fractorium/Source/EmberRender/EmberRender.cpp
2020-04-12 14:38:22 -07:00

494 lines
17 KiB
C++

#include "EmberCommonPch.h"
#include "EmberRender.h"
#include "JpegUtils.h"
#include <xmmintrin.h>
#include <immintrin.h>
#include <pmmintrin.h>
using namespace EmberCommon;
/// <summary>
/// The core of the EmberRender.exe program.
/// Template argument expected to be float or double.
/// </summary>
/// <param name="opt">A populated EmberOptions object which specifies all program options to be used</param>
/// <returns>True if success, else false.</returns>
template <typename T>
bool EmberRender(int argc, _TCHAR* argv[], EmberOptions& opt)
{
auto info = EmberCLns::OpenCLInfo::Instance();
std::cout.imbue(std::locale(""));
if (opt.DumpArgs())
cout << opt.GetValues(eOptionUse::OPT_USE_RENDER) << "\n";
if (opt.OpenCLInfo())
{
cout << "\nOpenCL Info: \n";
cout << info->DumpInfo();
return true;
}
VerbosePrint("Using " << (sizeof(T) == sizeof(float) ? "single" : "double") << " precision.");
Timing t;
uint padding;
size_t i;
size_t strips;
size_t iterCount;
string inputPath = GetPath(opt.Input());
ostringstream os;
pair<size_t, size_t> p;
vector<Ember<T>> embers;
vector<v4F> finalImage;
EmberStats stats;
EmberReport emberReport;
EmberImageComments comments;
XmlToEmber<T> parser;
EmberToXml<T> emberToXml;
vector<QTIsaac<ISAAC_SIZE, ISAAC_INT>> randVec;
const vector<pair<size_t, size_t>> devices = Devices(opt.Devices());
auto progress = make_unique<RenderProgress<T>>();
unique_ptr<Renderer<T, float>> renderer(CreateRenderer<T>(opt.EmberCL() ? eRendererType::OPENCL_RENDERER : eRendererType::CPU_RENDERER, devices, false, 0, emberReport));
vector<string> errorReport = emberReport.ErrorReport();
auto fullpath = GetExePath(argv[0]);
Compat::m_Compat = opt.Flam3Compat();
if (!errorReport.empty())
emberReport.DumpErrorReport();
if (!renderer.get())
{
cout << "Renderer creation failed, exiting.\n" ;
return false;
}
if (opt.EmberCL() && renderer->RendererType() != eRendererType::OPENCL_RENDERER)//OpenCL init failed, so fall back to CPU.
opt.EmberCL(false);
if (auto rendererCL = dynamic_cast<RendererCL<T, float>*>(renderer.get()))
{
rendererCL->OptAffine(true);//Optimize empty affines for final renderers, this is normally false for the interactive renderer.
rendererCL->SubBatchPercentPerThread(float(opt.SBPctPerTh()));
}
if (!InitPaletteList<float>(fullpath, opt.PalettePath()))//For any modern flames, the palette isn't used. This is for legacy purposes and should be removed.
return false;
if (!ParseEmberFile(parser, opt.Input(), embers))
return false;
if (!opt.EmberCL())
{
if (opt.ThreadCount() == 0)
{
cout << "Using " << Timing::ProcessorCount() << " automatically detected threads.\n";
opt.ThreadCount(Timing::ProcessorCount());
}
else
{
cout << "Using " << opt.ThreadCount() << " manually specified threads.\n";
}
renderer->ThreadCount(opt.ThreadCount(), opt.IsaacSeed() != "" ? opt.IsaacSeed().c_str() : nullptr);
}
else
{
cout << "Using OpenCL to render.\n";
if (opt.Verbose())
{
for (auto& device : devices)
{
cout << "Platform: " << info->PlatformName(device.first) << "\n";
cout << "Device: " << info->DeviceName(device.first, device.second) << "\n";
}
}
if (opt.ThreadCount() > 1)
cout << "Cannot specify threads with OpenCL, using 1 thread.\n";
opt.ThreadCount(1);
renderer->ThreadCount(opt.ThreadCount(), opt.IsaacSeed() != "" ? opt.IsaacSeed().c_str() : nullptr);
if (opt.InsertPalette())
{
cout << "Inserting palette not supported with OpenCL, insertion will not take place.\n";
opt.InsertPalette(false);
}
}
if (!Find(opt.Format(), "jpg") &&
!Find(opt.Format(), "png") &&
#ifdef _WIN32
!Find(opt.Format(), "bmp") &&
#endif
!Find(opt.Format(), "exr"))
{
#ifdef _WIN32
cout << "Format must be bmp, jpg, png, png16 or exr, not " << opt.Format() << ". Setting to png.\n";
#else
cout << "Format must be jpg, png, png16 or exr, not " << opt.Format() << ". Setting to png.\n";
#endif
opt.Format("png");
}
if (opt.AspectRatio() < 0)
{
cout << "Invalid pixel aspect ratio " << opt.AspectRatio() << "\n. Must be positive, setting to 1.\n";
opt.AspectRatio(1);
}
if (!opt.Out().empty() && (embers.size() > 1))
{
cout << "Single output file " << opt.Out() << " specified for multiple images. Changing to use prefix of badname-changethis instead. Always specify prefixes when reading a file with multiple embers.\n";
opt.Out("");
opt.Prefix("badname-changethis");
}
//Final setup steps before running.
os.imbue(std::locale(""));
padding = uint(std::log10(double(embers.size()))) + 1;
renderer->EarlyClip(opt.EarlyClip());
renderer->YAxisUp(opt.YAxisUp());
renderer->LockAccum(opt.LockAccum());
renderer->InsertPalette(opt.InsertPalette());
renderer->PixelAspectRatio(T(opt.AspectRatio()));
renderer->Priority(eThreadPriority(Clamp<intmax_t>(intmax_t(opt.Priority()), intmax_t(eThreadPriority::LOWEST), intmax_t(eThreadPriority::HIGHEST))));
renderer->Callback(opt.DoProgress() ? progress.get() : nullptr);
for (i = 0; i < embers.size(); i++)
{
auto& ember = embers[i];
if (opt.Verbose() && embers.size() > 1)
cout << "\nFlame = " << i + 1 << "/" << embers.size() << "\n";
else if (embers.size() > 1)
VerbosePrint("\n");
if (opt.Supersample() > 0)
ember.m_Supersample = opt.Supersample();
if (opt.Quality() > 0)
ember.m_Quality = T(opt.Quality());
if (opt.DeMin() > -1)
ember.m_MinRadDE = T(opt.DeMin());
if (opt.DeMax() > -1)
ember.m_MaxRadDE = T(opt.DeMax());
ember.m_TemporalSamples = 1;//Force temporal samples to 1 for render.
ember.m_Quality *= T(opt.QualityScale());
if (opt.SizeScale() != 1.0)
{
ember.m_FinalRasW = size_t(T(ember.m_FinalRasW) * opt.SizeScale());
ember.m_FinalRasH = size_t(T(ember.m_FinalRasH) * opt.SizeScale());
ember.m_PixelsPerUnit *= T(opt.SizeScale());
}
else if (opt.WidthScale() != 1.0 || opt.HeightScale() != 1.0)
{
auto scaleType = eScaleType::SCALE_NONE;
if (ToLower(opt.ScaleType()) == "width")
scaleType = eScaleType::SCALE_WIDTH;
else if (ToLower(opt.ScaleType()) == "height")
scaleType = eScaleType::SCALE_HEIGHT;
else if (ToLower(opt.ScaleType()) != "none")
cout << "Scale type must be width height or none. Setting to none.\n";
auto w = std::max<size_t>(size_t(ember.m_OrigFinalRasW * opt.WidthScale()), 10);
auto h = std::max<size_t>(size_t(ember.m_OrigFinalRasH * opt.HeightScale()), 10);
ember.SetSizeAndAdjustScale(w, h, false, scaleType);
}
if (ember.m_FinalRasW == 0 || ember.m_FinalRasH == 0)
{
cout << "Output image " << i << " has dimension 0: " << ember.m_FinalRasW << ", " << ember.m_FinalRasH << ". Setting to 1920 x 1080.\n";
ember.m_FinalRasW = 1920;
ember.m_FinalRasH = 1080;
}
//Cast to double in case the value exceeds 2^32.
double imageMem = double(renderer->NumChannels()) * double(ember.m_FinalRasW)
* double(ember.m_FinalRasH) * double(renderer->BytesPerChannel());
double maxMem = pow(2.0, double((sizeof(void*) * 8) - 1));
if (imageMem > maxMem)//Ensure the max amount of memory for a process is not exceeded.
{
cout << "Image " << i << " size > " << maxMem << ". Setting to 1920 x 1080.\n";
ember.m_FinalRasW = 1920;
ember.m_FinalRasH = 1080;
}
stats.Clear();
renderer->SetEmber(ember, eProcessAction::FULL_RENDER, true);
renderer->PrepFinalAccumVector(finalImage);//Must manually call this first because it could be erroneously made smaller due to strips if called inside Renderer::Run().
if (opt.Strips() > 1)
{
strips = opt.Strips();
}
else
{
p = renderer->MemoryRequired(1, true, false);//No threaded write for render, only for animate.
strips = CalcStrips(double(p.second), double(renderer->MemoryAvailable()), opt.UseMem());
if (strips > 1)
VerbosePrint("Setting strips to " << strips << " with specified memory usage of " << opt.UseMem());
}
strips = VerifyStrips(ember.m_FinalRasH, strips,
[&](const string & s) { cout << s << "\n"; }, //Greater than height.
[&](const string & s) { cout << s << "\n"; }, //Mod height != 0.
[&](const string & s) { cout << s << "\n"; }); //Final strips value to be set.
//For testing incremental renderer.
//int sb = 1;
//bool resume = false, success = false;
//do
//{
// success = renderer->Run(finalImage, 0, sb, false/*resume == false*/) == RENDER_OK;
// sb++;
// resume = true;
//}
//while (success && renderer->ProcessState() != ACCUM_DONE);
StripsRender<T>(renderer.get(), ember, finalImage, 0, strips, opt.YAxisUp(),
[&](size_t strip)//Pre strip.
{
if (opt.Verbose() && (strips > 1) && strip > 0)
cout << "\n";
if (strips > 1)
VerbosePrint("Strip = " << (strip + 1) << "/" << strips);
},
[&](size_t strip)//Post strip.
{
progress->Clear();
stats += renderer->Stats();
},
[&](size_t strip)//Error.
{
cout << "Error: image rendering failed, skipping to next image.\n";
renderer->DumpErrorReport();//Something went wrong, print errors.
},
//Final strip.
//Original wrote every strip as a full image which could be very slow with many large images.
//Only write once all strips for this image are finished.
[&](Ember<T>& finalEmber)
{
//TotalIterCount() is actually using ScaledQuality() which does not get reset upon ember assignment,
//so it ends up using the correct value for quality * strips.
iterCount = renderer->TotalIterCount(1);
comments = renderer->ImageComments(stats, opt.PrintEditDepth(), true);
os.str("");
os << comments.m_NumIters << " / " << iterCount << " (" << std::fixed << std::setprecision(2) << ((double(stats.m_Iters) / double(iterCount)) * 100) << "%)";
VerbosePrint("\nIters ran/requested: " + os.str());
if (!opt.EmberCL())
VerbosePrint("Bad values: " << stats.m_Badvals);
VerbosePrint("Render time: " + t.Format(stats.m_RenderMs));
VerbosePrint("Pure iter time: " + t.Format(stats.m_IterMs));
VerbosePrint("Iters/sec: " << size_t(stats.m_Iters / (stats.m_IterMs / 1000.0)) << "\n");
bool useName = opt.NameEnable() && !finalEmber.m_Name.empty();
auto finalImagep = finalImage.data();
auto size = finalEmber.m_FinalRasW * finalEmber.m_FinalRasH;
bool doBmp = Find(opt.Format(), "bmp");
bool doJpg = Find(opt.Format(), "jpg");
bool doExr16 = Find(opt.Format(), "exr");
bool doExr32 = Find(opt.Format(), "exr32");
bool doPng8 = Find(opt.Format(), "png");
bool doPng16 = Find(opt.Format(), "png16");
bool doOnlyPng8 = doPng8 && !doPng16;
bool doOnlyExr16 = doExr16 && !doExr32;
vector<byte> rgb8Image;
vector<std::thread> writeFileThreads;
writeFileThreads.reserve(5);
if (doBmp || doJpg)
{
rgb8Image.resize(size * 3);
Rgba32ToRgb8(finalImagep, rgb8Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH);
if (doBmp)
{
writeFileThreads.push_back(std::thread([&]()
{
auto filename = MakeSingleFilename(inputPath, opt.Out(), finalEmber.m_Name, opt.Prefix(), opt.Suffix(), "bmp", padding, i, useName);
VerbosePrint("Writing " + filename);
auto writeSuccess = WriteBmp(filename.c_str(), rgb8Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH);
if (!writeSuccess)
cout << "Error writing " << filename << "\n";
}));
}
if (doJpg)
{
writeFileThreads.push_back(std::thread([&]()
{
auto filename = MakeSingleFilename(inputPath, opt.Out(), finalEmber.m_Name, opt.Prefix(), opt.Suffix(), "jpg", padding, i, useName);
VerbosePrint("Writing " + filename);
auto writeSuccess = WriteJpeg(filename.c_str(), rgb8Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, int(opt.JpegQuality()), opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick());
if (!writeSuccess)
cout << "Error writing " << filename << "\n";
}));
}
}
if (doPng8)
{
bool doBothPng = doPng16 && (opt.Format().find("png") != opt.Format().rfind("png"));
if (doBothPng || doOnlyPng8)//8-bit PNG.
{
writeFileThreads.push_back(std::thread([&]()
{
auto filename = MakeSingleFilename(inputPath, opt.Out(), finalEmber.m_Name, opt.Prefix(), opt.Suffix(), "png", padding, i, useName);
VerbosePrint("Writing " + filename);
vector<byte> rgba8Image(size * 4);
Rgba32ToRgba8(finalImagep, rgba8Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, opt.Transparency());
auto writeSuccess = WritePng(filename.c_str(), rgba8Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, 1, opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick());
if (!writeSuccess)
cout << "Error writing " << filename << "\n";
}));
}
if (doPng16)//16-bit PNG.
{
writeFileThreads.push_back(std::thread([&]()
{
auto suffix = opt.Suffix();
if (doBothPng)//Add suffix if they specified both PNG.
{
VerbosePrint("Doing both PNG formats, so adding suffix _p16 to avoid overwriting the same file.");
suffix += "_p16";
}
auto filename = MakeSingleFilename(inputPath, opt.Out(), finalEmber.m_Name, opt.Prefix(), suffix, "png", padding, i, useName);
VerbosePrint("Writing " + filename);
vector<glm::uint16> rgba16Image(size * 4);
Rgba32ToRgba16(finalImagep, rgba16Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, opt.Transparency());
auto writeSuccess = WritePng(filename.c_str(), (byte*)rgba16Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, 2, opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick());
if (!writeSuccess)
cout << "Error writing " << filename << "\n";
}));
}
}
if (doExr16)
{
bool doBothExr = doExr32 && (opt.Format().find("exr") != opt.Format().rfind("exr"));
if (doBothExr || doOnlyExr16)//16-bit EXR.
{
writeFileThreads.push_back(std::thread([&]()
{
auto filename = MakeSingleFilename(inputPath, opt.Out(), finalEmber.m_Name, opt.Prefix(), opt.Suffix(), "exr", padding, i, useName);
VerbosePrint("Writing " + filename);
vector<Rgba> rgba32Image(size);
Rgba32ToRgbaExr(finalImagep, rgba32Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, opt.Transparency());
auto writeSuccess = WriteExr16(filename.c_str(),
rgba32Image.data(),
finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick());
if (!writeSuccess)
cout << "Error writing " << filename << "\n";
}));
}
if (doExr32)//32-bit EXR.
{
writeFileThreads.push_back(std::thread([&]()
{
auto suffix = opt.Suffix();
if (doBothExr)//Add suffix if they specified both EXR.
{
VerbosePrint("Doing both EXR formats, so adding suffix _exr32 to avoid overwriting the same file.");
suffix += "_exr32";
}
auto filename = MakeSingleFilename(inputPath, opt.Out(), finalEmber.m_Name, opt.Prefix(), suffix, "exr", padding, i, useName);
VerbosePrint("Writing " + filename);
vector<float> r(size);
vector<float> g(size);
vector<float> b(size);
vector<float> a(size);
Rgba32ToRgba32Exr(finalImagep, r.data(), g.data(), b.data(), a.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, opt.Transparency());
auto writeSuccess = WriteExr32(filename.c_str(),
r.data(),
g.data(),
b.data(),
a.data(),
finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick());
if (!writeSuccess)
cout << "Error writing " << filename << "\n";
}));
}
}
Join(writeFileThreads);
});
if (opt.EmberCL() && opt.DumpKernel())
{
if (auto rendererCL = dynamic_cast<RendererCL<T, float>*>(renderer.get()))
{
cout << "Iteration kernel:\n" <<
rendererCL->IterKernel() << "\n\n" <<
"Density filter kernel:\n" <<
rendererCL->DEKernel() << "\n\n" <<
"Final accumulation kernel:\n" <<
rendererCL->FinalAccumKernel() << "\n";
}
}
VerbosePrint("Done.");
}
t.Toc("\nFinished in: ", true);
return true;
}
/// <summary>
/// Main program entry point for EmberRender.exe.
/// </summary>
/// <param name="argc">The number of command line arguments passed</param>
/// <param name="argv">The command line arguments passed</param>
/// <returns>0 if successful, else 1.</returns>
int _tmain(int argc, _TCHAR* argv[])
{
bool b = false;
EmberOptions opt;
//Required for large allocs, else GPU memory usage will be severely limited to small sizes.
//This must be done in the application and not in the EmberCL DLL.
#ifdef _WIN32
_putenv_s("GPU_MAX_ALLOC_PERCENT", "100");
//_putenv_s("GPU_FORCE_64BIT_PTR", "1");
#else
putenv(const_cast<char*>("GPU_MAX_ALLOC_PERCENT=100"));
#endif
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
if (!opt.Populate(argc, argv, eOptionUse::OPT_USE_RENDER))
{
auto palf = PaletteList<float>::Instance();
#ifdef DO_DOUBLE
if (!opt.Sp())
b = EmberRender<double>(argc, argv, opt);
else
#endif
b = EmberRender<float>(argc, argv, opt);
}
return b ? 0 : 1;
}