mirror of
https://bitbucket.org/mfeemster/fractorium.git
synced 2025-01-21 21:20:07 -05:00
6ba16888e3
-Add new variations: crackle, dc_perlin. -Make default palette interp mode be linear instead of step. -Make summary tab the selected one in the Info tab. -Allow for highlight power of up to 10. It was previously limited to 2. --Bug fixes -Direct color calculations were wrong. -Flattening was not applied to final xform. -Fix "pure virtual function call" error on shutdown. --Code changes -Allow for array precalc params in variations by adding a size member to the ParamWithName class. -In IterOpenCLKernelCreator, memcpy precalc params instead of a direct assign since they can now be of variable length. -Add new file VarFuncs to consolidate some functions that are common to multiple variations. This also contains texture data for crackle and dc_perlin. -Place OpenCL versions of these functions in the FunctionMapper class in the EmberCL project. -Add new Singleton class that uses CRTP, is thread safe, and deletes after the last reference goes away. This fixes the usual "delete after main()" problem with singletons that use the static local function variable pattern. -Began saving files with AStyle autoformatter turned on. This will eventually touch all files as they are worked on. -Add missing backslash to CUDA include and library paths for builds on Nvidia systems. -Add missing gl.h include for Windows. -Remove glew include paths from Fractorium, it's not used. -Remove any Nvidia specific #defines and build targets, they are no longer needed with OpenCL 1.2. -Fix bad paths on linux build. -General cleanup.
292 lines
7.3 KiB
C++
292 lines
7.3 KiB
C++
#include "EmberCLPch.h"
|
|
#include "FunctionMapper.h"
|
|
|
|
namespace EmberCLns
|
|
{
|
|
std::unordered_map<string, string> FunctionMapper::m_GlobalMap;
|
|
|
|
FunctionMapper::FunctionMapper()
|
|
{
|
|
if (m_GlobalMap.empty())
|
|
{
|
|
m_GlobalMap["LRint"] =
|
|
"inline real_t LRint(real_t x)\n"
|
|
"{\n"
|
|
" intPrec temp = (x >= 0.0 ? (intPrec)(x + 0.5) : (intPrec)(x - 0.5));\n"
|
|
" return (real_t)temp;\n"
|
|
"}\n";
|
|
m_GlobalMap["Round"] =
|
|
"inline real_t Round(real_t r)\n"
|
|
"{\n"
|
|
" return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5);\n"
|
|
"}\n";
|
|
m_GlobalMap["Sign"] =
|
|
"inline real_t Sign(real_t v)\n"
|
|
"{\n"
|
|
" return (v < 0.0) ? -1 : (v > 0.0) ? 1 : 0.0;\n"
|
|
"}\n";
|
|
m_GlobalMap["SignNz"] =
|
|
"inline real_t SignNz(real_t v)\n"
|
|
"{\n"
|
|
" return (v < 0.0) ? -1.0 : 1.0;\n"
|
|
"}\n";
|
|
m_GlobalMap["Sqr"] =
|
|
"inline real_t Sqr(real_t v)\n"
|
|
"{\n"
|
|
" return v * v;\n"
|
|
"}\n";
|
|
m_GlobalMap["SafeSqrt"] =
|
|
"inline real_t SafeSqrt(real_t x)\n"
|
|
"{\n"
|
|
" if (x <= 0.0)\n"
|
|
" return 0.0;\n"
|
|
"\n"
|
|
" return sqrt(x);\n"
|
|
"}\n";
|
|
m_GlobalMap["Cube"] =
|
|
"inline real_t Cube(real_t v)\n"
|
|
"{\n"
|
|
" return v * v * v;\n"
|
|
"}\n";
|
|
m_GlobalMap["Hypot"] =
|
|
"inline real_t Hypot(real_t x, real_t y)\n"
|
|
"{\n"
|
|
" return sqrt(SQR(x) + SQR(y));\n"
|
|
"}\n";
|
|
m_GlobalMap["Spread"] =
|
|
"inline real_t Spread(real_t x, real_t y)\n"
|
|
"{\n"
|
|
" return Hypot(x, y) * ((x) > 0.0 ? 1.0 : -1.0);\n"
|
|
"}\n";
|
|
m_GlobalMap["Powq4"] =
|
|
"inline real_t Powq4(real_t x, real_t y)\n"
|
|
"{\n"
|
|
" return pow(fabs(x), y) * SignNz(x);\n"
|
|
"}\n";
|
|
m_GlobalMap["Powq4c"] =
|
|
"inline real_t Powq4c(real_t x, real_t y)\n"
|
|
"{\n"
|
|
" return y == 1.0 ? x : Powq4(x, y);\n"
|
|
"}\n";
|
|
m_GlobalMap["Zeps"] =
|
|
"inline real_t Zeps(real_t x)\n"
|
|
"{\n"
|
|
" return x == 0.0 ? EPS : x;\n"
|
|
"}\n";
|
|
m_GlobalMap["Lerp"] =
|
|
"inline real_t Lerp(real_t a, real_t b, real_t p)\n"
|
|
"{\n"
|
|
" return a + (b - a) * p;\n"
|
|
"}\n";
|
|
m_GlobalMap["Fabsmod"] =
|
|
"inline real_t Fabsmod(real_t v)\n"
|
|
"{\n"
|
|
" real_t dummy;\n"
|
|
"\n"
|
|
" return modf(v, &dummy);\n"
|
|
"}\n";
|
|
m_GlobalMap["Fosc"] =
|
|
"inline real_t Fosc(real_t p, real_t amp, real_t ph)\n"
|
|
"{\n"
|
|
" return 0.5 - cos(p * amp + ph) * 0.5;\n"
|
|
"}\n";
|
|
m_GlobalMap["Foscn"] =
|
|
"inline real_t Foscn(real_t p, real_t ph)\n"
|
|
"{\n"
|
|
" return 0.5 - cos(p + ph) * 0.5;\n"
|
|
"}\n";
|
|
m_GlobalMap["LogScale"] =
|
|
"inline real_t LogScale(real_t x)\n"
|
|
"{\n"
|
|
" return x == 0.0 ? 0.0 : log((fabs(x) + 1) * M_E) * SignNz(x) / M_E;\n"
|
|
"}\n";
|
|
m_GlobalMap["LogMap"] =
|
|
"inline real_t LogMap(real_t x)\n"
|
|
"{\n"
|
|
" return x == 0.0 ? 0.0 : (M_E + log(x * M_E)) * 0.25 * SignNz(x);\n"
|
|
"}\n";
|
|
m_GlobalMap["ClampGte"] =
|
|
"inline real_t ClampGte(real_t val, real_t gte)\n"
|
|
"{\n"
|
|
" return (val < gte) ? gte : val;\n"
|
|
"}\n";
|
|
m_GlobalMap["Swap"] =
|
|
"inline void Swap(real_t* val1, real_t* val2)\n"
|
|
"{\n"
|
|
" real_t tmp = *val1;\n"
|
|
" *val1 = *val2;\n"
|
|
" *val2 = tmp;\n"
|
|
"}\n";
|
|
m_GlobalMap["Vratio"] =
|
|
"inline real_t Vratio(real2* p, real2* q, real2* u)\n"
|
|
"{\n"
|
|
" real_t pmQx, pmQy;\n"
|
|
"\n"
|
|
" pmQx = (*p).x - (*q).x;\n"
|
|
" pmQy = (*p).y - (*q).y;\n"
|
|
"\n"
|
|
" if (pmQx == 0 && pmQy == 0)\n"
|
|
" return 1.0;\n"
|
|
"\n"
|
|
" return 2 * (((*u).x - (*q).x) * pmQx + ((*u).y - (*q).y) * pmQy) / (pmQx * pmQx + pmQy * pmQy);\n"
|
|
"}\n";
|
|
m_GlobalMap["Closest"] =
|
|
"inline int Closest(real2* p, int n, real2* u)\n"
|
|
"{\n"
|
|
" real_t d2;\n"
|
|
" real_t d2min = TMAX;\n"
|
|
" int i, j = 0;\n"
|
|
"\n"
|
|
" for (i = 0; i < n; i++)\n"
|
|
" {\n"
|
|
" d2 = Sqr(p[i].x - (*u).x) + Sqr(p[i].y - (*u).y);\n"
|
|
"\n"
|
|
" if (d2 < d2min)\n"
|
|
" {\n"
|
|
" d2min = d2;\n"
|
|
" j = i;\n"
|
|
" }\n"
|
|
" }\n"
|
|
"\n"
|
|
" return j;\n"
|
|
"}\n";
|
|
m_GlobalMap["Voronoi"] =
|
|
"inline real_t Voronoi(real2* p, int n, int q, real2* u)\n"
|
|
"{\n"
|
|
" real_t ratio;\n"
|
|
" real_t ratiomax = TLOW;\n"
|
|
" int i;\n"
|
|
"\n"
|
|
" for (i = 0; i < n; i++)\n"
|
|
" {\n"
|
|
" if (i != q)\n"
|
|
" {\n"
|
|
" ratio = Vratio(&p[i], &p[q], u);\n"
|
|
"\n"
|
|
" if (ratio > ratiomax)\n"
|
|
" ratiomax = ratio;\n"
|
|
" }\n"
|
|
" }\n"
|
|
"\n"
|
|
" return ratiomax;\n"
|
|
"}\n";
|
|
m_GlobalMap["SimplexNoise3D"] =
|
|
"inline real_t SimplexNoise3D(real3* v, __global real_t* p, __global real3* grad)\n"
|
|
"{\n"
|
|
" real3 c[4];\n"
|
|
" real_t n = 0;\n"
|
|
" int gi[4];\n"
|
|
" real_t t;\n"
|
|
" real_t skewIn = ((*v).x + (*v).y + (*v).z) * 0.3333;\n"
|
|
" int i = (int)floor((*v).x + skewIn);\n"
|
|
" int j = (int)floor((*v).y + skewIn);\n"
|
|
" int k = (int)floor((*v).z + skewIn);\n"
|
|
" t = (i + j + k) * 0.16666;\n"
|
|
" real_t x0 = i - t;\n"
|
|
" real_t y0 = j - t;\n"
|
|
" real_t z0 = k - t;\n"
|
|
" c[0].x = (*v).x - x0;\n"
|
|
" c[0].y = (*v).y - y0;\n"
|
|
" c[0].z = (*v).z - z0;\n"
|
|
" int i1, j1, k1;\n"
|
|
" int i2, j2, k2;\n"
|
|
"\n"
|
|
" if (c[0].x >= c[0].y)\n"
|
|
" {\n"
|
|
" if (c[0].y >= c[0].z)\n"
|
|
" {\n"
|
|
" i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0;\n"
|
|
" }\n"
|
|
" else\n"
|
|
" {\n"
|
|
" if (c[0].x >= c[0].z)\n"
|
|
" {\n"
|
|
" i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1;\n"
|
|
" }\n"
|
|
" else\n"
|
|
" {\n"
|
|
" i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1;\n"
|
|
" }\n"
|
|
" }\n"
|
|
" }\n"
|
|
" else\n"
|
|
" {\n"
|
|
" if (c[0].y < c[0].z)\n"
|
|
" {\n"
|
|
" i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1;\n"
|
|
" }\n"
|
|
" else\n"
|
|
" {\n"
|
|
" if (c[0].x < c[0].z)\n"
|
|
" {\n"
|
|
" i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1;\n"
|
|
" }\n"
|
|
" else\n"
|
|
" {\n"
|
|
" i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0;\n"
|
|
" }\n"
|
|
" }\n"
|
|
" }\n"
|
|
"\n"
|
|
" c[1].x = c[0].x - i1 + 0.16666;\n"
|
|
" c[1].y = c[0].y - j1 + 0.16666;\n"
|
|
" c[1].z = c[0].z - k1 + 0.16666;\n"
|
|
" c[2].x = c[0].x - i2 + 2 * 0.16666;\n"
|
|
" c[2].y = c[0].y - j2 + 2 * 0.16666;\n"
|
|
" c[2].z = c[0].z - k2 + 2 * 0.16666;\n"
|
|
" c[3].x = c[0].x - 1 + 3 * 0.16666;\n"
|
|
" c[3].y = c[0].y - 1 + 3 * 0.16666;\n"
|
|
" c[3].z = c[0].z - 1 + 3 * 0.16666;\n"
|
|
" int ii = i & 0x3ff;\n"
|
|
" int jj = j & 0x3ff;\n"
|
|
" int kk = k & 0x3ff;\n"
|
|
" gi[0] = (int)p[ii + (int)p[jj + (int)p[kk]]];\n"
|
|
" gi[1] = (int)p[ii + i1 + (int)p[jj + j1 + (int)p[kk + k1]]];\n"
|
|
" gi[2] = (int)p[ii + i2 + (int)p[jj + j2 + (int)p[kk + k2]]];\n"
|
|
" gi[3] = (int)p[ii + 1 + (int)p[jj + 1 + (int)p[kk + 1]]];\n"
|
|
" for (uint corner = 0; corner < 4; corner++)\n"
|
|
" {\n"
|
|
" t = 0.6 - c[corner].x * c[corner].x - c[corner].y * c[corner].y - c[corner].z * c[corner].z;\n"
|
|
"\n"
|
|
" if (t > 0)\n"
|
|
" {\n"
|
|
" real3 u = grad[gi[corner]];\n"
|
|
" t *= t;\n"
|
|
" n += t * t * (u.x * c[corner].x + u.y * c[corner].y + u.z * c[corner].z);\n"
|
|
" }\n"
|
|
" }\n"
|
|
"\n"
|
|
" return 32 * n;\n"
|
|
"}\n";
|
|
m_GlobalMap["PerlinNoise3D"] =
|
|
"inline real_t PerlinNoise3D(real3* v, __global real_t* p, __global real3* grad, real_t aScale, real_t fScale, int octaves)\n"
|
|
"{\n"
|
|
" int i;\n"
|
|
" real_t n = 0, a = 1;\n"
|
|
" real3 u = *v;\n"
|
|
"\n"
|
|
" for (i = 0; i < octaves; i++)\n"
|
|
" {\n"
|
|
" n += SimplexNoise3D(&u, p, grad) / a;\n"
|
|
" a *= aScale;\n"
|
|
" u.x *= fScale;\n"
|
|
" u.y *= fScale;\n"
|
|
" u.x *= fScale;\n"
|
|
" }\n"
|
|
"\n"
|
|
" return n;\n"
|
|
"}\n";
|
|
}
|
|
}
|
|
|
|
const string* FunctionMapper::GetGlobalFunc(const string& func)
|
|
{
|
|
const auto& text = m_GlobalMap.find(func);
|
|
|
|
if (text != m_GlobalMap.end())
|
|
return &text->second;
|
|
else
|
|
return nullptr;
|
|
}
|
|
}
|