
" else\n"
" alpha = pow(density, gamma);\n"
" }\n"
" else\n"
" alpha = 0;\n"
"\n"
" return alpha;\n"
"}\n"
"\n";
/// <summary>
/// Use MWC 64 from David Thomas at the Imperial College of London for
/// random numbers in OpenCL, instead of ISAAC which was used
/// for CPU rendering.
/// </summary>
static const char* RandFunctionString =
"enum { MWC64X_A = 4294883355u };\n\n"
"inline uint MwcNext(uint2* s)\n"
"{\n"
" uint res = (*s).x ^ (*s).y; \n"//Calculate the result.
" uint hi = mul_hi((*s).x, MWC64X_A); \n"//Step the RNG.
" (*s).x = (*s).x * MWC64X_A + (*s).y;\n"//Pack the state back up.
" (*s).y = hi + ((*s).x < (*s).y); \n"
" return res; \n"//Return the next result.
"}\n"
"\n"
"inline uint MwcNextRange(uint2* s, uint val)\n"
"{\n"
" return (val == 0) ? MwcNext(s) : (MwcNext(s) % val);\n"
"}\n"
"\n"
"inline real_t MwcNext01(uint2* s)\n"
"{\n"
" return MwcNext(s) * (1.0 / 4294967296.0);\n"
"}\n"
"\n"
"inline real_t MwcNextNeg1Pos1(uint2* s)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
" return -1.0 + (f * 2.0);\n"
"}\n"
"\n"
"inline real_t MwcNext0505(uint2* s)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
" return -0.5 + f;\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of the global ClampRef().
/// </summary>
static const char* ClampRealFunctionString =
"inline real_t Clamp(real_t val, real_t min, real_t max)\n"
"{\n"
" if (val < min)\n"
" return min;\n"
" else if (val > max)\n"
" return max;\n"
" else\n"
" return val;\n"
"}\n"
"\n"
"inline void ClampRef(real_t* val, real_t min, real_t max)\n"
"{\n"
" if (*val < min)\n"
" *val = min;\n"
" else if (*val > max)\n"
" *val = max;\n"
"}\n"
"\n"
"inline real_t ClampGte(real_t val, real_t gte)\n"
"{\n"
" return (val < gte) ? gte : val;\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of the global LRint().
/// </summary>
static const char* InlineMathFunctionsString =
"inline real_t LRint(real_t x)\n"
"{\n"
" intPrec temp = (x >= 0.0 ? (intPrec)(x + 0.5) : (intPrec)(x - 0.5));\n"
" return (real_t)temp;\n"
"}\n"
"\n"
"inline real_t Round(real_t r)\n"
"{\n"
" return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5);\n"
"}\n"
"\n"
"inline real_t Sign(real_t v)\n"
"{\n"
" return (v < 0.0) ? -1 : (v > 0.0) ? 1 : 0.0;\n"
"}\n"
"\n"
"inline real_t SignNz(real_t v)\n"
"{\n"
" return (v < 0.0) ? -1.0 : 1.0;\n"
"}\n"
"\n"
"inline real_t Sqr(real_t v)\n"
"{\n"
" return v * v;\n"
"}\n"
"\n"
"inline real_t SafeSqrt(real_t x)\n"
"{\n"
" if (x <= 0.0)\n"
" return 0.0;\n"
"\n"
" return sqrt(x);\n"
"}\n"
"\n"
"inline real_t Cube(real_t v)\n"
"{\n"
" return v * v * v;\n"
"}\n"
"\n"
"inline real_t Hypot(real_t x, real_t y)\n"
"{\n"
" return sqrt(SQR(x) + SQR(y));\n"
"}\n"
"\n"
"inline real_t Spread(real_t x, real_t y)\n"
"{\n"
" return Hypot(x, y) * ((x) > 0.0 ? 1.0 : -1.0);\n"
"}\n"
"\n"
"inline real_t Powq4(real_t x, real_t y)\n"
"{\n"
" return pow(fabs(x), y) * SignNz(x);\n"
"}\n"
"\n"
"inline real_t Powq4c(real_t x, real_t y)\n"
"{\n"
" return y == 1.0 ? x : Powq4(x, y);\n"
"}\n"
"\n"
"inline real_t Zeps(real_t x)\n"
"{\n"
" return x == 0.0 ? EPS : x;\n"
"}\n"
"\n"
"inline real_t Lerp(real_t a, real_t b, real_t p)\n"
"{\n"
" return a + (b - a) * p;\n"
"}\n"
"\n"
"inline real_t Fabsmod(real_t v)\n"
"{\n"
" real_t dummy;\n"
"\n"
" return modf(v, &dummy);\n"
"}\n"
"\n"
"inline real_t Fosc(real_t p, real_t amp, real_t ph)\n"
"{\n"
" return 0.5 - cos(p * amp + ph) * 0.5;\n"
"}\n"
"\n"
"inline real_t Foscn(real_t p, real_t ph)\n"
"{\n"
" return 0.5 - cos(p + ph) * 0.5;\n"
"}\n"
"\n"
"inline real_t LogScale(real_t x)\n"
"{\n"
" return x == 0.0 ? 0.0 : log((fabs(x) + 1) * M_E) * SignNz(x) / M_E;\n"
"}\n"
"\n"
"inline real_t LogMap(real_t x)\n"
"{\n"
" return x == 0.0 ? 0.0 : (M_E + log(x * M_E)) * 0.25 * SignNz(x);\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent Renderer::AddToAccum().
/// </summary>
static const char* AddToAccumWithCheckFunctionString =
"inline bool AccumCheck(int superRasW, int superRasH, int i, int ii, int j, int jj)\n"
"{\n"
" return (j + jj >= 0 && j + jj < superRasH && i + ii >= 0 && i + ii < superRasW);\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent various CarToRas member functions.
/// </summary>
static const char* CarToRasFunctionString =
"inline void CarToRasConvertPointToSingle(__constant CarToRasCL* carToRas, Point* point, unsigned int* singleBufferIndex)\n"
"{\n"
" *singleBufferIndex = (unsigned int)(carToRas->m_PixPerImageUnitW * point->m_X - carToRas->m_RasLlX) + (carToRas->m_RasWidth * (unsigned int)(carToRas->m_PixPerImageUnitH * point->m_Y - carToRas->m_RasLlY));\n"
"}\n"
"\n"
"inline bool CarToRasInBounds(__constant CarToRasCL* carToRas, Point* point)\n"
"{\n"
" return point->m_X >= carToRas->m_CarLlX &&\n"
" point->m_X < carToRas->m_CarUrX &&\n"
" point->m_Y < carToRas->m_CarUrY &&\n"
" point->m_Y >= carToRas->m_CarLlY;\n"
"}\n"
"\n";
static string AtomicString(bool doublePrecision, bool dp64AtomicSupport)
{
ostringstream os;
//If they want single precision, or if they want double precision and have dp atomic support.
if (!doublePrecision || dp64AtomicSupport)
{
os <<
"void AtomicAdd(volatile __global real_t* source, const real_t operand)\n"
"{\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_t realVal;\n"
" } newVal;\n"
"\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_t realVal;\n"
" } prevVal;\n"
"\n"
" do\n"
" {\n"
" prevVal.realVal = *source;\n"
" newVal.realVal = prevVal.realVal + operand;\n"
" } while (atomic_cmpxchg((volatile __global atomi*)source, prevVal.intVal, newVal.intVal) != prevVal.intVal);\n"
"}\n";
}
else//They want double precision and do not have dp atomic support.
{
os <<
"void AtomicAdd(volatile __global real_t* source, const real_t operand)\n"
"{\n"
" union\n"
" {\n"
" uint intVal[2];\n"
" real_t realVal;\n"
" } newVal;\n"
"\n"
" union\n"
" {\n"
" uint intVal[2];\n"
" real_t realVal;\n"
" } prevVal;\n"
"\n"
" do\n"
" {\n"
" prevVal.realVal = *source;\n"
" newVal.realVal = prevVal.realVal + operand;\n"
" } while ((atomic_cmpxchg((volatile __global uint*)source, prevVal.intVal[0], newVal.intVal[0]) != prevVal.intVal[0]) ||\n"
" (atomic_cmpxchg((volatile __global uint*)source + 1, prevVal.intVal[1], newVal.intVal[1]) != prevVal.intVal[1]));\n"
"}\n";
}
return os.str();
}
#ifdef GRAVEYARD
/*"void AtomicLocalAdd(volatile __local real_t* source, const real_t operand)\n"
"{\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_t realVal;\n"
" } newVal;\n"
"\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_t realVal;\n"
" } prevVal;\n"
"\n"
" do\n"
" {\n"
" prevVal.realVal = *source;\n"
" newVal.realVal = prevVal.realVal + operand;\n"
" } while (atomic_cmpxchg((volatile __local atomi*)source, prevVal.intVal, newVal.intVal) != prevVal.intVal);\n"
"}\n"*/
#endif
}