fractorium/Source/EmberCL/EmberCLFunctions.h
mfeemster 07592c9d78 Remove ReadMe.txt from all project files.
Add Curves.h, and CurvesGraphicsView.h/cpp to support bezier color curves.
Add Curves member to Ember.
Add curves capability to EmberCL.
Remove some unused variables in the kernel created in RendererCL::CreateFinalAccumKernelString().
Use glm namespace for vec classes if GLM_VERSION >= 96, else use glm::detail.
As a result of using glm namespace, all instances of min and max had to be qualified with std::
Split ComputeCamera into that and ComputeQuality().
Reduce the amount of ComputeCamera() and MakeDmap() calls on each incremental iter that doesn't use temporal samples.
Fix clamping bug with DE filter widths.
Provide functions to return the kernels from RendererCL to assist with diagnostics and debugging.
Prevent extra newline in EmberRender when only rendering a single image.
Add the ability to delete an ember at a given index in EmberFile.
Allow deleting/focusing ember in library tab with delete and enter keys.
Reorder some code in Fractorium.h to match the tabs order.
Add and call ClearFinalImages() to clear buffers in controller to fix bug where previous CPU render would be shown for a split second when switching from OpenCL back to CPU.
Refactor ember library pointer syncing to a function SyncPointers().
Add the ability to save ember Xmls to an unique automatically generated name after the first time the user has specified a name.
2015-03-21 15:27:37 -07:00

434 lines
11 KiB
C++

#pragma once
#include "EmberCLPch.h"
#include "EmberCLStructs.h"
/// <summary>
/// OpenCL global function strings.
/// </summary>
namespace EmberCLns
{
/// <summary>
/// OpenCL equivalent of Palette::RgbToHsv().
/// </summary>
static const char* RgbToHsvFunctionString =
//rgb 0 - 1,
//h 0 - 6, s 0 - 1, v 0 - 1
"static inline void RgbToHsv(real4* rgb, real4* hsv)\n"
"{\n"
" real_t max, min, del, rc, gc, bc;\n"
"\n"
//Compute maximum of r, g, b.
" if ((*rgb).x >= (*rgb).y)\n"
" {\n"
" if ((*rgb).x >= (*rgb).z)\n"
" max = (*rgb).x;\n"
" else\n"
" max = (*rgb).z;\n"
" }\n"
" else\n"
" {\n"
" if ((*rgb).y >= (*rgb).z)\n"
" max = (*rgb).y;\n"
" else\n"
" max = (*rgb).z;\n"
" }\n"
"\n"
//Compute minimum of r, g, b.
" if ((*rgb).x <= (*rgb).y)\n"
" {\n"
" if ((*rgb).x <= (*rgb).z)\n"
" min = (*rgb).x;\n"
" else\n"
" min = (*rgb).z;\n"
" }\n"
" else\n"
" {\n"
" if ((*rgb).y <= (*rgb).z)\n"
" min = (*rgb).y;\n"
" else\n"
" min = (*rgb).z;\n"
" }\n"
"\n"
" del = max - min;\n"
" (*hsv).z = max;\n"
"\n"
" if (max != 0)\n"
" (*hsv).y = del / max;\n"
" else\n"
" (*hsv).y = 0;\n"
"\n"
" (*hsv).x = 0;\n"
" if ((*hsv).y != 0)\n"
" {\n"
" rc = (max - (*rgb).x) / del;\n"
" gc = (max - (*rgb).y) / del;\n"
" bc = (max - (*rgb).z) / del;\n"
"\n"
" if ((*rgb).x == max)\n"
" (*hsv).x = bc - gc;\n"
" else if ((*rgb).y == max)\n"
" (*hsv).x = 2 + rc - bc;\n"
" else if ((*rgb).z == max)\n"
" (*hsv).x = 4 + gc - rc;\n"
"\n"
" if ((*hsv).x < 0)\n"
" (*hsv).x += 6;\n"
" }\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of Palette::HsvToRgb().
/// </summary>
static const char* HsvToRgbFunctionString =
//h 0 - 6, s 0 - 1, v 0 - 1
//rgb 0 - 1
"static inline void HsvToRgb(real4* hsv, real4* rgb)\n"
"{\n"
" int j;\n"
" real_t f, p, q, t;\n"
"\n"
" while ((*hsv).x >= 6)\n"
" (*hsv).x = (*hsv).x - 6;\n"
"\n"
" while ((*hsv).x < 0)\n"
" (*hsv).x = (*hsv).x + 6;\n"
"\n"
" j = (int)floor((*hsv).x);\n"
" f = (*hsv).x - j;\n"
" p = (*hsv).z * (1 - (*hsv).y);\n"
" q = (*hsv).z * (1 - ((*hsv).y * f));\n"
" t = (*hsv).z * (1 - ((*hsv).y * (1 - f)));\n"
"\n"
" switch (j)\n"
" {\n"
" case 0: (*rgb).x = (*hsv).z; (*rgb).y = t; (*rgb).z = p; break;\n"
" case 1: (*rgb).x = q; (*rgb).y = (*hsv).z; (*rgb).z = p; break;\n"
" case 2: (*rgb).x = p; (*rgb).y = (*hsv).z; (*rgb).z = t; break;\n"
" case 3: (*rgb).x = p; (*rgb).y = q; (*rgb).z = (*hsv).z; break;\n"
" case 4: (*rgb).x = t; (*rgb).y = p; (*rgb).z = (*hsv).z; break;\n"
" case 5: (*rgb).x = (*hsv).z; (*rgb).y = p; (*rgb).z = q; break;\n"
" default: (*rgb).x = (*hsv).z; (*rgb).y = t; (*rgb).z = p; break;\n"
" }\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of Palette::CalcAlpha().
/// </summary>
static const char* CalcAlphaFunctionString =
"static inline real_t CalcAlpha(real_t density, real_t gamma, real_t linrange)\n"//Not the slightest clue what this is doing.//DOC
"{\n"
" real_t frac, alpha, funcval = pow(linrange, gamma);\n"
"\n"
" if (density > 0)\n"
" {\n"
" if (density < linrange)\n"
" {\n"
" frac = density / linrange;\n"
" alpha = (1.0 - frac) * density * (funcval / linrange) + frac * pow(density, gamma);\n"
" }\n"
" else\n"
" alpha = pow(density, gamma);\n"
" }\n"
" else\n"
" alpha = 0;\n"
"\n"
" return alpha;\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of Renderer::CurveAdjust().
/// Only use float here instead of real_t because the output will be passed to write_imagef()
/// during final accumulation, which only takes floats.
/// </summary>
static const char* CurveAdjustFunctionString =
"static inline void CurveAdjust(__constant real4reals* csa, float* a, uint index)\n"
"{\n"
" uint tempIndex = (uint)Clamp(*a, 0.0, (float)COLORMAP_LENGTH_MINUS_1);\n"
" uint tempIndex2 = (uint)Clamp(csa[tempIndex].m_Real4.x, 0.0, (real_t)COLORMAP_LENGTH_MINUS_1);\n"
"\n"
" *a = (float)round(csa[tempIndex2].m_Reals[index]);\n"
"}\n";
/// <summary>
/// Use MWC 64 from David Thomas at the Imperial College of London for
/// random numbers in OpenCL, instead of ISAAC which was used
/// for CPU rendering.
/// </summary>
static const char* RandFunctionString =
"enum { MWC64X_A = 4294883355u };\n\n"
"inline uint MwcNext(uint2* s)\n"
"{\n"
" uint res = (*s).x ^ (*s).y; \n"//Calculate the result.
" uint hi = mul_hi((*s).x, MWC64X_A); \n"//Step the RNG.
" (*s).x = (*s).x * MWC64X_A + (*s).y;\n"//Pack the state back up.
" (*s).y = hi + ((*s).x < (*s).y); \n"
" return res; \n"//Return the next result.
"}\n"
"\n"
"inline uint MwcNextRange(uint2* s, uint val)\n"
"{\n"
" return (val == 0) ? MwcNext(s) : (MwcNext(s) % val);\n"
"}\n"
"\n"
"inline real_t MwcNext01(uint2* s)\n"
"{\n"
" return MwcNext(s) * (1.0 / 4294967296.0);\n"
"}\n"
"\n"
"inline real_t MwcNextNeg1Pos1(uint2* s)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
" return -1.0 + (f * 2.0);\n"
"}\n"
"\n"
"inline real_t MwcNext0505(uint2* s)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
" return -0.5 + f;\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of the global ClampRef().
/// </summary>
static const char* ClampRealFunctionString =
"inline real_t Clamp(real_t val, real_t min, real_t max)\n"
"{\n"
" if (val < min)\n"
" return min;\n"
" else if (val > max)\n"
" return max;\n"
" else\n"
" return val;\n"
"}\n"
"\n"
"inline void ClampRef(real_t* val, real_t min, real_t max)\n"
"{\n"
" if (*val < min)\n"
" *val = min;\n"
" else if (*val > max)\n"
" *val = max;\n"
"}\n"
"\n"
"inline real_t ClampGte(real_t val, real_t gte)\n"
"{\n"
" return (val < gte) ? gte : val;\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of the global LRint().
/// </summary>
static const char* InlineMathFunctionsString =
"inline real_t LRint(real_t x)\n"
"{\n"
" intPrec temp = (x >= 0.0 ? (intPrec)(x + 0.5) : (intPrec)(x - 0.5));\n"
" return (real_t)temp;\n"
"}\n"
"\n"
"inline real_t Round(real_t r)\n"
"{\n"
" return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5);\n"
"}\n"
"\n"
"inline real_t Sign(real_t v)\n"
"{\n"
" return (v < 0.0) ? -1 : (v > 0.0) ? 1 : 0.0;\n"
"}\n"
"\n"
"inline real_t SignNz(real_t v)\n"
"{\n"
" return (v < 0.0) ? -1.0 : 1.0;\n"
"}\n"
"\n"
"inline real_t Sqr(real_t v)\n"
"{\n"
" return v * v;\n"
"}\n"
"\n"
"inline real_t SafeSqrt(real_t x)\n"
"{\n"
" if (x <= 0.0)\n"
" return 0.0;\n"
"\n"
" return sqrt(x);\n"
"}\n"
"\n"
"inline real_t Cube(real_t v)\n"
"{\n"
" return v * v * v;\n"
"}\n"
"\n"
"inline real_t Hypot(real_t x, real_t y)\n"
"{\n"
" return sqrt(SQR(x) + SQR(y));\n"
"}\n"
"\n"
"inline real_t Spread(real_t x, real_t y)\n"
"{\n"
" return Hypot(x, y) * ((x) > 0.0 ? 1.0 : -1.0);\n"
"}\n"
"\n"
"inline real_t Powq4(real_t x, real_t y)\n"
"{\n"
" return pow(fabs(x), y) * SignNz(x);\n"
"}\n"
"\n"
"inline real_t Powq4c(real_t x, real_t y)\n"
"{\n"
" return y == 1.0 ? x : Powq4(x, y);\n"
"}\n"
"\n"
"inline real_t Zeps(real_t x)\n"
"{\n"
" return x == 0.0 ? EPS : x;\n"
"}\n"
"\n"
"inline real_t Lerp(real_t a, real_t b, real_t p)\n"
"{\n"
" return a + (b - a) * p;\n"
"}\n"
"\n"
"inline real_t Fabsmod(real_t v)\n"
"{\n"
" real_t dummy;\n"
"\n"
" return modf(v, &dummy);\n"
"}\n"
"\n"
"inline real_t Fosc(real_t p, real_t amp, real_t ph)\n"
"{\n"
" return 0.5 - cos(p * amp + ph) * 0.5;\n"
"}\n"
"\n"
"inline real_t Foscn(real_t p, real_t ph)\n"
"{\n"
" return 0.5 - cos(p + ph) * 0.5;\n"
"}\n"
"\n"
"inline real_t LogScale(real_t x)\n"
"{\n"
" return x == 0.0 ? 0.0 : log((fabs(x) + 1) * M_E) * SignNz(x) / M_E;\n"
"}\n"
"\n"
"inline real_t LogMap(real_t x)\n"
"{\n"
" return x == 0.0 ? 0.0 : (M_E + log(x * M_E)) * 0.25 * SignNz(x);\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent Renderer::AddToAccum().
/// </summary>
static const char* AddToAccumWithCheckFunctionString =
"inline bool AccumCheck(int superRasW, int superRasH, int i, int ii, int j, int jj)\n"
"{\n"
" return (j + jj >= 0 && j + jj < superRasH && i + ii >= 0 && i + ii < superRasW);\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent various CarToRas member functions.
/// </summary>
static const char* CarToRasFunctionString =
"inline void CarToRasConvertPointToSingle(__constant CarToRasCL* carToRas, Point* point, uint* singleBufferIndex)\n"
"{\n"
" *singleBufferIndex = (uint)(carToRas->m_PixPerImageUnitW * point->m_X - carToRas->m_RasLlX) + (carToRas->m_RasWidth * (uint)(carToRas->m_PixPerImageUnitH * point->m_Y - carToRas->m_RasLlY));\n"
"}\n"
"\n"
"inline bool CarToRasInBounds(__constant CarToRasCL* carToRas, Point* point)\n"
"{\n"
" return point->m_X >= carToRas->m_CarLlX &&\n"
" point->m_X < carToRas->m_CarUrX &&\n"
" point->m_Y < carToRas->m_CarUrY &&\n"
" point->m_Y >= carToRas->m_CarLlY;\n"
"}\n"
"\n";
static string AtomicString(bool doublePrecision, bool dp64AtomicSupport)
{
ostringstream os;
//If they want single precision, or if they want double precision and have dp atomic support.
if (!doublePrecision || dp64AtomicSupport)
{
os <<
"void AtomicAdd(volatile __global real_t* source, const real_t operand)\n"
"{\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_t realVal;\n"
" } newVal;\n"
"\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_t realVal;\n"
" } prevVal;\n"
"\n"
" do\n"
" {\n"
" prevVal.realVal = *source;\n"
" newVal.realVal = prevVal.realVal + operand;\n"
" } while (atomic_cmpxchg((volatile __global atomi*)source, prevVal.intVal, newVal.intVal) != prevVal.intVal);\n"
"}\n";
}
else//They want double precision and do not have dp atomic support.
{
os <<
"void AtomicAdd(volatile __global real_t* source, const real_t operand)\n"
"{\n"
" union\n"
" {\n"
" uint intVal[2];\n"
" real_t realVal;\n"
" } newVal;\n"
"\n"
" union\n"
" {\n"
" uint intVal[2];\n"
" real_t realVal;\n"
" } prevVal;\n"
"\n"
" do\n"
" {\n"
" prevVal.realVal = *source;\n"
" newVal.realVal = prevVal.realVal + operand;\n"
" } while ((atomic_cmpxchg((volatile __global uint*)source, prevVal.intVal[0], newVal.intVal[0]) != prevVal.intVal[0]) ||\n"
" (atomic_cmpxchg((volatile __global uint*)source + 1, prevVal.intVal[1], newVal.intVal[1]) != prevVal.intVal[1]));\n"
"}\n";
}
return os.str();
}
#ifdef GRAVEYARD
/*"void AtomicLocalAdd(volatile __local real_t* source, const real_t operand)\n"
"{\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_t realVal;\n"
" } newVal;\n"
"\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_t realVal;\n"
" } prevVal;\n"
"\n"
" do\n"
" {\n"
" prevVal.realVal = *source;\n"
" newVal.realVal = prevVal.realVal + operand;\n"
" } while (atomic_cmpxchg((volatile __local atomi*)source, prevVal.intVal, newVal.intVal) != prevVal.intVal);\n"
"}\n"*/
#endif
}