fractorium/Source/Ember/Variations02.h
Person 90ec5b8246 --User changes:
-Show common folder locations such as documents, downloads, pictures in the sidebar in all file dialogs.
 -Warning message about exceeding memory in final render dialog now suggests strips as the solution to the problem.
 -Strips now has a tooltip explaining what it does.
 -Allow more digits in the spinners on the color section the flame tab.
 -Add manually adjustable size spinners in the final render dialog. Percentage scale and absolute size are fully synced.
 -Default prefix in final render is now the filename when doing animations (coming from sequence section of the library tab).
 -Changed the elliptic variation back to using a less precise version for float, and a more precise version for double. The last release had it always using double.
 -New applied xaos table that shows a read-only view of actual weights by taking the base xform weights and multiplying them by the xaos values.
 -New table in the xaos tab that gives a graphical representation of the probability that each xform is chosen, with and without xaos.
 -Add button to transpose the xaos rows and columns.
 -Add support for importing .chaos files from Chaotica.
 --Pasting back to Chaotica will work for most, but not all, variations due to incompatible parameter names in some.
 -Curves are now splines instead of Bezier. This adds compatibility with Chaotica, but breaks it for Apophysis. Xmls are still pastable, but the color curves will look different.
 --The curve editor on the palette tab can now add points by clicking on the lines and remove points by clicking on the points themselves, just like Chaotica.
 --Splines are saved in four new xml fields: overall_curve, red_curve, green_curve and blue_curve.
 -Allow for specifying the percentage of a sub batch each thread should iterate through per kernel call when running with OpenCL. This gives a roughly 1% performance increase due to having to make less kernel calls while iterating.
 --This field is present for interactive editing (where it's not very useful) and in the final render dialog.
 --On the command line, this is specified as --sbpctth for EmberRender and EmberAnimate.
 -Allow double clicking to toggle the supersample field in the flame tab between 1 and 2 for easily checking the effect of the field.
 -When showing affine values as polar coordinates, show angles normalized to 360 to match Chaotica.
 -Fuse Count spinner now toggles between 15 and 100 when double clicking for easily checking the effect of the field.
 -Added field for limiting the range in the x and y direction that the initial points are chosen from.
 -Added a field called K2 which is an alternative way to set brightness, ignored when zero.
 --This has no effect for many variations, but hs a noticeable effect for some.
 -Added new variations:
 arcsech
 arcsech2
 arcsinh
 arctanh
 asteria
 block
 bwraps_rand
 circlecrop2
 coth_spiral
 crackle2
 depth_blur
 depth_blur2
 depth_gaussian
 depth_gaussian2
 depth_ngon
 depth_ngon2
 depth_sine
 depth_sine2
 dragonfire
 dspherical
 dust
 excinis
 exp2
 flipx
 flowerdb
 foci_p
 gaussian
 glynnia2
 glynnsim4
 glynnsim5
 henon
 henon
 hex_rand
 hex_truchet
 hypershift
 lazyjess
 lens
 lozi
 lozi
 modulusx
 modulusy
 oscilloscope2
 point_symmetry
 pointsymmetry
 projective
 pulse
 rotate
 scry2
 shift
 smartshape
 spher
 squares
 starblur2
 swirl3
 swirl3r
 tanh_spiral
 target0
 target2
 tile_hlp
 truchet_glyph
 truchet_inv
 truchet_knot
 unicorngaloshen
 vibration
 vibration2
 --hex_truchet, hex_rand should always use double. They are extremely sensitive.

--Bug fixes:
 -Bounds sign was flipped for x coordinate of world space when center was not zero.
 -Right clicking and dragging spinner showed menu on mouse up, even if it was very far away.
 -Text boxes for size in final render dialog were hard to type in. Same bug as xform weight used to be so fix the same way.
 -Fix spelling to be plural in toggle color speed box.
 -Stop using the blank user palette to generate flames. Either put colored palettes in it, or exclude it from randoms.
 -Clicking the random palette button for a palette file with only one palette in it would freeze the program.
 -Clicking none scale in final render did not re-render the preview.
 -Use less precision on random xaos. No need for 12 decimal places.
 -The term sub batch is overloaded in the options dialog. Change the naming and tooltip of those settings for cpu and opencl.
 --Also made clear in the tooltip for the default opencl quality setting that the value is per device.
 -The arrows spinner in palette editor appears like a read-only label. Made it look like a spinner.
 -Fix border colors for various spin boxes and table headers in the style sheet. Requires reload.
 -Fix a bug in the bwraps variation which would produce different results than Chaotica and Apophysis.
 -Synth was allowed to be selected for random flame generation when using an Nvidia card but it shouldn't have been because Nvidia has a hard time compiling synth.
 -A casting bug in the OpenCL kernels for log scaling and density filtering was preventing successful compilations on Intel iGPUs. Fixed even though we don't support anything other than AMD and Nvidia.
 -Palette rotation (click and drag) position was not being reset when loading a new flame.
 -When the xform circles were hidden, opening and closing the options dialog would improperly reshow them.
 -Double click toggle was broken on integer spin boxes.
 -Fixed tab order of some controls.
 -Creating a palette from a jpg in the palette editor only produced a single color.
 --Needed to package imageformats/qjpeg.dll with the Windows installer.
 -The basic memory benchmark test flame was not really testing memory. Make it more spread out.
 -Remove the temporal samples field from the flame tab, it was never used because it's only an animation parameter which is specified in the final render dialog or on the command line with EmberAnimate.

--Code changes:
 -Add IsEmpty() to Palette to determine if a palette is all black.
 -Attempt to avoid selecting a blank palette in PaletteList::GetRandomPalette().
 -Add function ScanForChaosNodes() and some associated helper functions in XmlToEmber.
 -Make variation param name correction be case insensitive in XmlToEmber.
 -Report error when assigning a variation param value in XmlToEmber.
 -Add SubBatchPercentPerThread() method to RendererCL.
 -Override enterEvent() and leaveEvent() in DoubleSpinBox and SpinBox to prevent the context menu from showing up on right mouse up after already leaving the spinner.
 -Filtering the mouse wheel event in TableWidget no longer appears to be needed. It was probably an old Qt bug that has been fixed.
 -Gui/ember syncing code in the final render dialog needed to be reworked to accommodate absolute sizes.
2019-04-13 19:00:46 -07:00

6040 lines
186 KiB
C++

#pragma once
#include "Variation.h"
namespace EmberNs
{
/// <summary>
/// Hemisphere.
/// </summary>
template <typename T>
class HemisphereVariation : public Variation<T>
{
public:
HemisphereVariation(T weight = 1.0) : Variation<T>("hemisphere", eVariationId::VAR_HEMISPHERE, weight, true) { }
VARCOPY(HemisphereVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T t = m_Weight / std::sqrt(helper.m_PrecalcSumSquares + 1);
helper.Out.x = helper.In.x * t;
helper.Out.y = helper.In.y * t;
helper.Out.z = t;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t t = " << weight << " / sqrt(precalcSumSquares + (real_t)(1.0));\n"
<< "\n"
<< "\t\tvOut.x = vIn.x * t;\n"
<< "\t\tvOut.y = vIn.y * t;\n"
<< "\t\tvOut.z = t;\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Epispiral.
/// </summary>
template <typename T>
class EpispiralVariation : public ParametricVariation<T>
{
public:
EpispiralVariation(T weight = 1.0) : ParametricVariation<T>("epispiral", eVariationId::VAR_EPISPIRAL, weight, false, false, false, false, true)
{
Init();
}
PARVARCOPY(EpispiralVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T theta = helper.m_PrecalcAtanyx;
T t = (rand.Frand01<T>() * m_Thickness) * (1 / std::cos(m_N * theta)) - m_Holes;
if (std::abs(t) != 0)
{
helper.Out.x = m_Weight * t * std::cos(theta);
helper.Out.y = m_Weight * t * std::sin(theta);
}
else
{
helper.Out.x = 0;
helper.Out.y = 0;
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string n = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string thickness = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string holes = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t theta = precalcAtanyx;\n"
<< "\t\treal_t t = (MwcNext01(mwc) * " << thickness << ") * (1 / cos(" << n << " * theta)) - " << holes << ";\n"
<< "\n"
<< "\t\tif (fabs(t) != 0)\n"
<< "\t\t{\n"
<< "\t\t\tvOut.x = " << weight << " * t * cos(theta);\n"
<< "\t\t\tvOut.y = " << weight << " * t * sin(theta);\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t\tvOut.x = 0;\n"
<< "\t\t\tvOut.y = 0;\n"
<< "\t\t}\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_N, prefix + "epispiral_n", 6));
m_Params.push_back(ParamWithName<T>(&m_Thickness, prefix + "epispiral_thickness"));
m_Params.push_back(ParamWithName<T>(&m_Holes, prefix + "epispiral_holes", 1));
}
private:
T m_N;
T m_Thickness;
T m_Holes;
};
/// <summary>
/// Bwraps.
/// Note, this is the same as bwraps7, which is the same as bwraps2 except for the precalc function.
/// </summary>
template <typename T>
class BwrapsVariation : public ParametricVariation<T>
{
public:
BwrapsVariation(T weight = 1.0) : ParametricVariation<T>("bwraps", eVariationId::VAR_BWRAPS, weight)
{
Init();
}
PARVARCOPY(BwrapsVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_BwrapsCellsize == 0)
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
}
else
{
T vx = helper.In.x;
T vy = helper.In.y;
T cx = (Floor<T>(vx / m_BwrapsCellsize) + T(0.5)) * m_BwrapsCellsize;
T cy = (Floor<T>(vy / m_BwrapsCellsize) + T(0.5)) * m_BwrapsCellsize;
T lx = vx - cx;
T ly = vy - cy;
if ((SQR(lx) + SQR(ly)) > m_R2)
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
}
else
{
lx *= m_G2;
ly *= m_G2;
T r = m_Rfactor / Zeps((SQR(lx) + SQR(ly)) / 4 + 1);
lx *= r;
ly *= r;
r = (SQR(lx) + SQR(ly)) / m_R2;
T theta = m_BwrapsInnerTwist * (1 - r) + m_BwrapsOuterTwist * r;
T s = std::sin(theta);
T c = std::cos(theta);
vx = cx + c * lx + s * ly;
vy = cy - s * lx + c * ly;
helper.Out.x = m_Weight * vx;
helper.Out.y = m_Weight * vy;
}
}
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string bwrapsCellsize = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bwrapsSpace = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bwrapsGain = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bwrapsInnerTwist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bwrapsOuterTwist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string g2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string r2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rfactor = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tif (" << bwrapsCellsize << " == 0)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t real_t vx = vIn.x;\n"
<< "\t\t real_t vy = vIn.y;\n"
<< "\t\t real_t cx = (floor(vx / " << bwrapsCellsize << ") + (real_t)(0.5)) * " << bwrapsCellsize << ";\n"
<< "\t\t real_t cy = (floor(vy / " << bwrapsCellsize << ") + (real_t)(0.5)) * " << bwrapsCellsize << ";\n"
<< "\t\t real_t lx = vx - cx;\n"
<< "\t\t real_t ly = vy - cy;\n"
<< "\n"
<< "\t\t if ((SQR(lx) + SQR(ly)) > " << r2 << ")\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t lx *= " << g2 << ";\n"
<< "\t\t ly *= " << g2 << ";\n"
<< "\n"
<< "\t\t real_t r = " << rfactor << " / Zeps(fma(lx, lx, SQR(ly)) / 4 + 1);\n"
<< "\n"
<< "\t\t lx *= r;\n"
<< "\t\t ly *= r;\n"
<< "\t\t r = fma(lx, lx, SQR(ly)) / " << r2 << ";\n"
<< "\n"
<< "\t\t real_t theta = fma(" << bwrapsInnerTwist << ", (1 - r), " << bwrapsOuterTwist << " * r);\n"
<< "\t\t real_t s = sin(theta);\n"
<< "\t\t real_t c = cos(theta);\n"
<< "\n"
<< "\t\t vx = fma(s, ly, fma(c, lx, cx));\n"
<< "\t\t vy = cy - s * lx + c * ly;\n"
<< "\n"
<< "\t\t vOut.x = " << weight << " * vx;\n"
<< "\t\t vOut.y = " << weight << " * vy;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T radius = T(0.5) * (m_BwrapsCellsize / (1 + SQR(m_BwrapsSpace)));
m_G2 = SQR(m_BwrapsGain) + T(1.0e-6);
T maxBubble = m_G2 * radius;
if (maxBubble > 2)
maxBubble = 1;
else
maxBubble *= (1 / (SQR(maxBubble) / 4 + 1));
m_R2 = Zeps(SQR(radius));
m_Rfactor = radius / maxBubble;
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_BwrapsCellsize, prefix + "bwraps_cellsize", 1));
m_Params.push_back(ParamWithName<T>(&m_BwrapsSpace, prefix + "bwraps_space"));
m_Params.push_back(ParamWithName<T>(&m_BwrapsGain, prefix + "bwraps_gain", 1));
m_Params.push_back(ParamWithName<T>(&m_BwrapsInnerTwist, prefix + "bwraps_inner_twist"));
m_Params.push_back(ParamWithName<T>(&m_BwrapsOuterTwist, prefix + "bwraps_outer_twist"));
m_Params.push_back(ParamWithName<T>(true, &m_G2, prefix + "bwraps_g2"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_R2, prefix + "bwraps_r2"));
m_Params.push_back(ParamWithName<T>(true, &m_Rfactor, prefix + "bwraps_rfactor"));
}
private:
T m_BwrapsCellsize;
T m_BwrapsSpace;
T m_BwrapsGain;
T m_BwrapsInnerTwist;
T m_BwrapsOuterTwist;
T m_G2;//Precalc.
T m_R2;
T m_Rfactor;
};
/// <summary>
/// bwraps_rand.
/// By tatasz.
/// </summary>
template <typename T>
class BwrapsRandVariation : public ParametricVariation<T>
{
public:
BwrapsRandVariation(T weight = 1.0) : ParametricVariation<T>("bwraps_rand", eVariationId::VAR_BWRAPS_RAND, weight)
{
Init();
}
PARVARCOPY(BwrapsRandVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_CellSize == 0)
{
helper.Out.x = helper.In.x * m_Weight;
helper.Out.y = helper.In.y * m_Weight;
}
else
{
T Cx = (Floor<T>(helper.In.x * m_InvCellSize) + T(0.5)) * m_CellSize;
T Cy = (Floor<T>(helper.In.y * m_InvCellSize) + T(0.5)) * m_CellSize;
T Lx = helper.In.x - Cx;
T Ly = helper.In.y - Cy;
T radius;
if (m_Symm == 0)
radius = m_HalfCellSizeOver1pSpaceSq * VarFuncs<T>::HashShadertoy(Cx, Cy, m_Seed);
else
radius = m_HalfCellSizeOver1pSpaceSq * VarFuncs<T>::HashShadertoy(SQR(Cx), SQR(Cy), m_Seed);
T mb = m_G2 * radius;
T max_bubble;
if (mb > 2)
max_bubble = 1;
else
max_bubble = mb / (mb * mb * T(0.25) + 1);
T r2 = SQR(radius);
if (SQR(Lx) + SQR(Ly) > r2)
{
helper.Out.x = helper.In.x * m_Weight;
helper.Out.y = helper.In.y * m_Weight;
}
else
{
T rfactor = radius / Zeps(max_bubble);
T Lx2 = Lx * m_G2;
T Ly2 = Ly * m_G2;
T r = rfactor / ((SQR(Lx2) + SQR(Ly2)) * T(0.25) + 1);
T Lx3 = Lx2 * r;
T Ly3 = Ly2 * r;
T r_2 = (SQR(Lx3) + SQR(Ly3)) / Zeps(r2);
T theta = m_InnerTwist * (1 - r_2) + m_OuterTwist * r_2;
T ct = std::cos(theta);
T st = std::sin(theta);
helper.Out.x = (Cx + ct * Lx3 + st * Ly3) * m_Weight;
helper.Out.y = (Cy - st * Lx3 + ct * Ly3) * m_Weight;
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string cellsize = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string space = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string gain = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string innertwist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string outertwist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string symm = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seed = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invcellsize = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string g2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string spacesq = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string halfcellsizeover1pspacesq = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tif (" << cellsize << " == 0)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = vIn.x * " << weight << ";\n"
<< "\t\t vOut.y = vIn.y * " << weight << ";\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t real_t Cx = (floor(vIn.x * " << invcellsize << ") + 0.5) * " << cellsize << ";\n"
<< "\t\t real_t Cy = (floor(vIn.y * " << invcellsize << ") + 0.5) * " << cellsize << ";\n"
<< "\t\t real_t Lx = vIn.x - Cx;\n"
<< "\t\t real_t Ly = vIn.y - Cy;\n"
<< "\t\t real_t radius;\n"
<< "\n"
<< "\t\t if (" << symm << " == 0)\n"
<< "\t\t radius = " << halfcellsizeover1pspacesq << " * HashShadertoy(Cx, Cy, " << seed << ");\n"
<< "\t\t else\n"
<< "\t\t radius = " << halfcellsizeover1pspacesq << " * HashShadertoy(SQR(Cx), SQR(Cy), " << seed << ");\n"
<< "\n"
<< "\t\t real_t mb = " << g2 << " * radius;\n"
<< "\t\t real_t max_bubble;\n"
<< "\n"
<< "\t\t if (mb > 2)\n"
<< "\t\t max_bubble = 1;\n"
<< "\t\t else\n"
<< "\t\t max_bubble = mb / fma(SQR(mb), 0.25, 1.0);\n"
<< "\n"
<< "\t\t real_t r2 = SQR(radius);\n"
<< "\n"
<< "\t\t if (SQR(Lx) + SQR(Ly) > r2)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = vIn.x * " << weight << ";\n"
<< "\t\t vOut.y = vIn.y * " << weight << ";\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t real_t rfactor = radius / Zeps(max_bubble);\n"
<< "\t\t real_t Lx2 = Lx * " << g2 << ";\n"
<< "\t\t real_t Ly2 = Ly * " << g2 << ";\n"
<< "\t\t real_t r = rfactor / fma(fma(Lx2, Lx2, SQR(Ly2)), 0.25, 1.0);\n"
<< "\t\t real_t Lx3 = Lx2 * r;\n"
<< "\t\t real_t Ly3 = Ly2 * r;\n"
<< "\t\t real_t r_2 = fma(Lx3, Lx3, SQR(Ly3)) / Zeps(r2);\n"
<< "\t\t real_t theta = " << innertwist << " * (1.0 - r_2) + " << outertwist << " * r_2;\n"
<< "\t\t real_t ct = cos(theta);\n"
<< "\t\t real_t st = sin(theta);\n"
<< "\n"
<< "\t\t vOut.x = (Cx + ct * Lx3 + st * Ly3) * " << weight << ";\n"
<< "\t\t vOut.y = (Cy - st * Lx3 + ct * Ly3) * " << weight << ";\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_G2 = SQR(m_Gain);
m_InvCellSize = 1 / Zeps(m_CellSize);
m_SpaceSq = SQR(m_Space);
m_HalfCellSizeOver1pSpaceSq = T(0.5) * (m_CellSize / (1 + m_SpaceSq));
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps", "Fract", "HashShadertoy" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_CellSize, prefix + "bwraps_rand_cellsize", 1));
m_Params.push_back(ParamWithName<T>(&m_Space, prefix + "bwraps_rand_space"));
m_Params.push_back(ParamWithName<T>(&m_Gain, prefix + "bwraps_rand_gain", 2));
m_Params.push_back(ParamWithName<T>(&m_InnerTwist, prefix + "bwraps_rand_inner_twist"));
m_Params.push_back(ParamWithName<T>(&m_OuterTwist, prefix + "bwraps_rand_outer_twist"));
m_Params.push_back(ParamWithName<T>(&m_Symm, prefix + "bwraps_rand_symm"));
m_Params.push_back(ParamWithName<T>(&m_Seed, prefix + "bwraps_rand_seed", 1));
m_Params.push_back(ParamWithName<T>(true, &m_InvCellSize, prefix + "bwraps_rand_inv_cellsize"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_G2, prefix + "bwraps_rand_g2"));
m_Params.push_back(ParamWithName<T>(true, &m_SpaceSq, prefix + "bwraps_rand_space_sq"));
m_Params.push_back(ParamWithName<T>(true, &m_HalfCellSizeOver1pSpaceSq, prefix + "bwraps_rand_half_cellsize_over_1_plus_space_sq"));
}
private:
T m_CellSize;
T m_Space;
T m_Gain;
T m_InnerTwist;
T m_OuterTwist;
T m_Symm;
T m_Seed;
T m_InvCellSize;//Precalc.
T m_G2;
T m_SpaceSq;
T m_HalfCellSizeOver1pSpaceSq;
};
/// <summary>
/// BlurCircle.
/// </summary>
template <typename T>
class BlurCircleVariation : public Variation<T>
{
public:
BlurCircleVariation(T weight = 1.0) : Variation<T>("blur_circle", eVariationId::VAR_BLUR_CIRCLE, weight) { }
VARCOPY(BlurCircleVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = 2 * rand.Frand01<T>() - 1;
T y = 2 * rand.Frand01<T>() - 1;
T absx = x;
T absy = y;
T side, perimeter;
if (absx < 0)
absx = absx * -1;
if (absy < 0)
absy = absy * -1;
if (absx >= absy)
{
if (x >= absy)
perimeter = absx + y;
else
perimeter = 5 * absx - y;
side = absx;
}
else
{
if (y >= absx)
perimeter = 3 * absy - x;
else
perimeter = 7 * absy + x;
side = absy;
}
T r = m_Weight * side;
T val = T(M_PI_4) * perimeter / side - T(M_PI_4);
T sina = std::sin(val);
T cosa = std::cos(val);
helper.Out.x = r * cosa;
helper.Out.y = r * sina;
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
ss << "\t{\n"
<< "\t\treal_t x = fma((real_t)(2.0), MwcNext01(mwc), -(real_t)(1.0));\n"
<< "\t\treal_t y = fma((real_t)(2.0), MwcNext01(mwc), -(real_t)(1.0));\n"
<< "\t\treal_t absx = x;\n"
<< "\t\treal_t absy = y;\n"
<< "\t\treal_t side, perimeter;\n"
<< "\t\t\n"
<< "\t\tif (absx < 0)\n"
<< "\t\t absx = absx * -1;\n"
<< "\n"
<< "\t\tif (absy < 0)\n"
<< "\t\t absy = absy * -1;\n"
<< "\n"
<< "\t\tif (absx >= absy)\n"
<< "\t\t{\n"
<< "\t\t if (x >= absy)\n"
<< "\t\t perimeter = absx + y;\n"
<< "\t\t else\n"
<< "\t\t perimeter = fma((real_t)(5.0), absx, -y);\n"
<< "\n"
<< "\t\t side = absx;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (y >= absx)\n"
<< "\t\t perimeter = fma((real_t)(3.0), absy, -x);\n"
<< "\t\t else\n"
<< "\t\t perimeter = fma((real_t)(7.0), absy, x);\n"
<< "\n"
<< "\t\t side = absy;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\treal_t r = " << weight << " * side;\n"
<< "\t\treal_t val = MPI4 * perimeter / side - MPI4;\n"
<< "\t\treal_t sina = sin(val);\n"
<< "\t\treal_t cosa = cos(val);\n"
<< "\n"
<< "\t\tvOut.x = r * cosa;\n"
<< "\t\tvOut.y = r * sina;\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// BlurZoom.
/// </summary>
template <typename T>
class BlurZoomVariation : public ParametricVariation<T>
{
public:
BlurZoomVariation(T weight = 1.0) : ParametricVariation<T>("blur_zoom", eVariationId::VAR_BLUR_ZOOM, weight)
{
Init();
}
PARVARCOPY(BlurZoomVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T z = 1 + m_BlurZoomLength * rand.Frand01<T>();
helper.Out.x = m_Weight * ((helper.In.x - m_BlurZoomX) * z + m_BlurZoomX);
helper.Out.y = m_Weight * ((helper.In.y - m_BlurZoomY) * z - m_BlurZoomY);
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string blurZoomLength = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blurZoomX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blurZoomY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t z = fma(" << blurZoomLength << ", MwcNext01(mwc), 1);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * fma((vIn.x - " << blurZoomX << "), z, " << blurZoomX << ");\n"
<< "\t\tvOut.y = " << weight << " * fma((vIn.y - " << blurZoomY << "), z, -" << blurZoomY << ");\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_BlurZoomLength, prefix + "blur_zoom_length"));
m_Params.push_back(ParamWithName<T>(&m_BlurZoomX, prefix + "blur_zoom_x"));
m_Params.push_back(ParamWithName<T>(&m_BlurZoomY, prefix + "blur_zoom_y"));
}
private:
T m_BlurZoomLength;
T m_BlurZoomX;
T m_BlurZoomY;
};
/// <summary>
/// BlurPixelize.
/// </summary>
template <typename T>
class BlurPixelizeVariation : public ParametricVariation<T>
{
public:
BlurPixelizeVariation(T weight = 1.0) : ParametricVariation<T>("blur_pixelize", eVariationId::VAR_BLUR_PIXELIZE, weight)
{
Init();
}
PARVARCOPY(BlurPixelizeVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = T(Floor<T>(helper.In.x * m_InvSize));
T y = T(Floor<T>(helper.In.y * m_InvSize));
helper.Out.x = m_V * (x + m_BlurPixelizeScale * (rand.Frand01<T>() - T(0.5)) + T(0.5));
helper.Out.y = m_V * (y + m_BlurPixelizeScale * (rand.Frand01<T>() - T(0.5)) + T(0.5));
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string blurPixelizeSize = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blurPixelizeScale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string v = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invSize = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = floor(vIn.x * " << invSize << ");\n"
<< "\t\treal_t y = floor(vIn.y * " << invSize << ");\n"
<< "\n"
<< "\t\tvOut.x = " << v << " * fma(" << blurPixelizeScale << ", (MwcNext01(mwc) - (real_t)(0.5)), x + (real_t)(0.5));\n"
<< "\t\tvOut.y = " << v << " * fma(" << blurPixelizeScale << ", (MwcNext01(mwc) - (real_t)(0.5)), y + (real_t)(0.5));\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_V = m_Weight * m_BlurPixelizeSize;
m_InvSize = 1 / m_BlurPixelizeSize;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_BlurPixelizeSize, prefix + "blur_pixelize_size", T(0.1), eParamType::REAL, EPS));
m_Params.push_back(ParamWithName<T>(&m_BlurPixelizeScale, prefix + "blur_pixelize_scale", 1));
m_Params.push_back(ParamWithName<T>(true, &m_V, prefix + "blur_pixelize_v"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_InvSize, prefix + "blur_pixelize_inv_size"));
}
private:
T m_BlurPixelizeSize;
T m_BlurPixelizeScale;
T m_V;//Precalc.
T m_InvSize;
};
/// <summary>
/// Crop.
/// </summary>
template <typename T>
class CropVariation : public ParametricVariation<T>
{
public:
CropVariation(T weight = 1.0) : ParametricVariation<T>("crop", eVariationId::VAR_CROP, weight)
{
Init();
}
PARVARCOPY(CropVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = helper.In.x;
T y = helper.In.y;
if (((x < m_X0_) || (x > m_X1_) || (y < m_Y0_) || (y > m_Y1_)) && m_Z != 0)
{
x = 0;
y = 0;
}
else
{
if (x < m_X0_)
x = m_X0_ + rand.Frand01<T>() * m_W;
else if (x > m_X1_)
x = m_X1_ - rand.Frand01<T>() * m_W;
if (y < m_Y0_)
y = m_Y0_ + rand.Frand01<T>() * m_H;
else if (y > m_Y1_)
y = m_Y1_ - rand.Frand01<T>() * m_H;
}
helper.Out.x = m_Weight * x;
helper.Out.y = m_Weight * y;
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string x0 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y0 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x0_ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y0_ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x1_ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y1_ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string w = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string h = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = vIn.x;\n"
<< "\t\treal_t y = vIn.y;\n"
<< "\n"
<< "\t\tif (((x < " << x0_ << ") || (x > " << x1_ << ") || (y < " << y0_ << ") || (y > " << y1_ << ")) && " << z << " != 0)\n"
<< "\t\t{\n"
<< "\t\t x = 0;\n"
<< "\t\t y = 0;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (x < " << x0_ << ")\n"
<< "\t\t x = fma(MwcNext01(mwc), " << w << ", " << x0_ << ");\n"
<< "\t\t else if (x > " << x1_ << ")\n"
<< "\t\t x = " << x1_ << " - MwcNext01(mwc) * " << w << ";\n"
<< "\t\t\n"
<< "\t\t if (y < " << y0_ << ")\n"
<< "\t\t y = fma(MwcNext01(mwc), " << h << ", " << y0_ << ");\n"
<< "\t\t else if (y > " << y1_ << ")\n"
<< "\t\t y = " << y1_ << " - MwcNext01(mwc) * " << h << ";\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * x;\n"
<< "\t\tvOut.y = " << weight << " * y;\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
if (m_X0 < m_X1)
{
m_X0_ = m_X0;
m_X1_ = m_X1;
}
else
{
m_X0_ = m_X1;
m_X1_ = m_X0;
}
if (m_Y0 < m_Y1)
{
m_Y0_ = m_Y0;
m_Y1_ = m_Y1;
}
else
{
m_Y0_ = m_Y1;
m_Y1_ = m_Y0;
}
m_W = (m_X1_ - m_X0_) * T(0.5) * m_S;
m_H = (m_Y1_ - m_Y0_) * T(0.5) * m_S;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_X0, prefix + "crop_left", -1));
m_Params.push_back(ParamWithName<T>(&m_Y0, prefix + "crop_top", -1));
m_Params.push_back(ParamWithName<T>(&m_X1, prefix + "crop_right", 1));
m_Params.push_back(ParamWithName<T>(&m_Y1, prefix + "crop_bottom", 1));
m_Params.push_back(ParamWithName<T>(&m_S, prefix + "crop_scatter_area", 0, eParamType::REAL, -1, 1));
m_Params.push_back(ParamWithName<T>(&m_Z, prefix + "crop_zero", 0, eParamType::INTEGER, 0, 1));
m_Params.push_back(ParamWithName<T>(true, &m_X0_, prefix + "crop_x0_"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Y0_, prefix + "crop_y0_"));
m_Params.push_back(ParamWithName<T>(true, &m_X1_, prefix + "crop_x1_"));
m_Params.push_back(ParamWithName<T>(true, &m_Y1_, prefix + "crop_y1_"));
m_Params.push_back(ParamWithName<T>(true, &m_W, prefix + "crop_w"));
m_Params.push_back(ParamWithName<T>(true, &m_H, prefix + "crop_h"));
}
private:
T m_X0;
T m_Y0;
T m_X1;
T m_Y1;
T m_S;
T m_Z;
T m_X0_;//Precalc.
T m_Y0_;
T m_X1_;
T m_Y1_;
T m_W;
T m_H;
};
/// <summary>
/// BCircle.
/// </summary>
template <typename T>
class BCircleVariation : public ParametricVariation<T>
{
public:
BCircleVariation(T weight = 1.0) : ParametricVariation<T>("bcircle", eVariationId::VAR_BCIRCLE, weight)
{
Init();
}
PARVARCOPY(BCircleVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if ((helper.In.x == 0) && (helper.In.y == 0))
return;
T x = helper.In.x * m_Scale;
T y = helper.In.y * m_Scale;
T r = std::sqrt(SQR(x) + SQR(y));
if (r <= 1)
{
helper.Out.x = m_Weight * x;
helper.Out.y = m_Weight * y;
}
else
{
if (m_Bcbw != 0)
{
T ang = std::atan2(y, x);
T omega = (T(0.2) * m_Bcbw * rand.Frand01<T>()) + 1;
T px = omega * std::cos(ang);
T py = omega * std::sin(ang);
helper.Out.x = m_Weight * px;
helper.Out.y = m_Weight * py;
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string borderWidth = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bcbw = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tif ((vIn.x == 0) && (vIn.y == 0))\n"
<< "\t\t return;\n"
<< "\n"
<< "\t\treal_t x = vIn.x * " << scale << ";\n"
<< "\t\treal_t y = vIn.y * " << scale << ";\n"
<< "\t\treal_t r = sqrt(fma(x, x, SQR(y)));\n"
<< "\n"
<< "\t\tif (r <= 1)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * x;\n"
<< "\t\t vOut.y = " << weight << " * y;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (" << bcbw << " != 0)\n"
<< "\t\t {\n"
<< "\t\t real_t ang = atan2(y, x);\n"
<< "\t\t real_t omega = fma((real_t)(0.2) * " << bcbw << ", MwcNext01(mwc), (real_t)(1.0));\n"
<< "\t\t real_t px = omega * cos(ang);\n"
<< "\t\t real_t py = omega * sin(ang);\n"
<< "\n"
<< "\t\t vOut.x = " << weight << " * px;\n"
<< "\t\t vOut.y = " << weight << " * py;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Bcbw = std::abs(m_BorderWidth);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Scale, prefix + "bcircle_scale", 1));
m_Params.push_back(ParamWithName<T>(&m_BorderWidth, prefix + "bcircle_borderwidth"));
m_Params.push_back(ParamWithName<T>(true, &m_Bcbw, prefix + "bcircle_bcbw"));//Precalc.
}
private:
T m_Scale;
T m_BorderWidth;
T m_Bcbw;//Precalc.
};
/// <summary>
/// BlurLinear.
/// </summary>
template <typename T>
class BlurLinearVariation : public ParametricVariation<T>
{
public:
BlurLinearVariation(T weight = 1.0) : ParametricVariation<T>("blur_linear", eVariationId::VAR_BLUR_LINEAR, weight)
{
Init();
}
PARVARCOPY(BlurLinearVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = m_BlurLinearLength * rand.Frand01<T>();
helper.Out.x = m_Weight * (helper.In.x + r * m_C);
helper.Out.y = m_Weight * (helper.In.y + r * m_S);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string blurLinearLength = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blurLinearAngle = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r = " << blurLinearLength << " * MwcNext01(mwc);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * fma(r, " << c << ", vIn.x);\n"
<< "\t\tvOut.y = " << weight << " * fma(r, " << s << ", vIn.y);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
sincos(m_BlurLinearAngle, &m_S, &m_C);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_BlurLinearLength, prefix + "blur_linear_length"));
m_Params.push_back(ParamWithName<T>(&m_BlurLinearAngle, prefix + "blur_linear_angle", 0, eParamType::REAL_CYCLIC, 0, T(M_2PI)));
m_Params.push_back(ParamWithName<T>(true, &m_S, prefix + "blur_linear_s"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_C, prefix + "blur_linear_c"));
}
private:
T m_BlurLinearLength;
T m_BlurLinearAngle;
T m_S;//Precalc.
T m_C;
};
/// <summary>
/// BlurSquare.
/// </summary>
template <typename T>
class BlurSquareVariation : public ParametricVariation<T>
{
public:
BlurSquareVariation(T weight = 1.0) : ParametricVariation<T>("blur_square", eVariationId::VAR_BLUR_SQUARE, weight)
{
Init();
}
PARVARCOPY(BlurSquareVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = m_V * (rand.Frand01<T>() - T(0.5));
helper.Out.y = m_V * (rand.Frand01<T>() - T(0.5));
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string v = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
ss << "\t{\n"
<< "\t\tvOut.x = " << v << " * (MwcNext01(mwc) - (real_t)(0.5));\n"
<< "\t\tvOut.y = " << v << " * (MwcNext01(mwc) - (real_t)(0.5));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_V = m_Weight * 2;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_V, prefix + "blur_square_v"));//Precalcs only, no params.
}
private:
T m_V;
};
/// <summary>
/// Flatten.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class FlattenVariation : public Variation<T>
{
public:
FlattenVariation(T weight = 1.0) : Variation<T>("flatten", eVariationId::VAR_FLATTEN, weight) { }
VARCOPY(FlattenVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_VarType == eVariationType::VARTYPE_REG)//Rare and different usage of in/out.
{
helper.Out.x = helper.Out.y = helper.Out.z = 0;
outPoint.m_Z = 0;
}
else
{
helper.Out.x = helper.In.x;
helper.Out.y = helper.In.y;
helper.Out.z = 0;
}
}
virtual string OpenCLString() const override
{
ostringstream ss;
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss << "\t{\n"
<< "\t\tvOut.x = 0;\n"
<< "\t\tvOut.y = 0;\n"
<< "\t\tvOut.z = 0;\n"
<< "\t\toutPoint->m_Z = 0;\n"
<< "\t}\n";
}
else
{
ss << "\t{\n"
<< "\t\tvOut.x = vIn.x;\n"
<< "\t\tvOut.y = vIn.y;\n"
<< "\t\tvOut.z = 0;\n"
<< "\t}\n";
}
return ss.str();
}
};
/// <summary>
/// Zblur.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class ZblurVariation : public Variation<T>
{
public:
ZblurVariation(T weight = 1.0) : Variation<T>("zblur", eVariationId::VAR_ZBLUR, weight) { }
VARCOPY(ZblurVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = helper.Out.y = 0;
helper.Out.z = m_Weight * (rand.Frand01<T>() + rand.Frand01<T>() + rand.Frand01<T>() + rand.Frand01<T>() - 2);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\tvOut.x = vOut.y = 0;\n"
<< "\t\tvOut.z = " << weight << " * (MwcNext01(mwc) + MwcNext01(mwc) + MwcNext01(mwc) + MwcNext01(mwc) - (real_t)(2.0));\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// ZScale.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class ZScaleVariation : public Variation<T>
{
public:
ZScaleVariation(T weight = 1.0) : Variation<T>("zscale", eVariationId::VAR_ZSCALE, weight) { }
VARCOPY(ZScaleVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = helper.Out.y = 0;
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\tvOut.x = vOut.y = 0;\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// ZTranslate.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class ZTranslateVariation : public Variation<T>
{
public:
ZTranslateVariation(T weight = 1.0) : Variation<T>("ztranslate", eVariationId::VAR_ZTRANSLATE, weight) { }
VARCOPY(ZTranslateVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = helper.Out.y = 0;
helper.Out.z = m_Weight;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\tvOut.x = vOut.y = 0;\n"
<< "\t\tvOut.z = " << weight << ";\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// zcone.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class ZConeVariation : public Variation<T>
{
public:
ZConeVariation(T weight = 1.0) : Variation<T>("zcone", eVariationId::VAR_ZCONE, weight, true, true) { }
VARCOPY(ZConeVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_VarType == eVariationType::VARTYPE_REG)//Rare and different usage of in/out.
{
helper.Out.x = helper.Out.y = 0;
}
else
{
helper.Out.x = helper.In.x;
helper.Out.y = helper.In.y;
}
helper.Out.z = m_Weight * helper.m_PrecalcSqrtSumSquares;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n";
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss << "\t\tvOut.x = vOut.y = 0;\n";
}
else
{
ss << "\t\tvOut.x = vIn.x;\n"
<< "\t\tvOut.y = vIn.y;\n";
}
ss << "\t\tvOut.z = " << weight << " * precalcSqrtSumSquares;\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Blur3D.
/// </summary>
template <typename T>
class Blur3DVariation : public Variation<T>
{
public:
Blur3DVariation(T weight = 1.0) : Variation<T>("blur3D", eVariationId::VAR_BLUR3D, weight) { }
VARCOPY(Blur3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T angle = rand.Frand01<T>() * M_2PI;
T r = m_Weight * (rand.Frand01<T>() + rand.Frand01<T>() + rand.Frand01<T>() + rand.Frand01<T>() - 2);
T angle2 = rand.Frand01<T>() * T(M_PI);
T sina = std::sin(angle);
T cosa = std::cos(angle);
T sinb = std::sin(angle2);
T cosb = std::cos(angle2);
helper.Out.x = r * sinb * cosa;
helper.Out.y = r * sinb * sina;
helper.Out.z = r * cosb;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t angle = MwcNext01(mwc) * M_2PI;\n"
<< "\t\treal_t r = " << weight << " * (MwcNext01(mwc) + MwcNext01(mwc) + MwcNext01(mwc) + MwcNext01(mwc) - (real_t)(2.0));\n"
<< "\t\treal_t angle2 = MwcNext01(mwc) * MPI;\n"
<< "\t\treal_t sina = sin(angle);\n"
<< "\t\treal_t cosa = cos(angle);\n"
<< "\t\treal_t sinb = sin(angle2);\n"
<< "\t\treal_t cosb = cos(angle2);\n"
<< "\n"
<< "\t\tvOut.x = r * sinb * cosa;\n"
<< "\t\tvOut.y = r * sinb * sina;\n"
<< "\t\tvOut.z = r * cosb;\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Spherical3D.
/// </summary>
template <typename T>
class Spherical3DVariation : public Variation<T>
{
public:
Spherical3DVariation(T weight = 1.0) : Variation<T>("Spherical3D", eVariationId::VAR_SPHERICAL3D, weight, true) { }
VARCOPY(Spherical3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r2 = m_Weight / Zeps(helper.m_PrecalcSumSquares + SQR(helper.In.z));
helper.Out.x = r2 * helper.In.x;
helper.Out.y = r2 * helper.In.y;
helper.Out.z = r2 * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t r2 = " << weight << " / Zeps(fma(vIn.z, vIn.z, precalcSumSquares));\n"
<< "\n"
<< "\t\tvOut.x = r2 * vIn.x;\n"
<< "\t\tvOut.y = r2 * vIn.y;\n"
<< "\t\tvOut.z = r2 * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
};
/// <summary>
/// Curl3D.
/// </summary>
template <typename T>
class Curl3DVariation : public ParametricVariation<T>
{
public:
Curl3DVariation(T weight = 1.0) : ParametricVariation<T>("curl3D", eVariationId::VAR_CURL3D, weight, true)
{
Init();
}
PARVARCOPY(Curl3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r2 = helper.m_PrecalcSumSquares + SQR(helper.In.z);
T r = m_Weight / Zeps(r2 * m_C2 + m_C2x * helper.In.x - m_C2y * helper.In.y + m_C2z * helper.In.z + 1);
helper.Out.x = r * (helper.In.x + m_Cx * r2);
helper.Out.y = r * (helper.In.y - m_Cy * r2);
helper.Out.z = r * (helper.In.z + m_Cz * r2);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string cx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cz = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r2 = fma(vIn.z, vIn.z, precalcSumSquares);\n"
<< "\t\treal_t r = " << weight << " / Zeps(r2 * " << c2 << " + " << c2x << " * vIn.x - " << c2y << " * vIn.y + " << c2z << " * vIn.z + (real_t)(1.0));\n"
<< "\n"
<< "\t\tvOut.x = r * fma(" << cx << ", r2, vIn.x);\n"
<< "\t\tvOut.y = r * (vIn.y - " << cy << " * r2);\n"
<< "\t\tvOut.z = r * fma(" << cz << ", r2, vIn.z);\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
virtual void Precalc() override
{
m_C2x = 2 * m_Cx;
m_C2y = 2 * m_Cy;
m_C2z = 2 * m_Cz;
m_C2 = SQR(m_Cx) + SQR(m_Cy) + SQR(m_Cz);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Cx, prefix + "curl3D_cx"));
m_Params.push_back(ParamWithName<T>(&m_Cy, prefix + "curl3D_cy"));
m_Params.push_back(ParamWithName<T>(&m_Cz, prefix + "curl3D_cz"));
m_Params.push_back(ParamWithName<T>(true, &m_C2, prefix + "curl3D_c2"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_C2x, prefix + "curl3D_c2x"));
m_Params.push_back(ParamWithName<T>(true, &m_C2y, prefix + "curl3D_c2y"));
m_Params.push_back(ParamWithName<T>(true, &m_C2z, prefix + "curl3D_c2z"));
}
private:
T m_Cx;
T m_Cy;
T m_Cz;
T m_C2;//Precalc.
T m_C2x;
T m_C2y;
T m_C2z;
};
/// <summary>
/// Disc3D.
/// </summary>
template <typename T>
class Disc3DVariation : public ParametricVariation<T>
{
public:
Disc3DVariation(T weight = 1.0) : ParametricVariation<T>("disc3d", eVariationId::VAR_DISC3D, weight, true, true, false, true, false)
{
Init();
}
PARVARCOPY(Disc3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = helper.m_PrecalcSqrtSumSquares;
T temp = r * m_Pi;
T sr = std::sin(temp);
T cr = std::cos(temp);
T vv = m_Weight * helper.m_PrecalcAtanxy / Zeps(m_Pi);
helper.Out.x = vv * sr;
helper.Out.y = vv * cr;
helper.Out.z = vv * (r * std::cos(helper.In.z));
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string pi = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r = precalcSqrtSumSquares;\n"
<< "\t\treal_t temp = r * " << pi << ";\n"
<< "\t\treal_t sr = sin(temp);\n"
<< "\t\treal_t cr = cos(temp);\n"
<< "\t\treal_t vv = " << weight << " * precalcAtanxy / Zeps(" << pi << ");\n"
<< "\n"
<< "\t\tvOut.x = vv * sr;\n"
<< "\t\tvOut.y = vv * cr;\n"
<< "\t\tvOut.z = vv * (r * cos(vIn.z));\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Pi, prefix + "disc3d_pi", T(M_PI)));
}
private:
T m_Pi;
};
/// <summary>
/// Boarders2.
/// </summary>
template <typename T>
class Boarders2Variation : public ParametricVariation<T>
{
public:
Boarders2Variation(T weight = 1.0) : ParametricVariation<T>("boarders2", eVariationId::VAR_BOARDERS2, weight)
{
Init();
}
PARVARCOPY(Boarders2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T roundX = T(int(helper.In.x >= 0 ? int(helper.In.x + T(0.5)) : int(helper.In.x - T(0.5))));
T roundY = T(int(helper.In.y >= 0 ? int(helper.In.y + T(0.5)) : int(helper.In.y - T(0.5))));
T offsetX = helper.In.x - roundX;
T offsetY = helper.In.y - roundY;
if (rand.Frand01<T>() >= m_Cr)
{
helper.Out.x = m_Weight * (offsetX * m_AbsC + roundX);
helper.Out.y = m_Weight * (offsetY * m_AbsC + roundY);
}
else
{
if (std::abs(offsetX) >= std::abs(offsetY))
{
if (offsetX >= 0)
{
helper.Out.x = m_Weight * (offsetX * m_AbsC + roundX + m_Cl);
helper.Out.y = m_Weight * (offsetY * m_AbsC + roundY + m_Cl * offsetY / offsetX);
}
else
{
helper.Out.x = m_Weight * (offsetX * m_AbsC + roundX - m_Cl);
helper.Out.y = m_Weight * (offsetY * m_AbsC + roundY - m_Cl * offsetY / offsetX);
}
}
else
{
if (offsetY >= 0)
{
helper.Out.y = m_Weight * (offsetY * m_AbsC + roundY + m_Cl);
helper.Out.x = m_Weight * (offsetX * m_AbsC + roundX + offsetX / offsetY * m_Cl);
}
else
{
helper.Out.y = m_Weight * (offsetY * m_AbsC + roundY - m_Cl);
helper.Out.x = m_Weight * (offsetX * m_AbsC + roundX - offsetX / offsetY * m_Cl);
}
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string l = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cl = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cr = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t roundX = (real_t)(int)(vIn.x >= 0 ? (int)(vIn.x + (real_t)(0.5)) : (int)(vIn.x - (real_t)(0.5)));\n"
<< "\t\treal_t roundY = (real_t)(int)(vIn.y >= 0 ? (int)(vIn.y + (real_t)(0.5)) : (int)(vIn.y - (real_t)(0.5)));\n"
<< "\t\treal_t offsetX = vIn.x - roundX;\n"
<< "\t\treal_t offsetY = vIn.y - roundY;\n"
<< "\n"
<< "\t\tif (MwcNext01(mwc) >= " << cr << ")\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * fma(offsetX, " << absc << ", roundX);\n"
<< "\t\t vOut.y = " << weight << " * fma(offsetY, " << absc << ", roundY);\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (fabs(offsetX) >= fabs(offsetY))\n"
<< "\t\t {\n"
<< "\t\t if (offsetX >= 0)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * fma(offsetX, " << absc << ", roundX + " << cl << ");\n"
<< "\t\t vOut.y = " << weight << " * (fma(offsetY, " << absc << ", roundY) + " << cl << " * offsetY / offsetX);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * fma(offsetX, " << absc << ", roundX - " << cl << ");\n"
<< "\t\t vOut.y = " << weight << " * (fma(offsetY, " << absc << ", roundY) - " << cl << " * offsetY / offsetX);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t if(offsetY >= 0)\n"
<< "\t\t {\n"
<< "\t\t vOut.y = " << weight << " * fma(offsetY, " << absc << ", roundY + " << cl << ");\n"
<< "\t\t vOut.x = " << weight << " * (fma(offsetX, " << absc << ", roundX) + offsetX / offsetY * " << cl << ");\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.y = " << weight << " * fma(offsetY, " << absc << ", roundY - " << cl << ");\n"
<< "\t\t vOut.x = " << weight << " * (fma(offsetX, " << absc << ", roundX) - offsetX / offsetY * " << cl << ");\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T c = Zeps(std::abs(m_C));
T cl = Zeps(std::abs(m_Left));
T cr = Zeps(std::abs(m_Right));
m_AbsC = c;
m_Cl = c * cl;
m_Cr = c + (c * cr);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_C, prefix + "boarders2_c", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Left, prefix + "boarders2_left", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Right, prefix + "boarders2_right", T(0.5)));
m_Params.push_back(ParamWithName<T>(true, &m_AbsC, prefix + "boarders2_cabs"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cl, prefix + "boarders2_cl"));
m_Params.push_back(ParamWithName<T>(true, &m_Cr, prefix + "boarders2_cr"));
}
private:
T m_C;
T m_Left;
T m_Right;
T m_AbsC;//Precalc.
T m_Cl;
T m_Cr;
};
/// <summary>
/// Cardioid.
/// </summary>
template <typename T>
class CardioidVariation : public ParametricVariation<T>
{
public:
CardioidVariation(T weight = 1.0) : ParametricVariation<T>("cardioid", eVariationId::VAR_CARDIOID, weight, true, true, true, false, true)
{
Init();
}
PARVARCOPY(CardioidVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = m_Weight * std::sqrt(helper.m_PrecalcSumSquares + std::sin(helper.m_PrecalcAtanyx * m_A) + 1);
helper.Out.x = r * helper.m_PrecalcCosa;
helper.Out.y = r * helper.m_PrecalcSina;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r = " << weight << " * sqrt(precalcSumSquares + sin(precalcAtanyx * " << a << ") + 1);\n"
<< "\n"
<< "\t\tvOut.x = r * precalcCosa;\n"
<< "\t\tvOut.y = r * precalcSina;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "cardioid_a", 1));
}
private:
T m_A;
};
/// <summary>
/// Checks.
/// </summary>
template <typename T>
class ChecksVariation : public ParametricVariation<T>
{
public:
ChecksVariation(T weight = 1.0) : ParametricVariation<T>("checks", eVariationId::VAR_CHECKS, weight)
{
Init();
}
PARVARCOPY(ChecksVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T dx, dy;
T rnx = m_Rnd * rand.Frand01<T>();
T rny = m_Rnd * rand.Frand01<T>();
int isXY = int(VarFuncs<T>::LRint(helper.In.x * m_Cs) + VarFuncs<T>::LRint(helper.In.y * m_Cs));
if (isXY & 1)
{
dx = m_Ncx + rnx;
dy = m_Ncy;
}
else
{
dx = m_Cx;
dy = m_Cy + rny;
}
helper.Out.x = m_Weight * (helper.In.x + dx);
helper.Out.y = m_Weight * (helper.In.y + dy);
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string size = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rnd = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cs = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ncx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ncy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t dx, dy;\n"
<< "\t\treal_t rnx = " << rnd << " * MwcNext01(mwc);\n"
<< "\t\treal_t rny = " << rnd << " * MwcNext01(mwc);\n"
<< "\n"
<< "\t\tint isXY = (int)(LRint(vIn.x * " << cs << ") + LRint(vIn.y * " << cs << "));\n"
<< "\n"
<< "\t\tif (isXY & 1)\n"
<< "\t\t{\n"
<< "\t\t dx = " << ncx << " + rnx;\n"
<< "\t\t dy = " << ncy << ";\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t dx = " << cx << ";\n"
<< "\t\t dy = " << cy << " + rny;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * (vIn.x + dx);\n"
<< "\t\tvOut.y = " << weight << " * (vIn.y + dy);\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "LRint" };
}
virtual void Precalc() override
{
m_Cs = 1 / Zeps(m_Size);
m_Cx = m_X;
m_Cy = m_Y;
m_Ncx = -m_X;
m_Ncy = -m_Y;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "checks_x", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "checks_y", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Size, prefix + "checks_size", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Rnd, prefix + "checks_rnd"));
m_Params.push_back(ParamWithName<T>(true, &m_Cs, prefix + "checks_cs"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cx, prefix + "checks_cx"));
m_Params.push_back(ParamWithName<T>(true, &m_Cy, prefix + "checks_cy"));
m_Params.push_back(ParamWithName<T>(true, &m_Ncx, prefix + "checks_ncx"));
m_Params.push_back(ParamWithName<T>(true, &m_Ncy, prefix + "checks_ncy"));
}
private:
T m_X;
T m_Y;
T m_Size;
T m_Rnd;
T m_Cs;//Precalc.
T m_Cx;
T m_Cy;
T m_Ncx;
T m_Ncy;
};
/// <summary>
/// Circlize.
/// </summary>
template <typename T>
class CirclizeVariation : public ParametricVariation<T>
{
public:
CirclizeVariation(T weight = 1.0) : ParametricVariation<T>("circlize", eVariationId::VAR_CIRCLIZE, weight)
{
Init();
}
PARVARCOPY(CirclizeVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T side;
T perimeter;
T r, val;
T absx = std::abs(helper.In.x);
T absy = std::abs(helper.In.y);
if (absx >= absy)
{
if (helper.In.x >= absy)
perimeter = absx + helper.In.y;
else
perimeter = 5 * absx - helper.In.y;
side = absx;
}
else
{
if (helper.In.y >= absx)
perimeter = 3 * absy - helper.In.x;
else
perimeter = 7 * absy + helper.In.x;
side = absy;
}
r = m_Vvar4Pi * side + m_Hole;
val = T(M_PI_4) * perimeter / side - T(M_PI_4);
helper.Out.x = r * std::cos(val);
helper.Out.y = r * std::sin(val);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string hole = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vvar4pi = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t side;\n"
<< "\t\treal_t perimeter;\n"
<< "\t\treal_t absx = fabs(vIn.x);\n"
<< "\t\treal_t absy = fabs(vIn.y);\n"
<< "\n"
<< "\t\tif (absx >= absy)\n"
<< "\t\t{\n"
<< "\t\t if (vIn.x >= absy)\n"
<< "\t\t perimeter = absx + vIn.y;\n"
<< "\t\t else\n"
<< "\t\t perimeter = fma((real_t)(5.0), absx, -vIn.y);\n"
<< "\n"
<< "\t\t side = absx;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (vIn.y >= absx)\n"
<< "\t\t perimeter = fma((real_t)(3.0), absy, -vIn.x);\n"
<< "\t\t else\n"
<< "\t\t perimeter = fma((real_t)(7.0), absy, vIn.x);\n"
<< "\n"
<< "\t\t side = absy;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\treal_t r = fma(" << vvar4pi << ", side, " << hole << ");\n"
<< "\t\treal_t val = MPI4 * perimeter / side - MPI4;\n"
<< "\n"
<< "\t\tvOut.x = r * cos(val);\n"
<< "\t\tvOut.y = r * sin(val);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Vvar4Pi = m_Weight / T(M_PI_4);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Hole, prefix + "circlize_hole"));
m_Params.push_back(ParamWithName<T>(true, &m_Vvar4Pi, prefix + "circlize_vvar4pi"));//Precalc.
}
private:
T m_Hole;
T m_Vvar4Pi;//Precalc.
};
/// <summary>
/// Circlize2.
/// </summary>
template <typename T>
class Circlize2Variation : public ParametricVariation<T>
{
public:
Circlize2Variation(T weight = 1.0) : ParametricVariation<T>("circlize2", eVariationId::VAR_CIRCLIZE2, weight)
{
Init();
}
PARVARCOPY(Circlize2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T side;
T perimeter;
T absx = std::abs(helper.In.x);
T absy = std::abs(helper.In.y);
if (absx >= absy)
{
if (helper.In.x >= absy)
perimeter = absx + helper.In.y;
else
perimeter = 5 * absx - helper.In.y;
side = absx;
}
else
{
if (helper.In.y >= absx)
perimeter = 3 * absy - helper.In.x;
else
perimeter = 7 * absy + helper.In.x;
side = absy;
}
T r = m_Weight * (side + m_Hole);
T val = T(M_PI_4) * perimeter / side - T(M_PI_4);
helper.Out.x = r * std::cos(val);
helper.Out.y = r * std::sin(val);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string hole = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t side;\n"
<< "\t\treal_t perimeter;\n"
<< "\t\treal_t absx = fabs(vIn.x);\n"
<< "\t\treal_t absy = fabs(vIn.y);\n"
<< "\n"
<< "\t\tif (absx >= absy)\n"
<< "\t\t{\n"
<< "\t\t if (vIn.x >= absy)\n"
<< "\t\t perimeter = absx + vIn.y;\n"
<< "\t\t else\n"
<< "\t\t perimeter = fma((real_t)(5.0), absx, -vIn.y);\n"
<< "\n"
<< "\t\t side = absx;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (vIn.y >= absx)\n"
<< "\t\t perimeter = fma((real_t)(3.0), absy, -vIn.x);\n"
<< "\t\t else\n"
<< "\t\t perimeter = fma((real_t)(7.0), absy, vIn.x);\n"
<< "\n"
<< "\t\t side = absy;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\treal_t r = " << weight << " * (side + " << hole << ");\n"
<< "\t\treal_t val = MPI4 * perimeter / side - MPI4;\n"
<< "\n"
<< "\t\tvOut.x = r * cos(val);\n"
<< "\t\tvOut.y = r * sin(val);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Hole, prefix + "circlize2_hole"));
}
private:
T m_Hole;
};
/// <summary>
/// CosWrap.
/// </summary>
template <typename T>
class CosWrapVariation : public ParametricVariation<T>
{
public:
CosWrapVariation(T weight = 1.0) : ParametricVariation<T>("coswrap", eVariationId::VAR_COS_WRAP, weight)
{
Init();
}
PARVARCOPY(CosWrapVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = T(0.5) * helper.In.x + T(0.5);
T y = T(0.5) * helper.In.y + T(0.5);
T bx = VarFuncs<T>::Fabsmod(m_Fr * x);
T by = VarFuncs<T>::Fabsmod(m_Fr * y);
T oscnapx = VarFuncs<T>::Foscn(m_AmountX, m_Px);
T oscnapy = VarFuncs<T>::Foscn(m_AmountY, m_Py);
helper.Out.x = -1 + m_Vv2 * Lerp<T>(Lerp<T>(x, VarFuncs<T>::Fosc(x, T(4), m_Px), oscnapx), VarFuncs<T>::Fosc(bx, T(4), m_Px), oscnapx);//Original did a direct assignment to outPoint, which is incompatible with Ember's design.
helper.Out.y = -1 + m_Vv2 * Lerp<T>(Lerp<T>(y, VarFuncs<T>::Fosc(y, T(4), m_Py), oscnapy), VarFuncs<T>::Fosc(by, T(4), m_Py), oscnapy);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string repeat = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string amountX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string amountY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string phaseX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string phaseY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ax = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ay = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string px = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string py = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string fr = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vv2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = fma((real_t)(0.5), vIn.x, (real_t)(0.5));\n"
<< "\t\treal_t y = fma((real_t)(0.5), vIn.y, (real_t)(0.5));\n"
<< "\t\treal_t bx = Fabsmod(" << fr << " * x);\n"
<< "\t\treal_t by = Fabsmod(" << fr << " * y);\n"
<< "\t\treal_t oscnapx = Foscn(" << amountX << ", " << px << ");\n"
<< "\t\treal_t oscnapy = Foscn(" << amountY << ", " << py << ");\n"
<< "\n"
<< "\t\tvOut.x = -1 + " << vv2 << " * Lerp(Lerp(x, Fosc(x, 4, " << px << "), oscnapx), Fosc(bx, 4, " << px << "), oscnapx);\n"
<< "\t\tvOut.y = -1 + " << vv2 << " * Lerp(Lerp(y, Fosc(y, 4, " << py << "), oscnapy), Fosc(by, 4, " << py << "), oscnapy);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Fabsmod", "Fosc", "Foscn", "Lerp" };
}
virtual void Precalc() override
{
m_Ax = M_2PI * std::abs(m_AmountX);
m_Ay = M_2PI * std::abs(m_AmountY);
m_Px = T(M_PI) * m_PhaseX;
m_Py = T(M_PI) * m_PhaseY;
m_Fr = std::abs(m_Repeat);
m_Vv2 = 2 * m_Weight;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Repeat, prefix + "coswrap_repeat", 1, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_AmountX, prefix + "coswrap_amount_x"));
m_Params.push_back(ParamWithName<T>(&m_AmountY, prefix + "coswrap_amount_y"));
m_Params.push_back(ParamWithName<T>(&m_PhaseX, prefix + "coswrap_phase_x", 0, eParamType::REAL_CYCLIC, -1, 1));
m_Params.push_back(ParamWithName<T>(&m_PhaseY, prefix + "coswrap_phase_y", 0, eParamType::REAL_CYCLIC, -1, 1));
m_Params.push_back(ParamWithName<T>(true, &m_Ax, prefix + "coswrap_ax"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Ay, prefix + "coswrap_ay"));
m_Params.push_back(ParamWithName<T>(true, &m_Px, prefix + "coswrap_px"));
m_Params.push_back(ParamWithName<T>(true, &m_Py, prefix + "coswrap_py"));
m_Params.push_back(ParamWithName<T>(true, &m_Fr, prefix + "coswrap_fr"));
m_Params.push_back(ParamWithName<T>(true, &m_Vv2, prefix + "coswrap_vv2"));
}
private:
T m_Repeat;
T m_AmountX;
T m_AmountY;
T m_PhaseX;
T m_PhaseY;
T m_Ax;//Precalc.
T m_Ay;
T m_Px;
T m_Py;
T m_Fr;
T m_Vv2;
};
/// <summary>
/// DeltaA.
/// The original in deltaA.c in Apophysis used a precalc variable named v, but
/// was unused in the calculation. So this remains a non-parametric variation with
/// that precalc variable omitted.
/// </summary>
template <typename T>
class DeltaAVariation : public Variation<T>
{
public:
DeltaAVariation(T weight = 1.0) : Variation<T>("deltaa", eVariationId::VAR_DELTA_A, weight) { }
VARCOPY(DeltaAVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T s, c;
T avgr = m_Weight * (std::sqrt(SQR(helper.In.y) + SQR(helper.In.x + 1)) / std::sqrt(SQR(helper.In.y) + SQR(helper.In.x - 1)));
T avga = (std::atan2(helper.In.y, helper.In.x - 1) - std::atan2(helper.In.y, helper.In.x + 1)) / 2;
sincos(avga, &s, &c);
helper.Out.x = avgr * c;
helper.Out.y = avgr * s;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t xp1 = vIn.x + (real_t)(1.0);\n"
<< "\t\treal_t xm1 = vIn.x - (real_t)(1.0);\n"
<< "\t\treal_t avgr = " << weight << " * (sqrt(fma(vIn.y, vIn.y, SQR(xp1))) / sqrt(fma(vIn.y, vIn.y, SQR(xm1))));\n"
<< "\t\treal_t avga = (atan2(vIn.y, xm1) - atan2(vIn.y, xp1)) / 2;\n"
<< "\t\treal_t s = sin(avga);\n"
<< "\t\treal_t c = cos(avga);\n"
<< "\n"
<< "\t\tvOut.x = avgr * c;\n"
<< "\t\tvOut.y = avgr * s;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Expo.
/// </summary>
template <typename T>
class ExpoVariation : public ParametricVariation<T>
{
public:
ExpoVariation(T weight = 1.0) : ParametricVariation<T>("expo", eVariationId::VAR_EXPO, weight)
{
Init();
}
PARVARCOPY(ExpoVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T expor = std::exp(helper.In.x * m_K - helper.In.y * m_T);
T temp = helper.In.x * m_T + helper.In.y * m_K;
T snv = std::sin(temp);
T csv = std::cos(temp);
helper.Out.x = m_Weight * expor * csv;
helper.Out.y = m_Weight * expor * snv;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string real = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string imag = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string k = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string t = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t expor = exp(fma(vIn.x, " << k << ", -(vIn.y * " << t << ")));\n"
<< "\t\treal_t temp = fma(vIn.x, " << t << ", (vIn.y * " << k << "));\n"
<< "\t\treal_t snv = sin(temp);\n"
<< "\t\treal_t csv = cos(temp);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * expor * csv;\n"
<< "\t\tvOut.y = " << weight << " * expor * snv;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_K = T(0.5) * std::log(Zeps(SQR(m_Real) + SQR(m_Imag)));//Original used 1e-300, which isn't representable with a float.
m_T = std::atan2(m_Imag, m_Real);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Real, prefix + "expo_real", -1));
m_Params.push_back(ParamWithName<T>(&m_Imag, prefix + "expo_imaginary", 1));
m_Params.push_back(ParamWithName<T>(true, &m_K, prefix + "expo_k"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_T, prefix + "expo_t"));
}
private:
T m_Real;
T m_Imag;
T m_K;//Precalc.
T m_T;
};
/// <summary>
/// Extrude.
/// </summary>
template <typename T>
class ExtrudeVariation : public ParametricVariation<T>
{
public:
ExtrudeVariation(T weight = 1.0) : ParametricVariation<T>("extrude", eVariationId::VAR_EXTRUDE, weight)
{
Init();
}
PARVARCOPY(ExtrudeVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_VarType == eVariationType::VARTYPE_REG)
{
helper.Out.x = helper.Out.y = helper.Out.z = 0;
if (rand.Frand01<T>() < m_RootFace)
outPoint.m_Z = ClampGte0(m_Weight);
else
outPoint.m_Z = m_Weight * rand.Frand01<T>();
}
else
{
helper.Out.x = helper.In.x;
helper.Out.y = helper.In.y;
if (rand.Frand01<T>() < m_RootFace)
helper.Out.z = ClampGte0(m_Weight);
else
helper.Out.z = m_Weight * rand.Frand01<T>();
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string rootFace = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss << "\t{\n"
<< "\t\tvOut.x = vOut.y = vOut.z = 0;\n"
<< "\n"
<< "\t\tif (MwcNext01(mwc) < " << rootFace << ")\n"
<< "\t\t outPoint->m_Z = max(" << weight << ", (real_t)(0.0));\n"
<< "\t\telse\n"
<< "\t\t outPoint->m_Z = " << weight << " * MwcNext01(mwc);\n"
<< "\t}\n";
}
else
{
ss << "\t{\n"
<< "\t\tvOut.x = vIn.x;\n"
<< "\t\tvOut.y = vIn.y;\n"
<< "\n"
<< "\t\tif (MwcNext01(mwc) < " << rootFace << ")\n"
<< "\t\t vOut.z = max(" << weight << ", (real_t)(0.0));\n"
<< "\t\telse\n"
<< "\t\t vOut.z = " << weight << " * MwcNext01(mwc);\n"
<< "\t}\n";
}
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_RootFace, prefix + "extrude_root_face", T(0.5)));
}
private:
T m_RootFace;
};
/// <summary>
/// fdisc.
/// </summary>
template <typename T>
class FDiscVariation : public Variation<T>
{
public:
FDiscVariation(T weight = 1.0) : Variation<T>("fdisc", eVariationId::VAR_FDISC, weight, true, true, false, false, true) { }
VARCOPY(FDiscVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T c, s;
T a = M_2PI / (helper.m_PrecalcSqrtSumSquares + 1);
T r = (helper.m_PrecalcAtanyx * T(M_1_PI) + 1) * T(0.5);
sincos(a, &s, &c);
helper.Out.x = m_Weight * r * c;
helper.Out.y = m_Weight * r * s;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t a = M_2PI / (precalcSqrtSumSquares + 1);\n"
<< "\t\treal_t r = fma(precalcAtanyx, M1PI, (real_t)(1.0)) * (real_t)(0.5);\n"
<< "\t\treal_t s = sin(a);\n"
<< "\t\treal_t c = cos(a);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * r * c;\n"
<< "\t\tvOut.y = " << weight << " * r * s;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Fibonacci.
/// </summary>
template <typename T>
class FibonacciVariation : public ParametricVariation<T>
{
public:
FibonacciVariation(T weight = 1.0) : ParametricVariation<T>("fibonacci", eVariationId::VAR_FIBONACCI, weight)
{
Init();
}
PARVARCOPY(FibonacciVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T snum1, cnum1, snum2, cnum2;
T temp = helper.In.y * m_NatLog;
sincos(temp, &snum1, &cnum1);
temp = (helper.In.x * T(M_PI) + helper.In.y * m_NatLog) * -1;
sincos(temp, &snum2, &cnum2);
T eradius1 = std::exp(helper.In.x * m_NatLog);
T eradius2 = std::exp((helper.In.x * m_NatLog - helper.In.y * T(M_PI)) * -1);
helper.Out.x = m_Weight * (eradius1 * cnum1 - eradius2 * cnum2) * m_Five;
helper.Out.y = m_Weight * (eradius1 * snum1 - eradius2 * snum2) * m_Five;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string five = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
string natLog = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t temp = vIn.y * " << natLog << ";\n"
<< "\t\treal_t snum1 = sin(temp);\n"
<< "\t\treal_t cnum1 = cos(temp);\n"
<< "\t\ttemp = fma(vIn.x, MPI, vIn.y * " << natLog << ") * -(real_t)(1.0);\n"
<< "\t\treal_t snum2 = sin(temp);\n"
<< "\t\treal_t cnum2 = cos(temp);\n"
<< "\t\treal_t eradius1 = exp(vIn.x * " << natLog << ");\n"
<< "\t\treal_t eradius2 = exp(fma(vIn.x, " << natLog << ", -(vIn.y * MPI)) * -(real_t)(1.0));\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * (eradius1 * cnum1 - eradius2 * cnum2) * " << five << ";\n"
<< "\t\tvOut.y = " << weight << " * (eradius1 * snum1 - eradius2 * snum2) * " << five << ";\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Five = 1 / SQRT5;
m_NatLog = std::log(M_PHI);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_Five, prefix + "fibonacci_five"));//Precalcs only, no params.
m_Params.push_back(ParamWithName<T>(true, &m_NatLog, prefix + "fibonacci_nat_log"));
}
private:
T m_Five;//Precalcs only, no params.
T m_NatLog;
};
/// <summary>
/// Fibonacci2.
/// </summary>
template <typename T>
class Fibonacci2Variation : public ParametricVariation<T>
{
public:
Fibonacci2Variation(T weight = 1.0) : ParametricVariation<T>("fibonacci2", eVariationId::VAR_FIBONACCI2, weight)
{
Init();
}
PARVARCOPY(Fibonacci2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T snum1, cnum1, snum2, cnum2;
T temp = helper.In.y * m_NatLog;
sincos(temp, &snum1, &cnum1);
temp = (helper.In.x * T(M_PI) + helper.In.y * m_NatLog) * -1;
sincos(temp, &snum2, &cnum2);
T eradius1 = m_Sc * std::exp(m_Sc2 * (helper.In.x * m_NatLog));
T eradius2 = m_Sc * std::exp(m_Sc2 * ((helper.In.x * m_NatLog - helper.In.y * T(M_PI)) * -1));
helper.Out.x = m_Weight * (eradius1 * cnum1 - eradius2 * cnum2) * m_Five;
helper.Out.y = m_Weight * (eradius1 * snum1 - eradius2 * snum2) * m_Five;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string sc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sc2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string five = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string natLog = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t temp = vIn.y * " << natLog << ";\n"
<< "\t\treal_t snum1 = sin(temp);\n"
<< "\t\treal_t cnum1 = cos(temp);\n"
<< "\t\ttemp = fma(vIn.x, MPI, vIn.y * " << natLog << ") * -1;\n"
<< "\t\treal_t snum2 = sin(temp);\n"
<< "\t\treal_t cnum2 = cos(temp);\n"
<< "\t\treal_t eradius1 = " << sc << " * exp(" << sc2 << " * (vIn.x * " << natLog << "));\n"
<< "\t\treal_t eradius2 = " << sc << " * exp(" << sc2 << " * (fma(vIn.x, " << natLog << ", -(vIn.y * MPI)) * -1));\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * fma(eradius1, cnum1, -(eradius2 * cnum2)) * " << five << ";\n"
<< "\t\tvOut.y = " << weight << " * fma(eradius1, snum1, -(eradius2 * snum2)) * " << five << ";\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Five = 1 / SQRT5;
m_NatLog = std::log(M_PHI);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Sc, prefix + "fibonacci2_sc", 1));
m_Params.push_back(ParamWithName<T>(&m_Sc2, prefix + "fibonacci2_sc2", 1));
m_Params.push_back(ParamWithName<T>(true, &m_Five, prefix + "fibonacci2_five"));//Precalcs.
m_Params.push_back(ParamWithName<T>(true, &m_NatLog, prefix + "fibonacci2_nat_log"));
}
private:
T m_Sc;
T m_Sc2;
T m_Five;//Precalcs.
T m_NatLog;
};
/// <summary>
/// Glynnia.
/// </summary>
template <typename T>
class GlynniaVariation : public ParametricVariation<T>
{
public:
GlynniaVariation(T weight = 1.0) : ParametricVariation<T>("glynnia", eVariationId::VAR_GLYNNIA, weight, true, true)
{
Init();
}
PARVARCOPY(GlynniaVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T d, r = helper.m_PrecalcSqrtSumSquares;
if (r > 1)
{
if (rand.Frand01<T>() > T(0.5))
{
d = std::sqrt(r + helper.In.x);
helper.Out.x = m_V2 * d;
helper.Out.y = -(m_V2 / d * helper.In.y);
}
else
{
d = r + helper.In.x;
r = m_Weight / std::sqrt(r * (SQR(helper.In.y) + SQR(d)));
helper.Out.x = r * d;
helper.Out.y = r * helper.In.y;
}
}
else
{
if (rand.Frand01<T>() > T(0.5))
{
d = Zeps(std::sqrt(r + helper.In.x));
helper.Out.x = -(m_V2 * d);
helper.Out.y = -(m_V2 / d * helper.In.y);
}
else
{
d = r + helper.In.x;
r = m_Weight / Zeps(std::sqrt(r * (SQR(helper.In.y) + SQR(d))));
helper.Out.x = -(r * d);
helper.Out.y = r * helper.In.y;
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string v2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
ss << "\t{\n"
<< "\t\treal_t d, r = precalcSqrtSumSquares;\n"
<< "\n"
<< "\t\tif (r > 1)\n"
<< "\t\t{\n"
<< "\t\t if (MwcNext01(mwc) > (real_t)(0.5))\n"
<< "\t\t {\n"
<< "\t\t d = sqrt(r + vIn.x);\n"
<< "\t\t vOut.x = " << v2 << " * d;\n"
<< "\t\t vOut.y = -(" << v2 << " / d * vIn.y);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t d = r + vIn.x;\n"
<< "\t\t r = " << weight << " / sqrt(r * fma(vIn.y, vIn.y, SQR(d)));\n"
<< "\t\t vOut.x = r * d;\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (MwcNext01(mwc) > (real_t)(0.5))\n"
<< "\t\t {\n"
<< "\t\t d = Zeps(sqrt(r + vIn.x));\n"
<< "\t\t vOut.x = -(" << v2 << " * d);\n"
<< "\t\t vOut.y = -(" << v2 << " / d * vIn.y);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t d = r + vIn.x;\n"
<< "\t\t r = " << weight << " / sqrt(r * fma(vIn.y, vIn.y, SQR(d)));\n"
<< "\t\t vOut.x = -(r * d);\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_V2 = m_Weight * std::sqrt(T(2)) / 2;
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_V2, prefix + "glynnia_v2"));//Precalcs only, no params.
}
private:
T m_V2;//Precalcs only, no params.
};
/// <summary>
/// Glynnia2.
/// By guagapunyaimel.
/// </summary>
template <typename T>
class Glynnia2Variation : public ParametricVariation<T>
{
public:
Glynnia2Variation(T weight = 1.0) : ParametricVariation<T>("glynnia2", eVariationId::VAR_GLYNNIA2, weight, true, true)
{
Init();
}
PARVARCOPY(Glynnia2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T d, r = helper.m_PrecalcSqrtSumSquares;
if (r > 0 && helper.In.y > 0)
{
if (rand.Frand01<T>() > T(0.5))
{
d = std::sqrt(r + helper.In.x);
helper.Out.x = m_V2 * d;
helper.Out.y = -(m_V2 / d * helper.In.y);
}
else
{
d = r + helper.In.x;
r = m_Weight / std::sqrt(r * (SQR(helper.In.y) + SQR(d)));
helper.Out.x = r * d;
helper.Out.y = r * helper.In.y;
}
}
else
{
if (rand.Frand01<T>() > T(0.5))
{
d = Zeps(std::sqrt(r + helper.In.x));
helper.Out.x = -(m_V2 * d);
helper.Out.y = -(m_V2 / d * helper.In.y);
}
else
{
d = r + helper.In.x;
r = m_Weight / Zeps(std::sqrt(r * (SQR(helper.In.y) + SQR(d))));
helper.Out.x = -(r * d);
helper.Out.y = r * helper.In.y;
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string v2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
ss << "\t{\n"
<< "\t\treal_t d, r = precalcSqrtSumSquares;\n"
<< "\n"
<< "\t\tif (r > 0 && vIn.y > 0)\n"
<< "\t\t{\n"
<< "\t\t if (MwcNext01(mwc) > (real_t)(0.5))\n"
<< "\t\t {\n"
<< "\t\t d = sqrt(r + vIn.x);\n"
<< "\t\t vOut.x = " << v2 << " * d;\n"
<< "\t\t vOut.y = -(" << v2 << " / d * vIn.y);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t d = r + vIn.x;\n"
<< "\t\t r = " << weight << " / sqrt(r * fma(vIn.y, vIn.y, SQR(d)));\n"
<< "\t\t vOut.x = r * d;\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (MwcNext01(mwc) > (real_t)(0.5))\n"
<< "\t\t {\n"
<< "\t\t d = Zeps(sqrt(r + vIn.x));\n"
<< "\t\t vOut.x = -(" << v2 << " * d);\n"
<< "\t\t vOut.y = -(" << v2 << " / d * vIn.y);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t d = r + vIn.x;\n"
<< "\t\t r = " << weight << " / Zeps(sqrt(r * fma(vIn.y, vIn.y, SQR(d))));\n"
<< "\t\t vOut.x = -(r * d);\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_V2 = m_Weight * std::sqrt(T(2)) / 2;
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_V2, prefix + "glynnia2_v2"));//Precalcs only, no params.
}
private:
T m_V2;//Precalcs only, no params.
};
/// <summary>
/// GridOut.
/// </summary>
template <typename T>
class GridOutVariation : public Variation<T>
{
public:
GridOutVariation(T weight = 1.0) : Variation<T>("gridout", eVariationId::VAR_GRIDOUT, weight) { }
VARCOPY(GridOutVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = VarFuncs<T>::LRint(helper.In.x);
T y = VarFuncs<T>::LRint(helper.In.y);
if (y <= 0)
{
if (x > 0)
{
if (-y >= x)
{
helper.Out.x = m_Weight * (helper.In.x + 1);
helper.Out.y = m_Weight * helper.In.y;
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * (helper.In.y + 1);
}
}
else
{
if (y <= x)
{
helper.Out.x = m_Weight * (helper.In.x + 1);
helper.Out.y = m_Weight * helper.In.y;
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * (helper.In.y - 1);
}
}
}
else
{
if (x > 0)
{
if (y >= x)
{
helper.Out.x = m_Weight * (helper.In.x - 1);
helper.Out.y = m_Weight * helper.In.y;
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * (helper.In.y + 1);
}
}
else
{
if (y > -x)
{
helper.Out.x = m_Weight * (helper.In.x - 1);
helper.Out.y = m_Weight * helper.In.y;
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * (helper.In.y - 1);
}
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t x = LRint(vIn.x);\n"
<< "\t\treal_t y = LRint(vIn.y);\n"
<< "\n"
<< "\t\tif (y <= 0)\n"
<< "\t\t{\n"
<< "\t\t if (x > 0)\n"
<< "\t\t {\n"
<< "\t\t if (-y >= x)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x + 1);\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y + 1);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t if (y <= x)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x + 1);\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y - 1);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (x > 0)\n"
<< "\t\t {\n"
<< "\t\t if (y >= x)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x - 1);\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y + 1);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t if (y > -x)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x - 1);\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y - 1);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "LRint" };
}
};
/// <summary>
/// Hole.
/// </summary>
template <typename T>
class HoleVariation : public ParametricVariation<T>
{
public:
HoleVariation(T weight = 1.0) : ParametricVariation<T>("hole", eVariationId::VAR_HOLE, weight, true, true, true, false, true)
{
Init();
}
PARVARCOPY(HoleVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r, delta = std::pow(helper.m_PrecalcAtanyx / T(M_PI) + 1, m_A);
if (m_Inside != 0)
r = m_Weight * delta / (helper.m_PrecalcSqrtSumSquares + delta);
else
r = m_Weight * helper.m_PrecalcSqrtSumSquares + delta;
helper.Out.x = r * helper.m_PrecalcCosa;
helper.Out.y = r * helper.m_PrecalcSina;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string inside = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r, delta = pow(precalcAtanyx / MPI + 1, " << a << ");\n"
<< "\n"
<< "\t\tif (" << inside << " != 0)\n"
<< "\t\t r = " << weight << " * delta / (precalcSqrtSumSquares + delta);\n"
<< "\t\telse\n"
<< "\t\t r = fma(" << weight << ", precalcSqrtSumSquares, delta);\n"
<< "\n"
<< "\t\tvOut.x = r * precalcCosa;\n"
<< "\t\tvOut.y = r * precalcSina;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "hole_a", 1));
m_Params.push_back(ParamWithName<T>(&m_Inside, prefix + "hole_inside", 0, eParamType::INTEGER, 0, 1));
}
private:
T m_A;
T m_Inside;
};
/// <summary>
/// Hypertile.
/// </summary>
template <typename T>
class HypertileVariation : public ParametricVariation<T>
{
public:
HypertileVariation(T weight = 1.0) : ParametricVariation<T>("hypertile", eVariationId::VAR_HYPERTILE, weight)
{
Init();
}
PARVARCOPY(HypertileVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T a = helper.In.x + m_Real;
T b = helper.In.y - m_Imag;
T c = m_Real * helper.In.x - m_Imag * helper.In.y + 1;
T d = m_Real * helper.In.y + m_Imag * helper.In.x;
T vr = m_Weight / (SQR(c) + SQR(d));
helper.Out.x = vr * (a * c + b * d);
helper.Out.y = vr * (b * c - a * d);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string real = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string imag = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t a = vIn.x + " << real << ";\n"
<< "\t\treal_t b = vIn.y - " << imag << ";\n"
<< "\t\treal_t c = fma(" << real << ", vIn.x, -(" << imag << " * vIn.y)) + 1;\n"
<< "\t\treal_t d = fma(" << real << ", vIn.y, " << imag << " * vIn.x);\n"
<< "\t\treal_t vr = " << weight << " / fma(c, c, SQR(d));\n"
<< "\n"
<< "\t\tvOut.x = vr * fma(a, c, b * d);\n"
<< "\t\tvOut.y = vr * fma(b, c, -(a * d));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T pa = 2 * T(M_PI) / Zeps(m_P);
T qa = 2 * T(M_PI) / Zeps(m_Q);
T r = (1 - std::cos(pa)) / (std::cos(pa) + std::cos(qa)) + 1;
T a = m_N * pa;
if (r > 0)
r = 1 / std::sqrt(r);
else
r = 1;
m_Real = r * std::cos(a);
m_Imag = r * std::sin(a);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_P, prefix + "hypertile_p", 3, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(&m_Q, prefix + "hypertile_q", 7, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(&m_N, prefix + "hypertile_n", 0, eParamType::INTEGER));
m_Params.push_back(ParamWithName<T>(true, &m_Real, prefix + "hypertile_real"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Imag, prefix + "hypertile_imag"));
}
private:
T m_P;
T m_Q;
T m_N;
T m_Real;//Precalc.
T m_Imag;
};
/// <summary>
/// Hypertile1.
/// </summary>
template <typename T>
class Hypertile1Variation : public ParametricVariation<T>
{
public:
Hypertile1Variation(T weight = 1.0) : ParametricVariation<T>("hypertile1", eVariationId::VAR_HYPERTILE1, weight)
{
Init();
}
PARVARCOPY(Hypertile1Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T temp = rand.Rand() * m_Pa;
T sina = std::sin(temp);
T cosa = std::cos(temp);
T re = m_R * cosa;
T im = m_R * sina;
T a = helper.In.x + re;
T b = helper.In.y - im;
T c = re * helper.In.x - im * helper.In.y + 1;
T d = re * helper.In.y + im * helper.In.x;
T vr = m_Weight / (SQR(c) + SQR(d));
helper.Out.x = vr * (a * c + b * d);
helper.Out.y = vr * (b * c - a * d);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t temp = MwcNext(mwc) * " << pa << ";\n"
<< "\t\treal_t sina = sin(temp);\n"
<< "\t\treal_t cosa = cos(temp);\n"
<< "\t\treal_t re = " << r << " * cosa;\n"
<< "\t\treal_t im = " << r << " * sina;\n"
<< "\t\treal_t a = vIn.x + re;\n"
<< "\t\treal_t b = vIn.y - im;\n"
<< "\t\treal_t c = fma(re, vIn.x, -(im * vIn.y)) + 1;\n"
<< "\t\treal_t d = fma(re, vIn.y, im * vIn.x);\n"
<< "\t\treal_t vr = " << weight << " / fma(c, c, SQR(d));\n"
<< "\n"
<< "\t\tvOut.x = vr * fma(a, c, b * d);\n"
<< "\t\tvOut.y = vr * fma(b, c, -(a * d));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T r2 = 1 - (std::cos(2 * T(M_PI) / Zeps(m_P)) - 1) /
(std::cos(2 * T(M_PI) / Zeps(m_P)) + std::cos(2 * T(M_PI) / Zeps(m_Q)));
if (r2 > 0)
m_R = 1 / std::sqrt(r2);
else
m_R = 1;
m_Pa = 2 * T(M_PI) / Zeps(m_P);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_P, prefix + "hypertile1_p", 3, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(&m_Q, prefix + "hypertile1_q", 7, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(true, &m_Pa, prefix + "hypertile1_pa"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_R, prefix + "hypertile1_r"));
}
private:
T m_P;
T m_Q;
T m_Pa;//Precalc.
T m_R;
};
/// <summary>
/// Hypertile2.
/// </summary>
template <typename T>
class Hypertile2Variation : public ParametricVariation<T>
{
public:
Hypertile2Variation(T weight = 1.0) : ParametricVariation<T>("hypertile2", eVariationId::VAR_HYPERTILE2, weight)
{
Init();
}
PARVARCOPY(Hypertile2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T a = helper.In.x + m_R;
T b = helper.In.y;
T c = m_R * helper.In.x + 1;
T d = m_R * helper.In.y;
T x = (a * c + b * d);
T y = (b * c - a * d);
T vr = m_Weight / (SQR(c) + SQR(d));
T temp = rand.Rand() * m_Pa;
T sina = std::sin(temp);
T cosa = std::cos(temp);
helper.Out.x = vr * (x * cosa + y * sina);
helper.Out.y = vr * (y * cosa - x * sina);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t a = vIn.x + " << r << ";\n"
<< "\t\treal_t b = vIn.y;\n"
<< "\t\treal_t c = " << r << " * vIn.x + 1;\n"
<< "\t\treal_t d = " << r << " * vIn.y;\n"
<< "\t\treal_t x = fma(a, c, b * d);\n"
<< "\t\treal_t y = fma(b, c, -(a * d));\n"
<< "\t\treal_t vr = " << weight << " / fma(c, c, SQR(d));\n"
<< "\t\treal_t temp = MwcNext(mwc) * " << pa << ";\n"
<< "\t\treal_t sina = sin(temp);\n"
<< "\t\treal_t cosa = cos(temp);\n"
<< "\n"
<< "\t\tvOut.x = vr * fma(x, cosa, y * sina);\n"
<< "\t\tvOut.y = vr * fma(y, cosa, -(x * sina));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T r2 = 1 - (std::cos(2 * T(M_PI) / Zeps(m_P)) - 1) /
(std::cos(2 * T(M_PI) / Zeps(m_P)) + std::cos(2 * T(M_PI) / Zeps(m_Q)));
if (r2 > 0)
m_R = 1 / std::sqrt(r2);
else
m_R = 1;
m_Pa = 2 * T(M_PI) / Zeps(m_P);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_P, prefix + "hypertile2_p", 3, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(&m_Q, prefix + "hypertile2_q", 7, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(true, &m_Pa, prefix + "hypertile2_pa"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_R, prefix + "hypertile2_r"));
}
private:
T m_P;
T m_Q;
T m_Pa;//Precalc.
T m_R;
};
/// <summary>
/// Hypertile3D.
/// </summary>
template <typename T>
class Hypertile3DVariation : public ParametricVariation<T>
{
public:
Hypertile3DVariation(T weight = 1.0) : ParametricVariation<T>("hypertile3D", eVariationId::VAR_HYPERTILE3D, weight, true)
{
Init();
}
PARVARCOPY(Hypertile3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r2 = helper.m_PrecalcSumSquares + helper.In.z;
T x2cx = m_C2x * helper.In.x;
T y2cy = m_C2y * helper.In.y;
T d = m_Weight / Zeps(m_C2 * r2 + x2cx - y2cy + 1);
helper.Out.x = d * (helper.In.x * m_S2x - m_Cx * (y2cy - r2 - 1));
helper.Out.y = d * (helper.In.y * m_S2y + m_Cy * (-x2cx - r2 - 1));
helper.Out.z = d * (helper.In.z * m_S2z);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cz = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r2 = precalcSumSquares + vIn.z;\n"
<< "\t\treal_t x2cx = " << c2x << " * vIn.x;\n"
<< "\t\treal_t y2cy = " << c2y << " * vIn.y;\n"
<< "\t\treal_t d = " << weight << " / Zeps(fma(" << c2 << ", r2, (x2cx - y2cy) + 1));\n"
<< "\n"
<< "\t\tvOut.x = d * fma(vIn.x, " << s2x << ", -(" << cx << " * (y2cy - r2 - 1)));\n"
<< "\t\tvOut.y = d * fma(vIn.y, " << s2y << ", " << cy << " * (-x2cx - r2 - 1));\n"
<< "\t\tvOut.z = d * (vIn.z * " << s2z << ");\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T pa = 2 * T(M_PI) / Zeps(m_P);
T qa = 2 * T(M_PI) / Zeps(m_Q);
T r = -(std::cos(pa) - 1) / Zeps(std::cos(pa) + std::cos(qa));
T na = m_N * pa;
if (r > 0)
r = 1 / Zeps(std::sqrt(1 + r));
else
r = 1;
m_Cx = r * std::cos(na);
m_Cy = r * std::sin(na);
m_C2 = SQR(m_Cx) + SQR(m_Cy);
m_C2x = 2 * m_Cx;
m_C2y = 2 * m_Cy;
m_S2x = 1 + SQR(m_Cx) - SQR(m_Cy);
m_S2y = 1 + SQR(m_Cy) - SQR(m_Cx);
m_S2z = 1 - SQR(m_Cy) - SQR(m_Cx);
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_P, prefix + "hypertile3D_p", 3, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(&m_Q, prefix + "hypertile3D_q", 7, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(&m_N, prefix + "hypertile3D_n", 0, eParamType::INTEGER));
m_Params.push_back(ParamWithName<T>(true, &m_Cx, prefix + "hypertile3D_cx"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cy, prefix + "hypertile3D_cy"));
m_Params.push_back(ParamWithName<T>(true, &m_Cz, prefix + "hypertile3D_cz"));
m_Params.push_back(ParamWithName<T>(true, &m_S2x, prefix + "hypertile3D_s2x"));
m_Params.push_back(ParamWithName<T>(true, &m_S2y, prefix + "hypertile3D_s2y"));
m_Params.push_back(ParamWithName<T>(true, &m_S2z, prefix + "hypertile3D_s2z"));
m_Params.push_back(ParamWithName<T>(true, &m_C2x, prefix + "hypertile3D_c2x"));
m_Params.push_back(ParamWithName<T>(true, &m_C2y, prefix + "hypertile3D_c2y"));
m_Params.push_back(ParamWithName<T>(true, &m_C2z, prefix + "hypertile3D_c2z"));
m_Params.push_back(ParamWithName<T>(true, &m_C2, prefix + "hypertile3D_c2"));
}
private:
T m_P;
T m_Q;
T m_N;
T m_Cx;//Precalc.
T m_Cy;
T m_Cz;
T m_S2x;
T m_S2y;
T m_S2z;
T m_C2x;
T m_C2y;
T m_C2z;
T m_C2;
};
/// <summary>
/// Hypertile3D1.
/// </summary>
template <typename T>
class Hypertile3D1Variation : public ParametricVariation<T>
{
public:
Hypertile3D1Variation(T weight = 1.0) : ParametricVariation<T>("hypertile3D1", eVariationId::VAR_HYPERTILE3D1, weight, true)
{
Init();
}
PARVARCOPY(Hypertile3D1Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T temp = rand.Rand() * m_Pa;
T cx = m_R * std::cos(temp);
T cy = m_R * std::sin(temp);
T s2x = 1 + SQR(cx) - SQR(cy);
T s2y = 1 + SQR(cy) - SQR(cx);
T r2 = helper.m_PrecalcSumSquares + SQR(helper.In.z);
T x2cx = 2 * cx * helper.In.x;
T y2cy = 2 * cy * helper.In.x;
T d = m_Weight / Zeps(m_C2 * r2 + x2cx - y2cy + 1);
helper.Out.x = d * (helper.In.x * s2x - cx * (y2cy - r2 - 1));
helper.Out.y = d * (helper.In.y * s2y + cy * (-x2cx - r2 - 1));
helper.Out.z = d * (helper.In.z * m_S2z);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t temp = MwcNext(mwc) * " << pa << ";\n"
<< "\t\treal_t cx = " << r << " * cos(temp);\n"
<< "\t\treal_t cy = " << r << " * sin(temp);\n"
<< "\t\treal_t s2x = fma(cx, cx, (real_t)(1.0)) - SQR(cy);\n"
<< "\t\treal_t s2y = fma(cy, cy, (real_t)(1.0)) - SQR(cx);\n"
<< "\t\treal_t r2 = precalcSumSquares + SQR(vIn.z);\n"
<< "\t\treal_t x2cx = 2 * cx * vIn.x;\n"
<< "\t\treal_t y2cy = 2 * cy * vIn.x;\n"
<< "\t\treal_t d = " << weight << " / Zeps(fma(" << c2 << ", r2, (x2cx - y2cy) + 1)); \n"
<< "\n"
<< "\t\tvOut.x = d * fma(vIn.x, s2x, -(cx * (y2cy - r2 - 1)));\n"
<< "\t\tvOut.y = d * fma(vIn.y, s2y, cy * (-x2cx - r2 - 1));\n"
<< "\t\tvOut.z = d * (vIn.z * " << s2z << ");\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T pa = M_2PI / Zeps(m_P);
T qa = M_2PI / Zeps(m_Q);
T r = -(std::cos(pa) - 1) / Zeps(std::cos(pa) + std::cos(qa));
if (r > 0)
r = 1 / Zeps(std::sqrt(1 + r));
else
r = 1;
m_Pa = pa;
m_R = r;
m_C2 = SQR(r);
m_S2z = 1 - m_C2;
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_P, prefix + "hypertile3D1_p", 3, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(&m_Q, prefix + "hypertile3D1_q", 7, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(true, &m_Pa, prefix + "hypertile3D1_pa"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_R, prefix + "hypertile3D1_r"));
m_Params.push_back(ParamWithName<T>(true, &m_C2, prefix + "hypertile3D1_c2"));
m_Params.push_back(ParamWithName<T>(true, &m_S2z, prefix + "hypertile3D1_s2z"));
}
private:
T m_P;
T m_Q;
T m_Pa;//Precalc.
T m_R;
T m_C2;
T m_S2z;
};
/// <summary>
/// Hypertile3D2.
/// </summary>
template <typename T>
class Hypertile3D2Variation : public ParametricVariation<T>
{
public:
Hypertile3D2Variation(T weight = 1.0) : ParametricVariation<T>("hypertile3D2", eVariationId::VAR_HYPERTILE3D2, weight, true)
{
Init();
}
PARVARCOPY(Hypertile3D2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r2 = helper.m_PrecalcSumSquares + SQR(helper.In.z);
T x2cx = m_C2x * helper.In.x;
T x = helper.In.x * m_S2x - m_Cx * (-r2 - 1);
T y = helper.In.y * m_S2y;
T vr = m_Weight / (m_C2 * r2 + x2cx + 1);
T temp = rand.Rand() * m_Pa;
T sina = std::sin(temp);
T cosa = std::cos(temp);
helper.Out.x = vr * (x * cosa + y * sina);
helper.Out.y = vr * (y * cosa - x * sina);
helper.Out.z = vr * (helper.In.z * m_S2z);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r2 = precalcSumSquares + SQR(vIn.z);\n"
<< "\t\treal_t x2cx = " << c2x << " * vIn.x;\n"
<< "\t\treal_t x = fma(vIn.x, " << s2x << ", -(" << cx << " * (-r2 - 1)));\n"
<< "\t\treal_t y = vIn.y * " << s2y << ";\n"
<< "\t\treal_t vr = " << weight << " / fma(" << c2 << ", r2, x2cx + 1);\n"
<< "\t\treal_t temp = MwcNext(mwc) * " << pa << ";\n"
<< "\t\treal_t sina = sin(temp);\n"
<< "\t\treal_t cosa = cos(temp);\n"
<< "\n"
<< "\t\tvOut.x = vr * fma(x, cosa, y * sina);\n"
<< "\t\tvOut.y = vr * fma(y, cosa, -(x * sina));\n"
<< "\t\tvOut.z = vr * (vIn.z * " << s2z << ");\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T pa = M_2PI / Zeps(m_P);
T qa = M_2PI / Zeps(m_Q);
T r = -(std::cos(pa) - 1) / Zeps(std::cos(pa) + std::cos(qa));
if (r > 0)
r = 1 / Zeps(std::sqrt(1 + r));
else
r = 1;
m_Pa = pa;
m_Cx = r;
m_C2 = SQR(m_Cx);
m_C2x = 2 * m_Cx;
m_S2x = 1 + SQR(m_Cx);
m_S2y = 1 - SQR(m_Cx);
m_S2z = 1 - SQR(m_Cx);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_P, prefix + "hypertile3D2_p", 3, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(&m_Q, prefix + "hypertile3D2_q", 7, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(true, &m_Pa, prefix + "hypertile3D2_pa"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cx, prefix + "hypertile3D2_cx"));
m_Params.push_back(ParamWithName<T>(true, &m_C2, prefix + "hypertile3D2_c2"));
m_Params.push_back(ParamWithName<T>(true, &m_C2x, prefix + "hypertile3D2_c2x"));
m_Params.push_back(ParamWithName<T>(true, &m_S2x, prefix + "hypertile3D2_s2x"));
m_Params.push_back(ParamWithName<T>(true, &m_S2y, prefix + "hypertile3D2_s2y"));
m_Params.push_back(ParamWithName<T>(true, &m_S2z, prefix + "hypertile3D2_s2z"));
}
private:
T m_P;
T m_Q;
T m_Pa;//Precalc.
T m_Cx;
T m_C2;
T m_C2x;
T m_S2x;
T m_S2y;
T m_S2z;
};
/// <summary>
/// IDisc.
/// </summary>
template <typename T>
class IDiscVariation : public ParametricVariation<T>
{
public:
IDiscVariation(T weight = 1.0) : ParametricVariation<T>("idisc", eVariationId::VAR_IDISC, weight, true, true, false, false, true)
{
Init();
}
PARVARCOPY(IDiscVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T a = T(M_PI) / (helper.m_PrecalcSqrtSumSquares + 1);
T s = std::sin(a);
T c = std::cos(a);
T r = helper.m_PrecalcAtanyx * m_V;
helper.Out.x = r * c;
helper.Out.y = r * s;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string v = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
ss << "\t{\n"
<< "\t\treal_t a = MPI / (precalcSqrtSumSquares + 1);\n"
<< "\t\treal_t s = sin(a);\n"
<< "\t\treal_t c = cos(a);\n"
<< "\t\treal_t r = precalcAtanyx * " << v << ";\n"
<< "\n"
<< "\t\tvOut.x = r * c;\n"
<< "\t\tvOut.y = r * s;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_V = m_Weight * T(M_1_PI);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_V, prefix + "idisc_v"));//Precalcs only, no params.
}
private:
T m_V;//Precalcs only, no params.
};
/// <summary>
/// Julian2.
/// </summary>
template <typename T>
class Julian2Variation : public ParametricVariation<T>
{
public:
Julian2Variation(T weight = 1.0) : ParametricVariation<T>("julian2", eVariationId::VAR_JULIAN2, weight)
{
Init();
}
PARVARCOPY(Julian2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = m_A * helper.In.x + m_B * helper.In.y + m_E;
T y = m_C * helper.In.x + m_D * helper.In.y + m_F;
T angle = (std::atan2(y, x) + M_2PI * rand.Rand(int(m_AbsN))) / m_Power;
T sina = std::sin(angle);
T cosa = std::cos(angle);
T r = m_Weight * std::pow(SQR(x) + SQR(y), m_Cn);
helper.Out.x = r * cosa;
helper.Out.y = r * sina;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string d = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string e = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string f = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = fma(" << a << ", vIn.x, fma(" << b << ", vIn.y, " << e << "));\n"
<< "\t\treal_t y = fma(" << c << ", vIn.x, fma(" << d << ", vIn.y, " << f << "));\n"
<< "\t\treal_t angle = fma(M_2PI, (real_t)MwcNextRange(mwc, (uint)" << absn << "), atan2(y, x)) / " << power << ";\n"
<< "\t\treal_t sina = sin(angle);\n"
<< "\t\treal_t cosa = cos(angle);\n"
<< "\t\treal_t r = " << weight << " * pow(fma(x, x, SQR(y)), " << cn << ");\n"
<< "\n"
<< "\t\tvOut.x = r * cosa;\n"
<< "\t\tvOut.y = r * sina;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
if (m_Power == 0)
m_Power = 2;
m_AbsN = T(int(abs(m_Power)));
m_Cn = m_Dist / m_Power / 2;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "julian2_a", 1));
m_Params.push_back(ParamWithName<T>(&m_B, prefix + "julian2_b"));
m_Params.push_back(ParamWithName<T>(&m_C, prefix + "julian2_c"));
m_Params.push_back(ParamWithName<T>(&m_D, prefix + "julian2_d", 1));
m_Params.push_back(ParamWithName<T>(&m_E, prefix + "julian2_e"));
m_Params.push_back(ParamWithName<T>(&m_F, prefix + "julian2_f"));
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "julian2_power", 2, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_Dist, prefix + "julian2_dist", 1));
m_Params.push_back(ParamWithName<T>(true, &m_AbsN, prefix + "julian2_absn"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cn, prefix + "julian2_cn"));
}
private:
T m_A;
T m_B;
T m_C;
T m_D;
T m_E;
T m_F;
T m_Power;
T m_Dist;
T m_AbsN;//Precalc.
T m_Cn;
};
/// <summary>
/// JuliaQ.
/// </summary>
template <typename T>
class JuliaQVariation : public ParametricVariation<T>
{
public:
JuliaQVariation(T weight = 1.0) : ParametricVariation<T>("juliaq", eVariationId::VAR_JULIAQ, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(JuliaQVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T a = helper.m_PrecalcAtanyx * m_InvPower + rand.Rand() * m_InvPower2pi;
T sina = std::sin(a);
T cosa = std::cos(a);
T r = m_Weight * std::pow(helper.m_PrecalcSumSquares, m_HalfInvPower);
helper.Out.x = r * cosa;
helper.Out.y = r * sina;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string divisor = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string halfInvPower = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invPower = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invPower2Pi = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t a = fma(precalcAtanyx, " << invPower << ", MwcNext(mwc) * " << invPower2Pi << ");\n"
<< "\t\treal_t sina = sin(a);\n"
<< "\t\treal_t cosa = cos(a);\n"
<< "\t\treal_t r = " << weight << " * pow(precalcSumSquares, " << halfInvPower << ");\n"
<< "\n"
<< "\t\tvOut.x = r * cosa;\n"
<< "\t\tvOut.y = r * sina;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_HalfInvPower = T(0.5) * m_Divisor / m_Power;
m_InvPower = m_Divisor / m_Power;
m_InvPower2pi = M_2PI / m_Power;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "juliaq_power", 3, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_Divisor, prefix + "juliaq_divisor", 2, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(true, &m_HalfInvPower, prefix + "juliaq_half_inv_power"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_InvPower, prefix + "juliaq_inv_power"));
m_Params.push_back(ParamWithName<T>(true, &m_InvPower2pi, prefix + "juliaq_inv_power_2pi"));
}
private:
T m_Power;
T m_Divisor;
T m_HalfInvPower;//Precalc.
T m_InvPower;
T m_InvPower2pi;
};
/// <summary>
/// Murl.
/// </summary>
template <typename T>
class MurlVariation : public ParametricVariation<T>
{
public:
MurlVariation(T weight = 1.0) : ParametricVariation<T>("murl", eVariationId::VAR_MURL, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(MurlVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T angle = helper.m_PrecalcAtanyx * m_Power;
T sina = std::sin(angle);
T cosa = std::cos(angle);
T r = m_Cp * std::pow(helper.m_PrecalcSumSquares, m_P2);
T re = r * cosa + 1;
T im = r * sina;
T r1 = m_Vp / (SQR(re) + SQR(im));
helper.Out.x = r1 * (helper.In.x * re + helper.In.y * im);
helper.Out.y = r1 * (helper.In.y * re - helper.In.x * im);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string p2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t angle = precalcAtanyx * " << power << ";\n"
<< "\t\treal_t sina = sin(angle);\n"
<< "\t\treal_t cosa = cos(angle);\n"
<< "\t\treal_t r = " << cp << " * pow(precalcSumSquares, " << p2 << ");\n"
<< "\t\treal_t re = fma(r, cosa, (real_t)(1.0));\n"
<< "\t\treal_t im = r * sina;\n"
<< "\t\treal_t r1 = " << vp << " / fma(re, re, SQR(im));\n"
<< "\n"
<< "\t\tvOut.x = r1 * fma(vIn.x, re, vIn.y * im);\n"
<< "\t\tvOut.y = r1 * fma(vIn.y, re, -(vIn.x * im));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
if (m_Power != 1)
m_Cp = m_C / (m_Power - 1);
else
m_Cp = m_C;
m_P2 = m_Power / 2;
m_Vp = m_Weight * (m_Cp + 1);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_C, prefix + "murl_c"));
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "murl_power", 2, eParamType::INTEGER, 2, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(true, &m_Cp, prefix + "murl_cp"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_P2, prefix + "murl_p2"));
m_Params.push_back(ParamWithName<T>(true, &m_Vp, prefix + "murl_vp"));
}
private:
T m_C;
T m_Power;
T m_Cp;//Precalc.
T m_P2;
T m_Vp;
};
/// <summary>
/// Murl2.
/// </summary>
template <typename T>
class Murl2Variation : public ParametricVariation<T>
{
public:
Murl2Variation(T weight = 1.0) : ParametricVariation<T>("murl2", eVariationId::VAR_MURL2, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(Murl2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T angle = helper.m_PrecalcAtanyx * m_Power;
T sina = std::sin(angle);
T cosa = std::cos(angle);
T r = m_C * std::pow(helper.m_PrecalcSumSquares, m_P2);
T re = r * cosa + 1;
T im = r * sina;
r = std::pow(SQR(re) + SQR(im), m_InvP);
angle = std::atan2(im, re) * m_InvP2;
sina = std::sin(angle);
cosa = std::cos(angle);
re = r * cosa;
im = r * sina;
T r1 = m_Vp / SQR(r);
helper.Out.x = r1 * (helper.In.x * re + helper.In.y * im);
helper.Out.y = r1 * (helper.In.y * re - helper.In.x * im);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string p2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invp2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t angle = precalcAtanyx * " << power << ";\n"
<< "\t\treal_t sina = sin(angle);\n"
<< "\t\treal_t cosa = cos(angle);\n"
<< "\t\treal_t r = " << c << " * pow(precalcSumSquares, " << p2 << ");\n"
<< "\t\treal_t re = fma(r, cosa, (real_t)(1.0));\n"
<< "\t\treal_t im = r * sina;\n"
<< "\n"
<< "\t\tr = pow(fma(re, re, SQR(im)), " << invp << ");\n"
<< "\t\tangle = atan2(im, re) * " << invp2 << ";\n"
<< "\t\tsina = sin(angle);\n"
<< "\t\tcosa = cos(angle);\n"
<< "\t\tre = r * cosa;\n"
<< "\t\tim = r * sina;\n"
<< "\n"
<< "\t\treal_t r1 = " << vp << " / SQR(r);\n"
<< "\n"
<< "\t\tvOut.x = r1 * fma(vIn.x, re, vIn.y * im);\n"
<< "\t\tvOut.y = r1 * fma(vIn.y, re, -(vIn.x * im));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_P2 = m_Power / 2;
m_InvP = 1 / m_Power;
m_InvP2 = 2 / m_Power;
if (m_C == -1)
m_Vp = 0;
else
m_Vp = m_Weight * std::pow(m_C + 1, 2 / m_Power);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_C, prefix + "murl2_c", 0, eParamType::REAL, -1, 1));
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "murl2_power", 1, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(true, &m_P2, prefix + "murl2_p2"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_InvP, prefix + "murl2_invp"));
m_Params.push_back(ParamWithName<T>(true, &m_InvP2, prefix + "murl2_invp2"));
m_Params.push_back(ParamWithName<T>(true, &m_Vp, prefix + "murl2_vp"));
}
private:
T m_C;
T m_Power;
T m_P2;//Precalc.
T m_InvP;
T m_InvP2;
T m_Vp;
};
/// <summary>
/// NPolar.
/// </summary>
template <typename T>
class NPolarVariation : public ParametricVariation<T>
{
public:
NPolarVariation(T weight = 1.0) : ParametricVariation<T>("npolar", eVariationId::VAR_NPOLAR, weight, true, false, false, true, false)
{
Init();
}
PARVARCOPY(NPolarVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = (m_IsOdd != 0) ? helper.In.x : m_Vvar * helper.m_PrecalcAtanxy;
T y = (m_IsOdd != 0) ? helper.In.y : m_Vvar2 * std::log(helper.m_PrecalcSumSquares);
T angle = (std::atan2(y, x) + M_2PI * rand.Rand(int(m_AbsN))) / m_Nnz;
T r = m_Weight * std::pow(SQR(x) + SQR(y), m_Cn) * ((m_IsOdd == 0) ? 1 : m_Parity);
T sina = std::sin(angle) * r;
T cosa = std::cos(angle) * r;
x = (m_IsOdd != 0) ? cosa : (m_Vvar2 * std::log(SQR(cosa) + SQR(sina)));
y = (m_IsOdd != 0) ? sina : (m_Vvar * std::atan2(cosa, sina));
helper.Out.x = x;
helper.Out.y = y;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string parity = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string nnz = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vvar = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vvar2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string isOdd = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = (" << isOdd << " != 0) ? vIn.x : " << vvar << " * precalcAtanxy;\n"
<< "\t\treal_t y = (" << isOdd << " != 0) ? vIn.y : " << vvar2 << " * log(precalcSumSquares);\n"
<< "\t\treal_t angle = fma(M_2PI, MwcNextRange(mwc, (uint)" << absn << "), atan2(y, x)) / " << nnz << ";\n"
<< "\t\treal_t r = " << weight << " * pow(fma(x, x, SQR(y)), " << cn << ") * ((" << isOdd << " == 0) ? 1 : " << parity << ");\n"
<< "\t\treal_t sina = sin(angle) * r;\n"
<< "\t\treal_t cosa = cos(angle) * r;\n"
<< "\n"
<< "\t\tx = (" << isOdd << " != 0) ? cosa : (" << vvar2 << " * log(fma(cosa, cosa, SQR(sina))));\n"
<< "\t\ty = (" << isOdd << " != 0) ? sina : (" << vvar << " * atan2(cosa, sina));\n"
<< "\t\tvOut.x = x;\n"
<< "\t\tvOut.y = y;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Nnz = (m_N == 0) ? 1 : m_N;
m_Vvar = m_Weight / T(M_PI);
m_Vvar2 = m_Vvar * T(0.5);
m_AbsN = abs(m_Nnz);
m_Cn = 1 / m_Nnz / 2;
m_IsOdd = T(abs(int(m_Parity)) & 1);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Parity, prefix + "npolar_parity", 0, eParamType::INTEGER));
m_Params.push_back(ParamWithName<T>(&m_N, prefix + "npolar_n", 1, eParamType::INTEGER));
m_Params.push_back(ParamWithName<T>(true, &m_Nnz, prefix + "npolar_nnz"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Vvar, prefix + "npolar_vvar"));
m_Params.push_back(ParamWithName<T>(true, &m_Vvar2, prefix + "npolar_vvar_2"));
m_Params.push_back(ParamWithName<T>(true, &m_AbsN, prefix + "npolar_absn"));
m_Params.push_back(ParamWithName<T>(true, &m_Cn, prefix + "npolar_cn"));
m_Params.push_back(ParamWithName<T>(true, &m_IsOdd, prefix + "npolar_isodd"));
}
private:
T m_Parity;
T m_N;
T m_Nnz;//Precalc.
T m_Vvar;
T m_Vvar2;
T m_AbsN;
T m_Cn;
T m_IsOdd;
};
/// <summary>
/// Ortho.
/// </summary>
template <typename T>
class OrthoVariation : public ParametricVariation<T>
{
public:
OrthoVariation(T weight = 1.0) : ParametricVariation<T>("ortho", eVariationId::VAR_ORTHO, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(OrthoVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r, a;
T xo;
T ro;
T c, s;
T x, y, tc, ts;
T theta;
r = helper.m_PrecalcSumSquares;
if (r < 1)
{
if (helper.In.x >= 0)
{
xo = (r + 1) / Zeps(2 * helper.In.x);
ro = std::sqrt(Sqr(helper.In.x - xo) + SQR(helper.In.y));
theta = std::atan2(T(1), ro);
a = fmod(m_In * theta + std::atan2(helper.In.y, xo - helper.In.x) + theta, 2 * theta) - theta;
sincos(a, &s, &c);
helper.Out.x = m_Weight * (xo - c * ro);
helper.Out.y = m_Weight * s * ro;
}
else
{
xo = -(r + 1) / (2 * helper.In.x);
ro = std::sqrt(Sqr(-helper.In.x - xo) + SQR(helper.In.y));
theta = std::atan2(T(1), ro);
a = fmod(m_In * theta + std::atan2(helper.In.y, xo + helper.In.x) + theta, 2 * theta) - theta;
sincos(a, &s, &c);
helper.Out.x = -(m_Weight * (xo - c * ro));
helper.Out.y = m_Weight * s * ro;
}
}
else
{
r = 1 / std::sqrt(r);
ts = std::sin(helper.m_PrecalcAtanyx);
tc = std::cos(helper.m_PrecalcAtanyx);
x = r * tc;
y = r * ts;
if (x >= 0)
{
xo = (SQR(x) + SQR(y) + 1) / Zeps(2 * x);
ro = std::sqrt(Sqr(x - xo) + SQR(y));
theta = std::atan2(T(1), ro);
a = fmod(m_Out * theta + std::atan2(y, xo - x) + theta, 2 * theta) - theta;
sincos(a, &s, &c);
x = (xo - c * ro);
y = s * ro;
theta = std::atan2(y, x);
sincos(theta, &ts, &tc);
r = 1 / std::sqrt(SQR(x) + SQR(y));
helper.Out.x = m_Weight * r * tc;
helper.Out.y = m_Weight * r * ts;
}
else
{
xo = -(SQR(x) + SQR(y) + 1) / (2 * x);
ro = std::sqrt(Sqr(-x - xo) + SQR(y));
theta = std::atan2(T(1), ro);
a = fmod(m_Out * theta + std::atan2(y, xo + x) + theta, 2 * theta) - theta;
sincos(a, &s, &c);
x = (xo - c * ro);
y = s * ro;
theta = std::atan2(y, x);
sincos(theta, &ts, &tc);
r = 1 / std::sqrt(SQR(x) + SQR(y));
helper.Out.x = -(m_Weight * r * tc);
helper.Out.y = m_Weight * r * ts;
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string in = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string out = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r, a;\n"
<< "\t\treal_t xo;\n"
<< "\t\treal_t ro;\n"
<< "\t\treal_t c,s;\n"
<< "\t\treal_t x, y, tc, ts;\n"
<< "\t\treal_t theta;\n"
<< "\n"
<< "\t\tr = precalcSumSquares;\n"
<< "\n"
<< "\t\tif (r < 1)\n"
<< "\t\t{\n"
<< "\t\t real_t y2 = SQR(vIn.y);\n"
<< "\t\t if (vIn.x >= 0)\n"
<< "\t\t {\n"
<< "\t\t xo = (r + 1) / Zeps(2 * vIn.x);\n"
<< "\t\t real_t xmx = vIn.x - xo;\n"
<< "\t\t ro = sqrt(fma(xmx, xmx, y2));\n"
<< "\t\t theta = atan2(1, ro);\n"
<< "\t\t a = fmod(fma(" << in << ", theta, atan2(vIn.y, xo - vIn.x) + theta), 2 * theta) - theta;\n"
<< "\t\t s = sin(a);\n"
<< "\t\t c = cos(a);\n"
<< "\n"
<< "\t\t vOut.x = " << weight << " * (xo - c * ro);\n"
<< "\t\t vOut.y = " << weight << " * s * ro;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t xo = - (r + 1) / (2 * vIn.x);\n"
<< "\t\t real_t mxmx = -vIn.x - xo;\n"
<< "\t\t ro = sqrt(fma(mxmx, mxmx, y2));\n"
<< "\t\t theta = atan2(1 , ro);\n"
<< "\t\t a = fmod(fma(" << in << ", theta, atan2(vIn.y, xo + vIn.x) + theta), 2 * theta) - theta;\n"
<< "\t\t s = sin(a);\n"
<< "\t\t c = cos(a);\n"
<< "\n"
<< "\t\t vOut.x = -(" << weight << " * (xo - c * ro));\n"
<< "\t\t vOut.y = " << weight << " * s * ro;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t r = 1 / sqrt(r);\n"
<< "\t\t ts = sin(precalcAtanyx);\n"
<< "\t\t tc = cos(precalcAtanyx);\n"
<< "\t\t x = r * tc;\n"
<< "\t\t y = r * ts;\n"
<< "\t\t real_t x2 = SQR(x);\n"
<< "\t\t real_t y2 = SQR(y);\n"
<< "\t\t real_t x2y2 = x2 + y2;\n"
<< "\n"
<< "\t\t if (x >= 0)\n"
<< "\t\t {\n"
<< "\t\t xo = (x2y2 + 1) / Zeps(2 * x);\n"
<< "\t\t real_t xmx = x - xo;\n"
<< "\t\t ro = sqrt(fma(xmx, xmx, y2));\n"
<< "\t\t theta = atan2(1, ro);\n"
<< "\t\t a = fmod(fma(" << out << ", theta, atan2(y, xo - x) + theta), 2 * theta) - theta;\n"
<< "\t\t s = sin(a);\n"
<< "\t\t c = cos(a);\n"
<< "\n"
<< "\t\t x = (xo - c * ro);\n"
<< "\t\t y = s * ro;\n"
<< "\t\t theta = atan2(y, x);\n"
<< "\t\t ts = sin(theta);\n"
<< "\t\t tc = cos(theta);\n"
<< "\t\t r = 1 / sqrt(fma(x, x, SQR(y)));\n"
<< "\n"
<< "\t\t vOut.x = " << weight << " * r * tc;\n"
<< "\t\t vOut.y = " << weight << " * r * ts;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t xo = -(x2y2 + 1) / (2 * x);\n"
<< "\t\t real_t mxmx = -x - xo;\n"
<< "\t\t ro = sqrt(fma(mxmx, mxmx, y2));\n"
<< "\t\t theta = atan2(1 , ro);\n"
<< "\t\t a = fmod(fma(" << out << ", theta, atan2(y, xo + x) + theta), 2 * theta) - theta;\n"
<< "\t\t s = sin(a);\n"
<< "\t\t c = cos(a);\n"
<< "\n"
<< "\t\t x = (xo - c * ro);\n"
<< "\t\t y = s * ro;\n"
<< "\t\t theta = atan2(y, x);\n"
<< "\t\t ts = sin(theta);\n"
<< "\t\t tc = cos(theta);\n"
<< "\t\t r = 1 / sqrt(fma(x, x, SQR(y)));\n"
<< "\n"
<< "\t\t vOut.x = -(" << weight << " * r * tc);\n"
<< "\t\t vOut.y = " << weight << " * r * ts;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_In, prefix + "ortho_in", 0, eParamType::REAL_CYCLIC, T(-M_PI), T(M_PI)));
m_Params.push_back(ParamWithName<T>(&m_Out, prefix + "ortho_out", 0, eParamType::REAL_CYCLIC, T(-M_PI), T(M_PI)));
}
private:
T m_In;
T m_Out;
};
/// <summary>
/// Poincare.
/// </summary>
template <typename T>
class PoincareVariation : public ParametricVariation<T>
{
public:
PoincareVariation(T weight = 1.0) : ParametricVariation<T>("poincare", eVariationId::VAR_POINCARE, weight)
{
Init();
}
PARVARCOPY(PoincareVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T xmc1x = helper.In.x - m_C1x;
T ymc1y = helper.In.y - m_C1y;
T den = Zeps(SQR(xmc1x) + SQR(ymc1y));
T c1r2 = SQR(m_C1r);
T x = m_C1x + (c1r2 * xmc1x) / den;
T y = m_C1y + (c1r2 * ymc1y) / den;
T xmc2x = x - m_C2x;
T ymc2y = y - m_C2y;
T c2r2 = SQR(m_C2r);
den = Zeps(SQR(xmc2x) + SQR(ymc2y));
helper.Out.x = m_C2x + (c2r2 * xmc2x) / den;
helper.Out.y = m_C2y + (c2r2 * ymc2y) / den;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string c1r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c1a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c1x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c1y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c1d = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2d = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t xmc1x = vIn.x - " << c1x << ";\n"
<< "\t\treal_t ymc1y = vIn.y - " << c1y << ";\n"
<< "\t\treal_t den = Zeps(fma(xmc1x, xmc1x, SQR(ymc1y)));\n"
<< "\t\treal_t c1r2 = SQR(" << c1r << ");\n"
<< "\t\treal_t x = " << c1x << " + (c1r2 * xmc1x) / den;\n"
<< "\t\treal_t y = " << c1y << " + (c1r2 * ymc1y) / den;\n"
<< "\n"
<< "\t\treal_t xmc2x = x - " << c2x << ";\n"
<< "\t\treal_t ymc2y = y - " << c2y << ";\n"
<< "\t\treal_t c2r2 = SQR(" << c2r << ");\n"
<< "\t\tden = Zeps(fma(xmc2x, xmc2x, SQR(ymc2y)));\n"
<< "\t\tvOut.x = " << c2x << " + (c2r2 * xmc2x) / den;\n"
<< "\t\tvOut.y = " << c2y << " + (c2r2 * ymc2y) / den;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_C1d = std::sqrt(1 + SQR(m_C1r));
m_C2d = std::sqrt(1 + SQR(m_C2r));
m_C1x = m_C1d * std::cos(fmod(m_C1a, T(M_PI)));
m_C1y = m_C1d * std::sin(fmod(m_C1a, T(M_PI)));
m_C2x = m_C2d * std::cos(fmod(m_C2a, T(M_PI)));
m_C2y = m_C2d * std::sin(fmod(m_C2a, T(M_PI)));
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Sqr", "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_C1r, prefix + "poincare_c1r", 1));
m_Params.push_back(ParamWithName<T>(&m_C1a, prefix + "poincare_c1a", -1, eParamType::REAL_CYCLIC, T(-M_PI), T(M_PI)));
m_Params.push_back(ParamWithName<T>(&m_C2r, prefix + "poincare_c2r", 1));
m_Params.push_back(ParamWithName<T>(&m_C2a, prefix + "poincare_c2a", 1, eParamType::REAL_CYCLIC, T(-M_PI), T(M_PI)));
m_Params.push_back(ParamWithName<T>(true, &m_C1x, prefix + "poincare_c1x"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_C1y, prefix + "poincare_c1y"));
m_Params.push_back(ParamWithName<T>(true, &m_C2x, prefix + "poincare_c2x"));
m_Params.push_back(ParamWithName<T>(true, &m_C2y, prefix + "poincare_c2y"));
m_Params.push_back(ParamWithName<T>(true, &m_C1d, prefix + "poincare_c1d"));
m_Params.push_back(ParamWithName<T>(true, &m_C2d, prefix + "poincare_c2d"));
}
private:
T m_C1r;
T m_C1a;
T m_C2r;
T m_C2a;
T m_C1x;//Precalc.
T m_C1y;
T m_C2x;
T m_C2y;
T m_C1d;
T m_C2d;
};
/// <summary>
/// Poincare3D.
/// </summary>
template <typename T>
class Poincare3DVariation : public ParametricVariation<T>
{
public:
Poincare3DVariation(T weight = 1.0) : ParametricVariation<T>("poincare3D", eVariationId::VAR_POINCARE3D, weight, true)
{
Init();
}
PARVARCOPY(Poincare3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r2 = helper.m_PrecalcSumSquares + SQR(helper.In.z);
T x2cx = m_C2x * helper.In.x;
T y2cy = m_C2y * helper.In.y;
T z2cz = m_C2z * helper.In.z;
T val = Zeps(m_C2 * r2 - x2cx - y2cy - z2cz + 1);
T d = m_Weight / val;
helper.Out.x = d * (helper.In.x * m_S2x + m_Cx * (y2cy + z2cz - r2 - 1));
helper.Out.y = d * (helper.In.y * m_S2y + m_Cy * (x2cx + z2cz - r2 - 1));
helper.Out.z = d * (helper.In.z * m_S2z + m_Cz * (y2cy + x2cx - r2 - 1));
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cz = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r2 = fma(vIn.z, vIn.z, precalcSumSquares);\n"
<< "\t\treal_t x2cx = " << c2x << " * vIn.x;\n"
<< "\t\treal_t y2cy = " << c2y << " * vIn.y;\n"
<< "\t\treal_t z2cz = " << c2z << " * vIn.z;\n"
<< "\t\treal_t val = Zeps(" << c2 << " * r2 - x2cx - y2cy - z2cz + (real_t)(1.0));\n"
<< "\t\treal_t d = " << weight << " / val;\n"
<< "\n"
<< "\t\tvOut.x = d * fma(vIn.x, " << s2x << ", " << cx << " * (y2cy + z2cz - r2 - (real_t)(1.0)));\n"
<< "\t\tvOut.y = d * fma(vIn.y, " << s2y << ", " << cy << " * (x2cx + z2cz - r2 - (real_t)(1.0)));\n"
<< "\t\tvOut.z = d * fma(vIn.z, " << s2z << ", " << cz << " * (y2cy + x2cx - r2 - (real_t)(1.0)));\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
virtual void Precalc() override
{
m_Cx = -m_R * std::cos(m_A * T(M_PI_2)) * std::cos(m_B * T(M_PI_2));
m_Cy = m_R * std::sin(m_A * T(M_PI_2)) * std::cos(m_B * T(M_PI_2));
m_Cz = -m_R * std::sin(m_B * T(M_PI_2));
m_C2 = SQR(m_Cx) + SQR(m_Cy) + SQR(m_Cz);
m_C2x = 2 * m_Cx;
m_C2y = 2 * m_Cy;
m_C2z = 2 * m_Cz;
m_S2x = SQR(m_Cx) - SQR(m_Cy) - SQR(m_Cz) + 1;
m_S2y = SQR(m_Cy) - SQR(m_Cx) - SQR(m_Cz) + 1;
m_S2z = SQR(m_Cz) - SQR(m_Cy) - SQR(m_Cx) + 1;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_R, prefix + "poincare3D_r"));
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "poincare3D_a"));
m_Params.push_back(ParamWithName<T>(&m_B, prefix + "poincare3D_b"));
m_Params.push_back(ParamWithName<T>(true, &m_Cx, prefix + "poincare3D_cx"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cy, prefix + "poincare3D_cy"));
m_Params.push_back(ParamWithName<T>(true, &m_Cz, prefix + "poincare3D_cz"));
m_Params.push_back(ParamWithName<T>(true, &m_C2, prefix + "poincare3D_c2"));
m_Params.push_back(ParamWithName<T>(true, &m_C2x, prefix + "poincare3D_c2x"));
m_Params.push_back(ParamWithName<T>(true, &m_C2y, prefix + "poincare3D_c2y"));
m_Params.push_back(ParamWithName<T>(true, &m_C2z, prefix + "poincare3D_c2z"));
m_Params.push_back(ParamWithName<T>(true, &m_S2x, prefix + "poincare3D_s2x"));
m_Params.push_back(ParamWithName<T>(true, &m_S2y, prefix + "poincare3D_s2y"));
m_Params.push_back(ParamWithName<T>(true, &m_S2z, prefix + "poincare3D_s2z"));
}
private:
T m_R;
T m_A;
T m_B;
T m_Cx;//Precalc.
T m_Cy;
T m_Cz;
T m_C2;
T m_C2x;
T m_C2y;
T m_C2z;
T m_S2x;
T m_S2y;
T m_S2z;
};
/// <summary>
/// Polynomial.
/// </summary>
template <typename T>
class PolynomialVariation : public ParametricVariation<T>
{
public:
PolynomialVariation(T weight = 1.0) : ParametricVariation<T>("polynomial", eVariationId::VAR_POLYNOMIAL, weight)
{
Init();
}
PARVARCOPY(PolynomialVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T xp = std::pow(std::abs(m_Weight) * std::abs(helper.In.x), m_Powx);//Original did not fabs.
T yp = std::pow(std::abs(m_Weight) * std::abs(helper.In.y), m_Powy);
helper.Out.x = xp * VarFuncs<T>::Sign(helper.In.x) + m_Lcx * helper.In.x + m_Scx;
helper.Out.y = yp * VarFuncs<T>::Sign(helper.In.y) + m_Lcy * helper.In.y + m_Scy;
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string powx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string powy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string lcx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string lcy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t xp = pow(fabs(" << weight << ") * fabs(vIn.x), " << powx << ");\n"
<< "\t\treal_t yp = pow(fabs(" << weight << ") * fabs(vIn.y), " << powy << ");\n"
<< "\t\treal_t zp = " << weight << " * vIn.z;\n"
<< "\n"
<< "\t\tvOut.x = fma(xp, Sign(vIn.x), fma(" << lcx << ", vIn.x, " << scx << "));\n"
<< "\t\tvOut.y = fma(yp, Sign(vIn.y), fma(" << lcy << ", vIn.y, " << scy << "));\n"
<< "\t\tvOut.z = zp;\n"
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Powx, prefix + "polynomial_powx", 1));
m_Params.push_back(ParamWithName<T>(&m_Powy, prefix + "polynomial_powy", 1));
m_Params.push_back(ParamWithName<T>(&m_Lcx, prefix + "polynomial_lcx"));
m_Params.push_back(ParamWithName<T>(&m_Lcy, prefix + "polynomial_lcy"));
m_Params.push_back(ParamWithName<T>(&m_Scx, prefix + "polynomial_scx"));
m_Params.push_back(ParamWithName<T>(&m_Scy, prefix + "polynomial_scy"));
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Sign" };
}
private:
T m_Powx;
T m_Powy;
T m_Lcx;
T m_Lcy;
T m_Scx;
T m_Scy;
};
/// <summary>
/// PSphere.
/// </summary>
template <typename T>
class PSphereVariation : public ParametricVariation<T>
{
public:
PSphereVariation(T weight = 1.0) : ParametricVariation<T>("psphere", eVariationId::VAR_PSPHERE, weight)
{
Init();
}
PARVARCOPY(PSphereVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T c0 = helper.In.x * m_Vpi;
T c1 = helper.In.y * m_Vpi;
T sinc0, cosc0, sinc1, cosc1;
sincos(c0, &sinc0, &cosc0);
sincos(c1, &sinc1, &cosc1);
helper.Out.x = cosc0 * -sinc1;
helper.Out.y = sinc0 * cosc1;
helper.Out.z = cosc1 * m_ZScale;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string zscale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vpi = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t c0 = vIn.x * " << vpi << ";\n"
<< "\t\treal_t c1 = vIn.y * " << vpi << ";\n"
<< "\n"
<< "\t\treal_t sinc0 = sin(c0);\n"
<< "\t\treal_t cosc0 = cos(c0);\n"
<< "\t\treal_t sinc1 = sin(c1);\n"
<< "\t\treal_t cosc1 = cos(c1);\n"
<< "\n"
<< "\t\tvOut.x = cosc0 * -sinc1;\n"
<< "\t\tvOut.y = sinc0 * cosc1;\n"
<< "\t\tvOut.z = cosc1 * " << zscale << ";\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Vpi = m_Weight * T(M_PI);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_ZScale, prefix + "psphere_zscale"));
m_Params.push_back(ParamWithName<T>(true, &m_Vpi, prefix + "psphere_vpi"));//Precalc.
}
private:
T m_ZScale;
T m_Vpi;//Precalc.
};
/// <summary>
/// Rational3.
/// </summary>
template <typename T>
class Rational3Variation : public ParametricVariation<T>
{
public:
Rational3Variation(T weight = 1.0) : ParametricVariation<T>("rational3", eVariationId::VAR_RATIONAL3, weight)
{
Init();
}
PARVARCOPY(Rational3Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T xsqr = helper.In.x * helper.In.x;
T ysqr = helper.In.y * helper.In.y;
T xcb = helper.In.x * helper.In.x * helper.In.x;
T ycb = helper.In.y * helper.In.y * helper.In.y;
T tr = m_T3 * (xcb - 3 * helper.In.x * ysqr) + m_T2 * (xsqr - ysqr) + m_T1 * helper.In.x + m_Tc;
T ti = m_T3 * (3 * xsqr * helper.In.y - ycb) + m_T2 * 2 * helper.In.x * helper.In.y + m_T1 * helper.In.y;
T br = m_B3 * (xcb - 3 * helper.In.x * ysqr) + m_B2 * (xsqr - ysqr) + m_B1 * helper.In.x + m_Bc;
T bi = m_B3 * (3 * xsqr * helper.In.y - ycb) + m_B2 * 2 * helper.In.x * helper.In.y + m_B1 * helper.In.y;
T r3den = 1 / Zeps(br * br + bi * bi);
helper.Out.x = m_Weight * (tr * br + ti * bi) * r3den;
helper.Out.y = m_Weight * (ti * br - tr * bi) * r3den;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string t3 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string t2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string t1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string tc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b3 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t xsqr = vIn.x * vIn.x;\n"
<< "\t\treal_t ysqr = vIn.y * vIn.y;\n"
<< "\t\treal_t xcb = vIn.x * vIn.x * vIn.x;\n"
<< "\t\treal_t ycb = vIn.y * vIn.y * vIn.y;\n"
<< "\n"
<< "\t\treal_t tr = fma(" << t3 << ", (xcb - 3 * vIn.x * ysqr), fma(" << t2 << ", (xsqr - ysqr), fma(" << t1 << ", vIn.x, " << tc << ")));\n"
<< "\t\treal_t ti = fma(" << t3 << ", (3 * xsqr * vIn.y - ycb), fma(" << t2 << " * 2, vIn.x * vIn.y, " << t1 << " * vIn.y));\n"
<< "\n"
<< "\t\treal_t br = fma(" << b3 << ", (xcb - 3 * vIn.x * ysqr), fma(" << b2 << ", (xsqr - ysqr), fma(" << b1 << ", vIn.x, " << bc << ")));\n"
<< "\t\treal_t bi = fma(" << b3 << ", (3 * xsqr * vIn.y - ycb), fma(" << b2 << ", 2 * vIn.x * vIn.y, " << b1 << " * vIn.y));\n"
<< "\n"
<< "\t\treal_t r3den = 1 / Zeps(fma(br, br, bi * bi));\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * fma(tr, br, ti * bi) * r3den;\n"
<< "\t\tvOut.y = " << weight << " * fma(ti, br, -(tr * bi)) * r3den;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_T3, prefix + "rational3_t3", 1));
m_Params.push_back(ParamWithName<T>(&m_T2, prefix + "rational3_t2"));
m_Params.push_back(ParamWithName<T>(&m_T1, prefix + "rational3_t1"));
m_Params.push_back(ParamWithName<T>(&m_Tc, prefix + "rational3_tc", 1));
m_Params.push_back(ParamWithName<T>(&m_B3, prefix + "rational3_b3"));
m_Params.push_back(ParamWithName<T>(&m_B2, prefix + "rational3_b2", 1));
m_Params.push_back(ParamWithName<T>(&m_B1, prefix + "rational3_b1"));
m_Params.push_back(ParamWithName<T>(&m_Bc, prefix + "rational3_bc", 1));
}
private:
T m_T3;
T m_T2;
T m_T1;
T m_Tc;
T m_B3;
T m_B2;
T m_B1;
T m_Bc;
};
/// <summary>
/// Ripple.
/// </summary>
template <typename T>
class RippleVariation : public ParametricVariation<T>
{
public:
RippleVariation(T weight = 1.0) : ParametricVariation<T>("ripple", eVariationId::VAR_RIPPLE, weight)
{
Init();
}
PARVARCOPY(RippleVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
//Align input x, y to given center and multiply with scale.
T x = (helper.In.x * m_S) - m_CenterX;
T y = (helper.In.y * m_S) + m_CenterY;
//Calculate distance from center but constrain it to EPS.
T d = std::max(EPS, std::sqrt(SQR(x) * SQR(y)));
//Normalize x and y.
T nx = x / d;
T ny = y / d;
//Calculate cosine wave with given frequency, velocity
//and phase based on the distance to center.
T wave = std::cos(m_F * d - m_Vxp);
//Calculate the wave offsets
T d1 = wave * m_Pxa + d;
T d2 = wave * m_Pixa + d;
//We got two offsets, so we also got two new positions (u,v).
T u1 = m_CenterX + nx * d1;
T v1 = -m_CenterY + ny * d1;
T u2 = m_CenterX + nx * d2;
T v2 = -m_CenterY + ny * d2;
//Interpolate the two positions by the given phase and
//invert the multiplication with scale from before.
helper.Out.x = m_Weight * Lerp<T>(u1, u2, m_P) * m_Is;//Original did a direct assignment to outPoint, which is incompatible with Ember's design.
helper.Out.y = m_Weight * Lerp<T>(v1, v2, m_P) * m_Is;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string frequency = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string velocity = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string amplitude = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centerx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centery = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string phase = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string f = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string is = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vxp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pxa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pixa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = fma(vIn.x, " << s << ", -" << centerx << ");\n"
<< "\t\treal_t y = fma(vIn.y, " << s << ", " << centery << ");\n"
<< "\n"
<< "\t\treal_t d = max(EPS, sqrt(SQR(x) * SQR(y)));\n"
<< "\n"
<< "\t\treal_t nx = x / d;\n"
<< "\t\treal_t ny = y / d;\n"
<< "\n"
<< "\t\treal_t wave = cos(fma(" << f << ", d, -" << vxp << "));\n"
<< "\n"
<< "\t\treal_t d1 = fma(wave, " << pxa << ", d);\n"
<< "\t\treal_t d2 = fma(wave, " << pixa << ", d);\n"
<< "\n"
<< "\t\treal_t u1 = fma(nx, d1, " << centerx << ");\n"
<< "\t\treal_t v1 = fma(ny, d1, -" << centery << ");\n"
<< "\t\treal_t u2 = fma(nx, d2, " << centerx << ");\n"
<< "\t\treal_t v2 = fma(ny, d2, -" << centery << ");\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * Lerp(u1, u2, " << p << ") * " << is << ";\n"
<< "\t\tvOut.y = " << weight << " * Lerp(v1, v2, " << p << ") * " << is << ";\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Lerp" };
}
virtual void Precalc() override
{
m_F = m_Frequency * 5;
m_A = m_Amplitude * T(0.01);
m_P = m_Phase * M_2PI - T(M_PI);
m_S = Zeps(m_Scale);//Scale must not be zero.
m_Is = 1 / m_S;//Need the inverse scale.
//Pre-multiply velocity + phase, phase + amplitude and (PI - phase) + amplitude.
m_Vxp = m_Velocity * m_P;
m_Pxa = m_P * m_A;
m_Pixa = (T(M_PI) - m_P) * m_A;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Frequency, prefix + "ripple_frequency", 2));
m_Params.push_back(ParamWithName<T>(&m_Velocity, prefix + "ripple_velocity", 1));
m_Params.push_back(ParamWithName<T>(&m_Amplitude, prefix + "ripple_amplitude", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_CenterX, prefix + "ripple_centerx"));
m_Params.push_back(ParamWithName<T>(&m_CenterY, prefix + "ripple_centery"));
m_Params.push_back(ParamWithName<T>(&m_Phase, prefix + "ripple_phase"));
m_Params.push_back(ParamWithName<T>(&m_Scale, prefix + "ripple_scale", 1));
m_Params.push_back(ParamWithName<T>(true, &m_F, prefix + "ripple_f"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_A, prefix + "ripple_a"));
m_Params.push_back(ParamWithName<T>(true, &m_P, prefix + "ripple_p"));
m_Params.push_back(ParamWithName<T>(true, &m_S, prefix + "ripple_s"));
m_Params.push_back(ParamWithName<T>(true, &m_Is, prefix + "ripple_is"));
m_Params.push_back(ParamWithName<T>(true, &m_Vxp, prefix + "ripple_vxp"));
m_Params.push_back(ParamWithName<T>(true, &m_Pxa, prefix + "ripple_pxa"));
m_Params.push_back(ParamWithName<T>(true, &m_Pixa, prefix + "ripple_pixa"));
}
private:
T m_Frequency;
T m_Velocity;
T m_Amplitude;
T m_CenterX;
T m_CenterY;
T m_Phase;
T m_Scale;
T m_F;//Precalc.
T m_A;
T m_P;
T m_S;
T m_Is;
T m_Vxp;
T m_Pxa;
T m_Pixa;
};
/// <summary>
/// Sigmoid.
/// </summary>
template <typename T>
class SigmoidVariation : public ParametricVariation<T>
{
public:
SigmoidVariation(T weight = 1.0) : ParametricVariation<T>("sigmoid", eVariationId::VAR_SIGMOID, weight)
{
Init();
}
PARVARCOPY(SigmoidVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T c0 = m_Ax / (1 + std::exp(m_Sx * helper.In.x));
T c1 = m_Ay / (1 + std::exp(m_Sy * helper.In.y));
T x = (2 * (c0 - T(0.5)));
T y = (2 * (c1 - T(0.5)));
helper.Out.x = m_Vv * x;
helper.Out.y = m_Vv * y;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string shiftX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string shiftY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ax = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ay = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vv = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t c0 = " << ax << " / (1 + exp(" << sx << " * vIn.x));\n"
<< "\t\treal_t c1 = " << ay << " / (1 + exp(" << sy << " * vIn.y));\n"
<< "\t\treal_t x = (2 * (c0 - (real_t)(0.5)));\n"
<< "\t\treal_t y = (2 * (c1 - (real_t)(0.5)));\n"
<< "\n"
<< "\t\tvOut.x = " << vv << " * x;\n"
<< "\t\tvOut.y = " << vv << " * y;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Sx = m_ShiftX;
m_Sy = m_ShiftY;
m_Ax = 1;
m_Ay = 1;
if (m_Sx < 1 && m_Sx > -1)
{
if (m_Sx == 0)
{
m_Sx = EPS;
m_Ax = 1;
}
else
{
m_Ax = T(m_Sx < 0 ? -1 : 1);
m_Sx = 1 / m_Sx;
}
}
if (m_Sy < 1 && m_Sy > -1)
{
if (m_Sy == 0)
{
m_Sy = EPS;
m_Ay = 1;
}
else
{
m_Ay = T(m_Sy < 0 ? -1 : 1);
m_Sy = 1 / m_Sy;
}
}
m_Sx *= -5;
m_Sy *= -5;
m_Vv = std::abs(m_Weight);
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_ShiftX, prefix + "sigmoid_shiftx", 1));
m_Params.push_back(ParamWithName<T>(&m_ShiftY, prefix + "sigmoid_shifty", 1));
m_Params.push_back(ParamWithName<T>(true, &m_Sx, prefix + "sigmoid_sx"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Sy, prefix + "sigmoid_sy"));
m_Params.push_back(ParamWithName<T>(true, &m_Ax, prefix + "sigmoid_ax"));
m_Params.push_back(ParamWithName<T>(true, &m_Ay, prefix + "sigmoid_ay"));
m_Params.push_back(ParamWithName<T>(true, &m_Vv, prefix + "sigmoid_vv"));
}
private:
T m_ShiftX;
T m_ShiftY;
T m_Sx;//Precalc.
T m_Sy;
T m_Ax;
T m_Ay;
T m_Vv;
};
/// <summary>
/// SinusGrid.
/// </summary>
template <typename T>
class SinusGridVariation : public ParametricVariation<T>
{
public:
SinusGridVariation(T weight = 1.0) : ParametricVariation<T>("sinusgrid", eVariationId::VAR_SINUS_GRID, weight)
{
Init();
}
PARVARCOPY(SinusGridVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = helper.In.x;
T y = helper.In.y;
T sx = -1 * std::cos(x * m_Fx);
T sy = -1 * std::cos(y * m_Fy);
T tx = Lerp(helper.In.x, sx, m_Ax);
T ty = Lerp(helper.In.y, sy, m_Ay);
helper.Out.x = m_Weight * tx;
helper.Out.y = m_Weight * ty;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string ampX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ampY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string freqX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string freqY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string fx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string fy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ax = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ay = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = vIn.x;\n"
<< "\t\treal_t y = vIn.y;\n"
<< "\t\treal_t sx = -1 * cos(x * " << fx << ");\n"
<< "\t\treal_t sy = -1 * cos(y * " << fy << ");\n"
<< "\t\treal_t tx = Lerp(vIn.x, sx, " << ax << ");\n"
<< "\t\treal_t ty = Lerp(vIn.y, sy, " << ay << ");\n"
<< "\t\treal_t tz = vIn.z;\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * tx;\n"
<< "\t\tvOut.y = " << weight << " * ty;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Lerp" };
}
virtual void Precalc() override
{
m_Ax = m_AmpX;
m_Ay = m_AmpY;
m_Fx = Zeps(m_FreqX * M_2PI);
m_Fy = Zeps(m_FreqY * M_2PI);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_AmpX, prefix + "sinusgrid_ampx", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_AmpY, prefix + "sinusgrid_ampy", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_FreqX, prefix + "sinusgrid_freqx", 1));
m_Params.push_back(ParamWithName<T>(&m_FreqY, prefix + "sinusgrid_freqy", 1));
m_Params.push_back(ParamWithName<T>(true, &m_Fx, prefix + "sinusgrid_fx"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Fy, prefix + "sinusgrid_fy"));
m_Params.push_back(ParamWithName<T>(true, &m_Ax, prefix + "sinusgrid_ax"));
m_Params.push_back(ParamWithName<T>(true, &m_Ay, prefix + "sinusgrid_ay"));
}
private:
T m_AmpX;
T m_AmpY;
T m_FreqX;
T m_FreqY;
T m_Fx;//Precalc.
T m_Fy;
T m_Ax;
T m_Ay;
};
/// <summary>
/// Stwin.
/// </summary>
template <typename T>
class StwinVariation : public ParametricVariation<T>
{
public:
StwinVariation(T weight = 1.0) : ParametricVariation<T>("stwin", eVariationId::VAR_STWIN, weight)
{
Init();
}
PARVARCOPY(StwinVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
const T multiplier = T(0.05);
T x = helper.In.x * m_Weight * multiplier;
T y = helper.In.y * m_Weight * multiplier;
T x2 = SQR(x);
T y2 = SQR(y);
T xPlusy = x + y;
T x2Minusy2 = x2 - y2;
T x2Plusy2 = x2 + y2;
T result = x2Minusy2 * std::sin(M_2PI * m_Distort * xPlusy);
T divident = 1;
if (x2Plusy2 != 0)
divident = x2Plusy2;
result /= divident;
helper.Out.x = m_Weight * helper.In.x + result;
helper.Out.y = m_Weight * helper.In.y + result;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string distort = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = vIn.x * " << weight << " * (real_t)(0.05);\n"
<< "\t\treal_t y = vIn.y * " << weight << " * (real_t)(0.05);\n"
<< "\t\treal_t x2 = SQR(x);\n"
<< "\t\treal_t y2 = SQR(y);\n"
<< "\t\treal_t xPlusy = x + y;\n"
<< "\t\treal_t x2Minusy2 = x2 - y2;\n"
<< "\t\treal_t x2Plusy2 = x2 + y2;\n"
<< "\t\treal_t result = x2Minusy2 * sin(M_2PI * " << distort << " * xPlusy);\n"
<< "\t\treal_t divident = 1;\n"
<< "\n"
<< "\t\tif (x2Plusy2 != 0)\n"
<< "\t\t divident = x2Plusy2;\n"
<< "\n"
<< "\t\tresult /= divident;\n"
<< "\n"
<< "\t\tvOut.x = fma(" << weight << ", vIn.x, result);\n"
<< "\t\tvOut.y = fma(" << weight << ", vIn.y, result);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Distort, prefix + "stwin_distort", 1));//Original had a misspelling of swtin, which is incompatible with Ember's design.
}
private:
T m_Distort;
};
/// <summary>
/// TwoFace.
/// </summary>
template <typename T>
class TwoFaceVariation : public Variation<T>
{
public:
TwoFaceVariation(T weight = 1.0) : Variation<T>("twoface", eVariationId::VAR_TWO_FACE, weight, true) { }
VARCOPY(TwoFaceVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = m_Weight;
if (helper.In.x > 0)
r /= helper.m_PrecalcSumSquares;
helper.Out.x = r * helper.In.x;
helper.Out.y = r * helper.In.y;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t r = " << weight << ";\n"
<< "\n"
<< "\t\tif (vIn.x > 0)\n"
<< "\t\t r /= precalcSumSquares;\n"
<< "\n"
<< "\t\tvOut.x = r * vIn.x;\n"
<< "\t\tvOut.y = r * vIn.y;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Unpolar.
/// </summary>
template <typename T>
class UnpolarVariation : public ParametricVariation<T>
{
public:
UnpolarVariation(T weight = 1.0) : ParametricVariation<T>("unpolar", eVariationId::VAR_UNPOLAR, weight)
{
Init();
}
PARVARCOPY(UnpolarVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = std::exp(helper.In.y);
T s = std::sin(helper.In.x);
T c = std::cos(helper.In.x);
helper.Out.x = m_Vvar2 * r * s;
helper.Out.y = m_Vvar2 * r * c;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string vvar2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
ss << "\t{\n"
<< "\t\treal_t r = exp(vIn.y);\n"
<< "\t\treal_t s = sin(vIn.x);\n"
<< "\t\treal_t c = cos(vIn.x);\n"
<< "\n"
<< "\t\tvOut.x = " << vvar2 << " * r * s;\n"
<< "\t\tvOut.y = " << vvar2 << " * r * c;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Vvar2 = (m_Weight / T(M_PI)) * T(0.5);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_Vvar2, prefix + "unpolar_vvar_2"));//Precalcs only, no params.
}
private:
T m_Vvar2;//Precalcs only, no params.
};
/// <summary>
/// WavesN.
/// </summary>
template <typename T>
class WavesNVariation : public ParametricVariation<T>
{
public:
WavesNVariation(T weight = 1.0) : ParametricVariation<T>("wavesn", eVariationId::VAR_WAVESN, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(WavesNVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T angle = (helper.m_PrecalcAtanyx + M_2PI * rand.Rand(int(m_AbsN))) / m_Power;
T r = m_Weight * std::pow(helper.m_PrecalcSumSquares, m_Cn);
T sina = std::sin(angle);
T cosa = std::cos(angle);
T xn = r * cosa;
T yn = r * sina;
T siny = std::sin(m_FreqX * yn);
T sinx = std::sin(m_FreqY * xn);
T dx = xn + T(0.5) * (m_ScaleX * siny + std::abs(xn) * m_IncX * siny);
T dy = yn + T(0.5) * (m_ScaleY * sinx + std::abs(yn) * m_IncY * sinx);
helper.Out.x = m_Weight * dx;
helper.Out.y = m_Weight * dy;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string freqX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string freqY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scaleX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scaleY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string incX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string incY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t angle = fma(M_2PI, (real_t)MwcNextRange(mwc, (uint)" << absn << "), precalcAtanyx) / " << power << ";\n"
<< "\t\treal_t r = " << weight << " * pow(precalcSumSquares, " << cn << ");\n"
<< "\t\treal_t sina = sin(angle);\n"
<< "\t\treal_t cosa = cos(angle);\n"
<< "\t\treal_t xn = r * cosa;\n"
<< "\t\treal_t yn = r * sina;\n"
<< "\t\treal_t siny = sin(" << freqX << " * yn);\n"
<< "\t\treal_t sinx = sin(" << freqY << " * xn);\n"
<< "\t\treal_t dx = fma((real_t)(0.5), fma(" << scaleX << ", siny, fabs(xn) * " << incX << " * siny), xn);\n"
<< "\t\treal_t dy = fma((real_t)(0.5), fma(" << scaleY << ", sinx, fabs(yn) * " << incY << " * sinx), yn);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * dx;\n"
<< "\t\tvOut.y = " << weight << " * dy;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
if (m_Power == 0)
m_Power = 2;
m_AbsN = T(int(std::abs(m_Power)));
m_Cn = 1 / m_Power / 2;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_FreqX, prefix + "wavesn_freqx", 2));
m_Params.push_back(ParamWithName<T>(&m_FreqY, prefix + "wavesn_freqy", 2));
m_Params.push_back(ParamWithName<T>(&m_ScaleX, prefix + "wavesn_scalex", 1));
m_Params.push_back(ParamWithName<T>(&m_ScaleY, prefix + "wavesn_scaley", 1));
m_Params.push_back(ParamWithName<T>(&m_IncX, prefix + "wavesn_incx"));
m_Params.push_back(ParamWithName<T>(&m_IncY, prefix + "wavesn_incy"));
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "wavesn_power", 1, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(true, &m_AbsN, prefix + "wavesn_absn"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cn, prefix + "wavesn_cn"));
}
private:
T m_FreqX;
T m_FreqY;
T m_ScaleX;
T m_ScaleY;
T m_IncX;
T m_IncY;
T m_Power;
T m_AbsN;//Precalc.
T m_Cn;
};
/// <summary>
/// XHeart.
/// </summary>
template <typename T>
class XHeartVariation : public ParametricVariation<T>
{
public:
XHeartVariation(T weight = 1.0) : ParametricVariation<T>("xheart", eVariationId::VAR_XHEART, weight, true)
{
Init();
}
PARVARCOPY(XHeartVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r2_4 = helper.m_PrecalcSumSquares + 4;
if (r2_4 == 0)
r2_4 = 1;
T bx = 4 / r2_4;
T by = m_Rat / r2_4;
T x = m_Cosa * (bx * helper.In.x) - m_Sina * (by * helper.In.y);
T y = m_Sina * (bx * helper.In.x) + m_Cosa * (by * helper.In.y);
if (x > 0)
{
helper.Out.x = m_Weight * x;
helper.Out.y = m_Weight * y;
}
else
{
helper.Out.x = m_Weight * x;
helper.Out.y = -m_Weight * y;
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string angle = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ratio = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cosa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sina = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rat = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r2_4 = precalcSumSquares + 4;\n"
<< "\n"
<< "\t\tif (r2_4 == 0)\n"
<< "\t\t r2_4 = 1;\n"
<< "\n"
<< "\t\treal_t bx = 4 / r2_4;\n"
<< "\t\treal_t by = " << rat << " / r2_4;\n"
<< "\t\treal_t bxx = bx * vIn.x;\n"
<< "\t\treal_t byy = by * vIn.y;\n"
<< "\t\treal_t x = fma(" << cosa << ", bxx, -(" << sina << " * byy));\n"
<< "\t\treal_t y = fma(" << sina << ", bxx, " << cosa << " * byy);\n"
<< "\n"
<< "\t\tif (x > 0)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * x;\n"
<< "\t\t vOut.y = " << weight << " * y;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * x;\n"
<< "\t\t vOut.y = -" << weight << " * y;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T ang = T(M_PI_4) + (T(0.5) * T(M_PI_4) * m_Angle);
sincos(ang, &m_Sina, &m_Cosa);
m_Rat = 6 + 2 * m_Ratio;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Angle, prefix + "xheart_angle"));
m_Params.push_back(ParamWithName<T>(&m_Ratio, prefix + "xheart_ratio"));
m_Params.push_back(ParamWithName<T>(true, &m_Cosa, prefix + "xheart_cosa"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Sina, prefix + "xheart_sina"));
m_Params.push_back(ParamWithName<T>(true, &m_Rat, prefix + "xheart_rat"));
}
private:
T m_Angle;
T m_Ratio;
T m_Cosa;//Precalc.
T m_Sina;
T m_Rat;
};
/// <summary>
/// Barycentroid.
/// </summary>
template <typename T>
class BarycentroidVariation : public ParametricVariation<T>
{
public:
BarycentroidVariation(T weight = 1.0) : ParametricVariation<T>("barycentroid", eVariationId::VAR_BARYCENTROID, weight)
{
Init();
}
PARVARCOPY(BarycentroidVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
//Compute dot products.
T dot00 = SQR(m_A) + SQR(m_B);//v0 * v0.
T dot01 = m_A * m_C + m_B * m_D;//v0 * v1.
T dot02 = m_A * helper.In.x + m_B * helper.In.y;//v0 * v2.
T dot11 = SQR(m_C) + SQR(m_D);//v1 * v1.
T dot12 = m_C * helper.In.x + m_D * helper.In.y;//v1 * v2.
//Compute inverse denomiator.
T invDenom = 1 / Zeps(dot00 * dot11 - dot01 * dot01);
//Now we can pull [u,v] as the barycentric coordinates of the point
//P in the triangle [A, B, C].
T u = (dot11 * dot02 - dot01 * dot12) * invDenom;
T v = (dot00 * dot12 - dot01 * dot02) * invDenom;
// now combine with input
T um = std::sqrt(SQR(u) + SQR(helper.In.x)) * VarFuncs<T>::Sign(u);
T vm = std::sqrt(SQR(v) + SQR(helper.In.y)) * VarFuncs<T>::Sign(v);
helper.Out.x = m_Weight * um;
helper.Out.y = m_Weight * vm;
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string d = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t dot00 = fma(" << a << ", " << a << ", SQR(" << b << "));\n"
<< "\t\treal_t dot01 = fma(" << a << ", " << c << ", " << b << " * " << d << ");\n"
<< "\t\treal_t dot02 = fma(" << a << ", vIn.x, " << b << " * vIn.y);\n"
<< "\t\treal_t dot11 = fma(" << c << ", " << c << ", SQR(" << d << "));\n"
<< "\t\treal_t dot12 = fma(" << c << ", vIn.x, " << d << " * vIn.y);\n"
<< "\t\treal_t invDenom = (real_t)(1.0) / Zeps(fma(dot00, dot11, -(dot01 * dot01)));\n"
<< "\t\treal_t u = fma(dot11, dot02, -(dot01 * dot12)) * invDenom;\n"
<< "\t\treal_t v = fma(dot00, dot12, -(dot01 * dot02)) * invDenom;\n"
<< "\t\treal_t um = sqrt(fma(u, u, SQR(vIn.x))) * Sign(u);\n"
<< "\t\treal_t vm = sqrt(fma(v, v, SQR(vIn.y))) * Sign(v);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * um;\n"
<< "\t\tvOut.y = " << weight << " * vm;\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Sign", "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "barycentroid_a", 1));
m_Params.push_back(ParamWithName<T>(&m_B, prefix + "barycentroid_b"));
m_Params.push_back(ParamWithName<T>(&m_C, prefix + "barycentroid_c"));
m_Params.push_back(ParamWithName<T>(&m_D, prefix + "barycentroid_d", 1));
}
private:
T m_A;
T m_B;
T m_C;
T m_D;
};
/// <summary>
/// BiSplit.
/// </summary>
template <typename T>
class BiSplitVariation : public ParametricVariation<T>
{
public:
BiSplitVariation(T weight = 1.0) : ParametricVariation<T>("bisplit", eVariationId::VAR_BISPLIT, weight)
{
Init();
}
PARVARCOPY(BiSplitVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = m_Weight01 / SafeTan<T>(helper.In.x) * std::cos(helper.In.y);
helper.Out.y = m_Weight01 / std::sin(helper.In.x) * (-helper.In.y);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string weight01 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tvOut.x = " << weight01 << " / tan(vIn.x) * cos(vIn.y);\n"
<< "\t\tvOut.y = " << weight01 << " / sin(vIn.x) * (-vIn.y);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Weight01 = m_Weight * T(0.1);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_Weight01, prefix + "bisplit_weight01"));//Precalc only.
}
private:
T m_Weight01;
};
/// <summary>
/// Crescents.
/// </summary>
template <typename T>
class CrescentsVariation : public Variation<T>
{
public:
CrescentsVariation(T weight = 1.0) : Variation<T>("crescents", eVariationId::VAR_CRESCENTS, weight) { }
VARCOPY(CrescentsVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T sinx = std::sin(helper.In.x);
T sinx2 = SQR(sinx);
T cosx = std::cos(helper.In.x);
T coshy1 = std::cosh(helper.In.y) + 1;
helper.Out.x = m_Weight * sinx * coshy1 * sinx2;
helper.Out.y = m_Weight * cosx * coshy1 * sinx2;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t sinx = sin(vIn.x);\n"
<< "\t\treal_t sinx2 = SQR(sinx);\n"
<< "\t\treal_t cosx = cos(vIn.x);\n"
<< "\t\treal_t coshy1 = cosh(vIn.y) + 1.0;\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * sinx * coshy1 * sinx2;\n"
<< "\t\tvOut.y = " << weight << " * cosx * coshy1 * sinx2;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Sqr" };
}
};
/// <summary>
/// Mask.
/// </summary>
template <typename T>
class MaskVariation : public Variation<T>
{
public:
MaskVariation(T weight = 1.0) : Variation<T>("mask", eVariationId::VAR_MASK, weight, true) { }
VARCOPY(MaskVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T d = m_Weight / helper.m_PrecalcSumSquares;
T sinx = std::sin(helper.In.x);
T sinx2 = SQR(sinx);
T cosx = std::cos(helper.In.x);
T coshy1 = std::cosh(helper.In.y) + 1;
helper.Out.x = d * sinx * coshy1 * sinx2;
helper.Out.y = d * cosx * coshy1 * sinx2;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t d = " << weight << " / precalcSumSquares;\n"
<< "\t\treal_t sinx = sin(vIn.x);\n"
<< "\t\treal_t sinx2 = SQR(sinx);\n"
<< "\t\treal_t cosx = cos(vIn.x);\n"
<< "\t\treal_t coshy1 = cosh(vIn.y) + 1.0;\n"
<< "\n"
<< "\t\tvOut.x = d * sinx * coshy1 * sinx2;\n"
<< "\t\tvOut.y = d * cosx * coshy1 * sinx2;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Sqr" };
}
};
/// <summary>
/// Cpow2.
/// </summary>
template <typename T>
class Cpow2Variation : public ParametricVariation<T>
{
public:
Cpow2Variation(T weight = 1.0) : ParametricVariation<T>("cpow2", eVariationId::VAR_CPOW2, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(Cpow2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T a = helper.m_PrecalcAtanyx;
int n = rand.Rand(m_SpreadUint);
if (a < 0)
n++;
a += M_2PI * n;
if (std::cos(a * m_InvSpread) < rand.Rand() * T(2) / 0xFFFFFFFF - T(1))//Rand max.
a -= m_FullSpread;
T lnr2 = std::log(helper.m_PrecalcSumSquares);
T r = m_Weight * std::exp(m_HalfC * lnr2 - m_D * a);
T temp = m_C * a + m_HalfD * lnr2 + m_Ang * rand.Rand();
helper.Out.x = r * std::cos(temp);
helper.Out.y = r * std::sin(temp);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string divisor = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string spread = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string halfC = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string d = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string halfD = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ang = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invSpread = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string fullSpread = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t a = precalcAtanyx;\n"
<< "\t\tint n = MwcNextRange(mwc, (uint)" << spread << ");\n"
<< "\n"
<< "\t\tif (a < 0)\n"
<< "\t\t n++;\n"
<< "\n"
<< "\t\ta += M_2PI * n;\n"
<< "\n"
<< "\t\tif (cos(a * " << invSpread << ") < MwcNext(mwc) * (real_t)2.0 / 0xFFFFFFFF - (real_t)1.0)\n"
<< "\t\t a -= " << fullSpread << ";\n"
<< "\n"
<< "\t\treal_t lnr2 = log(precalcSumSquares);\n"
<< "\t\treal_t r = " << weight << " * exp(fma(" << halfC << ", lnr2, -(" << d << " * a)));\n"
<< "\t\treal_t temp = fma(" << c << ", a, fma(" << halfD << ", lnr2, " << ang << " * MwcNext(mwc)));\n"
<< "\n"
<< "\t\tvOut.x = r * cos(temp);\n"
<< "\t\tvOut.y = r * sin(temp);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Ang = M_2PI / m_Divisor;
m_C = m_R * std::cos(T(M_PI) / 2 * m_A) / m_Divisor;
m_D = m_R * std::sin(T(M_PI) / 2 * m_A) / m_Divisor;
m_HalfC = m_C / 2;
m_HalfD = m_D / 2;
m_InvSpread = T(0.5) / m_Spread;
m_FullSpread = M_2PI * m_Spread;
m_SpreadUint = uint(m_Spread);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_R, prefix + "cpow2_r", 1));
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "cpow2_a"));
m_Params.push_back(ParamWithName<T>(&m_Divisor, prefix + "cpow2_divisor", 1, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_Spread, prefix + "cpow2_spread", 1, eParamType::INTEGER, 1, T(0x7FFFFFFF)));
m_Params.push_back(ParamWithName<T>(true, &m_C, prefix + "cpow2_c"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_HalfC, prefix + "cpow2_halfc"));
m_Params.push_back(ParamWithName<T>(true, &m_D, prefix + "cpow2_d"));
m_Params.push_back(ParamWithName<T>(true, &m_HalfD, prefix + "cpow2_halfd"));
m_Params.push_back(ParamWithName<T>(true, &m_Ang, prefix + "cpow2_ang"));
m_Params.push_back(ParamWithName<T>(true, &m_InvSpread, prefix + "cpow2_inv_spread"));
m_Params.push_back(ParamWithName<T>(true, &m_FullSpread, prefix + "cpow2_full_spread"));
}
private:
T m_R;
T m_A;
T m_Divisor;
T m_Spread;
uint m_SpreadUint;//Precalc.
T m_C;
T m_HalfC;
T m_D;
T m_HalfD;
T m_Ang;
T m_InvSpread;
T m_FullSpread;
};
MAKEPREPOSTVAR(Hemisphere, hemisphere, HEMISPHERE)
MAKEPREPOSTPARVAR(Epispiral, epispiral, EPISPIRAL)
MAKEPREPOSTPARVAR(Bwraps, bwraps, BWRAPS)
MAKEPREPOSTPARVAR(BwrapsRand, bwraps_rand, BWRAPS_RAND)
MAKEPREPOSTVARASSIGN(BlurCircle, blur_circle, BLUR_CIRCLE, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTPARVAR(BlurZoom, blur_zoom, BLUR_ZOOM)
MAKEPREPOSTPARVAR(BlurPixelize, blur_pixelize, BLUR_PIXELIZE)
MAKEPREPOSTPARVAR(Crop, crop, CROP)
MAKEPREPOSTPARVAR(BCircle, bcircle, BCIRCLE)
MAKEPREPOSTPARVAR(BlurLinear, blur_linear, BLUR_LINEAR)
MAKEPREPOSTPARVARASSIGN(BlurSquare, blur_square, BLUR_SQUARE, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTVAR(Flatten, flatten, FLATTEN)
MAKEPREPOSTVARASSIGN(Zblur, zblur, ZBLUR, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTVARASSIGN(Blur3D, blur3D, BLUR3D, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTVAR(ZScale, zscale, ZSCALE)
MAKEPREPOSTVARASSIGN(ZTranslate, ztranslate, ZTRANSLATE, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTVAR(ZCone, zcone, ZCONE)
MAKEPREPOSTVAR(Spherical3D, Spherical3D, SPHERICAL3D)
MAKEPREPOSTPARVAR(Curl3D, curl3D, CURL3D)
MAKEPREPOSTPARVAR(Disc3D, disc3d, DISC3D)
MAKEPREPOSTPARVAR(Boarders2, boarders2, BOARDERS2)
MAKEPREPOSTPARVAR(Cardioid, cardioid, CARDIOID)
MAKEPREPOSTPARVAR(Checks, checks, CHECKS)
MAKEPREPOSTPARVAR(Circlize, circlize, CIRCLIZE)
MAKEPREPOSTPARVAR(Circlize2, circlize2, CIRCLIZE2)
MAKEPREPOSTPARVAR(CosWrap, coswrap, COS_WRAP)
MAKEPREPOSTVAR(DeltaA, deltaa, DELTA_A)
MAKEPREPOSTPARVAR(Expo, expo, EXPO)
MAKEPREPOSTPARVAR(Extrude, extrude, EXTRUDE)
MAKEPREPOSTVAR(FDisc, fdisc, FDISC)
MAKEPREPOSTPARVAR(Fibonacci, fibonacci, FIBONACCI)
MAKEPREPOSTPARVAR(Fibonacci2, fibonacci2, FIBONACCI2)
MAKEPREPOSTPARVAR(Glynnia, glynnia, GLYNNIA)
MAKEPREPOSTPARVAR(Glynnia2, glynnia2, GLYNNIA2)
MAKEPREPOSTVAR(GridOut, gridout, GRIDOUT)
MAKEPREPOSTPARVAR(Hole, hole, HOLE)
MAKEPREPOSTPARVAR(Hypertile, hypertile, HYPERTILE)
MAKEPREPOSTPARVAR(Hypertile1, hypertile1, HYPERTILE1)
MAKEPREPOSTPARVAR(Hypertile2, hypertile2, HYPERTILE2)
MAKEPREPOSTPARVAR(Hypertile3D, hypertile3D, HYPERTILE3D)
MAKEPREPOSTPARVAR(Hypertile3D1, hypertile3D1, HYPERTILE3D1)
MAKEPREPOSTPARVAR(Hypertile3D2, hypertile3D2, HYPERTILE3D2)
MAKEPREPOSTPARVAR(IDisc, idisc, IDISC)
MAKEPREPOSTPARVAR(Julian2, julian2, JULIAN2)
MAKEPREPOSTPARVAR(JuliaQ, juliaq, JULIAQ)
MAKEPREPOSTPARVAR(Murl, murl, MURL)
MAKEPREPOSTPARVAR(Murl2, murl2, MURL2)
MAKEPREPOSTPARVAR(NPolar, npolar, NPOLAR)
MAKEPREPOSTPARVAR(Ortho, ortho, ORTHO)
MAKEPREPOSTPARVAR(Poincare, poincare, POINCARE)
MAKEPREPOSTPARVAR(Poincare3D, poincare3D, POINCARE3D)
MAKEPREPOSTPARVAR(Polynomial, polynomial, POLYNOMIAL)
MAKEPREPOSTPARVAR(PSphere, psphere, PSPHERE)
MAKEPREPOSTPARVAR(Rational3, rational3, RATIONAL3)
MAKEPREPOSTPARVAR(Ripple, ripple, RIPPLE)
MAKEPREPOSTPARVAR(Sigmoid, sigmoid, SIGMOID)
MAKEPREPOSTPARVAR(SinusGrid, sinusgrid, SINUS_GRID)
MAKEPREPOSTPARVAR(Stwin, stwin, STWIN)
MAKEPREPOSTVAR(TwoFace, twoface, TWO_FACE)
MAKEPREPOSTPARVAR(Unpolar, unpolar, UNPOLAR)
MAKEPREPOSTPARVAR(WavesN, wavesn, WAVESN)
MAKEPREPOSTPARVAR(XHeart, xheart, XHEART)
MAKEPREPOSTPARVAR(Barycentroid, barycentroid, BARYCENTROID)
MAKEPREPOSTPARVAR(BiSplit, bisplit, BISPLIT)
MAKEPREPOSTVAR(Crescents, crescents, CRESCENTS)
MAKEPREPOSTVAR(Mask, mask, MASK)
MAKEPREPOSTPARVAR(Cpow2, cpow2, CPOW2)
}