fractorium/Source/EmberGenome/EmberGenome.cpp
Person 1dfbd4eff2 --User changes
-Add new preset dimensions to the right click menu of the width and height fields in the editor.
-Change QSS stylesheets to properly handle tabs.
-Make tabs rectangular by default. For some reason, they had always been triangular.

--Bug fixes
 -Incremental rendering times in the editor were wrong.

--Code changes
 -Migrate to Qt6. There is probably more work to be done here.
-Migrate to VS2022.
-Migrate to Wix 4 installer.
-Change installer to install to program files for all users.
-Fix many VS2022 code analysis warnings.
-No longer use byte typedef, because std::byte is now a type. Revert all back to unsigned char.
-Upgrade OpenCL headers to version 3.0 and keep locally now rather than trying to look for system files.
-No longer link to Nvidia or AMD specific OpenCL libraries. Use the generic installer located at OCL_ROOT too.
-Add the ability to change OpenCL grid dimensions. This was attempted for investigating possible performance improvments, but made no difference.

This has not been verified on Linux or Mac yet.
2023-04-25 17:59:54 -06:00

887 lines
27 KiB
C++

#include "EmberCommonPch.h"
#include "EmberGenome.h"
#include "JpegUtils.h"
#include <xmmintrin.h>
#include <immintrin.h>
#include <pmmintrin.h>
using namespace EmberCommon;
/// <summary>
/// Set various default test values on the passed in ember.
/// </summary>
/// <param name="ember">The ember to test</param>
template <typename T>
void SetDefaultTestValues(Ember<T>& ember)
{
ember.m_Time = 0.0;
ember.m_Interp = eInterp::EMBER_INTERP_LINEAR;
ember.m_PaletteInterp = ePaletteInterp::INTERP_HSV;
ember.m_Background[0] = 0;
ember.m_Background[1] = 0;
ember.m_Background[2] = 0;
ember.m_Background[3] = 255;
ember.m_CenterX = 0;
ember.m_CenterY = 0;
ember.m_Rotate = 0;
ember.m_PixelsPerUnit = 64;
ember.m_FinalRasW = 128;
ember.m_FinalRasH = 128;
ember.m_Supersample = 1;
ember.m_SpatialFilterRadius = T(0.5);
ember.m_SpatialFilterType = eSpatialFilterType::GAUSSIAN_SPATIAL_FILTER;
ember.m_Zoom = 0;
ember.m_Quality = 1;
ember.m_TemporalSamples = 1;
ember.m_MaxRadDE = 0;
ember.m_MinRadDE = 0;
ember.m_CurveDE = T(0.6);
}
/// <summary>
/// The core of the EmberGenome.exe program.
/// Template argument expected to be float or double.
/// </summary>
/// <param name="opt">A populated EmberOptions object which specifies all program options to be used</param>
/// <returns>True if success, else false.</returns>
template <typename T>
bool EmberGenome(int argc, _TCHAR* argv[], EmberOptions& opt)
{
auto info = OpenCLInfo::Instance();
std::cout.imbue(std::locale(""));
if (opt.DumpArgs())
cerr << opt.GetValues(eOptionUse::OPT_USE_GENOME) << "\n";
if (opt.OpenCLInfo())
{
cerr << "\nOpenCL Info: \n";
cerr << info->DumpInfo();
return true;
}
Compat::m_Compat = opt.Flam3Compat();
auto varList = VariationList<T>::Instance();
if (opt.AllVars() || opt.SumVars() || opt.AssignVars() || opt.PpSumVars() || opt.PpAssignVars() ||
opt.DcVars() || opt.StateVars() || opt.ParVars() || opt.NonParVars() ||
opt.RegVars() || opt.PreVars() || opt.PostVars())
{
vector<string> assign{ "outPoint->m_X =", "outPoint->m_Y =", "outPoint->m_Z =",
"outPoint->m_X=", "outPoint->m_Y=", "outPoint->m_Z=" };
if (opt.AllVars())
{
auto& vars = varList->AllVars();
for (auto& v : vars)
cout << v->Name() << "\n";
}
else if (opt.SumVars())
{
auto& reg = varList->RegVars();
auto matches = FindVarsWithout<T>(varList->RegVars(), assign);
for (auto& v : matches)
cout << v->Name() << "\n";
}
else if (opt.AssignVars())
{
auto matches = FindVarsWith<T>(varList->RegVars(), assign);
for (auto& v : matches)
cout << v->Name() << "\n";
}
else if (opt.PpSumVars())
{
auto& pre = varList->PreVars();
auto& post = varList->PostVars();
for (auto& v : pre)
if (v->AssignType() == eVariationAssignType::ASSIGNTYPE_SUM)
cout << v->Name() << "\n";
for (auto& v : post)
if (v->AssignType() == eVariationAssignType::ASSIGNTYPE_SUM)
cout << v->Name() << "\n";
}
else if (opt.PpAssignVars())
{
auto& pre = varList->PreVars();
auto& post = varList->PostVars();
for (auto& v : pre)
if (v->AssignType() == eVariationAssignType::ASSIGNTYPE_SET)
cout << v->Name() << "\n";
for (auto& v : post)
if (v->AssignType() == eVariationAssignType::ASSIGNTYPE_SET)
cout << v->Name() << "\n";
}
else if (opt.DcVars())
{
auto& all = varList->AllVars();
auto matches = FindVarsWith<T>(all, vector<string> { "m_ColorX" });
for (auto& v : matches)
cout << v->Name() << "\n";
}
else if (opt.StateVars())
{
auto& all = varList->AllVars();
for (auto& v : all)
if (!v->StateOpenCLString().empty())
cout << v->Name() << "\n";
}
else if (opt.ParVars())
{
auto& parVars = varList->ParametricVariations();
for (auto& v : parVars)
cout << v->Name() << "\n";
}
else if (opt.NonParVars())
{
auto& vars = varList->NonParametricVariations();
for (auto& v : vars)
cout << v->Name() << "\n";
}
else
{
vector<const Variation<T>*> vars;
if (opt.RegVars())
vars.insert(vars.end(), varList->RegVars().begin(), varList->RegVars().end());
if (opt.PreVars())
vars.insert(vars.end(), varList->PreVars().begin(), varList->PreVars().end());
if (opt.PostVars())
vars.insert(vars.end(), varList->PostVars().begin(), varList->PostVars().end());
for (auto& v : vars)
cout << v->Name() << "\n";
}
return true;
}
VerbosePrint("Using " << (sizeof(T) == sizeof(float) ? "single" : "double") << " precision.");
//Regular variables.
Timing t;
bool exactTimeMatch, randomMode, didColor, seqFlag, random = false;
size_t i, i0, i1, rep, val, frame, frameCount, count = 0;
size_t ftime, firstFrame, lastFrame;
double tot;
size_t n, totb, totw;
double avgPix;
T fractionBlack, fractionWhite, blend, spread, mix0, mix1;
string token, filename;
ostringstream os, os2;
vector<Ember<T>> embers, embers2, templateEmbers;
vector<eVariationId> vars, noVars;
vector<v4F> finalImage;
eCrossMode crossMeth;
eMutateMode mutMeth;
Ember<T> orig, save, selp0, selp1, parent0, parent1;
Ember<T>* aselp0, *aselp1, *pTemplate = nullptr;
XmlToEmber<T> parser;
EmberToXml<T> emberToXml;
Interpolater<T> interpolater;
EmberReport emberReport, emberReport2;
const vector<pair<size_t, size_t>> devices = Devices(opt.Devices());
auto progress = make_unique<RenderProgress<T>>();
unique_ptr<Renderer<T, float>> renderer(CreateRenderer<T>(opt.EmberCL() ? eRendererType::OPENCL_RENDERER : eRendererType::CPU_RENDERER, devices, false, 0, emberReport));
QTIsaac<ISAAC_SIZE, ISAAC_INT> rand(ISAAC_INT(t.Tic()), ISAAC_INT(t.Tic() * 2), ISAAC_INT(t.Tic() * 3));
vector<string> errorReport = emberReport.ErrorReport();
auto fullpath = GetExePath(argv[0]);
os.imbue(std::locale(""));
os2.imbue(std::locale(""));
if (!errorReport.empty())
cerr << emberReport.ErrorReportString();
if (!renderer.get())
{
cerr << "Renderer creation failed, exiting.\n";
return false;
}
if (!InitPaletteList<float>(fullpath, opt.PalettePath()))
return false;
if (!opt.EmberCL())
{
if (opt.ThreadCount() != 0)
renderer->ThreadCount(opt.ThreadCount(), opt.IsaacSeed() != "" ? opt.IsaacSeed().c_str() : nullptr);
}
else
{
cerr << "Using OpenCL to render.\n";
if (opt.Verbose())
{
for (auto& device : devices)
{
cerr << "Platform: " << info->PlatformName(device.first) << "\n";
cerr << "Device: " << info->DeviceName(device.first, device.second) << "\n";
}
}
}
//SheepTools will own the created renderer and will take care of cleaning it up.
SheepTools<T, float> tools(opt.PalettePath(), CreateRenderer<T>(opt.EmberCL() ? eRendererType::OPENCL_RENDERER : eRendererType::CPU_RENDERER, devices, false, 0, emberReport2));
tools.SetSpinParams(!opt.UnsmoothEdge(),
T(opt.Stagger()),
T(opt.OffsetX()),
T(opt.OffsetY()),
opt.Nick(),
opt.Url(),
opt.Id(),
opt.Comment(),
opt.SheepGen(),
opt.SheepId());
if (opt.UseVars() != "" && opt.DontUseVars() != "")
{
cerr << "use_vars and dont_use_vars cannot both be specified. Returning without executing.\n";
return false;
}
//Specify reasonable defaults if nothing is specified.
if (opt.UseVars() == "" && opt.DontUseVars() == "")
{
noVars.push_back(eVariationId::VAR_NOISE);
noVars.push_back(eVariationId::VAR_BLUR);
noVars.push_back(eVariationId::VAR_GAUSSIAN_BLUR);
noVars.push_back(eVariationId::VAR_RADIAL_BLUR);
noVars.push_back(eVariationId::VAR_NGON);
noVars.push_back(eVariationId::VAR_SQUARE);
noVars.push_back(eVariationId::VAR_RAYS);
noVars.push_back(eVariationId::VAR_CROSS);
noVars.push_back(eVariationId::VAR_PRE_BLUR);
noVars.push_back(eVariationId::VAR_SEPARATION);
noVars.push_back(eVariationId::VAR_SPLIT);
noVars.push_back(eVariationId::VAR_SPLITS);
//Set ivars to the complement of novars.
for (i = 0; i < varList->Size(); i++)
if (!Contains(noVars, varList->GetVariation(i)->VariationId()))
vars.push_back(varList->GetVariation(i)->VariationId());
}
else
{
if (opt.UseVars() != "")//Parse comma-separated list of variations to use.
{
istringstream iss(opt.UseVars());
while (std::getline(iss, token, ','))
{
if (parser.Aton(token.c_str(), val))
{
if (val < varList->Size())
vars.push_back(static_cast<eVariationId>(val));
}
}
}
else if (opt.DontUseVars() != "")
{
istringstream iss(opt.DontUseVars());
while (std::getline(iss, token, ','))
{
if (parser.Aton(token.c_str(), val))
{
if (val < varList->Size())
noVars.push_back(static_cast<eVariationId>(val));
}
}
//Set ivars to the complement of novars.
for (i = 0; i < varList->Size(); i++)
if (!Contains(noVars, varList->GetVariation(i)->VariationId()))
vars.push_back(varList->GetVariation(i)->VariationId());
}
}
const auto doMutate = opt.Mutate() != "";
const auto doInter = opt.Inter() != "";
const auto doRotate = opt.Rotate() != "";
const auto doClone = opt.Clone() != "";
const auto doCross0 = opt.Cross0() != "";
const auto doCross1 = opt.Cross1() != "";
count += (doMutate ? 1 : 0);
count += (doInter ? 1 : 0);
count += (doRotate ? 1 : 0);
count += (doClone ? 1 : 0);
count += ((doCross0 || doCross1) ? 1 : 0);
if (count > 1)
{
cerr << "Can only specify one of mutate, clone, cross, rotate, or inter. Returning without executing.\n";
return false;
}
if (doCross0 != doCross1)//Must both be either true or false.
{
cerr << "Must specify both crossover arguments. Returning without executing.\n";
return false;
}
if (opt.Method() != "" && (!doCross0 && !doMutate))
{
cerr << "Cannot specify method unless doing crossover or mutate. Returning without executing.\n";
return false;
}
if (opt.TemplateFile() != "")
{
if (!ParseEmberFile(parser, opt.TemplateFile(), templateEmbers, false))//Do not use defaults here to ensure only present fields get used when applying the template.
return false;
if (templateEmbers.size() > 1)
cerr << "More than one control point in template, ignoring all but first.\n";
pTemplate = &templateEmbers[0];
}
//Methods for genetic manipulation begin here.
if (doMutate) filename = opt.Mutate();
else if (doInter) filename = opt.Inter();
else if (doRotate) filename = opt.Rotate();
else if (doClone) filename = opt.Clone();
else if (doCross0) filename = opt.Cross0();
else if (opt.CloneAll() != "") filename = opt.CloneAll();
else if (opt.Animate() != "") filename = opt.Animate();
else if (opt.Sequence() != "") filename = opt.Sequence();
else if (opt.Inter() != "") filename = opt.Inter();
else if (opt.Rotate() != "") filename = opt.Rotate();
else if (opt.Clone() != "") filename = opt.Clone();
else if (opt.Mutate() != "") filename = opt.Mutate();
else random = true;
if (!random)
{
if (!ParseEmberFile(parser, filename, embers))
return false;
if (doCross1)
{
if (!ParseEmberFile(parser, opt.Cross1(), embers2))
return false;
}
}
if (opt.CloneAll() != "")
{
cout << "<clone_all version=\"Ember-" << EmberVersion() << "\">\n";
for (i = 0; i < embers.size(); i++)
{
if (pTemplate)
tools.ApplyTemplate(embers[i], *pTemplate);
tools.Offset(embers[i], T(opt.OffsetX()), T(opt.OffsetY()));
cout << emberToXml.ToString(embers[i], opt.Extras(), opt.PrintEditDepth(), !opt.NoEdits(), opt.HexPalette());
}
cout << "</clone_all>\n";
return true;
}
if (opt.Animate() != "")
{
Ember<T> interpolated;
for (i = 0; i < embers.size(); i++)
{
if (i > 0 && embers[i].m_Time <= embers[i - 1].m_Time)
{
cerr << "Error: control points must be sorted by time, but time " << embers[i].m_Time << " <= " << embers[i - 1].m_Time << ", index " << i << ".\n";
return false;
}
embers[i].DeleteMotionElements();
}
firstFrame = size_t(opt.FirstFrame() == UINT_MAX ? embers[0].m_Time : opt.FirstFrame());
lastFrame = size_t(opt.LastFrame() == UINT_MAX ? embers.back().m_Time : opt.LastFrame());
if (lastFrame < firstFrame)
lastFrame = firstFrame;
cout << "<animate version=\"EMBER-" << EmberVersion() << "\">\n";
for (ftime = firstFrame; ftime <= lastFrame; ftime++)
{
exactTimeMatch = false;
for (i = 0; i < embers.size(); i++)
{
if (ftime == size_t(embers[i].m_Time))
{
interpolated = embers[i];
exactTimeMatch = true;
break;
}
}
if (!exactTimeMatch)
{
interpolater.Interpolate(embers, T(ftime), T(opt.Stagger()), interpolated);
for (i = 0; i < embers.size(); i++)
{
if (ftime == size_t(embers[i].m_Time - 1))
{
exactTimeMatch = true;
break;
}
}
if (!exactTimeMatch)
interpolated.m_AffineInterp = eAffineInterp::AFFINE_INTERP_LINEAR;
}
if (pTemplate)
tools.ApplyTemplate(interpolated, *pTemplate);
cout << emberToXml.ToString(interpolated, opt.Extras(), opt.PrintEditDepth(), !opt.NoEdits(), opt.HexPalette());
}
cout << "</animate>\n";
return true;
}
if (opt.Sequence() != "")
{
Ember<T> result;
if (!opt.LoopFrames() && !opt.InterpFrames())
{
cerr << "loop frames or interp frames must be positive and non-zero, not " << opt.LoopFrames() << ", " << opt.InterpFrames() << ".\n";
return false;
}
if (opt.LoopFrames() > 0 && !opt.Loops())
{
cerr << "loop frames cannot be positive while loops is zero: " << opt.LoopFrames() << ", " << opt.Loops() << ".\n";
return false;
}
if (opt.Loops() > 0 && !opt.LoopFrames())
{
cerr << "loops cannot be positive while loopframes is zero: " << opt.Loops() << ", " << opt.LoopFrames() << ".\n";
return false;
}
if (opt.Enclosed())
cout << "<sequence version=\"EMBER-" << EmberVersion() << "\">\n";
frameCount = 0;
os.str("");
os << setfill('0') << setprecision(0) << fixed;
const auto padding = opt.Padding() ? streamsize(opt.Padding()) : (streamsize(std::log10(opt.StartCount() + (((opt.LoopFrames() * opt.Loops()) + opt.InterpFrames()) * embers.size()))) + 1);
t.Tic();
for (i = 0; i < embers.size(); i++)
{
if (opt.Loops() > 0)
{
const auto roundFrames = static_cast<size_t>(std::round(opt.LoopFrames() * opt.Loops()));
for (frame = 0; frame < roundFrames; frame++)
{
blend = T(frame) / T(opt.LoopFrames());
tools.Spin(embers[i], pTemplate, result, opt.StartCount() + frameCount++, blend, opt.CwLoops());//Result is cleared and reassigned each time inside of Spin().
FormatName(result, os, padding);
cout << emberToXml.ToString(result, opt.Extras(), opt.PrintEditDepth(), !opt.NoEdits(), opt.HexPalette());
}
//The loop above will have rotated just shy of a complete rotation.
//Rotate the next step and save in result, but do not print.
//result will be the starting point for the interp phase below.
frame = roundFrames;
blend = static_cast<T>(frame) / static_cast<T>(opt.LoopFrames());
tools.Spin(embers[i], pTemplate, result, opt.StartCount() + frameCount, blend, opt.CwLoops());//Do not increment frameCount here.
FormatName(result, os, padding);
}
if (i < embers.size() - 1)
{
if (opt.Loops() > 0)//Store the last result as the flame to interpolate from. This applies for whole or fractional values of opt.Loops().
embers[i] = result;
for (frame = 0; frame < opt.InterpFrames(); frame++)
{
seqFlag = frame == 0 || (frame == opt.InterpFrames() - 1);
blend = frame / static_cast<T>(opt.InterpFrames());
result.Clear();
tools.SpinInter(&embers[i], pTemplate, result, opt.StartCount() + frameCount++, seqFlag, blend, opt.InterpLoops(), opt.CwInterpLoops());
FormatName(result, os, padding);
cout << emberToXml.ToString(result, opt.Extras(), opt.PrintEditDepth(), !opt.NoEdits(), opt.HexPalette());
}
}
}
tools.Spin(embers.back(), pTemplate, result, opt.StartCount() + frameCount, 0, opt.CwInterpLoops());
FormatName(result, os, padding);
cout << emberToXml.ToString(result, opt.Extras(), opt.PrintEditDepth(), !opt.NoEdits(), opt.HexPalette());
t.Toc("Sequencing");
if (opt.Enclosed())
cout << "</sequence>\n";
return true;
}
if (doInter || doRotate)
{
Ember<T> result, result1, result2, result3;
if (!opt.LoopFrames() && !opt.InterpFrames())
{
cerr << "loop frames or interp frames must be positive and non-zero, not " << opt.LoopFrames() << ", " << opt.InterpFrames() << ".\n";
return false;
}
frame = opt.Frame();
blend = frame / static_cast<T>(opt.InterpFrames());//Percentage between first and second flame to treat as the center flame.
spread = 1 / static_cast<T>(opt.InterpFrames());//Amount to move backward and forward from the center flame.
if (opt.Enclosed())
cout << "<pick version=\"EMBER-" << EmberVersion() << "\">\n";
if (doRotate)
{
if (embers.size() != 1)
{
cerr << "rotation requires one control point, not " << embers.size() << ".\n";
return false;
}
if (frame)//Cannot spin backward below frame zero.
{
tools.Spin(embers[0], pTemplate, result1, frame - 1, blend - spread, opt.CwLoops());
cout << emberToXml.ToString(result1, opt.Extras(), opt.PrintEditDepth(), !opt.NoEdits(), opt.HexPalette());
}
tools.Spin(embers[0], pTemplate, result2, frame, blend, opt.CwLoops());
tools.Spin(embers[0], pTemplate, result3, frame + 1, blend + spread, opt.CwLoops());
cout << emberToXml.ToString(result2, opt.Extras(), opt.PrintEditDepth(), !opt.NoEdits(), opt.HexPalette());
cout << emberToXml.ToString(result3, opt.Extras(), opt.PrintEditDepth(), !opt.NoEdits(), opt.HexPalette());
}
else
{
if (embers.size() != 2)
{
cerr << "interpolation requires two control points, not " << embers.size() << ".\n";
return false;
}
if (frame)//Cannot interpolate backward below frame zero.
{
tools.SpinInter(embers.data(), pTemplate, result1, frame - 1, false, blend - spread, opt.InterpLoops(), opt.CwInterpLoops());
cout << emberToXml.ToString(result1, opt.Extras(), opt.PrintEditDepth(), !opt.NoEdits(), opt.HexPalette());
}
tools.SpinInter(embers.data(), pTemplate, result2, frame, false, blend, opt.InterpLoops(), opt.CwInterpLoops());
tools.SpinInter(embers.data(), pTemplate, result3, frame + 1, false, blend + spread, opt.InterpLoops(), opt.CwInterpLoops());
cout << emberToXml.ToString(result2, opt.Extras(), opt.PrintEditDepth(), !opt.NoEdits(), opt.HexPalette());
cout << emberToXml.ToString(result3, opt.Extras(), opt.PrintEditDepth(), !opt.NoEdits(), opt.HexPalette());
}
if (opt.Enclosed())
cout << "</pick>\n";
return true;
}
//Repeat.
renderer->EarlyClip(opt.EarlyClip());
renderer->YAxisUp(opt.YAxisUp());
renderer->LockAccum(opt.LockAccum());
renderer->PixelAspectRatio(T(opt.AspectRatio()));
if (opt.Repeat() == 0)
{
cerr << "Repeat must be positive, not " << opt.Repeat() << "\n";
return false;
}
if (opt.Enclosed())
cout << "<pick version=\"EMBER-" << EmberVersion() << "\">\n";
for (rep = 0; rep < opt.Repeat(); rep++)
{
count = 0;
os.str("");
save.Clear();
VerbosePrint("Flame = " << rep + 1 << "/" << opt.Repeat() << "...");
if (opt.Clone() != "")
{
os << "clone";//Action is 'clone' with trunc vars concat.
if (opt.CloneAction() != "")
os << " " << opt.CloneAction();
selp0 = embers[rand.Rand(embers.size())];
save = selp0;
aselp0 = &selp0;
aselp1 = nullptr;
os << tools.TruncateVariations(save, 5);
save.m_Edits = emberToXml.CreateNewEditdoc(aselp0, aselp1, os.str(), opt.Nick(), opt.Url(), opt.Id(), opt.Comment(), opt.SheepGen(), opt.SheepId());
}
else
{
do
{
randomMode = false;
didColor = false;
os.str("");
VerbosePrint(".");
if (doMutate)
{
selp0 = embers[rand.Rand(embers.size())];
orig = selp0;
aselp0 = &selp0;
aselp1 = nullptr;
if (opt.Method() == "")
mutMeth = eMutateMode::MUTATE_NOT_SPECIFIED;
else if (opt.Method() == "all_vars")
mutMeth = eMutateMode::MUTATE_ALL_VARIATIONS;
else if (opt.Method() == "one_xform")
mutMeth = eMutateMode::MUTATE_ONE_XFORM_COEFS;
else if (opt.Method() == "add_symmetry")
mutMeth = eMutateMode::MUTATE_ADD_SYMMETRY;
else if (opt.Method() == "post_xforms")
mutMeth = eMutateMode::MUTATE_POST_XFORMS;
else if (opt.Method() == "color_palette")
mutMeth = eMutateMode::MUTATE_COLOR_PALETTE;
else if (opt.Method() == "delete_xform")
mutMeth = eMutateMode::MUTATE_DELETE_XFORM;
else if (opt.Method() == "all_coefs")
mutMeth = eMutateMode::MUTATE_ALL_COEFS;
else
{
cerr << "method " << opt.Method() << " not defined for mutate. Defaulting to random.\n";
mutMeth = eMutateMode::MUTATE_NOT_SPECIFIED;
}
os << tools.Mutate(orig, mutMeth, vars, opt.Symmetry(), T(opt.Speed()), 8);
//Scan string returned for 'mutate color'.
if (strstr(os.str().c_str(), "mutate color"))
didColor = true;
if (orig.m_Name != "")
{
os2.str("");
os2 << "mutation " << rep << " of " << orig.m_Name;
orig.m_Name = os2.str();
}
}
else if (doCross0)
{
i0 = rand.Rand(embers.size());
i1 = rand.Rand(embers2.size());
selp0 = embers[i0];
selp1 = embers2[i1];
aselp0 = &selp0;
aselp1 = &selp1;
if (opt.Method() == "")
crossMeth = eCrossMode::CROSS_NOT_SPECIFIED;
else if (opt.Method() == "union")
crossMeth = eCrossMode::CROSS_UNION;
else if (opt.Method() == "interpolate")
crossMeth = eCrossMode::CROSS_INTERPOLATE;
else if (opt.Method() == "alternate")
crossMeth = eCrossMode::CROSS_ALTERNATE;
else
{
cerr << "method '" << opt.Method() << "' not defined for cross. Defaulting to random.\n";
crossMeth = eCrossMode::CROSS_NOT_SPECIFIED;
}
os << tools.Cross(embers[i0], embers2[i1], orig, crossMeth);
if (embers[i0].m_Name != "" || embers2[i1].m_Name != "")
{
os2.str("");
os2 << rep << " of " << embers[i0].m_Name << " x " << embers2[i1].m_Name;
orig.m_Name = os2.str();
}
}
else
{
os << "random";
randomMode = true;
tools.Random(orig, vars, opt.Symmetry(), 0, 8);
orig.m_FinalRasW = 1920;
orig.m_FinalRasH = 1080;
aselp0 = nullptr;
aselp1 = nullptr;
}
//Adjust bounding box half the time.
if (rand.RandBit() || randomMode)
{
T bmin[2], bmax[2];
tools.EstimateBoundingBox(orig, T(0.01), 100000, bmin, bmax);
if (rand.Frand01<T>() < T(0.3))
{
orig.m_CenterX = (bmin[0] + bmax[0]) / 2;
orig.m_CenterY = (bmin[1] + bmax[1]) / 2;
os << " recentered";
}
else
{
if (rand.RandBit())
{
mix0 = rand.GoldenBit<T>() + rand.Frand11<T>() / 5;
mix1 = rand.GoldenBit<T>();
os << " reframed0";
}
else if (rand.RandBit())
{
mix0 = rand.GoldenBit<T>();
mix1 = rand.GoldenBit<T>() + rand.Frand11<T>() / 5;
os << " reframed1";
}
else
{
mix0 = rand.GoldenBit<T>() + rand.Frand11<T>() / 5;
mix1 = rand.GoldenBit<T>() + rand.Frand11<T>() / 5;
os << " reframed2";
}
orig.m_CenterX = mix0 * bmin[0] + (1 - mix0) * bmax[0];
orig.m_CenterY = mix1 * bmin[1] + (1 - mix1) * bmax[1];
}
orig.m_PixelsPerUnit = orig.m_FinalRasW / (bmax[0] - bmin[0]);
}
os << tools.TruncateVariations(orig, 5);
if (!didColor && rand.RandBit())
{
if (opt.Debug())
cerr << "improving colors...\n";
tools.ImproveColors(orig, 100, false, 10);
os << " improved colors";
}
orig.m_Edits = emberToXml.CreateNewEditdoc(aselp0, aselp1, os.str(), opt.Nick(), opt.Url(), opt.Id(), opt.Comment(), opt.SheepGen(), opt.SheepId());
save = orig;
SetDefaultTestValues(orig);
renderer->SetEmber(orig, eProcessAction::FULL_RENDER, true);
if (renderer->Run(finalImage) != eRenderStatus::RENDER_OK)
{
cerr << "Error: test image rendering failed, aborting.\n";
return false;
}
tot = 0;
totb = totw = 0;
n = orig.m_FinalRasW * orig.m_FinalRasH;
for (i = 0; i < n; i++)
{
tot += (finalImage[i].r + finalImage[i].g + finalImage[i].b);
if (0 == finalImage[i].r && 0 == finalImage[i].g && 0 == finalImage[i].b) totb++;
if (1 == finalImage[i].r && 1 == finalImage[i].g && 1 == finalImage[i].g) totw++;
}
avgPix = (tot / (3 * n));
fractionBlack = totb / T(n);
fractionWhite = totw / T(n);
if (opt.Debug())
cerr << "avgPix = " << avgPix << " fractionBlack = " << fractionBlack << " fractionWhite = " << fractionWhite << " n = " << n << "\n";
orig.Clear();
count++;
}
while ((avgPix < opt.AvgThresh() ||
fractionBlack < opt.BlackThresh() ||
fractionWhite > opt.WhiteLimit()) &&
count < opt.Tries());
if (count == opt.Tries())
cerr << "Warning: reached maximum attempts, giving up.\n";
}
if (pTemplate)
tools.ApplyTemplate(save, *pTemplate);
save.m_Time = T(rep);
if (opt.MaxXforms() != UINT_MAX)
{
save.m_Symmetry = 0;
while (save.TotalXformCount() > opt.MaxXforms())
save.DeleteTotalXform(save.TotalXformCount() - 1);
}
cout << emberToXml.ToString(save, opt.Extras(), opt.PrintEditDepth(), !opt.NoEdits(), opt.HexPalette());
VerbosePrint("\nDone. Action = " << os.str() << "\n");
cout.flush();
save.Clear();
}
if (opt.Enclosed())
cout << "</pick>\n";
return true;
}
/// <summary>
/// Main program entry point for EmberGenome.exe.
/// </summary>
/// <param name="argc">The number of command line arguments passed</param>
/// <param name="argv">The command line arguments passed</param>
/// <returns>0 if successful, else 1.</returns>
int _tmain(int argc, _TCHAR* argv[])
{
bool b = false;
EmberOptions opt;
//Required for large allocs, else GPU memory usage will be severely limited to small sizes.
//This must be done in the application and not in the EmberCL DLL.
#ifdef _WIN32
_putenv_s("GPU_MAX_ALLOC_PERCENT", "100");
#else
putenv(const_cast<char*>("GPU_MAX_ALLOC_PERCENT=100"));
#endif
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
if (!opt.Populate(argc, argv, eOptionUse::OPT_USE_GENOME))
{
auto palf = PaletteList<float>::Instance();
#ifdef DO_DOUBLE
if (!opt.Sp())
b = EmberGenome<double>(argc, argv, opt);
else
#endif
b = EmberGenome<float>(argc, argv, opt);
cout << std::flush;
}
return b ? 0 : 1;
}