fractorium/Source/Ember/CarToRas.h
mfeemster a800b08b67 --User changes
-Add variations changes to the list of functionality that can be applied to all xforms using the Select tab.
 -Allow for graphical affine adjustments to apply to multiple selected xforms.
 -Slight optimization of the pie variation.
 -Undo state is only saved when the render completes and the mouse buttons are released. This helps avoid intermediate steps for quickly completing renders while dragging.
 -Add some keyboard shortcuts for toolbar and menu items.
 -Make info tab tree always expanded.

--Bug fixes
 -Make precalcs for all hypertile variations safer by using Zeps() for denominators.
 -Changing the current xform with more than one selected would set all xform's color index value that of the current one.
 -Use hard found palette path information for randoms as well.
 -OpenCL build and assignment errors for Z value in epispiral variation.
 -Unitialized local variables in hexaplay3D, crob, pRose3D.

--Code changes
 -Change static member variables from m_ to s_.
 -Get rid of excessive endl and replace with "\n".
 -Remove old IMAGEGL2D define from before Nvidia supported OpenCL 1.2.
 -Remove old CriticalSection code and use std::recursive_mutex.
 -Make Affine2D Rotate() and RotateTrans() take radians instead of angles.
 -More C++11 work.
 -General cleanup.
2016-02-11 21:38:21 -08:00

244 lines
11 KiB
C++

#pragma once
#include "Point.h"
/// <summary>
/// CarToRas class.
/// </summary>
namespace EmberNs
{
/// <summary>
/// When iterating, everything is positioned in terms of a carteseian plane with 0,0 in the center like so:
/// [-1,1] [1,1]
/// [-1,-1] [1,-1]
/// However, when accumulating to the histogram, the data is stored in the traditional raster coordinate system
/// of 0,0 at the top left and x,y at the bottom right. This class provides functionality to convert from one
/// to the other and is used when accumulating a sub batch of iteration results to the histogram.
/// Note the functions use reference arguments for the converted values because they are slightly faster than returning a value.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
class EMBER_API CarToRas
{
public:
/// <summary>
/// Empty constructor. This class should never be used unless it's been properly constructed with the constructor that takes arguments.
/// </summary>
CarToRas()
{
}
/// <summary>
/// Constructor that takes arguments to set up the bounds and passes them to Init().
/// </summary>
/// <param name="carLlX">The lower left x of the cartesian plane</param>
/// <param name="carLlY">The lower left y of the cartesian plane</param>
/// <param name="carUrX">The upper right x of the cartesian plane</param>
/// <param name="carUrY">The upper right y of the cartesian plane</param>
/// <param name="rasW">The width in pixels of the raster image/histogram</param>
/// <param name="rasH">The height in pixels of the raster image/histogram</param>
/// <param name="aspectRatio">The aspect ratio, generally 1</param>
CarToRas(T carLlX, T carLlY, T carUrX, T carUrY, size_t rasW, size_t rasH, T aspectRatio)
{
Init(carLlX, carLlY, carUrX, carUrY, rasW, rasH, aspectRatio);
}
/// <summary>
/// Default copy constructor.
/// </summary>
/// <param name="carToRas">The CarToRas object to copy</param>
CarToRas(const CarToRas<T>& carToRas)
{
CarToRas<T>::operator=<T>(carToRas);
}
/// <summary>
/// Copy constructor to copy a CarToRas object of type U.
/// </summary>
/// <param name="carToRas">The CarToRas object to copy</param>
template <typename U>
CarToRas(const CarToRas<U>& carToRas)
{
CarToRas<T>::operator=<U>(carToRas);
}
/// <summary>
/// Default assignment operator.
/// </summary>
/// <param name="carToRas">The CarToRas object to copy</param>
CarToRas<T>& operator = (const CarToRas<T>& carToRas)
{
if (this != &carToRas)
CarToRas<T>::operator=<T>(carToRas);
return *this;
}
/// <summary>
/// Assignment operator to assign a CarToRas object of type U.
/// </summary>
/// <param name="carToRas">The CarToRas object to copy.</param>
/// <returns>Reference to updated self</returns>
template <typename U>
CarToRas<T>& operator = (const CarToRas<U>& carToRas)
{
m_RasWidth = carToRas.RasWidth();
m_RasHeight = carToRas.RasHeight();
m_OneRow = T(carToRas.OneRow());
m_OneCol = T(carToRas.OneCol());
m_PixPerImageUnitW = T(carToRas.PixPerImageUnitW());
m_RasLlX = T(carToRas.RasLlX());
m_PixPerImageUnitH = T(carToRas.PixPerImageUnitH());
m_RasLlY = T(carToRas.RasLlY());
m_CarLlX = T(carToRas.CarLlX());
m_CarLlY = T(carToRas.CarLlY());
m_CarUrX = T(carToRas.CarUrX());
m_CarUrY = T(carToRas.CarUrY());
m_PadCarLlX = T(carToRas.PadCarLlX());
m_PadCarLlY = T(carToRas.PadCarLlY());
m_PadCarUrX = T(carToRas.PadCarUrX());
m_PadCarUrY = T(carToRas.PadCarUrY());
return *this;
}
/// <summary>
/// Initialize the dimensions with the specified bounds.
/// </summary>
/// <param name="carLlX">The lower left x of the cartesian plane</param>
/// <param name="carLlY">The lower left y of the cartesian plane</param>
/// <param name="carUrX">The upper right x of the cartesian plane</param>
/// <param name="carUrY">The upper right y of the cartesian plane</param>
/// <param name="rasW">The width in pixels of the raster image/histogram</param>
/// <param name="rasH">The height in pixels of the raster image/histogram</param>
/// <param name="aspectRatio">The aspect ratio, generally 1</param>
void Init(T carLlX, T carLlY, T carUrX, T carUrY, size_t rasW, size_t rasH, T aspectRatio)
{
m_RasWidth = rasW;
m_RasHeight = rasH;
m_CarLlX = carLlX;
m_CarLlY = carLlY;
m_CarUrX = carUrX;
m_CarUrY = carUrY;
T carW = m_CarUrX - m_CarLlX;//Right minus left.
T carH = m_CarUrY - m_CarLlY;//Top minus bottom.
T invSizeW = T(1.0) / carW;
T invSizeH = T(1.0) / carH;
m_PixPerImageUnitW = static_cast<T>(rasW) * invSizeW;
m_RasLlX = m_PixPerImageUnitW * carLlX;
m_PixPerImageUnitH = static_cast<T>(rasH) * invSizeH;
m_RasLlY = m_PixPerImageUnitH * carLlY;
m_OneRow = abs(m_CarUrY - m_CarLlY) / m_RasHeight;
m_OneCol = abs(m_CarUrX - m_CarLlX) / m_RasWidth;
m_PadCarLlX = m_CarLlX + m_OneCol;
m_PadCarUrX = m_CarUrX - m_OneCol;
m_PadCarLlY = m_CarLlY + m_OneRow;
m_PadCarUrY = m_CarUrY - m_OneRow;
}
/// <summary>
/// Convert a cartesian x, y coordinate to a raster x, y coordinate.
/// This will flip the Y coordinate, so points that hit the bottom of the cartesian plane will
/// be mapped to the top of the histogram and vice versa.
/// There is a very slim chance that a point will be right on the border and will technically be in bounds, passing the InBounds() test,
/// but ends up being mapped to a histogram bucket that is out of bounds due to roundoff error. Perform an additional check after this call to make sure the
/// mapped point is in bounds.
/// </summary>
/// <param name="cartX">The cartesian x</param>
/// <param name="cartY">The cartesian y</param>
/// <param name="rasX">The converted raster x</param>
/// <param name="rasY">The converted raster y</param>
inline void Convert(T cartX, T cartY, size_t& rasX, size_t& rasY)
{
rasX = static_cast<size_t>(m_PixPerImageUnitW * cartX - m_RasLlX);
rasY = static_cast<size_t>(m_RasLlY - (m_PixPerImageUnitH * cartY));
}
/// <summary>
/// Convert a cartesian x, y coordinate to a single raster buffer index.
/// This will flip the Y coordinate, so points that hit the bottom of the cartesian plane will
/// be mapped to the top of the histogram and vice versa.
/// There is a very slim chance that a point will be right on the border and will technically be in bounds, passing the InBounds() test,
/// but ends up being mapped to a histogram bucket that is out of bounds due to roundoff error. Perform an additional check after this call to make sure the
/// mapped point is in bounds.
/// </summary>
/// <param name="cartX">The cartesian x</param>
/// <param name="cartY">The cartesian y</param>
/// <param name="singleBufferIndex">The converted single raster buffer index</param>
inline void Convert(T cartX, T cartY, size_t& singleBufferIndex)
{
singleBufferIndex = static_cast<size_t>(m_PixPerImageUnitW * cartX - m_RasLlX) + (m_RasWidth * static_cast<size_t>(m_PixPerImageUnitH * cartY - m_RasLlY));
}
/// <summary>
/// Convert a cartesian x, y point to a single raster buffer index.
/// This will flip the Y coordinate, so points that hit the bottom of the cartesian plane will
/// be mapped to the top of the histogram and vice versa.
/// This is the most efficient possible way of converting, consisting of only
/// a multiply and subtract per coordinate element.
/// There is a very slim chance that a point will be right on the border and will technically be in bounds, passing the InBounds() test,
/// but ends up being mapped to a histogram bucket that is out of bounds due to roundoff error. Perform an additional check after this call to make sure the
/// mapped point is in bounds.
/// </summary>
/// <param name="point">The cartesian y</param>
/// <param name="singleBufferIndex">The converted single raster buffer index</param>
inline void Convert(Point<T>& point, size_t& singleBufferIndex)
{
singleBufferIndex = static_cast<size_t>(m_PixPerImageUnitW * point.m_X - m_RasLlX) + (m_RasWidth * static_cast<size_t>(m_PixPerImageUnitH * point.m_Y - m_RasLlY));
}
/// <summary>
/// Determine if a point in the cartesian plane can be converted to a point within the raster plane.
/// There is a very slim chance that a point will be right on the border and will technically be in bounds, passing the InBounds() test,
/// but ends up being mapped to a histogram bucket that is out of bounds due to roundoff error. Perform an additional check after this call to make sure the
/// mapped point is in bounds.
/// </summary>
/// <param name="point">The point to test</param>
/// <returns>True if within bounds, else false</returns>
inline bool InBounds(Point<T>& point)
{
//Debug check for hitting the very first pixel in the image.
//if (point.m_Y > m_CarLlY && point.m_Y <= m_PadCarLlY && //Mapped to top row...
// point.m_X > m_CarLlX && point.m_X <= m_PadCarLlX)//...first col.
//{
// cout << "First pixel hit.\n";
//}
return point.m_X >= m_CarLlX &&
point.m_X < m_CarUrX &&
point.m_Y < m_CarUrY &&
point.m_Y >= m_CarLlY;
}
/// <summary>
/// Accessors.
/// </summary>
inline size_t RasWidth() const { return m_RasWidth; }
inline size_t RasHeight() const { return m_RasHeight; }
inline T OneRow() const { return m_OneRow; }
inline T OneCol() const { return m_OneCol; }
inline T PixPerImageUnitW() const { return m_PixPerImageUnitW; }
inline T RasLlX() const { return m_RasLlX; }
inline T PixPerImageUnitH() const { return m_PixPerImageUnitH; }
inline T RasLlY() const { return m_RasLlY; }
inline T CarLlX() const { return m_CarLlX; }
inline T CarLlY() const { return m_CarLlY; }
inline T CarUrX() const { return m_CarUrX; }
inline T CarUrY() const { return m_CarUrY; }
inline T PadCarLlX() const { return m_PadCarLlX; }
inline T PadCarLlY() const { return m_PadCarLlY; }
inline T PadCarUrX() const { return m_PadCarUrX; }
inline T PadCarUrY() const { return m_PadCarUrY; }
private:
size_t m_RasWidth, m_RasHeight;//The width and height of the raster image.
T m_OneRow;//The distance that one raster row represents in the cartesian plane.
T m_OneCol;//The distance that one raster column represents in the cartesian plane.
T m_PixPerImageUnitW;//The number of columns in the raster plane that a horizontal distance of 1 in the cartesian plane represents. The higher the number, the more zoomed in.
T m_RasLlX;//The lower left x of the raster image plane.
T m_PixPerImageUnitH;//The number of rows in the raster plane that a vertical distance of 1 in the cartesian plane represents. The higher the number, the more zoomed in.
T m_RasLlY;//The lower left y of the raster image plane.
T m_CarLlX, m_CarLlY, m_CarUrX, m_CarUrY;//The bounds of the cartesian plane.
T m_PadCarLlX, m_PadCarLlY, m_PadCarUrX, m_PadCarUrY;//The bounds of the cartesian plane padded by one raster row and column on each side.
};
}