fractorium/Source/Ember/Variations02.h
Person 1dfbd4eff2 --User changes
-Add new preset dimensions to the right click menu of the width and height fields in the editor.
-Change QSS stylesheets to properly handle tabs.
-Make tabs rectangular by default. For some reason, they had always been triangular.

--Bug fixes
 -Incremental rendering times in the editor were wrong.

--Code changes
 -Migrate to Qt6. There is probably more work to be done here.
-Migrate to VS2022.
-Migrate to Wix 4 installer.
-Change installer to install to program files for all users.
-Fix many VS2022 code analysis warnings.
-No longer use byte typedef, because std::byte is now a type. Revert all back to unsigned char.
-Upgrade OpenCL headers to version 3.0 and keep locally now rather than trying to look for system files.
-No longer link to Nvidia or AMD specific OpenCL libraries. Use the generic installer located at OCL_ROOT too.
-Add the ability to change OpenCL grid dimensions. This was attempted for investigating possible performance improvments, but made no difference.

This has not been verified on Linux or Mac yet.
2023-04-25 17:59:54 -06:00

6149 lines
194 KiB
C++

#pragma once
#include "Variation.h"
namespace EmberNs
{
/// <summary>
/// Hemisphere.
/// </summary>
template <typename T>
class HemisphereVariation : public Variation<T>
{
public:
HemisphereVariation(T weight = 1.0) : Variation<T>("hemisphere", eVariationId::VAR_HEMISPHERE, weight, true) { }
VARCOPY(HemisphereVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T t = m_Weight / std::sqrt(helper.m_PrecalcSumSquares + 1);
helper.Out.x = helper.In.x * t;
helper.Out.y = helper.In.y * t;
helper.Out.z = t;
}
virtual string OpenCLString() const override
{
ostringstream ss;
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t t = " << weight << " / sqrt(precalcSumSquares + (real_t)(1.0));\n"
<< "\n"
<< "\t\tvOut.x = vIn.x * t;\n"
<< "\t\tvOut.y = vIn.y * t;\n"
<< "\t\tvOut.z = t;\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Epispiral.
/// </summary>
template <typename T>
class EpispiralVariation : public ParametricVariation<T>
{
public:
EpispiralVariation(T weight = 1.0) : ParametricVariation<T>("epispiral", eVariationId::VAR_EPISPIRAL, weight, false, false, false, false, true)
{
Init();
}
PARVARCOPY(EpispiralVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T theta = helper.m_PrecalcAtanyx;
T t = (!m_ThicknessWeight ? m_Weight : m_ThicknessWeight * rand.Frand01<T>()) / std::cos(m_N * theta) - m_HolesWeight;
if (std::abs(t) != 0)
{
helper.Out.x = t * std::cos(theta);
helper.Out.y = t * std::sin(theta);
}
else
{
helper.Out.x = 0;
helper.Out.y = 0;
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string n = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string thickness = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string holes = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string thicknessweight = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string holesweight = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t theta = precalcAtanyx;\n"
<< "\t\treal_t t = (" << thicknessweight << " == (real_t)(0.0) ? " << weight << " : MwcNext01(mwc) * " << thicknessweight << ") / cos(" << n << " * theta) - " << holesweight << ";\n"
<< "\n"
<< "\t\tif (fabs(t) != 0)\n"
<< "\t\t{\n"
<< "\t\t\tvOut.x = t * cos(theta);\n"
<< "\t\t\tvOut.y = t * sin(theta);\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t\tvOut.x = 0;\n"
<< "\t\t\tvOut.y = 0;\n"
<< "\t\t}\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_ThicknessWeight = m_Thickness * m_Weight;
m_HolesWeight = m_Holes * m_Weight;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_N, prefix + "epispiral_n", 6));
m_Params.push_back(ParamWithName<T>(&m_Thickness, prefix + "epispiral_thickness"));
m_Params.push_back(ParamWithName<T>(&m_Holes, prefix + "epispiral_holes", 1));
m_Params.push_back(ParamWithName<T>(true, &m_ThicknessWeight, prefix + "epispiral_thickness_weight")); //Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_HolesWeight, prefix + "epispiral_holes_weight"));
}
private:
T m_N;
T m_Thickness;
T m_Holes;
T m_ThicknessWeight;//Precalc.
T m_HolesWeight;
};
/// <summary>
/// Bwraps.
/// Note, this is the same as bwraps7, which is the same as bwraps2 except for the precalc function.
/// </summary>
template <typename T>
class BwrapsVariation : public ParametricVariation<T>
{
public:
BwrapsVariation(T weight = 1.0) : ParametricVariation<T>("bwraps", eVariationId::VAR_BWRAPS, weight)
{
Init();
}
PARVARCOPY(BwrapsVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_BwrapsCellsize == 0)
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
}
else
{
T vx = helper.In.x;
T vy = helper.In.y;
T cx = (Floor<T>(vx / m_BwrapsCellsize) + T(0.5)) * m_BwrapsCellsize;
T cy = (Floor<T>(vy / m_BwrapsCellsize) + T(0.5)) * m_BwrapsCellsize;
T lx = vx - cx;
T ly = vy - cy;
if ((SQR(lx) + SQR(ly)) > m_R2)
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
}
else
{
lx *= m_G2;
ly *= m_G2;
T r = m_Rfactor / Zeps((SQR(lx) + SQR(ly)) / 4 + 1);
lx *= r;
ly *= r;
r = (SQR(lx) + SQR(ly)) / m_R2;
T theta = m_BwrapsInnerTwist * (1 - r) + m_BwrapsOuterTwist * r;
T s = std::sin(theta);
T c = std::cos(theta);
vx = cx + c * lx + s * ly;
vy = cy - s * lx + c * ly;
helper.Out.x = m_Weight * vx;
helper.Out.y = m_Weight * vy;
}
}
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string bwrapsCellsize = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bwrapsSpace = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bwrapsGain = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bwrapsInnerTwist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bwrapsOuterTwist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string g2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string r2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rfactor = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tif (" << bwrapsCellsize << " == 0)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t real_t vx = vIn.x;\n"
<< "\t\t real_t vy = vIn.y;\n"
<< "\t\t real_t cx = (floor(vx / " << bwrapsCellsize << ") + (real_t)(0.5)) * " << bwrapsCellsize << ";\n"
<< "\t\t real_t cy = (floor(vy / " << bwrapsCellsize << ") + (real_t)(0.5)) * " << bwrapsCellsize << ";\n"
<< "\t\t real_t lx = vx - cx;\n"
<< "\t\t real_t ly = vy - cy;\n"
<< "\n"
<< "\t\t if ((SQR(lx) + SQR(ly)) > " << r2 << ")\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t lx *= " << g2 << ";\n"
<< "\t\t ly *= " << g2 << ";\n"
<< "\n"
<< "\t\t real_t r = " << rfactor << " / Zeps(fma(lx, lx, SQR(ly)) / 4 + 1);\n"
<< "\n"
<< "\t\t lx *= r;\n"
<< "\t\t ly *= r;\n"
<< "\t\t r = fma(lx, lx, SQR(ly)) / " << r2 << ";\n"
<< "\n"
<< "\t\t real_t theta = fma(" << bwrapsInnerTwist << ", (1 - r), " << bwrapsOuterTwist << " * r);\n"
<< "\t\t real_t s = sin(theta);\n"
<< "\t\t real_t c = cos(theta);\n"
<< "\n"
<< "\t\t vx = fma(s, ly, fma(c, lx, cx));\n"
<< "\t\t vy = cy - s * lx + c * ly;\n"
<< "\n"
<< "\t\t vOut.x = " << weight << " * vx;\n"
<< "\t\t vOut.y = " << weight << " * vy;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T radius = T(0.5) * (m_BwrapsCellsize / (1 + SQR(m_BwrapsSpace)));
m_G2 = SQR(m_BwrapsGain) + T(1.0e-6);
T maxBubble = m_G2 * radius;
if (maxBubble > 2)
maxBubble = 1;
else
maxBubble *= (1 / (SQR(maxBubble) / 4 + 1));
m_R2 = Zeps(SQR(radius));
m_Rfactor = radius / maxBubble;
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_BwrapsCellsize, prefix + "bwraps_cellsize", 1));
m_Params.push_back(ParamWithName<T>(&m_BwrapsSpace, prefix + "bwraps_space"));
m_Params.push_back(ParamWithName<T>(&m_BwrapsGain, prefix + "bwraps_gain", 1));
m_Params.push_back(ParamWithName<T>(&m_BwrapsInnerTwist, prefix + "bwraps_inner_twist"));
m_Params.push_back(ParamWithName<T>(&m_BwrapsOuterTwist, prefix + "bwraps_outer_twist"));
m_Params.push_back(ParamWithName<T>(true, &m_G2, prefix + "bwraps_g2"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_R2, prefix + "bwraps_r2"));
m_Params.push_back(ParamWithName<T>(true, &m_Rfactor, prefix + "bwraps_rfactor"));
}
private:
T m_BwrapsCellsize;
T m_BwrapsSpace;
T m_BwrapsGain;
T m_BwrapsInnerTwist;
T m_BwrapsOuterTwist;
T m_G2;//Precalc.
T m_R2;
T m_Rfactor;
};
/// <summary>
/// bwraps_rand.
/// By tatasz.
/// </summary>
template <typename T>
class BwrapsRandVariation : public ParametricVariation<T>
{
public:
BwrapsRandVariation(T weight = 1.0) : ParametricVariation<T>("bwraps_rand", eVariationId::VAR_BWRAPS_RAND, weight)
{
Init();
}
PARVARCOPY(BwrapsRandVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_CellSize == 0)
{
helper.Out.x = helper.In.x * m_Weight;
helper.Out.y = helper.In.y * m_Weight;
}
else
{
T Cx = (Floor<T>(helper.In.x * m_InvCellSize) + T(0.5)) * m_CellSize;
T Cy = (Floor<T>(helper.In.y * m_InvCellSize) + T(0.5)) * m_CellSize;
T Lx = helper.In.x - Cx;
T Ly = helper.In.y - Cy;
T radius;
if (m_Symm == 0)
radius = m_HalfCellSizeOver1pSpaceSq * VarFuncs<T>::HashShadertoy(Cx, Cy, m_Seed);
else
radius = m_HalfCellSizeOver1pSpaceSq * VarFuncs<T>::HashShadertoy(SQR(Cx), SQR(Cy), m_Seed);
T mb = m_G2 * radius;
T max_bubble;
if (mb > 2)
max_bubble = 1;
else
max_bubble = mb / (mb * mb * T(0.25) + 1);
T r2 = SQR(radius);
if (SQR(Lx) + SQR(Ly) > r2)
{
helper.Out.x = helper.In.x * m_Weight;
helper.Out.y = helper.In.y * m_Weight;
}
else
{
T rfactor = radius / Zeps(max_bubble);
T Lx2 = Lx * m_G2;
T Ly2 = Ly * m_G2;
T r = rfactor / ((SQR(Lx2) + SQR(Ly2)) * T(0.25) + 1);
T Lx3 = Lx2 * r;
T Ly3 = Ly2 * r;
T r_2 = (SQR(Lx3) + SQR(Ly3)) / Zeps(r2);
T theta = m_InnerTwist * (1 - r_2) + m_OuterTwist * r_2;
T ct = std::cos(theta);
T st = std::sin(theta);
helper.Out.x = (Cx + ct * Lx3 + st * Ly3) * m_Weight;
helper.Out.y = (Cy - st * Lx3 + ct * Ly3) * m_Weight;
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string cellsize = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string space = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string gain = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string innertwist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string outertwist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string symm = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seed = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invcellsize = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string g2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string spacesq = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string halfcellsizeover1pspacesq = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tif (" << cellsize << " == 0)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = vIn.x * " << weight << ";\n"
<< "\t\t vOut.y = vIn.y * " << weight << ";\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t real_t Cx = (floor(vIn.x * " << invcellsize << ") + 0.5) * " << cellsize << ";\n"
<< "\t\t real_t Cy = (floor(vIn.y * " << invcellsize << ") + 0.5) * " << cellsize << ";\n"
<< "\t\t real_t Lx = vIn.x - Cx;\n"
<< "\t\t real_t Ly = vIn.y - Cy;\n"
<< "\t\t real_t radius;\n"
<< "\n"
<< "\t\t if (" << symm << " == 0)\n"
<< "\t\t radius = " << halfcellsizeover1pspacesq << " * HashShadertoy(Cx, Cy, " << seed << ");\n"
<< "\t\t else\n"
<< "\t\t radius = " << halfcellsizeover1pspacesq << " * HashShadertoy(SQR(Cx), SQR(Cy), " << seed << ");\n"
<< "\n"
<< "\t\t real_t mb = " << g2 << " * radius;\n"
<< "\t\t real_t max_bubble;\n"
<< "\n"
<< "\t\t if (mb > 2)\n"
<< "\t\t max_bubble = 1;\n"
<< "\t\t else\n"
<< "\t\t max_bubble = mb / fma(SQR(mb), (real_t)(0.25), (real_t)(1.0));\n"
<< "\n"
<< "\t\t real_t r2 = SQR(radius);\n"
<< "\n"
<< "\t\t if (SQR(Lx) + SQR(Ly) > r2)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = vIn.x * " << weight << ";\n"
<< "\t\t vOut.y = vIn.y * " << weight << ";\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t real_t rfactor = radius / Zeps(max_bubble);\n"
<< "\t\t real_t Lx2 = Lx * " << g2 << ";\n"
<< "\t\t real_t Ly2 = Ly * " << g2 << ";\n"
<< "\t\t real_t r = rfactor / fma(fma(Lx2, Lx2, SQR(Ly2)), (real_t)(0.25), (real_t)(1.0));\n"
<< "\t\t real_t Lx3 = Lx2 * r;\n"
<< "\t\t real_t Ly3 = Ly2 * r;\n"
<< "\t\t real_t r_2 = fma(Lx3, Lx3, SQR(Ly3)) / Zeps(r2);\n"
<< "\t\t real_t theta = " << innertwist << " * (1.0 - r_2) + " << outertwist << " * r_2;\n"
<< "\t\t real_t ct = cos(theta);\n"
<< "\t\t real_t st = sin(theta);\n"
<< "\n"
<< "\t\t vOut.x = (Cx + ct * Lx3 + st * Ly3) * " << weight << ";\n"
<< "\t\t vOut.y = (Cy - st * Lx3 + ct * Ly3) * " << weight << ";\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_G2 = SQR(m_Gain);
m_InvCellSize = 1 / Zeps(m_CellSize);
m_SpaceSq = SQR(m_Space);
m_HalfCellSizeOver1pSpaceSq = T(0.5) * (m_CellSize / (1 + m_SpaceSq));
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps", "Fract", "HashShadertoy" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_CellSize, prefix + "bwraps_rand_cellsize", 1));
m_Params.push_back(ParamWithName<T>(&m_Space, prefix + "bwraps_rand_space"));
m_Params.push_back(ParamWithName<T>(&m_Gain, prefix + "bwraps_rand_gain", 2));
m_Params.push_back(ParamWithName<T>(&m_InnerTwist, prefix + "bwraps_rand_inner_twist"));
m_Params.push_back(ParamWithName<T>(&m_OuterTwist, prefix + "bwraps_rand_outer_twist"));
m_Params.push_back(ParamWithName<T>(&m_Symm, prefix + "bwraps_rand_symm"));
m_Params.push_back(ParamWithName<T>(&m_Seed, prefix + "bwraps_rand_seed", 1));
m_Params.push_back(ParamWithName<T>(true, &m_InvCellSize, prefix + "bwraps_rand_inv_cellsize"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_G2, prefix + "bwraps_rand_g2"));
m_Params.push_back(ParamWithName<T>(true, &m_SpaceSq, prefix + "bwraps_rand_space_sq"));
m_Params.push_back(ParamWithName<T>(true, &m_HalfCellSizeOver1pSpaceSq, prefix + "bwraps_rand_half_cellsize_over_1_plus_space_sq"));
}
private:
T m_CellSize;
T m_Space;
T m_Gain;
T m_InnerTwist;
T m_OuterTwist;
T m_Symm;
T m_Seed;
T m_InvCellSize;//Precalc.
T m_G2;
T m_SpaceSq;
T m_HalfCellSizeOver1pSpaceSq;
};
/// <summary>
/// BlurCircle.
/// </summary>
template <typename T>
class BlurCircleVariation : public Variation<T>
{
public:
BlurCircleVariation(T weight = 1.0) : Variation<T>("blur_circle", eVariationId::VAR_BLUR_CIRCLE, weight) { }
VARCOPY(BlurCircleVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = 2 * rand.Frand01<T>() - 1;
T y = 2 * rand.Frand01<T>() - 1;
T absx = x;
T absy = y;
T side, perimeter;
if (absx < 0)
absx = absx * -1;
if (absy < 0)
absy = absy * -1;
if (absx >= absy)
{
if (x >= absy)
perimeter = absx + y;
else
perimeter = 5 * absx - y;
side = absx;
}
else
{
if (y >= absx)
perimeter = 3 * absy - x;
else
perimeter = 7 * absy + x;
side = absy;
}
T r = m_Weight * side;
T val = T(M_PI_4) * perimeter / side - T(M_PI_4);
T sina = std::sin(val);
T cosa = std::cos(val);
helper.Out.x = r * cosa;
helper.Out.y = r * sina;
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
string weight = WeightDefineString();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
ss << "\t{\n"
<< "\t\treal_t x = fma((real_t)(2.0), MwcNext01(mwc), (real_t)(-1.0));\n"
<< "\t\treal_t y = fma((real_t)(2.0), MwcNext01(mwc), (real_t)(-1.0));\n"
<< "\t\treal_t absx = x;\n"
<< "\t\treal_t absy = y;\n"
<< "\t\treal_t side, perimeter;\n"
<< "\t\t\n"
<< "\t\tif (absx < 0)\n"
<< "\t\t absx = absx * -1;\n"
<< "\n"
<< "\t\tif (absy < 0)\n"
<< "\t\t absy = absy * -1;\n"
<< "\n"
<< "\t\tif (absx >= absy)\n"
<< "\t\t{\n"
<< "\t\t if (x >= absy)\n"
<< "\t\t perimeter = absx + y;\n"
<< "\t\t else\n"
<< "\t\t perimeter = fma((real_t)(5.0), absx, -y);\n"
<< "\n"
<< "\t\t side = absx;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (y >= absx)\n"
<< "\t\t perimeter = fma((real_t)(3.0), absy, -x);\n"
<< "\t\t else\n"
<< "\t\t perimeter = fma((real_t)(7.0), absy, x);\n"
<< "\n"
<< "\t\t side = absy;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\treal_t r = " << weight << " * side;\n"
<< "\t\treal_t val = MPI4 * perimeter / side - MPI4;\n"
<< "\t\treal_t sina = sin(val);\n"
<< "\t\treal_t cosa = cos(val);\n"
<< "\n"
<< "\t\tvOut.x = r * cosa;\n"
<< "\t\tvOut.y = r * sina;\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// BlurZoom.
/// </summary>
template <typename T>
class BlurZoomVariation : public ParametricVariation<T>
{
public:
BlurZoomVariation(T weight = 1.0) : ParametricVariation<T>("blur_zoom", eVariationId::VAR_BLUR_ZOOM, weight)
{
Init();
}
PARVARCOPY(BlurZoomVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T z = 1 + m_BlurZoomLength * rand.Frand01<T>();
helper.Out.x = m_Weight * ((helper.In.x - m_BlurZoomX) * z + m_BlurZoomX);
helper.Out.y = m_Weight * ((helper.In.y + m_BlurZoomY) * z - m_BlurZoomY);
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string blurZoomLength = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blurZoomX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blurZoomY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t z = fma(" << blurZoomLength << ", MwcNext01(mwc), 1);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * fma((vIn.x - " << blurZoomX << "), z, " << blurZoomX << ");\n"
<< "\t\tvOut.y = " << weight << " * fma((vIn.y + " << blurZoomY << "), z, -" << blurZoomY << ");\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_BlurZoomLength, prefix + "blur_zoom_length"));
m_Params.push_back(ParamWithName<T>(&m_BlurZoomX, prefix + "blur_zoom_x"));
m_Params.push_back(ParamWithName<T>(&m_BlurZoomY, prefix + "blur_zoom_y"));
}
private:
T m_BlurZoomLength;
T m_BlurZoomX;
T m_BlurZoomY;
};
/// <summary>
/// BlurPixelize.
/// </summary>
template <typename T>
class BlurPixelizeVariation : public ParametricVariation<T>
{
public:
BlurPixelizeVariation(T weight = 1.0) : ParametricVariation<T>("blur_pixelize", eVariationId::VAR_BLUR_PIXELIZE, weight)
{
Init();
}
PARVARCOPY(BlurPixelizeVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = T(Floor<T>(helper.In.x * m_InvSize));
T y = T(Floor<T>(helper.In.y * m_InvSize));
helper.Out.x = m_V * (x + m_BlurPixelizeScale * (rand.Frand01<T>() - T(0.5)) + T(0.5));
helper.Out.y = m_V * (y + m_BlurPixelizeScale * (rand.Frand01<T>() - T(0.5)) + T(0.5));
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string blurPixelizeSize = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blurPixelizeScale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string v = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invSize = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = floor(vIn.x * " << invSize << ");\n"
<< "\t\treal_t y = floor(vIn.y * " << invSize << ");\n"
<< "\n"
<< "\t\tvOut.x = " << v << " * fma(" << blurPixelizeScale << ", (MwcNext01(mwc) - (real_t)(0.5)), x + (real_t)(0.5));\n"
<< "\t\tvOut.y = " << v << " * fma(" << blurPixelizeScale << ", (MwcNext01(mwc) - (real_t)(0.5)), y + (real_t)(0.5));\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_V = m_Weight * m_BlurPixelizeSize;
m_InvSize = 1 / m_BlurPixelizeSize;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_BlurPixelizeSize, prefix + "blur_pixelize_size", T(0.1), eParamType::REAL, EPS));
m_Params.push_back(ParamWithName<T>(&m_BlurPixelizeScale, prefix + "blur_pixelize_scale", 1));
m_Params.push_back(ParamWithName<T>(true, &m_V, prefix + "blur_pixelize_v"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_InvSize, prefix + "blur_pixelize_inv_size"));
}
private:
T m_BlurPixelizeSize;
T m_BlurPixelizeScale;
T m_V;//Precalc.
T m_InvSize;
};
/// <summary>
/// Crop.
/// </summary>
template <typename T>
class CropVariation : public ParametricVariation<T>
{
public:
CropVariation(T weight = 1.0) : ParametricVariation<T>("crop", eVariationId::VAR_CROP, weight)
{
Init();
}
PARVARCOPY(CropVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = helper.In.x;
T y = helper.In.y;
if (((x < m_X0_) || (x > m_X1_) || (y < m_Y0_) || (y > m_Y1_)) && m_Z != 0)
{
x = 0;
y = 0;
}
else
{
if (x < m_X0_)
x = m_X0_ + rand.Frand01<T>() * m_W;
else if (x > m_X1_)
x = m_X1_ - rand.Frand01<T>() * m_W;
if (y < m_Y0_)
y = m_Y0_ + rand.Frand01<T>() * m_H;
else if (y > m_Y1_)
y = m_Y1_ - rand.Frand01<T>() * m_H;
}
helper.Out.x = m_Weight * x;
helper.Out.y = m_Weight * y;
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string x0 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y0 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x0_ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y0_ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x1_ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y1_ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string w = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string h = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = vIn.x;\n"
<< "\t\treal_t y = vIn.y;\n"
<< "\n"
<< "\t\tif (((x < " << x0_ << ") || (x > " << x1_ << ") || (y < " << y0_ << ") || (y > " << y1_ << ")) && " << z << " != 0)\n"
<< "\t\t{\n"
<< "\t\t x = 0;\n"
<< "\t\t y = 0;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (x < " << x0_ << ")\n"
<< "\t\t x = fma(MwcNext01(mwc), " << w << ", " << x0_ << ");\n"
<< "\t\t else if (x > " << x1_ << ")\n"
<< "\t\t x = " << x1_ << " - MwcNext01(mwc) * " << w << ";\n"
<< "\t\t\n"
<< "\t\t if (y < " << y0_ << ")\n"
<< "\t\t y = fma(MwcNext01(mwc), " << h << ", " << y0_ << ");\n"
<< "\t\t else if (y > " << y1_ << ")\n"
<< "\t\t y = " << y1_ << " - MwcNext01(mwc) * " << h << ";\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * x;\n"
<< "\t\tvOut.y = " << weight << " * y;\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
if (m_X0 < m_X1)
{
m_X0_ = m_X0;
m_X1_ = m_X1;
}
else
{
m_X0_ = m_X1;
m_X1_ = m_X0;
}
if (m_Y0 < m_Y1)
{
m_Y0_ = m_Y0;
m_Y1_ = m_Y1;
}
else
{
m_Y0_ = m_Y1;
m_Y1_ = m_Y0;
}
m_W = (m_X1_ - m_X0_) * T(0.5) * m_S;
m_H = (m_Y1_ - m_Y0_) * T(0.5) * m_S;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_X0, prefix + "crop_left", -1));
m_Params.push_back(ParamWithName<T>(&m_Y0, prefix + "crop_top", -1));
m_Params.push_back(ParamWithName<T>(&m_X1, prefix + "crop_right", 1));
m_Params.push_back(ParamWithName<T>(&m_Y1, prefix + "crop_bottom", 1));
m_Params.push_back(ParamWithName<T>(&m_S, prefix + "crop_scatter_area", 0, eParamType::REAL, -1, 1));
m_Params.push_back(ParamWithName<T>(&m_Z, prefix + "crop_zero", 0, eParamType::INTEGER, 0, 1));
m_Params.push_back(ParamWithName<T>(true, &m_X0_, prefix + "crop_x0_"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Y0_, prefix + "crop_y0_"));
m_Params.push_back(ParamWithName<T>(true, &m_X1_, prefix + "crop_x1_"));
m_Params.push_back(ParamWithName<T>(true, &m_Y1_, prefix + "crop_y1_"));
m_Params.push_back(ParamWithName<T>(true, &m_W, prefix + "crop_w"));
m_Params.push_back(ParamWithName<T>(true, &m_H, prefix + "crop_h"));
}
private:
T m_X0;
T m_Y0;
T m_X1;
T m_Y1;
T m_S;
T m_Z;
T m_X0_;//Precalc.
T m_Y0_;
T m_X1_;
T m_Y1_;
T m_W;
T m_H;
};
/// <summary>
/// BCircle.
/// </summary>
template <typename T>
class BCircleVariation : public ParametricVariation<T>
{
public:
BCircleVariation(T weight = 1.0) : ParametricVariation<T>("bcircle", eVariationId::VAR_BCIRCLE, weight)
{
Init();
}
PARVARCOPY(BCircleVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if ((helper.In.x == 0) && (helper.In.y == 0))
return;
T x = helper.In.x * m_Scale;
T y = helper.In.y * m_Scale;
T r = std::sqrt(SQR(x) + SQR(y));
if (r <= 1)
{
helper.Out.x = m_Weight * x;
helper.Out.y = m_Weight * y;
}
else
{
if (m_Bcbw != 0)
{
T ang = std::atan2(y, x);
T omega = (T(0.2) * m_Bcbw * rand.Frand01<T>()) + 1;
T px = omega * std::cos(ang);
T py = omega * std::sin(ang);
helper.Out.x = m_Weight * px;
helper.Out.y = m_Weight * py;
}
else
{
helper.Out.x = 0;
helper.Out.y = 0;
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string borderWidth = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bcbw = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tif ((vIn.x == 0) && (vIn.y == 0))\n"
<< "\t\t return;\n"
<< "\n"
<< "\t\treal_t x = vIn.x * " << scale << ";\n"
<< "\t\treal_t y = vIn.y * " << scale << ";\n"
<< "\t\treal_t r = sqrt(fma(x, x, SQR(y)));\n"
<< "\n"
<< "\t\tif (r <= 1)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * x;\n"
<< "\t\t vOut.y = " << weight << " * y;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (" << bcbw << " != 0)\n"
<< "\t\t {\n"
<< "\t\t real_t ang = atan2(y, x);\n"
<< "\t\t real_t omega = fma((real_t)(0.2) * " << bcbw << ", MwcNext01(mwc), (real_t)(1.0));\n"
<< "\t\t real_t px = omega * cos(ang);\n"
<< "\t\t real_t py = omega * sin(ang);\n"
<< "\n"
<< "\t\t vOut.x = " << weight << " * px;\n"
<< "\t\t vOut.y = " << weight << " * py;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = (real_t)0.0;\n"
<< "\t\t vOut.y = (real_t)0.0;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Bcbw = std::abs(m_BorderWidth);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Scale, prefix + "bcircle_scale", 1));
m_Params.push_back(ParamWithName<T>(&m_BorderWidth, prefix + "bcircle_borderwidth"));
m_Params.push_back(ParamWithName<T>(true, &m_Bcbw, prefix + "bcircle_bcbw"));//Precalc.
}
private:
T m_Scale;
T m_BorderWidth;
T m_Bcbw;//Precalc.
};
/// <summary>
/// BlurLinear.
/// </summary>
template <typename T>
class BlurLinearVariation : public ParametricVariation<T>
{
public:
BlurLinearVariation(T weight = 1.0) : ParametricVariation<T>("blur_linear", eVariationId::VAR_BLUR_LINEAR, weight)
{
Init();
}
PARVARCOPY(BlurLinearVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = m_BlurLinearLength * rand.Frand01<T>();
helper.Out.x = m_Weight * (helper.In.x + r * m_C);
helper.Out.y = m_Weight * (helper.In.y + r * m_S);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string blurLinearLength = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blurLinearAngle = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r = " << blurLinearLength << " * MwcNext01(mwc);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * fma(r, " << c << ", vIn.x);\n"
<< "\t\tvOut.y = " << weight << " * fma(r, " << s << ", vIn.y);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
sincos(m_BlurLinearAngle, &m_S, &m_C);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_BlurLinearLength, prefix + "blur_linear_length"));
m_Params.push_back(ParamWithName<T>(&m_BlurLinearAngle, prefix + "blur_linear_angle", 0, eParamType::REAL_CYCLIC, 0, T(M_2PI)));
m_Params.push_back(ParamWithName<T>(true, &m_S, prefix + "blur_linear_s"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_C, prefix + "blur_linear_c"));
}
private:
T m_BlurLinearLength;
T m_BlurLinearAngle;
T m_S;//Precalc.
T m_C;
};
/// <summary>
/// BlurSquare.
/// </summary>
template <typename T>
class BlurSquareVariation : public ParametricVariation<T>
{
public:
BlurSquareVariation(T weight = 1.0) : ParametricVariation<T>("blur_square", eVariationId::VAR_BLUR_SQUARE, weight)
{
Init();
}
PARVARCOPY(BlurSquareVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = m_V * (rand.Frand01<T>() - T(0.5));
helper.Out.y = m_V * (rand.Frand01<T>() - T(0.5));
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string v = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
ss << "\t{\n"
<< "\t\tvOut.x = " << v << " * (MwcNext01(mwc) - (real_t)(0.5));\n"
<< "\t\tvOut.y = " << v << " * (MwcNext01(mwc) - (real_t)(0.5));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_V = m_Weight * 2;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_V, prefix + "blur_square_v"));//Precalcs only, no params.
}
private:
T m_V;
};
/// <summary>
/// Flatten.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class FlattenVariation : public Variation<T>
{
public:
FlattenVariation(T weight = 1.0) : Variation<T>("flatten", eVariationId::VAR_FLATTEN, weight) { }
VARCOPY(FlattenVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_VarType == eVariationType::VARTYPE_REG)//Rare and different usage of in/out.
{
helper.Out.x = helper.Out.y = helper.Out.z = 0;
outPoint.m_Z = 0;
}
else
{
helper.Out.x = helper.In.x;
helper.Out.y = helper.In.y;
helper.Out.z = 0;
}
}
virtual string OpenCLString() const override
{
ostringstream ss;
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss << "\t{\n"
<< "\t\tvOut.x = 0;\n"
<< "\t\tvOut.y = 0;\n"
<< "\t\tvOut.z = 0;\n"
<< "\t\toutPoint->m_Z = 0;\n"
<< "\t}\n";
}
else
{
ss << "\t{\n"
<< "\t\tvOut.x = vIn.x;\n"
<< "\t\tvOut.y = vIn.y;\n"
<< "\t\tvOut.z = 0;\n"
<< "\t}\n";
}
return ss.str();
}
};
/// <summary>
/// Zblur.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class ZblurVariation : public Variation<T>
{
public:
ZblurVariation(T weight = 1.0) : Variation<T>("zblur", eVariationId::VAR_ZBLUR, weight) { }
VARCOPY(ZblurVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = helper.Out.y = 0;
helper.Out.z = m_Weight * (rand.Frand01<T>() + rand.Frand01<T>() + rand.Frand01<T>() + rand.Frand01<T>() - 2);
}
virtual string OpenCLString() const override
{
ostringstream ss;
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\tvOut.x = vOut.y = 0;\n"
<< "\t\tvOut.z = " << weight << " * (MwcNext01(mwc) + MwcNext01(mwc) + MwcNext01(mwc) + MwcNext01(mwc) - (real_t)(2.0));\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// ZScale.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class ZScaleVariation : public Variation<T>
{
public:
ZScaleVariation(T weight = 1.0) : Variation<T>("zscale", eVariationId::VAR_ZSCALE, weight) { }
VARCOPY(ZScaleVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = helper.Out.y = 0;
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss;
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\tvOut.x = vOut.y = 0;\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// ZTranslate.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class ZTranslateVariation : public Variation<T>
{
public:
ZTranslateVariation(T weight = 1.0) : Variation<T>("ztranslate", eVariationId::VAR_ZTRANSLATE, weight) { }
VARCOPY(ZTranslateVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = helper.Out.y = 0;
helper.Out.z = m_Weight;
}
virtual string OpenCLString() const override
{
ostringstream ss;
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\tvOut.x = vOut.y = 0;\n"
<< "\t\tvOut.z = " << weight << ";\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// zcone.
/// This uses in/out in a rare and different way.
/// </summary>
template <typename T>
class ZConeVariation : public Variation<T>
{
public:
ZConeVariation(T weight = 1.0) : Variation<T>("zcone", eVariationId::VAR_ZCONE, weight, true, true) { }
VARCOPY(ZConeVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_VarType == eVariationType::VARTYPE_REG)//Rare and different usage of in/out.
{
helper.Out.x = helper.Out.y = 0;
}
else
{
helper.Out.x = helper.In.x;
helper.Out.y = helper.In.y;
}
helper.Out.z = m_Weight * helper.m_PrecalcSqrtSumSquares;
}
virtual string OpenCLString() const override
{
ostringstream ss;
string weight = WeightDefineString();
ss << "\t{\n";
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss << "\t\tvOut.x = vOut.y = 0;\n";
}
else
{
ss << "\t\tvOut.x = vIn.x;\n"
<< "\t\tvOut.y = vIn.y;\n";
}
ss << "\t\tvOut.z = " << weight << " * precalcSqrtSumSquares;\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Blur3D.
/// </summary>
template <typename T>
class Blur3DVariation : public Variation<T>
{
public:
Blur3DVariation(T weight = 1.0) : Variation<T>("blur3D", eVariationId::VAR_BLUR3D, weight) { }
VARCOPY(Blur3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T angle = rand.Frand01<T>() * M_2PI;
T r = m_Weight * (rand.Frand01<T>() + rand.Frand01<T>() + rand.Frand01<T>() + rand.Frand01<T>() - 2);
T angle2 = rand.Frand01<T>() * T(M_PI);
T sina = std::sin(angle);
T cosa = std::cos(angle);
T sinb = std::sin(angle2);
T cosb = std::cos(angle2);
helper.Out.x = r * sinb * cosa;
helper.Out.y = r * sinb * sina;
helper.Out.z = r * cosb;
}
virtual string OpenCLString() const override
{
ostringstream ss;
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t angle = MwcNext01(mwc) * M_2PI;\n"
<< "\t\treal_t r = " << weight << " * (MwcNext01(mwc) + MwcNext01(mwc) + MwcNext01(mwc) + MwcNext01(mwc) - (real_t)(2.0));\n"
<< "\t\treal_t angle2 = MwcNext01(mwc) * MPI;\n"
<< "\t\treal_t sina = sin(angle);\n"
<< "\t\treal_t cosa = cos(angle);\n"
<< "\t\treal_t sinb = sin(angle2);\n"
<< "\t\treal_t cosb = cos(angle2);\n"
<< "\n"
<< "\t\tvOut.x = r * sinb * cosa;\n"
<< "\t\tvOut.y = r * sinb * sina;\n"
<< "\t\tvOut.z = r * cosb;\n"
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Spherical3D.
/// </summary>
template <typename T>
class Spherical3DVariation : public Variation<T>
{
public:
Spherical3DVariation(T weight = 1.0) : Variation<T>("Spherical3D", eVariationId::VAR_SPHERICAL3D, weight, true) { }
VARCOPY(Spherical3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r2 = m_Weight / Zeps(helper.m_PrecalcSumSquares + SQR(helper.In.z));
helper.Out.x = r2 * helper.In.x;
helper.Out.y = r2 * helper.In.y;
helper.Out.z = r2 * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss;
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t r2 = " << weight << " / Zeps(fma(vIn.z, vIn.z, precalcSumSquares));\n"
<< "\n"
<< "\t\tvOut.x = r2 * vIn.x;\n"
<< "\t\tvOut.y = r2 * vIn.y;\n"
<< "\t\tvOut.z = r2 * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
};
/// <summary>
/// Curl3D.
/// </summary>
template <typename T>
class Curl3DVariation : public ParametricVariation<T>
{
public:
Curl3DVariation(T weight = 1.0) : ParametricVariation<T>("curl3D", eVariationId::VAR_CURL3D, weight, true)
{
Init();
}
PARVARCOPY(Curl3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r2 = helper.m_PrecalcSumSquares + SQR(helper.In.z);
T r = m_Weight / Zeps(r2 * m_C2 + m_C2x * helper.In.x - m_C2y * helper.In.y + m_C2z * helper.In.z + 1);
helper.Out.x = r * (helper.In.x + m_Cx * r2);
helper.Out.y = r * (helper.In.y - m_Cy * r2);
helper.Out.z = r * (helper.In.z + m_Cz * r2);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string cx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cz = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r2 = fma(vIn.z, vIn.z, precalcSumSquares);\n"
<< "\t\treal_t r = " << weight << " / Zeps(r2 * " << c2 << " + " << c2x << " * vIn.x - " << c2y << " * vIn.y + " << c2z << " * vIn.z + (real_t)(1.0));\n"
<< "\n"
<< "\t\tvOut.x = r * fma(" << cx << ", r2, vIn.x);\n"
<< "\t\tvOut.y = r * (vIn.y - " << cy << " * r2);\n"
<< "\t\tvOut.z = r * fma(" << cz << ", r2, vIn.z);\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
virtual void Precalc() override
{
m_C2x = 2 * m_Cx;
m_C2y = 2 * m_Cy;
m_C2z = 2 * m_Cz;
m_C2 = SQR(m_Cx) + SQR(m_Cy) + SQR(m_Cz);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Cx, prefix + "curl3D_cx"));
m_Params.push_back(ParamWithName<T>(&m_Cy, prefix + "curl3D_cy"));
m_Params.push_back(ParamWithName<T>(&m_Cz, prefix + "curl3D_cz"));
m_Params.push_back(ParamWithName<T>(true, &m_C2, prefix + "curl3D_c2"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_C2x, prefix + "curl3D_c2x"));
m_Params.push_back(ParamWithName<T>(true, &m_C2y, prefix + "curl3D_c2y"));
m_Params.push_back(ParamWithName<T>(true, &m_C2z, prefix + "curl3D_c2z"));
}
private:
T m_Cx;
T m_Cy;
T m_Cz;
T m_C2;//Precalc.
T m_C2x;
T m_C2y;
T m_C2z;
};
/// <summary>
/// Disc3D.
/// </summary>
template <typename T>
class Disc3DVariation : public ParametricVariation<T>
{
public:
Disc3DVariation(T weight = 1.0) : ParametricVariation<T>("disc3d", eVariationId::VAR_DISC3D, weight, true, true, false, true, false)
{
Init();
}
PARVARCOPY(Disc3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = helper.m_PrecalcSqrtSumSquares;
T temp = r * m_Pi;
T sr = std::sin(temp);
T cr = std::cos(temp);
T vv = m_Weight * helper.m_PrecalcAtanxy / Zeps(m_Pi);
helper.Out.x = vv * sr;
helper.Out.y = vv * cr;
helper.Out.z = vv * (r * std::cos(helper.In.z));
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string pi = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r = precalcSqrtSumSquares;\n"
<< "\t\treal_t temp = r * " << pi << ";\n"
<< "\t\treal_t sr = sin(temp);\n"
<< "\t\treal_t cr = cos(temp);\n"
<< "\t\treal_t vv = " << weight << " * precalcAtanxy / Zeps(" << pi << ");\n"
<< "\n"
<< "\t\tvOut.x = vv * sr;\n"
<< "\t\tvOut.y = vv * cr;\n"
<< "\t\tvOut.z = vv * (r * cos(vIn.z));\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Pi, prefix + "disc3d_pi", T(M_PI)));
}
private:
T m_Pi;
};
/// <summary>
/// Boarders2.
/// </summary>
template <typename T>
class Boarders2Variation : public ParametricVariation<T>
{
public:
Boarders2Variation(T weight = 1.0) : ParametricVariation<T>("boarders2", eVariationId::VAR_BOARDERS2, weight)
{
Init();
}
PARVARCOPY(Boarders2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T roundX = T(int(helper.In.x >= 0 ? int(helper.In.x + T(0.5)) : int(helper.In.x - T(0.5))));
T roundY = T(int(helper.In.y >= 0 ? int(helper.In.y + T(0.5)) : int(helper.In.y - T(0.5))));
T offsetX = helper.In.x - roundX;
T offsetY = helper.In.y - roundY;
if (rand.Frand01<T>() >= m_Cr)
{
helper.Out.x = m_Weight * (offsetX * m_AbsC + roundX);
helper.Out.y = m_Weight * (offsetY * m_AbsC + roundY);
}
else
{
if (std::abs(offsetX) >= std::abs(offsetY))
{
if (offsetX >= 0)
{
helper.Out.x = m_Weight * (offsetX * m_AbsC + roundX + m_Cl);
helper.Out.y = m_Weight * (offsetY * m_AbsC + roundY + m_Cl * offsetY / offsetX);
}
else
{
helper.Out.x = m_Weight * (offsetX * m_AbsC + roundX - m_Cl);
helper.Out.y = m_Weight * (offsetY * m_AbsC + roundY - m_Cl * offsetY / offsetX);
}
}
else
{
if (offsetY >= 0)
{
helper.Out.y = m_Weight * (offsetY * m_AbsC + roundY + m_Cl);
helper.Out.x = m_Weight * (offsetX * m_AbsC + roundX + offsetX / offsetY * m_Cl);
}
else
{
helper.Out.y = m_Weight * (offsetY * m_AbsC + roundY - m_Cl);
helper.Out.x = m_Weight * (offsetX * m_AbsC + roundX - offsetX / offsetY * m_Cl);
}
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string l = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cl = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cr = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t roundX = (real_t)(int)(vIn.x >= 0 ? (int)(vIn.x + (real_t)(0.5)) : (int)(vIn.x - (real_t)(0.5)));\n"
<< "\t\treal_t roundY = (real_t)(int)(vIn.y >= 0 ? (int)(vIn.y + (real_t)(0.5)) : (int)(vIn.y - (real_t)(0.5)));\n"
<< "\t\treal_t offsetX = vIn.x - roundX;\n"
<< "\t\treal_t offsetY = vIn.y - roundY;\n"
<< "\n"
<< "\t\tif (MwcNext01(mwc) >= " << cr << ")\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * fma(offsetX, " << absc << ", roundX);\n"
<< "\t\t vOut.y = " << weight << " * fma(offsetY, " << absc << ", roundY);\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (fabs(offsetX) >= fabs(offsetY))\n"
<< "\t\t {\n"
<< "\t\t if (offsetX >= 0)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * fma(offsetX, " << absc << ", roundX + " << cl << ");\n"
<< "\t\t vOut.y = " << weight << " * (fma(offsetY, " << absc << ", roundY) + " << cl << " * offsetY / offsetX);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * fma(offsetX, " << absc << ", roundX - " << cl << ");\n"
<< "\t\t vOut.y = " << weight << " * (fma(offsetY, " << absc << ", roundY) - " << cl << " * offsetY / offsetX);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t if(offsetY >= 0)\n"
<< "\t\t {\n"
<< "\t\t vOut.y = " << weight << " * fma(offsetY, " << absc << ", roundY + " << cl << ");\n"
<< "\t\t vOut.x = " << weight << " * (fma(offsetX, " << absc << ", roundX) + offsetX / offsetY * " << cl << ");\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.y = " << weight << " * fma(offsetY, " << absc << ", roundY - " << cl << ");\n"
<< "\t\t vOut.x = " << weight << " * (fma(offsetX, " << absc << ", roundX) - offsetX / offsetY * " << cl << ");\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T c = Zeps(std::abs(m_C));
T cl = Zeps(std::abs(m_Left));
T cr = Zeps(std::abs(m_Right));
m_AbsC = c;
m_Cl = c * cl;
m_Cr = c + (c * cr);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_C, prefix + "boarders2_c", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Left, prefix + "boarders2_left", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Right, prefix + "boarders2_right", T(0.5)));
m_Params.push_back(ParamWithName<T>(true, &m_AbsC, prefix + "boarders2_cabs"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cl, prefix + "boarders2_cl"));
m_Params.push_back(ParamWithName<T>(true, &m_Cr, prefix + "boarders2_cr"));
}
private:
T m_C;
T m_Left;
T m_Right;
T m_AbsC;//Precalc.
T m_Cl;
T m_Cr;
};
/// <summary>
/// Cardioid.
/// </summary>
template <typename T>
class CardioidVariation : public ParametricVariation<T>
{
public:
CardioidVariation(T weight = 1.0) : ParametricVariation<T>("cardioid", eVariationId::VAR_CARDIOID, weight, true, true, true, false, true)
{
Init();
}
PARVARCOPY(CardioidVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = m_Weight * std::sqrt(helper.m_PrecalcSumSquares + std::sin(helper.m_PrecalcAtanyx * m_A) + 1);
helper.Out.x = r * helper.m_PrecalcCosa;
helper.Out.y = r * helper.m_PrecalcSina;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r = " << weight << " * sqrt(precalcSumSquares + sin(precalcAtanyx * " << a << ") + 1);\n"
<< "\n"
<< "\t\tvOut.x = r * precalcCosa;\n"
<< "\t\tvOut.y = r * precalcSina;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "cardioid_a", 1));
}
private:
T m_A;
};
/// <summary>
/// Checks.
/// </summary>
template <typename T>
class ChecksVariation : public ParametricVariation<T>
{
public:
ChecksVariation(T weight = 1.0) : ParametricVariation<T>("checks", eVariationId::VAR_CHECKS, weight)
{
Init();
}
PARVARCOPY(ChecksVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T dx, dy;
T rnx = m_Rnd * rand.Frand01<T>();
T rny = m_Rnd * rand.Frand01<T>();
int isXY = int(VarFuncs<T>::LRint(helper.In.x * m_Cs) + VarFuncs<T>::LRint(helper.In.y * m_Cs));
if (isXY & 1)
{
dx = m_Ncx + rnx;
dy = m_Ncy;
}
else
{
dx = m_Cx;
dy = m_Cy + rny;
}
helper.Out.x = m_Weight * (helper.In.x + dx);
helper.Out.y = m_Weight * (helper.In.y + dy);
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string size = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rnd = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cs = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ncx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ncy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t dx, dy;\n"
<< "\t\treal_t rnx = " << rnd << " * MwcNext01(mwc);\n"
<< "\t\treal_t rny = " << rnd << " * MwcNext01(mwc);\n"
<< "\n"
<< "\t\tint isXY = (int)(LRint(vIn.x * " << cs << ") + LRint(vIn.y * " << cs << "));\n"
<< "\n"
<< "\t\tif (isXY & 1)\n"
<< "\t\t{\n"
<< "\t\t dx = " << ncx << " + rnx;\n"
<< "\t\t dy = " << ncy << ";\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t dx = " << cx << ";\n"
<< "\t\t dy = " << cy << " + rny;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * (vIn.x + dx);\n"
<< "\t\tvOut.y = " << weight << " * (vIn.y + dy);\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "LRint" };
}
virtual void Precalc() override
{
m_Cs = 1 / Zeps(m_Size);
m_Cx = m_X;
m_Cy = m_Y;
m_Ncx = -m_X;
m_Ncy = -m_Y;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "checks_x", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "checks_y", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Size, prefix + "checks_size", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Rnd, prefix + "checks_rnd"));
m_Params.push_back(ParamWithName<T>(true, &m_Cs, prefix + "checks_cs"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cx, prefix + "checks_cx"));
m_Params.push_back(ParamWithName<T>(true, &m_Cy, prefix + "checks_cy"));
m_Params.push_back(ParamWithName<T>(true, &m_Ncx, prefix + "checks_ncx"));
m_Params.push_back(ParamWithName<T>(true, &m_Ncy, prefix + "checks_ncy"));
}
private:
T m_X;
T m_Y;
T m_Size;
T m_Rnd;
T m_Cs;//Precalc.
T m_Cx;
T m_Cy;
T m_Ncx;
T m_Ncy;
};
/// <summary>
/// Circlize.
/// </summary>
template <typename T>
class CirclizeVariation : public ParametricVariation<T>
{
public:
CirclizeVariation(T weight = 1.0) : ParametricVariation<T>("circlize", eVariationId::VAR_CIRCLIZE, weight)
{
Init();
}
PARVARCOPY(CirclizeVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T side;
T perimeter;
T r, val;
T absx = std::abs(helper.In.x);
T absy = std::abs(helper.In.y);
if (absx >= absy)
{
if (helper.In.x >= absy)
perimeter = absx + helper.In.y;
else
perimeter = 5 * absx - helper.In.y;
side = absx;
}
else
{
if (helper.In.y >= absx)
perimeter = 3 * absy - helper.In.x;
else
perimeter = 7 * absy + helper.In.x;
side = absy;
}
r = m_Vvar4Pi * side + m_Hole;
val = T(M_PI_4) * perimeter / side - T(M_PI_4);
helper.Out.x = r * std::cos(val);
helper.Out.y = r * std::sin(val);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string hole = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vvar4pi = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t side;\n"
<< "\t\treal_t perimeter;\n"
<< "\t\treal_t absx = fabs(vIn.x);\n"
<< "\t\treal_t absy = fabs(vIn.y);\n"
<< "\n"
<< "\t\tif (absx >= absy)\n"
<< "\t\t{\n"
<< "\t\t if (vIn.x >= absy)\n"
<< "\t\t perimeter = absx + vIn.y;\n"
<< "\t\t else\n"
<< "\t\t perimeter = fma((real_t)(5.0), absx, -vIn.y);\n"
<< "\n"
<< "\t\t side = absx;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (vIn.y >= absx)\n"
<< "\t\t perimeter = fma((real_t)(3.0), absy, -vIn.x);\n"
<< "\t\t else\n"
<< "\t\t perimeter = fma((real_t)(7.0), absy, vIn.x);\n"
<< "\n"
<< "\t\t side = absy;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\treal_t r = fma(" << vvar4pi << ", side, " << hole << ");\n"
<< "\t\treal_t val = MPI4 * perimeter / side - MPI4;\n"
<< "\n"
<< "\t\tvOut.x = r * cos(val);\n"
<< "\t\tvOut.y = r * sin(val);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Vvar4Pi = m_Weight / T(M_PI_4);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Hole, prefix + "circlize_hole"));
m_Params.push_back(ParamWithName<T>(true, &m_Vvar4Pi, prefix + "circlize_vvar4pi"));//Precalc.
}
private:
T m_Hole;
T m_Vvar4Pi;//Precalc.
};
/// <summary>
/// Circlize2.
/// </summary>
template <typename T>
class Circlize2Variation : public ParametricVariation<T>
{
public:
Circlize2Variation(T weight = 1.0) : ParametricVariation<T>("circlize2", eVariationId::VAR_CIRCLIZE2, weight)
{
Init();
}
PARVARCOPY(Circlize2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T side;
T perimeter;
T absx = std::abs(helper.In.x);
T absy = std::abs(helper.In.y);
if (absx >= absy)
{
if (helper.In.x >= absy)
perimeter = absx + helper.In.y;
else
perimeter = 5 * absx - helper.In.y;
side = absx;
}
else
{
if (helper.In.y >= absx)
perimeter = 3 * absy - helper.In.x;
else
perimeter = 7 * absy + helper.In.x;
side = absy;
}
T r = m_Weight * (side + m_Hole);
T val = T(M_PI_4) * perimeter / side - T(M_PI_4);
helper.Out.x = r * std::cos(val);
helper.Out.y = r * std::sin(val);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string hole = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t side;\n"
<< "\t\treal_t perimeter;\n"
<< "\t\treal_t absx = fabs(vIn.x);\n"
<< "\t\treal_t absy = fabs(vIn.y);\n"
<< "\n"
<< "\t\tif (absx >= absy)\n"
<< "\t\t{\n"
<< "\t\t if (vIn.x >= absy)\n"
<< "\t\t perimeter = absx + vIn.y;\n"
<< "\t\t else\n"
<< "\t\t perimeter = fma((real_t)(5.0), absx, -vIn.y);\n"
<< "\n"
<< "\t\t side = absx;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (vIn.y >= absx)\n"
<< "\t\t perimeter = fma((real_t)(3.0), absy, -vIn.x);\n"
<< "\t\t else\n"
<< "\t\t perimeter = fma((real_t)(7.0), absy, vIn.x);\n"
<< "\n"
<< "\t\t side = absy;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\treal_t r = " << weight << " * (side + " << hole << ");\n"
<< "\t\treal_t val = MPI4 * perimeter / side - MPI4;\n"
<< "\n"
<< "\t\tvOut.x = r * cos(val);\n"
<< "\t\tvOut.y = r * sin(val);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Hole, prefix + "circlize2_hole"));
}
private:
T m_Hole;
};
/// <summary>
/// CosWrap.
/// </summary>
template <typename T>
class CosWrapVariation : public ParametricVariation<T>
{
public:
CosWrapVariation(T weight = 1.0) : ParametricVariation<T>("coswrap", eVariationId::VAR_COS_WRAP, weight)
{
Init();
}
PARVARCOPY(CosWrapVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = T(0.5) * helper.In.x + T(0.5);
T y = T(0.5) * helper.In.y + T(0.5);
T bx = VarFuncs<T>::Fabsmod(m_Fr * x);
T by = VarFuncs<T>::Fabsmod(m_Fr * y);
T oscnapx = VarFuncs<T>::Foscn(m_AmountX, m_Px);
T oscnapy = VarFuncs<T>::Foscn(m_AmountY, m_Py);
helper.Out.x = -1 + m_Vv2 * Lerp<T>(Lerp<T>(x, VarFuncs<T>::Fosc(x, T(4), m_Px), oscnapx), VarFuncs<T>::Fosc(bx, T(4), m_Px), oscnapx);//Original did a direct assignment to outPoint, which is incompatible with Ember's design.
helper.Out.y = -1 + m_Vv2 * Lerp<T>(Lerp<T>(y, VarFuncs<T>::Fosc(y, T(4), m_Py), oscnapy), VarFuncs<T>::Fosc(by, T(4), m_Py), oscnapy);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string repeat = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string amountX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string amountY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string phaseX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string phaseY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ax = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ay = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string px = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string py = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string fr = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vv2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = fma((real_t)(0.5), vIn.x, (real_t)(0.5));\n"
<< "\t\treal_t y = fma((real_t)(0.5), vIn.y, (real_t)(0.5));\n"
<< "\t\treal_t bx = Fabsmod(" << fr << " * x);\n"
<< "\t\treal_t by = Fabsmod(" << fr << " * y);\n"
<< "\t\treal_t oscnapx = Foscn(" << amountX << ", " << px << ");\n"
<< "\t\treal_t oscnapy = Foscn(" << amountY << ", " << py << ");\n"
<< "\n"
<< "\t\tvOut.x = -1 + " << vv2 << " * Lerp(Lerp(x, Fosc(x, 4, " << px << "), oscnapx), Fosc(bx, 4, " << px << "), oscnapx);\n"
<< "\t\tvOut.y = -1 + " << vv2 << " * Lerp(Lerp(y, Fosc(y, 4, " << py << "), oscnapy), Fosc(by, 4, " << py << "), oscnapy);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Fabsmod", "Fosc", "Foscn", "Lerp" };
}
virtual void Precalc() override
{
m_Ax = M_2PI * std::abs(m_AmountX);
m_Ay = M_2PI * std::abs(m_AmountY);
m_Px = T(M_PI) * m_PhaseX;
m_Py = T(M_PI) * m_PhaseY;
m_Fr = std::abs(m_Repeat);
m_Vv2 = 2 * m_Weight;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Repeat, prefix + "coswrap_repeat", 1, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_AmountX, prefix + "coswrap_amount_x"));
m_Params.push_back(ParamWithName<T>(&m_AmountY, prefix + "coswrap_amount_y"));
m_Params.push_back(ParamWithName<T>(&m_PhaseX, prefix + "coswrap_phase_x", 0, eParamType::REAL_CYCLIC, -1, 1));
m_Params.push_back(ParamWithName<T>(&m_PhaseY, prefix + "coswrap_phase_y", 0, eParamType::REAL_CYCLIC, -1, 1));
m_Params.push_back(ParamWithName<T>(true, &m_Ax, prefix + "coswrap_ax"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Ay, prefix + "coswrap_ay"));
m_Params.push_back(ParamWithName<T>(true, &m_Px, prefix + "coswrap_px"));
m_Params.push_back(ParamWithName<T>(true, &m_Py, prefix + "coswrap_py"));
m_Params.push_back(ParamWithName<T>(true, &m_Fr, prefix + "coswrap_fr"));
m_Params.push_back(ParamWithName<T>(true, &m_Vv2, prefix + "coswrap_vv2"));
}
private:
T m_Repeat;
T m_AmountX;
T m_AmountY;
T m_PhaseX;
T m_PhaseY;
T m_Ax;//Precalc.
T m_Ay;
T m_Px;
T m_Py;
T m_Fr;
T m_Vv2;
};
/// <summary>
/// DeltaA.
/// The original in deltaA.c in Apophysis used a precalc variable named v, but
/// was unused in the calculation. So this remains a non-parametric variation with
/// that precalc variable omitted.
/// </summary>
template <typename T>
class DeltaAVariation : public Variation<T>
{
public:
DeltaAVariation(T weight = 1.0) : Variation<T>("deltaa", eVariationId::VAR_DELTA_A, weight) { }
VARCOPY(DeltaAVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T s, c;
T avgr = m_Weight * (std::sqrt(SQR(helper.In.y) + SQR(helper.In.x + 1)) / std::sqrt(SQR(helper.In.y) + SQR(helper.In.x - 1)));
T avga = (std::atan2(helper.In.y, helper.In.x - 1) - std::atan2(helper.In.y, helper.In.x + 1)) / 2;
sincos(avga, &s, &c);
helper.Out.x = avgr * c;
helper.Out.y = avgr * s;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t xp1 = vIn.x + (real_t)(1.0);\n"
<< "\t\treal_t xm1 = vIn.x - (real_t)(1.0);\n"
<< "\t\treal_t avgr = " << weight << " * (sqrt(fma(vIn.y, vIn.y, SQR(xp1))) / sqrt(fma(vIn.y, vIn.y, SQR(xm1))));\n"
<< "\t\treal_t avga = (atan2(vIn.y, xm1) - atan2(vIn.y, xp1)) / 2;\n"
<< "\t\treal_t s = sin(avga);\n"
<< "\t\treal_t c = cos(avga);\n"
<< "\n"
<< "\t\tvOut.x = avgr * c;\n"
<< "\t\tvOut.y = avgr * s;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Expo.
/// </summary>
template <typename T>
class ExpoVariation : public ParametricVariation<T>
{
public:
ExpoVariation(T weight = 1.0) : ParametricVariation<T>("expo", eVariationId::VAR_EXPO, weight)
{
Init();
}
PARVARCOPY(ExpoVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T expor = std::exp(helper.In.x * m_K - helper.In.y * m_T);
T temp = helper.In.x * m_T + helper.In.y * m_K;
T snv = std::sin(temp);
T csv = std::cos(temp);
helper.Out.x = m_Weight * expor * csv;
helper.Out.y = m_Weight * expor * snv;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string real = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string imag = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string k = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string t = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t expor = exp(fma(vIn.x, " << k << ", -(vIn.y * " << t << ")));\n"
<< "\t\treal_t temp = fma(vIn.x, " << t << ", (vIn.y * " << k << "));\n"
<< "\t\treal_t snv = sin(temp);\n"
<< "\t\treal_t csv = cos(temp);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * expor * csv;\n"
<< "\t\tvOut.y = " << weight << " * expor * snv;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_K = T(0.5) * std::log(Zeps(SQR(m_Real) + SQR(m_Imag)));//Original used 1e-300, which isn't representable with a float.
m_T = std::atan2(m_Imag, m_Real);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Real, prefix + "expo_real", -1));
m_Params.push_back(ParamWithName<T>(&m_Imag, prefix + "expo_imaginary", 1));
m_Params.push_back(ParamWithName<T>(true, &m_K, prefix + "expo_k"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_T, prefix + "expo_t"));
}
private:
T m_Real;
T m_Imag;
T m_K;//Precalc.
T m_T;
};
/// <summary>
/// Extrude.
/// </summary>
template <typename T>
class ExtrudeVariation : public ParametricVariation<T>
{
public:
ExtrudeVariation(T weight = 1.0) : ParametricVariation<T>("extrude", eVariationId::VAR_EXTRUDE, weight)
{
Init();
}
PARVARCOPY(ExtrudeVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (m_VarType == eVariationType::VARTYPE_REG)
{
helper.Out.x = helper.Out.y = helper.Out.z = 0;
if (rand.Frand01<T>() < m_RootFace)
outPoint.m_Z = ClampGte0(m_Weight);
else
outPoint.m_Z = m_Weight * rand.Frand01<T>();
}
else
{
helper.Out.x = helper.In.x;
helper.Out.y = helper.In.y;
if (rand.Frand01<T>() < m_RootFace)
helper.Out.z = ClampGte0(m_Weight);
else
helper.Out.z = m_Weight * rand.Frand01<T>();
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string rootFace = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss << "\t{\n"
<< "\t\tvOut.x = vOut.y = vOut.z = 0;\n"
<< "\n"
<< "\t\tif (MwcNext01(mwc) < " << rootFace << ")\n"
<< "\t\t outPoint->m_Z = max(" << weight << ", (real_t)(0.0));\n"
<< "\t\telse\n"
<< "\t\t outPoint->m_Z = " << weight << " * MwcNext01(mwc);\n"
<< "\t}\n";
}
else
{
ss << "\t{\n"
<< "\t\tvOut.x = vIn.x;\n"
<< "\t\tvOut.y = vIn.y;\n"
<< "\n"
<< "\t\tif (MwcNext01(mwc) < " << rootFace << ")\n"
<< "\t\t vOut.z = max(" << weight << ", (real_t)(0.0));\n"
<< "\t\telse\n"
<< "\t\t vOut.z = " << weight << " * MwcNext01(mwc);\n"
<< "\t}\n";
}
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_RootFace, prefix + "extrude_root_face", T(0.5)));
}
private:
T m_RootFace;
};
/// <summary>
/// fdisc.
/// </summary>
template <typename T>
class FDiscVariation : public Variation<T>
{
public:
FDiscVariation(T weight = 1.0) : Variation<T>("fdisc", eVariationId::VAR_FDISC, weight, true, true, false, false, true) { }
VARCOPY(FDiscVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T c, s;
T a = M_2PI / (helper.m_PrecalcSqrtSumSquares + 1);
T r = (helper.m_PrecalcAtanyx * T(M_1_PI) + 1) * T(0.5);
sincos(a, &s, &c);
helper.Out.x = m_Weight * r * c;
helper.Out.y = m_Weight * r * s;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t a = M_2PI / (precalcSqrtSumSquares + 1);\n"
<< "\t\treal_t r = fma(precalcAtanyx, M1PI, (real_t)(1.0)) * (real_t)(0.5);\n"
<< "\t\treal_t s = sin(a);\n"
<< "\t\treal_t c = cos(a);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * r * c;\n"
<< "\t\tvOut.y = " << weight << " * r * s;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Fibonacci.
/// </summary>
template <typename T>
class FibonacciVariation : public ParametricVariation<T>
{
public:
FibonacciVariation(T weight = 1.0) : ParametricVariation<T>("fibonacci", eVariationId::VAR_FIBONACCI, weight)
{
Init();
}
PARVARCOPY(FibonacciVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T snum1, cnum1, snum2, cnum2;
T temp = helper.In.y * m_NatLog;
sincos(temp, &snum1, &cnum1);
temp = (helper.In.x * T(M_PI) + helper.In.y * m_NatLog) * -1;
sincos(temp, &snum2, &cnum2);
T eradius1 = std::exp(helper.In.x * m_NatLog);
T eradius2 = std::exp((helper.In.x * m_NatLog - helper.In.y * T(M_PI)) * -1);
helper.Out.x = m_Weight * (eradius1 * cnum1 - eradius2 * cnum2) * m_Five;
helper.Out.y = m_Weight * (eradius1 * snum1 - eradius2 * snum2) * m_Five;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string five = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
string natLog = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t temp = vIn.y * " << natLog << ";\n"
<< "\t\treal_t snum1 = sin(temp);\n"
<< "\t\treal_t cnum1 = cos(temp);\n"
<< "\t\ttemp = fma(vIn.x, MPI, vIn.y * " << natLog << ") * (real_t)(-1.0);\n"
<< "\t\treal_t snum2 = sin(temp);\n"
<< "\t\treal_t cnum2 = cos(temp);\n"
<< "\t\treal_t eradius1 = exp(vIn.x * " << natLog << ");\n"
<< "\t\treal_t eradius2 = exp(fma(vIn.x, " << natLog << ", -(vIn.y * MPI)) * (real_t)(-1.0));\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * (eradius1 * cnum1 - eradius2 * cnum2) * " << five << ";\n"
<< "\t\tvOut.y = " << weight << " * (eradius1 * snum1 - eradius2 * snum2) * " << five << ";\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Five = 1 / M_SQRT5;
m_NatLog = std::log(M_PHI);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_Five, prefix + "fibonacci_five"));//Precalcs only, no params.
m_Params.push_back(ParamWithName<T>(true, &m_NatLog, prefix + "fibonacci_nat_log"));
}
private:
T m_Five;//Precalcs only, no params.
T m_NatLog;
};
/// <summary>
/// Fibonacci2.
/// </summary>
template <typename T>
class Fibonacci2Variation : public ParametricVariation<T>
{
public:
Fibonacci2Variation(T weight = 1.0) : ParametricVariation<T>("fibonacci2", eVariationId::VAR_FIBONACCI2, weight)
{
Init();
}
PARVARCOPY(Fibonacci2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T snum1, cnum1, snum2, cnum2;
T temp = helper.In.y * m_NatLog;
sincos(temp, &snum1, &cnum1);
temp = (helper.In.x * T(M_PI) + helper.In.y * m_NatLog) * -1;
sincos(temp, &snum2, &cnum2);
T eradius1 = m_Sc * std::exp(m_Sc2 * (helper.In.x * m_NatLog));
T eradius2 = m_Sc * std::exp(m_Sc2 * ((helper.In.x * m_NatLog - helper.In.y * T(M_PI)) * -1));
helper.Out.x = m_Weight * (eradius1 * cnum1 - eradius2 * cnum2) * m_Five;
helper.Out.y = m_Weight * (eradius1 * snum1 - eradius2 * snum2) * m_Five;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string sc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sc2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string five = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string natLog = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t temp = vIn.y * " << natLog << ";\n"
<< "\t\treal_t snum1 = sin(temp);\n"
<< "\t\treal_t cnum1 = cos(temp);\n"
<< "\t\ttemp = fma(vIn.x, MPI, vIn.y * " << natLog << ") * -1;\n"
<< "\t\treal_t snum2 = sin(temp);\n"
<< "\t\treal_t cnum2 = cos(temp);\n"
<< "\t\treal_t eradius1 = " << sc << " * exp(" << sc2 << " * (vIn.x * " << natLog << "));\n"
<< "\t\treal_t eradius2 = " << sc << " * exp(" << sc2 << " * (fma(vIn.x, " << natLog << ", -(vIn.y * MPI)) * (real_t)(-1.0)));\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * fma(eradius1, cnum1, -(eradius2 * cnum2)) * " << five << ";\n"
<< "\t\tvOut.y = " << weight << " * fma(eradius1, snum1, -(eradius2 * snum2)) * " << five << ";\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Five = 1 / M_SQRT5;
m_NatLog = std::log(M_PHI);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Sc, prefix + "fibonacci2_sc", 1));
m_Params.push_back(ParamWithName<T>(&m_Sc2, prefix + "fibonacci2_sc2", 1));
m_Params.push_back(ParamWithName<T>(true, &m_Five, prefix + "fibonacci2_five"));//Precalcs.
m_Params.push_back(ParamWithName<T>(true, &m_NatLog, prefix + "fibonacci2_nat_log"));
}
private:
T m_Sc;
T m_Sc2;
T m_Five;//Precalcs.
T m_NatLog;
};
/// <summary>
/// Glynnia.
/// </summary>
template <typename T>
class GlynniaVariation : public ParametricVariation<T>
{
public:
GlynniaVariation(T weight = 1.0) : ParametricVariation<T>("glynnia", eVariationId::VAR_GLYNNIA, weight, true, true)
{
Init();
}
PARVARCOPY(GlynniaVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T d, r = helper.m_PrecalcSqrtSumSquares;
if (r > 1)
{
if (rand.Frand01<T>() > T(0.5))
{
d = std::sqrt(r + helper.In.x);
helper.Out.x = m_V2 * d;
helper.Out.y = -(m_V2 / d * helper.In.y);
}
else
{
d = r + helper.In.x;
r = m_Weight / std::sqrt(r * (SQR(helper.In.y) + SQR(d)));
helper.Out.x = r * d;
helper.Out.y = r * helper.In.y;
}
}
else
{
if (rand.Frand01<T>() > T(0.5))
{
d = Zeps(std::sqrt(r + helper.In.x));
helper.Out.x = -(m_V2 * d);
helper.Out.y = -(m_V2 / d * helper.In.y);
}
else
{
d = r + helper.In.x;
r = m_Weight / Zeps(std::sqrt(r * (SQR(helper.In.y) + SQR(d))));
helper.Out.x = -(r * d);
helper.Out.y = r * helper.In.y;
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string v2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
ss << "\t{\n"
<< "\t\treal_t d, r = precalcSqrtSumSquares;\n"
<< "\n"
<< "\t\tif (r > 1)\n"
<< "\t\t{\n"
<< "\t\t if (MwcNext01(mwc) > (real_t)(0.5))\n"
<< "\t\t {\n"
<< "\t\t d = sqrt(r + vIn.x);\n"
<< "\t\t vOut.x = " << v2 << " * d;\n"
<< "\t\t vOut.y = -(" << v2 << " / d * vIn.y);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t d = r + vIn.x;\n"
<< "\t\t r = " << weight << " / sqrt(r * fma(vIn.y, vIn.y, SQR(d)));\n"
<< "\t\t vOut.x = r * d;\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (MwcNext01(mwc) > (real_t)(0.5))\n"
<< "\t\t {\n"
<< "\t\t d = Zeps(sqrt(r + vIn.x));\n"
<< "\t\t vOut.x = -(" << v2 << " * d);\n"
<< "\t\t vOut.y = -(" << v2 << " / d * vIn.y);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t d = r + vIn.x;\n"
<< "\t\t r = " << weight << " / sqrt(r * fma(vIn.y, vIn.y, SQR(d)));\n"
<< "\t\t vOut.x = -(r * d);\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_V2 = m_Weight * std::sqrt(T(2)) / 2;
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_V2, prefix + "glynnia_v2"));//Precalcs only, no params.
}
private:
T m_V2;//Precalcs only, no params.
};
/// <summary>
/// Glynnia2.
/// By guagapunyaimel.
/// </summary>
template <typename T>
class Glynnia2Variation : public ParametricVariation<T>
{
public:
Glynnia2Variation(T weight = 1.0) : ParametricVariation<T>("glynnia2", eVariationId::VAR_GLYNNIA2, weight, true, true)
{
Init();
}
PARVARCOPY(Glynnia2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T d, r = helper.m_PrecalcSqrtSumSquares;
if (r > 0 && helper.In.y > 0)
{
if (rand.Frand01<T>() > T(0.5))
{
d = std::sqrt(r + helper.In.x);
helper.Out.x = m_V2 * d;
helper.Out.y = -(m_V2 / d * helper.In.y);
}
else
{
d = r + helper.In.x;
r = m_Weight / std::sqrt(r * (SQR(helper.In.y) + SQR(d)));
helper.Out.x = r * d;
helper.Out.y = r * helper.In.y;
}
}
else
{
if (rand.Frand01<T>() > T(0.5))
{
d = Zeps(std::sqrt(r + helper.In.x));
helper.Out.x = -(m_V2 * d);
helper.Out.y = -(m_V2 / d * helper.In.y);
}
else
{
d = r + helper.In.x;
r = m_Weight / Zeps(std::sqrt(r * (SQR(helper.In.y) + SQR(d))));
helper.Out.x = -(r * d);
helper.Out.y = r * helper.In.y;
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string v2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
ss << "\t{\n"
<< "\t\treal_t d, r = precalcSqrtSumSquares;\n"
<< "\n"
<< "\t\tif (r > 0 && vIn.y > 0)\n"
<< "\t\t{\n"
<< "\t\t if (MwcNext01(mwc) > (real_t)(0.5))\n"
<< "\t\t {\n"
<< "\t\t d = sqrt(r + vIn.x);\n"
<< "\t\t vOut.x = " << v2 << " * d;\n"
<< "\t\t vOut.y = -(" << v2 << " / d * vIn.y);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t d = r + vIn.x;\n"
<< "\t\t r = " << weight << " / sqrt(r * fma(vIn.y, vIn.y, SQR(d)));\n"
<< "\t\t vOut.x = r * d;\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (MwcNext01(mwc) > (real_t)(0.5))\n"
<< "\t\t {\n"
<< "\t\t d = Zeps(sqrt(r + vIn.x));\n"
<< "\t\t vOut.x = -(" << v2 << " * d);\n"
<< "\t\t vOut.y = -(" << v2 << " / d * vIn.y);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t d = r + vIn.x;\n"
<< "\t\t r = " << weight << " / Zeps(sqrt(r * fma(vIn.y, vIn.y, SQR(d))));\n"
<< "\t\t vOut.x = -(r * d);\n"
<< "\t\t vOut.y = r * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_V2 = m_Weight * std::sqrt(T(2)) / 2;
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_V2, prefix + "glynnia2_v2"));//Precalcs only, no params.
}
private:
T m_V2;//Precalcs only, no params.
};
/// <summary>
/// GridOut.
/// </summary>
template <typename T>
class GridOutVariation : public Variation<T>
{
public:
GridOutVariation(T weight = 1.0) : Variation<T>("gridout", eVariationId::VAR_GRIDOUT, weight) { }
VARCOPY(GridOutVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = VarFuncs<T>::LRint(helper.In.x);
T y = VarFuncs<T>::LRint(helper.In.y);
if (y <= 0)
{
if (x > 0)
{
if (-y >= x)
{
helper.Out.x = m_Weight * (helper.In.x + 1);
helper.Out.y = m_Weight * helper.In.y;
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * (helper.In.y + 1);
}
}
else
{
if (y <= x)
{
helper.Out.x = m_Weight * (helper.In.x + 1);
helper.Out.y = m_Weight * helper.In.y;
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * (helper.In.y - 1);
}
}
}
else
{
if (x > 0)
{
if (y >= x)
{
helper.Out.x = m_Weight * (helper.In.x - 1);
helper.Out.y = m_Weight * helper.In.y;
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * (helper.In.y + 1);
}
}
else
{
if (y > -x)
{
helper.Out.x = m_Weight * (helper.In.x - 1);
helper.Out.y = m_Weight * helper.In.y;
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * (helper.In.y - 1);
}
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t x = LRint(vIn.x);\n"
<< "\t\treal_t y = LRint(vIn.y);\n"
<< "\n"
<< "\t\tif (y <= 0)\n"
<< "\t\t{\n"
<< "\t\t if (x > 0)\n"
<< "\t\t {\n"
<< "\t\t if (-y >= x)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x + 1);\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y + 1);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t if (y <= x)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x + 1);\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y - 1);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (x > 0)\n"
<< "\t\t {\n"
<< "\t\t if (y >= x)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x - 1);\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y + 1);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t if (y > -x)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x - 1);\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y - 1);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "LRint" };
}
};
/// <summary>
/// Hole.
/// </summary>
template <typename T>
class HoleVariation : public ParametricVariation<T>
{
public:
HoleVariation(T weight = 1.0) : ParametricVariation<T>("hole", eVariationId::VAR_HOLE, weight, true, true, true, false, true)
{
Init();
}
PARVARCOPY(HoleVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r, delta = std::pow(helper.m_PrecalcAtanyx / T(M_PI) + 1, m_A);
if (m_Inside != 0)
r = m_Weight * delta / (helper.m_PrecalcSqrtSumSquares + delta);
else
r = m_Weight * helper.m_PrecalcSqrtSumSquares + delta;
helper.Out.x = r * helper.m_PrecalcCosa;
helper.Out.y = r * helper.m_PrecalcSina;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string inside = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r, delta = pow(precalcAtanyx / MPI + 1, " << a << ");\n"
<< "\n"
<< "\t\tif (" << inside << " != 0)\n"
<< "\t\t r = " << weight << " * delta / (precalcSqrtSumSquares + delta);\n"
<< "\t\telse\n"
<< "\t\t r = fma(" << weight << ", precalcSqrtSumSquares, delta);\n"
<< "\n"
<< "\t\tvOut.x = r * precalcCosa;\n"
<< "\t\tvOut.y = r * precalcSina;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "hole_a", 1));
m_Params.push_back(ParamWithName<T>(&m_Inside, prefix + "hole_inside", 0, eParamType::INTEGER, 0, 1));
}
private:
T m_A;
T m_Inside;
};
/// <summary>
/// Hypertile.
/// </summary>
template <typename T>
class HypertileVariation : public ParametricVariation<T>
{
public:
HypertileVariation(T weight = 1.0) : ParametricVariation<T>("hypertile", eVariationId::VAR_HYPERTILE, weight)
{
Init();
}
PARVARCOPY(HypertileVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T a = helper.In.x + m_Real;
T b = helper.In.y - m_Imag;
T c = m_Real * helper.In.x - m_Imag * helper.In.y + 1;
T d = m_Real * helper.In.y + m_Imag * helper.In.x;
T vr = m_Weight / (SQR(c) + SQR(d));
helper.Out.x = vr * (a * c + b * d);
helper.Out.y = vr * (b * c - a * d);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string real = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string imag = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t a = vIn.x + " << real << ";\n"
<< "\t\treal_t b = vIn.y - " << imag << ";\n"
<< "\t\treal_t c = fma(" << real << ", vIn.x, -(" << imag << " * vIn.y)) + 1;\n"
<< "\t\treal_t d = fma(" << real << ", vIn.y, " << imag << " * vIn.x);\n"
<< "\t\treal_t vr = " << weight << " / fma(c, c, SQR(d));\n"
<< "\n"
<< "\t\tvOut.x = vr * fma(a, c, b * d);\n"
<< "\t\tvOut.y = vr * fma(b, c, -(a * d));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T pa = M_2PI / Zeps(m_P);
T cs = std::cos(pa);
T r2 = (T(1) - cs) / (cs + cos(M_2PI / Zeps(m_Q))) + 1;
T r = (r2 > 0) ? T(1) / sqrt(r2) : T(1);
T a = m_N * pa;
m_Real = r * std::cos(a);
m_Imag = r * std::sin(a);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_P, prefix + "hypertile_p", T(3)));
m_Params.push_back(ParamWithName<T>(&m_Q, prefix + "hypertile_q", T(7)));
m_Params.push_back(ParamWithName<T>(&m_N, prefix + "hypertile_n", T(0)));
m_Params.push_back(ParamWithName<T>(true, &m_Real, prefix + "hypertile_real"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Imag, prefix + "hypertile_imag"));
}
private:
T m_P;
T m_Q;
T m_N;
T m_Real;//Precalc.
T m_Imag;
};
/// <summary>
/// Hypertile1.
/// </summary>
template <typename T>
class Hypertile1Variation : public ParametricVariation<T>
{
public:
Hypertile1Variation(T weight = 1.0) : ParametricVariation<T>("hypertile1", eVariationId::VAR_HYPERTILE1, weight)
{
Init();
}
PARVARCOPY(Hypertile1Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T temp = rand.Crand() * m_Pa;
T sina = std::sin(temp);
T cosa = std::cos(temp);
T re = m_R * cosa;
T im = m_R * sina;
T a = helper.In.x + re;
T b = helper.In.y - im;
T c = re * helper.In.x - im * helper.In.y + 1;
T d = re * helper.In.y + im * helper.In.x;
T vr = m_Weight / (SQR(c) + SQR(d));
helper.Out.x = vr * (a * c + b * d);
helper.Out.y = vr * (b * c - a * d);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ip = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t temp = MwcNextCrand(mwc) * " << pa << ";\n"
<< "\t\treal_t sina = sin(temp);\n"
<< "\t\treal_t cosa = cos(temp);\n"
<< "\t\treal_t re = " << r << " * cosa;\n"
<< "\t\treal_t im = " << r << " * sina;\n"
<< "\t\treal_t a = vIn.x + re;\n"
<< "\t\treal_t b = vIn.y - im;\n"
<< "\t\treal_t c = fma(re, vIn.x, -(im * vIn.y)) + 1;\n"
<< "\t\treal_t d = fma(re, vIn.y, im * vIn.x);\n"
<< "\t\treal_t vr = " << weight << " / fma(c, c, SQR(d));\n"
<< "\n"
<< "\t\tvOut.x = vr * fma(a, c, b * d);\n"
<< "\t\tvOut.y = vr * fma(b, c, -(a * d));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Pa = M_2PI / Zeps(m_P);
T cs = std::cos(m_Pa);
T r2 = T(1) - (cs - 1) / (cs + std::cos(M_2PI / Zeps(m_Q)));
m_R = (r2 > 0) ? T(1) / std::sqrt(r2) : T(1);
m_IP = T((int)m_P);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_P, prefix + "hypertile1_p", T(3)));
m_Params.push_back(ParamWithName<T>(&m_Q, prefix + "hypertile1_q", T(7)));
m_Params.push_back(ParamWithName<T>(true, &m_Pa, prefix + "hypertile1_pa"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_R, prefix + "hypertile1_r"));
m_Params.push_back(ParamWithName<T>(true, &m_IP, prefix + "hypertile1_ip"));
}
private:
T m_P;
T m_Q;
T m_Pa;//Precalc.
T m_R;
T m_IP;
};
/// <summary>
/// Hypertile2.
/// </summary>
template <typename T>
class Hypertile2Variation : public ParametricVariation<T>
{
public:
Hypertile2Variation(T weight = 1.0) : ParametricVariation<T>("hypertile2", eVariationId::VAR_HYPERTILE2, weight)
{
Init();
}
PARVARCOPY(Hypertile2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T a = helper.In.x + m_R;
T b = helper.In.y;
T c = m_R * helper.In.x + 1;
T d = m_R * helper.In.y;
T x = (a * c + b * d);
T y = (b * c - a * d);
T vr = m_Weight / (SQR(c) + SQR(d));
T temp = rand.Crand() * m_Pa;
T sina = std::sin(temp);
T cosa = std::cos(temp);
helper.Out.x = vr * (x * cosa + y * sina);
helper.Out.y = vr * (y * cosa - x * sina);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t a = vIn.x + " << r << ";\n"
<< "\t\treal_t b = vIn.y;\n"
<< "\t\treal_t c = fma(" << r << ", vIn.x, (real_t)(1.0));\n"
<< "\t\treal_t d = " << r << " * vIn.y;\n"
<< "\t\treal_t x = fma(a, c, b * d);\n"
<< "\t\treal_t y = fma(b, c, -(a * d));\n"
<< "\t\treal_t vr = " << weight << " / fma(c, c, SQR(d));\n"
<< "\t\treal_t temp = MwcNextCrand(mwc) * " << pa << ";\n"
<< "\t\treal_t sina = sin(temp);\n"
<< "\t\treal_t cosa = cos(temp);\n"
<< "\n"
<< "\t\tvOut.x = vr * fma(x, cosa, y * sina);\n"
<< "\t\tvOut.y = vr * fma(y, cosa, -(x * sina));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Pa = T(M_2PI) / Zeps(m_P);
T cs = std::cos(m_Pa);
T r2 = T(1) - (cs - T(1)) / (cs + std::cos(T(M_2PI) / Zeps(m_Q)));
m_R = (r2 > 0) ? T(1) / sqrt(r2) : T(1);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_P, prefix + "hypertile2_p", T(3)));
m_Params.push_back(ParamWithName<T>(&m_Q, prefix + "hypertile2_q", T(7)));
m_Params.push_back(ParamWithName<T>(true, &m_Pa, prefix + "hypertile2_pa"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_R, prefix + "hypertile2_r"));
}
private:
T m_P;
T m_Q;
T m_Pa;//Precalc.
T m_R;
};
/// <summary>
/// Hypertile3D.
/// </summary>
template <typename T>
class Hypertile3DVariation : public ParametricVariation<T>
{
public:
Hypertile3DVariation(T weight = 1.0) : ParametricVariation<T>("hypertile3D", eVariationId::VAR_HYPERTILE3D, weight, true)
{
Init();
}
PARVARCOPY(Hypertile3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r2 = helper.m_PrecalcSumSquares + helper.In.z;
T x2cx = m_C2x * helper.In.x;
T y2cy = m_C2y * helper.In.y;
T d = m_Weight / Zeps(m_C2 * r2 + x2cx - y2cy + 1);
helper.Out.x = d * (helper.In.x * m_S2x - m_Cx * (y2cy - r2 - 1));
helper.Out.y = d * (helper.In.y * m_S2y + m_Cy * (-x2cx - r2 - 1));
helper.Out.z = d * (helper.In.z * m_S2z);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cz = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r2 = precalcSumSquares + vIn.z;\n"
<< "\t\treal_t x2cx = " << c2x << " * vIn.x;\n"
<< "\t\treal_t y2cy = " << c2y << " * vIn.y;\n"
<< "\t\treal_t d = " << weight << " / Zeps(fma(" << c2 << ", r2, (x2cx - y2cy) + 1));\n"
<< "\n"
<< "\t\tvOut.x = d * fma(vIn.x, " << s2x << ", -(" << cx << " * (y2cy - r2 - 1)));\n"
<< "\t\tvOut.y = d * fma(vIn.y, " << s2y << ", " << cy << " * (-x2cx - r2 - 1));\n"
<< "\t\tvOut.z = d * (vIn.z * " << s2z << ");\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T pa = 2 * T(M_PI) / Zeps(m_P);
T qa = 2 * T(M_PI) / Zeps(m_Q);
T r = -(std::cos(pa) - 1) / Zeps(std::cos(pa) + std::cos(qa));
T na = m_N * pa;
if (r > 0)
r = 1 / Zeps(std::sqrt(1 + r));
else
r = 1;
m_Cx = r * std::cos(na);
m_Cy = r * std::sin(na);
m_C2 = SQR(m_Cx) + SQR(m_Cy);
m_C2x = 2 * m_Cx;
m_C2y = 2 * m_Cy;
m_S2x = 1 + SQR(m_Cx) - SQR(m_Cy);
m_S2y = 1 + SQR(m_Cy) - SQR(m_Cx);
m_S2z = 1 - SQR(m_Cy) - SQR(m_Cx);
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_P, prefix + "hypertile3D_p", 3, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(&m_Q, prefix + "hypertile3D_q", 7, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(&m_N, prefix + "hypertile3D_n", 0, eParamType::INTEGER));
m_Params.push_back(ParamWithName<T>(true, &m_Cx, prefix + "hypertile3D_cx"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cy, prefix + "hypertile3D_cy"));
m_Params.push_back(ParamWithName<T>(true, &m_Cz, prefix + "hypertile3D_cz"));
m_Params.push_back(ParamWithName<T>(true, &m_S2x, prefix + "hypertile3D_s2x"));
m_Params.push_back(ParamWithName<T>(true, &m_S2y, prefix + "hypertile3D_s2y"));
m_Params.push_back(ParamWithName<T>(true, &m_S2z, prefix + "hypertile3D_s2z"));
m_Params.push_back(ParamWithName<T>(true, &m_C2x, prefix + "hypertile3D_c2x"));
m_Params.push_back(ParamWithName<T>(true, &m_C2y, prefix + "hypertile3D_c2y"));
m_Params.push_back(ParamWithName<T>(true, &m_C2z, prefix + "hypertile3D_c2z"));
m_Params.push_back(ParamWithName<T>(true, &m_C2, prefix + "hypertile3D_c2"));
}
private:
T m_P;
T m_Q;
T m_N;
T m_Cx;//Precalc.
T m_Cy;
T m_Cz;
T m_S2x;
T m_S2y;
T m_S2z;
T m_C2x;
T m_C2y;
T m_C2z;
T m_C2;
};
/// <summary>
/// Hypertile3D1.
/// </summary>
template <typename T>
class Hypertile3D1Variation : public ParametricVariation<T>
{
public:
Hypertile3D1Variation(T weight = 1.0) : ParametricVariation<T>("hypertile3D1", eVariationId::VAR_HYPERTILE3D1, weight, true)
{
Init();
}
PARVARCOPY(Hypertile3D1Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T temp = rand.Crand() * m_Pa;
T cx = m_R * std::cos(temp);
T cy = m_R * std::sin(temp);
T s2x = 1 + SQR(cx) - SQR(cy);
T s2y = 1 + SQR(cy) - SQR(cx);
T r2 = helper.m_PrecalcSumSquares + SQR(helper.In.z);
T x2cx = 2 * cx * helper.In.x;
T y2cy = 2 * cy * helper.In.y;
T d = m_Weight / Zeps(m_C2 * r2 + x2cx - y2cy + 1);
helper.Out.x = d * (helper.In.x * s2x - cx * (y2cy - r2 - 1));
helper.Out.y = d * (helper.In.y * s2y + cy * (-x2cx - r2 - 1));
helper.Out.z = d * (helper.In.z * m_S2z);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t temp = MwcNextCrand(mwc) * " << pa << ";\n"
<< "\t\treal_t cx = " << r << " * cos(temp);\n"
<< "\t\treal_t cy = " << r << " * sin(temp);\n"
<< "\t\treal_t s2x = fma(cx, cx, (real_t)(1.0)) - SQR(cy);\n"
<< "\t\treal_t s2y = fma(cy, cy, (real_t)(1.0)) - SQR(cx);\n"
<< "\t\treal_t r2 = precalcSumSquares + SQR(vIn.z);\n"
<< "\t\treal_t x2cx = 2 * cx * vIn.x;\n"
<< "\t\treal_t y2cy = 2 * cy * vIn.y;\n"
<< "\t\treal_t d = " << weight << " / Zeps(fma(" << c2 << ", r2, (x2cx - y2cy) + 1)); \n"
<< "\n"
<< "\t\tvOut.x = d * fma(vIn.x, s2x, -(cx * (y2cy - r2 - 1)));\n"
<< "\t\tvOut.y = d * fma(vIn.y, s2y, cy * (-x2cx - r2 - 1));\n"
<< "\t\tvOut.z = d * (vIn.z * " << s2z << ");\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T pa = M_2PI / Zeps(m_P);
T qa = M_2PI / Zeps(m_Q);
T r = -(std::cos(pa) - 1) / Zeps(std::cos(pa) + std::cos(qa));
if (r > 0)
r = 1 / Zeps(std::sqrt(1 + r));
else
r = 1;
m_Pa = pa;
m_R = r;
m_C2 = SQR(r);
m_S2z = 1 - m_C2;
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_P, prefix + "hypertile3D1_p", 3, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(&m_Q, prefix + "hypertile3D1_q", 7, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(true, &m_Pa, prefix + "hypertile3D1_pa"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_R, prefix + "hypertile3D1_r"));
m_Params.push_back(ParamWithName<T>(true, &m_C2, prefix + "hypertile3D1_c2"));
m_Params.push_back(ParamWithName<T>(true, &m_S2z, prefix + "hypertile3D1_s2z"));
}
private:
T m_P;
T m_Q;
T m_Pa;//Precalc.
T m_R;
T m_C2;
T m_S2z;
};
/// <summary>
/// Hypertile3D2.
/// </summary>
template <typename T>
class Hypertile3D2Variation : public ParametricVariation<T>
{
public:
Hypertile3D2Variation(T weight = 1.0) : ParametricVariation<T>("hypertile3D2", eVariationId::VAR_HYPERTILE3D2, weight, true)
{
Init();
}
PARVARCOPY(Hypertile3D2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r2 = helper.m_PrecalcSumSquares + SQR(helper.In.z);
T x2cx = m_C2x * helper.In.x;
T x = helper.In.x * m_S2x - m_Cx * (-r2 - 1);
T y = helper.In.y * m_S2y;
T vr = m_Weight / (m_C2 * r2 + x2cx + 1);
T temp = rand.Crand() * m_Pa;
T sina = std::sin(temp);
T cosa = std::cos(temp);
helper.Out.x = vr * (x * cosa + y * sina);
helper.Out.y = vr * (y * cosa - x * sina);
helper.Out.z = vr * (helper.In.z * m_S2z);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string q = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r2 = precalcSumSquares + SQR(vIn.z);\n"
<< "\t\treal_t x2cx = " << c2x << " * vIn.x;\n"
<< "\t\treal_t x = fma(vIn.x, " << s2x << ", -(" << cx << " * (-r2 - (real_t)(1.0))));\n"
<< "\t\treal_t y = vIn.y * " << s2y << ";\n"
<< "\t\treal_t vr = " << weight << " / fma(" << c2 << ", r2, x2cx + (real_t)(1.0));\n"
<< "\t\treal_t temp = MwcNextCrand(mwc) * " << pa << ";\n"
<< "\t\treal_t sina = sin(temp);\n"
<< "\t\treal_t cosa = cos(temp);\n"
<< "\n"
<< "\t\tvOut.x = vr * fma(x, cosa, y * sina);\n"
<< "\t\tvOut.y = vr * fma(y, cosa, -(x * sina));\n"
<< "\t\tvOut.z = vr * (vIn.z * " << s2z << ");\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T pa = M_2PI / Zeps(m_P);
T qa = M_2PI / Zeps(m_Q);
T r = -(std::cos(pa) - 1) / Zeps(std::cos(pa) + std::cos(qa));
if (r > 0)
r = 1 / Zeps(std::sqrt(1 + r));
else
r = 1;
m_Pa = pa;
m_Cx = r;
m_C2 = SQR(m_Cx);
m_C2x = 2 * m_Cx;
m_S2x = 1 + SQR(m_Cx);
m_S2y = 1 - SQR(m_Cx);
m_S2z = 1 - SQR(m_Cx);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_P, prefix + "hypertile3D2_p", 3, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(&m_Q, prefix + "hypertile3D2_q", 7, eParamType::INTEGER, 3, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(true, &m_Pa, prefix + "hypertile3D2_pa"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cx, prefix + "hypertile3D2_cx"));
m_Params.push_back(ParamWithName<T>(true, &m_C2, prefix + "hypertile3D2_c2"));
m_Params.push_back(ParamWithName<T>(true, &m_C2x, prefix + "hypertile3D2_c2x"));
m_Params.push_back(ParamWithName<T>(true, &m_S2x, prefix + "hypertile3D2_s2x"));
m_Params.push_back(ParamWithName<T>(true, &m_S2y, prefix + "hypertile3D2_s2y"));
m_Params.push_back(ParamWithName<T>(true, &m_S2z, prefix + "hypertile3D2_s2z"));
}
private:
T m_P;
T m_Q;
T m_Pa;//Precalc.
T m_Cx;
T m_C2;
T m_C2x;
T m_S2x;
T m_S2y;
T m_S2z;
};
/// <summary>
/// IDisc.
/// </summary>
template <typename T>
class IDiscVariation : public ParametricVariation<T>
{
public:
IDiscVariation(T weight = 1.0) : ParametricVariation<T>("idisc", eVariationId::VAR_IDISC, weight, true, true, false, false, true)
{
Init();
}
PARVARCOPY(IDiscVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T a = T(M_PI) / (helper.m_PrecalcSqrtSumSquares + 1);
T s = std::sin(a);
T c = std::cos(a);
T r = helper.m_PrecalcAtanyx * m_V;
helper.Out.x = r * c;
helper.Out.y = r * s;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string v = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
ss << "\t{\n"
<< "\t\treal_t a = MPI / (precalcSqrtSumSquares + 1);\n"
<< "\t\treal_t s = sin(a);\n"
<< "\t\treal_t c = cos(a);\n"
<< "\t\treal_t r = precalcAtanyx * " << v << ";\n"
<< "\n"
<< "\t\tvOut.x = r * c;\n"
<< "\t\tvOut.y = r * s;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_V = m_Weight * T(M_1_PI);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_V, prefix + "idisc_v"));//Precalcs only, no params.
}
private:
T m_V;//Precalcs only, no params.
};
/// <summary>
/// Julian2.
/// </summary>
template <typename T>
class Julian2Variation : public ParametricVariation<T>
{
public:
Julian2Variation(T weight = 1.0) : ParametricVariation<T>("julian2", eVariationId::VAR_JULIAN2, weight)
{
Init();
}
PARVARCOPY(Julian2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = m_A * helper.In.x + m_B * helper.In.y + m_E;
T y = m_C * helper.In.x + m_D * helper.In.y + m_F;
T angle = (std::atan2(y, x) + M_2PI * rand.Rand(size_t(m_AbsN))) / m_Power;
T sina = std::sin(angle);
T cosa = std::cos(angle);
T r = m_Weight * std::pow(SQR(x) + SQR(y), m_Cn);
helper.Out.x = r * cosa;
helper.Out.y = r * sina;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string d = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string e = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string f = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = fma(" << a << ", vIn.x, fma(" << b << ", vIn.y, " << e << "));\n"
<< "\t\treal_t y = fma(" << c << ", vIn.x, fma(" << d << ", vIn.y, " << f << "));\n"
<< "\t\treal_t angle = fma(M_2PI, (real_t)MwcNextRange(mwc, (uint)" << absn << "), atan2(y, x)) / " << power << ";\n"
<< "\t\treal_t sina = sin(angle);\n"
<< "\t\treal_t cosa = cos(angle);\n"
<< "\t\treal_t r = " << weight << " * pow(fma(x, x, SQR(y)), " << cn << ");\n"
<< "\n"
<< "\t\tvOut.x = r * cosa;\n"
<< "\t\tvOut.y = r * sina;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
if (m_Power == 0)
m_Power = 2;
m_AbsN = T(int(abs(m_Power)));
m_Cn = m_Dist / m_Power / 2;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "julian2_a", 1));
m_Params.push_back(ParamWithName<T>(&m_B, prefix + "julian2_b"));
m_Params.push_back(ParamWithName<T>(&m_C, prefix + "julian2_c"));
m_Params.push_back(ParamWithName<T>(&m_D, prefix + "julian2_d", 1));
m_Params.push_back(ParamWithName<T>(&m_E, prefix + "julian2_e"));
m_Params.push_back(ParamWithName<T>(&m_F, prefix + "julian2_f"));
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "julian2_power", 2, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_Dist, prefix + "julian2_dist", 1));
m_Params.push_back(ParamWithName<T>(true, &m_AbsN, prefix + "julian2_absn"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cn, prefix + "julian2_cn"));
}
private:
T m_A;
T m_B;
T m_C;
T m_D;
T m_E;
T m_F;
T m_Power;
T m_Dist;
T m_AbsN;//Precalc.
T m_Cn;
};
/// <summary>
/// JuliaQ.
/// </summary>
template <typename T>
class JuliaQVariation : public ParametricVariation<T>
{
public:
JuliaQVariation(T weight = 1.0) : ParametricVariation<T>("juliaq", eVariationId::VAR_JULIAQ, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(JuliaQVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T a = helper.m_PrecalcAtanyx * m_InvPower + rand.Crand() * m_InvPower2pi;
T sina = std::sin(a);
T cosa = std::cos(a);
T r = m_Weight * std::pow(helper.m_PrecalcSumSquares, m_HalfInvPower);
helper.Out.x = r * cosa;
helper.Out.y = r * sina;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string divisor = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string halfInvPower = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invPower = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invPower2Pi = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t a = fma(precalcAtanyx, " << invPower << ", MwcNextCrand(mwc) * " << invPower2Pi << ");\n"
<< "\t\treal_t sina = sin(a);\n"
<< "\t\treal_t cosa = cos(a);\n"
<< "\t\treal_t r = " << weight << " * pow(precalcSumSquares, " << halfInvPower << ");\n"
<< "\n"
<< "\t\tvOut.x = r * cosa;\n"
<< "\t\tvOut.y = r * sina;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_HalfInvPower = T(0.5) * m_Divisor / m_Power;
m_InvPower = m_Divisor / m_Power;
m_InvPower2pi = M_2PI / m_Power;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "juliaq_power", 3, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_Divisor, prefix + "juliaq_divisor", 2, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(true, &m_HalfInvPower, prefix + "juliaq_half_inv_power"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_InvPower, prefix + "juliaq_inv_power"));
m_Params.push_back(ParamWithName<T>(true, &m_InvPower2pi, prefix + "juliaq_inv_power_2pi"));
}
private:
T m_Power;
T m_Divisor;
T m_HalfInvPower;//Precalc.
T m_InvPower;
T m_InvPower2pi;
};
/// <summary>
/// Murl.
/// </summary>
template <typename T>
class MurlVariation : public ParametricVariation<T>
{
public:
MurlVariation(T weight = 1.0) : ParametricVariation<T>("murl", eVariationId::VAR_MURL, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(MurlVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T angle = helper.m_PrecalcAtanyx * m_Power;
T sina = std::sin(angle);
T cosa = std::cos(angle);
T r = m_Cp * std::pow(helper.m_PrecalcSumSquares, m_P2);
T re = r * cosa + 1;
T im = r * sina;
T r1 = m_Vp / (SQR(re) + SQR(im));
helper.Out.x = r1 * (helper.In.x * re + helper.In.y * im);
helper.Out.y = r1 * (helper.In.y * re - helper.In.x * im);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string p2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t angle = precalcAtanyx * " << power << ";\n"
<< "\t\treal_t sina = sin(angle);\n"
<< "\t\treal_t cosa = cos(angle);\n"
<< "\t\treal_t r = " << cp << " * pow(precalcSumSquares, " << p2 << ");\n"
<< "\t\treal_t re = fma(r, cosa, (real_t)(1.0));\n"
<< "\t\treal_t im = r * sina;\n"
<< "\t\treal_t r1 = " << vp << " / fma(re, re, SQR(im));\n"
<< "\n"
<< "\t\tvOut.x = r1 * fma(vIn.x, re, vIn.y * im);\n"
<< "\t\tvOut.y = r1 * fma(vIn.y, re, -(vIn.x * im));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
if (m_Power != 1)
m_Cp = m_C / (m_Power - 1);
else
m_Cp = m_C;
m_P2 = m_Power / 2;
m_Vp = m_Weight * (m_Cp + 1);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_C, prefix + "murl_c"));
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "murl_power", 2, eParamType::INTEGER, 2, T(0x7fffffff)));
m_Params.push_back(ParamWithName<T>(true, &m_Cp, prefix + "murl_cp"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_P2, prefix + "murl_p2"));
m_Params.push_back(ParamWithName<T>(true, &m_Vp, prefix + "murl_vp"));
}
private:
T m_C;
T m_Power;
T m_Cp;//Precalc.
T m_P2;
T m_Vp;
};
/// <summary>
/// Murl2.
/// </summary>
template <typename T>
class Murl2Variation : public ParametricVariation<T>
{
public:
Murl2Variation(T weight = 1.0) : ParametricVariation<T>("murl2", eVariationId::VAR_MURL2, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(Murl2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T angle = helper.m_PrecalcAtanyx * m_Power;
T sina = std::sin(angle);
T cosa = std::cos(angle);
T r = m_C * std::pow(helper.m_PrecalcSumSquares, m_P2);
T re = r * cosa + 1;
T im = r * sina;
r = std::pow(SQR(re) + SQR(im), m_InvP);
angle = std::atan2(im, re) * m_InvP2;
sina = std::sin(angle);
cosa = std::cos(angle);
re = r * cosa;
im = r * sina;
T r1 = m_Vp / SQR(r);
helper.Out.x = r1 * (helper.In.x * re + helper.In.y * im);
helper.Out.y = r1 * (helper.In.y * re - helper.In.x * im);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string p2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invp2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t angle = precalcAtanyx * " << power << ";\n"
<< "\t\treal_t sina = sin(angle);\n"
<< "\t\treal_t cosa = cos(angle);\n"
<< "\t\treal_t r = " << c << " * pow(precalcSumSquares, " << p2 << ");\n"
<< "\t\treal_t re = fma(r, cosa, (real_t)(1.0));\n"
<< "\t\treal_t im = r * sina;\n"
<< "\n"
<< "\t\tr = pow(fma(re, re, SQR(im)), " << invp << ");\n"
<< "\t\tangle = atan2(im, re) * " << invp2 << ";\n"
<< "\t\tsina = sin(angle);\n"
<< "\t\tcosa = cos(angle);\n"
<< "\t\tre = r * cosa;\n"
<< "\t\tim = r * sina;\n"
<< "\n"
<< "\t\treal_t r1 = " << vp << " / SQR(r);\n"
<< "\n"
<< "\t\tvOut.x = r1 * fma(vIn.x, re, vIn.y * im);\n"
<< "\t\tvOut.y = r1 * fma(vIn.y, re, -(vIn.x * im));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_P2 = m_Power / 2;
m_InvP = 1 / m_Power;
m_InvP2 = 2 / m_Power;
if (m_C == -1)
m_Vp = 0;
else
m_Vp = m_Weight * std::pow(m_C + 1, 2 / m_Power);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_C, prefix + "murl2_c", 0, eParamType::REAL, -1, 1));
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "murl2_power", 1, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(true, &m_P2, prefix + "murl2_p2"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_InvP, prefix + "murl2_invp"));
m_Params.push_back(ParamWithName<T>(true, &m_InvP2, prefix + "murl2_invp2"));
m_Params.push_back(ParamWithName<T>(true, &m_Vp, prefix + "murl2_vp"));
}
private:
T m_C;
T m_Power;
T m_P2;//Precalc.
T m_InvP;
T m_InvP2;
T m_Vp;
};
/// <summary>
/// NPolar.
/// </summary>
template <typename T>
class NPolarVariation : public ParametricVariation<T>
{
public:
NPolarVariation(T weight = 1.0) : ParametricVariation<T>("npolar", eVariationId::VAR_NPOLAR, weight, true, false, false, true, false)
{
Init();
}
PARVARCOPY(NPolarVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x, y;
if (m_IsOdd != 0)
{
T angle = (std::atan2(helper.In.y, helper.In.x) + M_2PI * rand.Rand(size_t(m_AbsN))) * m_Nnz;
T r = m_Weight * std::pow(SQR(helper.In.x) + SQR(helper.In.y), m_Cn) * m_Parity;
x = std::cos(angle) * r;
y = std::sin(angle) * r;
}
else
{
x = m_Vvar * helper.m_PrecalcAtanxy;
y = m_Vvar2 * std::log(helper.m_PrecalcSumSquares);
T angle = (std::atan2(y, x) + M_2PI * rand.Rand(size_t(m_AbsN))) * m_Nnz;
T r = m_Weight * std::pow(SQR(x) + SQR(y), m_Cn);
T sina = std::sin(angle) * r;
T cosa = std::cos(angle) * r;
x = m_Vvar2 * std::log(SQR(cosa) + SQR(sina));
y = m_Vvar * std::atan2(cosa, sina);
}
helper.Out.x = x;
helper.Out.y = y;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string parity = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string n = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string nnz = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vvar = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vvar2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string isOdd = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x, y;\n"
<< "\n"
<< "\t\tif (" << isOdd << " != 0)\n"
<< "\t\t{\n"
<< "\t\t real_t angle = (atan2(vIn.y, vIn.x) + M_2PI * MwcNextRange(mwc, (uint)" << absn << ")) * " << nnz << ";\n"
<< "\t\t real_t r = " << weight << " * pow(SQR(vIn.x) + SQR(vIn.y), " << cn << ") * " << parity << ";\n"
<< "\t\t x = cos(angle) * r;\n"
<< "\t\t y = sin(angle) * r;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t x = " << vvar << " * precalcAtanxy;\n"
<< "\t\t y = " << vvar2 << " * log(precalcSumSquares);\n"
<< "\t\t real_t angle = (atan2(y, x) + M_2PI * MwcNextRange(mwc, (uint)" << absn << ")) * " << nnz << ";\n"
<< "\t\t real_t r = " << weight << " * pow(SQR(x) + SQR(y), " << cn << ");\n"
<< "\t\t real_t sina = sin(angle) * r;\n"
<< "\t\t real_t cosa = cos(angle) * r;\n"
<< "\t\t x = " << vvar2 << " * log(SQR(cosa) + SQR(sina));\n"
<< "\t\t y = " << vvar << " * atan2(cosa, sina);\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = x;\n"
<< "\t\tvOut.y = y;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Nnz = 1 / ((m_N == 0) ? 1 : m_N);
m_Vvar = m_Weight / T(M_PI);
m_Vvar2 = m_Vvar * T(0.5);
m_AbsN = abs(m_Nnz);
m_Cn = 1 / m_Nnz / 2;
m_IsOdd = T(abs(int(m_Parity)) & 1);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Parity, prefix + "npolar_parity", 0, eParamType::INTEGER));
m_Params.push_back(ParamWithName<T>(&m_N, prefix + "npolar_n", 1, eParamType::INTEGER));
m_Params.push_back(ParamWithName<T>(true, &m_Nnz, prefix + "npolar_nnz"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Vvar, prefix + "npolar_vvar"));
m_Params.push_back(ParamWithName<T>(true, &m_Vvar2, prefix + "npolar_vvar_2"));
m_Params.push_back(ParamWithName<T>(true, &m_AbsN, prefix + "npolar_absn"));
m_Params.push_back(ParamWithName<T>(true, &m_Cn, prefix + "npolar_cn"));
m_Params.push_back(ParamWithName<T>(true, &m_IsOdd, prefix + "npolar_isodd"));
}
private:
T m_Parity;
T m_N;
T m_Nnz;//Precalc.
T m_Vvar;
T m_Vvar2;
T m_AbsN;
T m_Cn;
T m_IsOdd;
};
/// <summary>
/// Ortho.
/// </summary>
template <typename T>
class OrthoVariation : public ParametricVariation<T>
{
public:
OrthoVariation(T weight = 1.0) : ParametricVariation<T>("ortho", eVariationId::VAR_ORTHO, weight, true, true, true, false, false)
{
Init();
}
PARVARCOPY(OrthoVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r, a;
T xo;
T ro;
T c, s;
T x, y, tc, ts;
T theta;
r = helper.m_PrecalcSumSquares;
if (r < 1)
{
if (helper.In.x >= 0)
{
xo = (r + 1) / Zeps(2 * helper.In.x);
ro = std::sqrt(Sqr(helper.In.x - xo) + SQR(helper.In.y));
theta = std::atan2(T(1), ro);
a = fmod(m_In * theta + std::atan2(helper.In.y, xo - helper.In.x) + theta, 2 * theta) - theta;
sincos(a, &s, &c);
helper.Out.x = m_Weight * (xo - c * ro);
helper.Out.y = m_Weight * s * ro;
}
else
{
xo = -(r + 1) / (2 * helper.In.x);
ro = std::sqrt(Sqr(-helper.In.x - xo) + SQR(helper.In.y));
theta = std::atan2(T(1), ro);
a = fmod(m_In * theta + std::atan2(helper.In.y, xo + helper.In.x) + theta, 2 * theta) - theta;
sincos(a, &s, &c);
helper.Out.x = -(m_Weight * (xo - c * ro));
helper.Out.y = m_Weight * s * ro;
}
}
else
{
r = 1 / std::sqrt(r);
ts = helper.m_PrecalcSina;
tc = helper.m_PrecalcCosa;
x = r * tc;
y = r * ts;
if (x >= 0)
{
xo = (SQR(x) + SQR(y) + 1) / Zeps(2 * x);
ro = std::sqrt(Sqr(x - xo) + SQR(y));
theta = std::atan2(T(1), ro);
a = fmod(m_Out * theta + std::atan2(y, xo - x) + theta, 2 * theta) - theta;
sincos(a, &s, &c);
x = (xo - c * ro);
y = s * ro;
theta = std::atan2(y, x);
sincos(theta, &ts, &tc);
r = 1 / std::sqrt(SQR(x) + SQR(y));
helper.Out.x = m_Weight * r * tc;
helper.Out.y = m_Weight * r * ts;
}
else
{
xo = -(SQR(x) + SQR(y) + 1) / (2 * x);
ro = std::sqrt(Sqr(-x - xo) + SQR(y));
theta = std::atan2(T(1), ro);
a = fmod(m_Out * theta + std::atan2(y, xo + x) + theta, 2 * theta) - theta;
sincos(a, &s, &c);
x = (xo - c * ro);
y = s * ro;
theta = std::atan2(y, x);
sincos(theta, &ts, &tc);
r = 1 / std::sqrt(SQR(x) + SQR(y));
helper.Out.x = -(m_Weight * r * tc);
helper.Out.y = m_Weight * r * ts;
}
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string in = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string out = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r, a;\n"
<< "\t\treal_t xo;\n"
<< "\t\treal_t ro;\n"
<< "\t\treal_t c,s;\n"
<< "\t\treal_t x, y, tc, ts;\n"
<< "\t\treal_t theta;\n"
<< "\n"
<< "\t\tr = precalcSumSquares;\n"
<< "\n"
<< "\t\tif (r < 1)\n"
<< "\t\t{\n"
<< "\t\t real_t y2 = SQR(vIn.y);\n"
<< "\t\t if (vIn.x >= 0)\n"
<< "\t\t {\n"
<< "\t\t xo = (r + 1) / Zeps(2 * vIn.x);\n"
<< "\t\t real_t xmx = vIn.x - xo;\n"
<< "\t\t ro = sqrt(fma(xmx, xmx, y2));\n"
<< "\t\t theta = atan2(1, ro);\n"
<< "\t\t a = fmod(fma(" << in << ", theta, atan2(vIn.y, xo - vIn.x) + theta), 2 * theta) - theta;\n"
<< "\t\t s = sin(a);\n"
<< "\t\t c = cos(a);\n"
<< "\n"
<< "\t\t vOut.x = " << weight << " * (xo - c * ro);\n"
<< "\t\t vOut.y = " << weight << " * s * ro;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t xo = - (r + 1) / (2 * vIn.x);\n"
<< "\t\t real_t mxmx = -vIn.x - xo;\n"
<< "\t\t ro = sqrt(fma(mxmx, mxmx, y2));\n"
<< "\t\t theta = atan2(1 , ro);\n"
<< "\t\t a = fmod(fma(" << in << ", theta, atan2(vIn.y, xo + vIn.x) + theta), 2 * theta) - theta;\n"
<< "\t\t s = sin(a);\n"
<< "\t\t c = cos(a);\n"
<< "\n"
<< "\t\t vOut.x = -(" << weight << " * (xo - c * ro));\n"
<< "\t\t vOut.y = " << weight << " * s * ro;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t r = 1 / sqrt(r);\n"
<< "\t\t ts = precalcSina;\n"
<< "\t\t tc = precalcCosa;\n"
<< "\t\t x = r * tc;\n"
<< "\t\t y = r * ts;\n"
<< "\t\t real_t x2 = SQR(x);\n"
<< "\t\t real_t y2 = SQR(y);\n"
<< "\t\t real_t x2y2 = x2 + y2;\n"
<< "\n"
<< "\t\t if (x >= 0)\n"
<< "\t\t {\n"
<< "\t\t xo = (x2y2 + 1) / Zeps(2 * x);\n"
<< "\t\t real_t xmx = x - xo;\n"
<< "\t\t ro = sqrt(fma(xmx, xmx, y2));\n"
<< "\t\t theta = atan2(1, ro);\n"
<< "\t\t a = fmod(fma(" << out << ", theta, atan2(y, xo - x) + theta), 2 * theta) - theta;\n"
<< "\t\t s = sin(a);\n"
<< "\t\t c = cos(a);\n"
<< "\n"
<< "\t\t x = (xo - c * ro);\n"
<< "\t\t y = s * ro;\n"
<< "\t\t theta = atan2(y, x);\n"
<< "\t\t ts = sin(theta);\n"
<< "\t\t tc = cos(theta);\n"
<< "\t\t r = 1 / sqrt(fma(x, x, SQR(y)));\n"
<< "\n"
<< "\t\t vOut.x = " << weight << " * r * tc;\n"
<< "\t\t vOut.y = " << weight << " * r * ts;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t xo = -(x2y2 + 1) / (2 * x);\n"
<< "\t\t real_t mxmx = -x - xo;\n"
<< "\t\t ro = sqrt(fma(mxmx, mxmx, y2));\n"
<< "\t\t theta = atan2(1 , ro);\n"
<< "\t\t a = fmod(fma(" << out << ", theta, atan2(y, xo + x) + theta), 2 * theta) - theta;\n"
<< "\t\t s = sin(a);\n"
<< "\t\t c = cos(a);\n"
<< "\n"
<< "\t\t x = (xo - c * ro);\n"
<< "\t\t y = s * ro;\n"
<< "\t\t theta = atan2(y, x);\n"
<< "\t\t ts = sin(theta);\n"
<< "\t\t tc = cos(theta);\n"
<< "\t\t r = 1 / sqrt(fma(x, x, SQR(y)));\n"
<< "\n"
<< "\t\t vOut.x = -(" << weight << " * r * tc);\n"
<< "\t\t vOut.y = " << weight << " * r * ts;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_In, prefix + "ortho_in", 0, eParamType::REAL_CYCLIC, T(-M_PI), T(M_PI)));
m_Params.push_back(ParamWithName<T>(&m_Out, prefix + "ortho_out", 0, eParamType::REAL_CYCLIC, T(-M_PI), T(M_PI)));
}
private:
T m_In;
T m_Out;
};
/// <summary>
/// Poincare.
/// </summary>
template <typename T>
class PoincareVariation : public ParametricVariation<T>
{
public:
PoincareVariation(T weight = 1.0) : ParametricVariation<T>("poincare", eVariationId::VAR_POINCARE, weight)
{
Init();
}
PARVARCOPY(PoincareVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T xmc1x = helper.In.x - m_C1x;
T ymc1y = helper.In.y - m_C1y;
T den = Zeps(SQR(xmc1x) + SQR(ymc1y));
T c1r2 = SQR(m_C1r);
T x = m_C1x + (c1r2 * xmc1x) / den;
T y = m_C1y + (c1r2 * ymc1y) / den;
T xmc2x = x - m_C2x;
T ymc2y = y - m_C2y;
T c2r2 = SQR(m_C2r);
den = Zeps(SQR(xmc2x) + SQR(ymc2y));
helper.Out.x = m_C2x + (c2r2 * xmc2x) / den;
helper.Out.y = m_C2y + (c2r2 * ymc2y) / den;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string c1r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c1a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c1x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c1y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c1d = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2d = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t xmc1x = vIn.x - " << c1x << ";\n"
<< "\t\treal_t ymc1y = vIn.y - " << c1y << ";\n"
<< "\t\treal_t den = Zeps(fma(xmc1x, xmc1x, SQR(ymc1y)));\n"
<< "\t\treal_t c1r2 = SQR(" << c1r << ");\n"
<< "\t\treal_t x = " << c1x << " + (c1r2 * xmc1x) / den;\n"
<< "\t\treal_t y = " << c1y << " + (c1r2 * ymc1y) / den;\n"
<< "\n"
<< "\t\treal_t xmc2x = x - " << c2x << ";\n"
<< "\t\treal_t ymc2y = y - " << c2y << ";\n"
<< "\t\treal_t c2r2 = SQR(" << c2r << ");\n"
<< "\t\tden = Zeps(fma(xmc2x, xmc2x, SQR(ymc2y)));\n"
<< "\t\tvOut.x = " << c2x << " + (c2r2 * xmc2x) / den;\n"
<< "\t\tvOut.y = " << c2y << " + (c2r2 * ymc2y) / den;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_C1d = std::sqrt(1 + SQR(m_C1r));
m_C2d = std::sqrt(1 + SQR(m_C2r));
m_C1x = m_C1d * std::cos(fmod(m_C1a, T(M_PI)));
m_C1y = m_C1d * std::sin(fmod(m_C1a, T(M_PI)));
m_C2x = m_C2d * std::cos(fmod(m_C2a, T(M_PI)));
m_C2y = m_C2d * std::sin(fmod(m_C2a, T(M_PI)));
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_C1r, prefix + "poincare_c1r", 1));
m_Params.push_back(ParamWithName<T>(&m_C1a, prefix + "poincare_c1a", -1, eParamType::REAL_CYCLIC, T(-M_PI), T(M_PI)));
m_Params.push_back(ParamWithName<T>(&m_C2r, prefix + "poincare_c2r", 1));
m_Params.push_back(ParamWithName<T>(&m_C2a, prefix + "poincare_c2a", 1, eParamType::REAL_CYCLIC, T(-M_PI), T(M_PI)));
m_Params.push_back(ParamWithName<T>(true, &m_C1x, prefix + "poincare_c1x"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_C1y, prefix + "poincare_c1y"));
m_Params.push_back(ParamWithName<T>(true, &m_C2x, prefix + "poincare_c2x"));
m_Params.push_back(ParamWithName<T>(true, &m_C2y, prefix + "poincare_c2y"));
m_Params.push_back(ParamWithName<T>(true, &m_C1d, prefix + "poincare_c1d"));
m_Params.push_back(ParamWithName<T>(true, &m_C2d, prefix + "poincare_c2d"));
}
private:
T m_C1r;
T m_C1a;
T m_C2r;
T m_C2a;
T m_C1x;//Precalc.
T m_C1y;
T m_C2x;
T m_C2y;
T m_C1d;
T m_C2d;
};
/// <summary>
/// Poincare2.
/// This is intended to mimic the Poincare variation in Chaotica. But we couldn't use the same name because
/// Poincare already exists above.
/// </summary>
template <typename T>
class Poincare2Variation : public ParametricVariation<T>
{
public:
Poincare2Variation(T weight = 1.0) : ParametricVariation<T>("poincare2", eVariationId::VAR_POINCARE2, weight)
{
Init();
}
PARVARCOPY(Poincare2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T a = helper.In.x - m_Cx;
T b = helper.In.y - m_Cy;
T c = 1 - m_Cx * helper.In.x - m_Cy * helper.In.y;
T d = m_Cy * helper.In.x - m_Cx * helper.In.y;
T num = m_Weight / Zeps(c * c + d * d);
helper.Out.x = (a * c + b * d) * num;
helper.Out.y = (b * c - a * d) * num;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string cP = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cQ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t a = vIn.x - " << cX << ";\n"
<< "\t\treal_t b = vIn.y - " << cY << ";\n"
<< "\t\treal_t c = 1 - " << cX << " * vIn.x - " << cY << " * vIn.y;\n"
<< "\t\treal_t d = fma(" << cY << ", vIn.x, -(" << cX << " * vIn.y));\n"
<< "\t\treal_t num = " << weight << " / Zeps(fma(c, c, d * d));\n"
<< "\n"
<< "\t\tvOut.x = fma(a, c, b * d) * num;\n"
<< "\t\tvOut.y = fma(b, c, -(a * d)) * num;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
virtual void Precalc() override
{
T a0 = M_2PI / m_PoincareP;
T dist2 = 1 - (std::cos(a0) - 1) / (std::cos(a0) + std::cos(M_2PI / m_PoincareQ));
T dist = (dist2 > 0) ? T(1) / std::sqrt(dist2) : T(1);
if (1 / m_PoincareP + 1 / m_PoincareQ < T(0.5))
{
m_Cx = std::cos(a0) * dist;
m_Cy = std::sin(a0) * dist;
}
else
m_Cx = m_Cy = 0;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_PoincareP, prefix + "poincare2_p", 3));
m_Params.push_back(ParamWithName<T>(&m_PoincareQ, prefix + "poincare2_q", 7));
m_Params.push_back(ParamWithName<T>(true, &m_Cx, prefix + "poincare2_cx"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cy, prefix + "poincare2_cy"));
}
private:
T m_PoincareP;
T m_PoincareQ;
T m_Cx;//Precalc.
T m_Cy;
};
/// <summary>
/// Poincare3D.
/// </summary>
template <typename T>
class Poincare3DVariation : public ParametricVariation<T>
{
public:
Poincare3DVariation(T weight = 1.0) : ParametricVariation<T>("poincare3D", eVariationId::VAR_POINCARE3D, weight, true)
{
Init();
}
PARVARCOPY(Poincare3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r2 = helper.m_PrecalcSumSquares + SQR(helper.In.z);
T x2cx = m_C2x * helper.In.x;
T y2cy = m_C2y * helper.In.y;
T z2cz = m_C2z * helper.In.z;
T val = Zeps(m_C2 * r2 - x2cx - y2cy - z2cz + 1);
T d = m_Weight / val;
helper.Out.x = d * (helper.In.x * m_S2x + m_Cx * (y2cy + z2cz - r2 - 1));
helper.Out.y = d * (helper.In.y * m_S2y + m_Cy * (x2cx + z2cz - r2 - 1));
helper.Out.z = d * (helper.In.z * m_S2z + m_Cz * (y2cy + x2cx - r2 - 1));
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cz = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s2z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r2 = fma(vIn.z, vIn.z, precalcSumSquares);\n"
<< "\t\treal_t x2cx = " << c2x << " * vIn.x;\n"
<< "\t\treal_t y2cy = " << c2y << " * vIn.y;\n"
<< "\t\treal_t z2cz = " << c2z << " * vIn.z;\n"
<< "\t\treal_t val = Zeps(" << c2 << " * r2 - x2cx - y2cy - z2cz + (real_t)(1.0));\n"
<< "\t\treal_t d = " << weight << " / val;\n"
<< "\n"
<< "\t\tvOut.x = d * fma(vIn.x, " << s2x << ", " << cx << " * (y2cy + z2cz - r2 - (real_t)(1.0)));\n"
<< "\t\tvOut.y = d * fma(vIn.y, " << s2y << ", " << cy << " * (x2cx + z2cz - r2 - (real_t)(1.0)));\n"
<< "\t\tvOut.z = d * fma(vIn.z, " << s2z << ", " << cz << " * (y2cy + x2cx - r2 - (real_t)(1.0)));\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
virtual void Precalc() override
{
m_Cx = -m_R * std::cos(m_A * T(M_PI_2)) * std::cos(m_B * T(M_PI_2));
m_Cy = m_R * std::sin(m_A * T(M_PI_2)) * std::cos(m_B * T(M_PI_2));
m_Cz = -m_R * std::sin(m_B * T(M_PI_2));
m_C2 = SQR(m_Cx) + SQR(m_Cy) + SQR(m_Cz);
m_C2x = 2 * m_Cx;
m_C2y = 2 * m_Cy;
m_C2z = 2 * m_Cz;
m_S2x = SQR(m_Cx) - SQR(m_Cy) - SQR(m_Cz) + 1;
m_S2y = SQR(m_Cy) - SQR(m_Cx) - SQR(m_Cz) + 1;
m_S2z = SQR(m_Cz) - SQR(m_Cy) - SQR(m_Cx) + 1;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_R, prefix + "poincare3D_r"));
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "poincare3D_a"));
m_Params.push_back(ParamWithName<T>(&m_B, prefix + "poincare3D_b"));
m_Params.push_back(ParamWithName<T>(true, &m_Cx, prefix + "poincare3D_cx"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cy, prefix + "poincare3D_cy"));
m_Params.push_back(ParamWithName<T>(true, &m_Cz, prefix + "poincare3D_cz"));
m_Params.push_back(ParamWithName<T>(true, &m_C2, prefix + "poincare3D_c2"));
m_Params.push_back(ParamWithName<T>(true, &m_C2x, prefix + "poincare3D_c2x"));
m_Params.push_back(ParamWithName<T>(true, &m_C2y, prefix + "poincare3D_c2y"));
m_Params.push_back(ParamWithName<T>(true, &m_C2z, prefix + "poincare3D_c2z"));
m_Params.push_back(ParamWithName<T>(true, &m_S2x, prefix + "poincare3D_s2x"));
m_Params.push_back(ParamWithName<T>(true, &m_S2y, prefix + "poincare3D_s2y"));
m_Params.push_back(ParamWithName<T>(true, &m_S2z, prefix + "poincare3D_s2z"));
}
private:
T m_R;
T m_A;
T m_B;
T m_Cx;//Precalc.
T m_Cy;
T m_Cz;
T m_C2;
T m_C2x;
T m_C2y;
T m_C2z;
T m_S2x;
T m_S2y;
T m_S2z;
};
/// <summary>
/// Polynomial.
/// </summary>
template <typename T>
class PolynomialVariation : public ParametricVariation<T>
{
public:
PolynomialVariation(T weight = 1.0) : ParametricVariation<T>("polynomial", eVariationId::VAR_POLYNOMIAL, weight)
{
Init();
}
PARVARCOPY(PolynomialVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T xp = std::pow(std::abs(m_Weight) * std::abs(helper.In.x), m_Powx);//Original did not fabs.
T yp = std::pow(std::abs(m_Weight) * std::abs(helper.In.y), m_Powy);
helper.Out.x = xp * VarFuncs<T>::Sign(helper.In.x) + m_Lcx * helper.In.x + m_Scx;
helper.Out.y = yp * VarFuncs<T>::Sign(helper.In.y) + m_Lcy * helper.In.y + m_Scy;
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string powx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string powy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string lcx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string lcy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t xp = pow(fabs(" << weight << ") * fabs(vIn.x), " << powx << ");\n"
<< "\t\treal_t yp = pow(fabs(" << weight << ") * fabs(vIn.y), " << powy << ");\n"
<< "\t\treal_t zp = " << weight << " * vIn.z;\n"
<< "\n"
<< "\t\tvOut.x = fma(xp, Sign(vIn.x), fma(" << lcx << ", vIn.x, " << scx << "));\n"
<< "\t\tvOut.y = fma(yp, Sign(vIn.y), fma(" << lcy << ", vIn.y, " << scy << "));\n"
<< "\t\tvOut.z = zp;\n"
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Powx, prefix + "polynomial_powx", 1));
m_Params.push_back(ParamWithName<T>(&m_Powy, prefix + "polynomial_powy", 1));
m_Params.push_back(ParamWithName<T>(&m_Lcx, prefix + "polynomial_lcx"));
m_Params.push_back(ParamWithName<T>(&m_Lcy, prefix + "polynomial_lcy"));
m_Params.push_back(ParamWithName<T>(&m_Scx, prefix + "polynomial_scx"));
m_Params.push_back(ParamWithName<T>(&m_Scy, prefix + "polynomial_scy"));
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Sign" };
}
private:
T m_Powx;
T m_Powy;
T m_Lcx;
T m_Lcy;
T m_Scx;
T m_Scy;
};
/// <summary>
/// PSphere.
/// </summary>
template <typename T>
class PSphereVariation : public ParametricVariation<T>
{
public:
PSphereVariation(T weight = 1.0) : ParametricVariation<T>("psphere", eVariationId::VAR_PSPHERE, weight)
{
Init();
}
PARVARCOPY(PSphereVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T c0 = helper.In.x * m_Vpi;
T c1 = helper.In.y * m_Vpi;
T sinc0, cosc0, sinc1, cosc1;
sincos(c0, &sinc0, &cosc0);
sincos(c1, &sinc1, &cosc1);
helper.Out.x = cosc0 * -sinc1;
helper.Out.y = sinc0 * cosc1;
helper.Out.z = cosc1 * m_ZScale;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
int i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string zscale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vpi = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t c0 = vIn.x * " << vpi << ";\n"
<< "\t\treal_t c1 = vIn.y * " << vpi << ";\n"
<< "\n"
<< "\t\treal_t sinc0 = sin(c0);\n"
<< "\t\treal_t cosc0 = cos(c0);\n"
<< "\t\treal_t sinc1 = sin(c1);\n"
<< "\t\treal_t cosc1 = cos(c1);\n"
<< "\n"
<< "\t\tvOut.x = cosc0 * -sinc1;\n"
<< "\t\tvOut.y = sinc0 * cosc1;\n"
<< "\t\tvOut.z = cosc1 * " << zscale << ";\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Vpi = m_Weight * T(M_PI);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_ZScale, prefix + "psphere_zscale"));
m_Params.push_back(ParamWithName<T>(true, &m_Vpi, prefix + "psphere_vpi"));//Precalc.
}
private:
T m_ZScale;
T m_Vpi;//Precalc.
};
/// <summary>
/// Rational3.
/// </summary>
template <typename T>
class Rational3Variation : public ParametricVariation<T>
{
public:
Rational3Variation(T weight = 1.0) : ParametricVariation<T>("rational3", eVariationId::VAR_RATIONAL3, weight)
{
Init();
}
PARVARCOPY(Rational3Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T xsqr = helper.In.x * helper.In.x;
T ysqr = helper.In.y * helper.In.y;
T xcb = helper.In.x * helper.In.x * helper.In.x;
T ycb = helper.In.y * helper.In.y * helper.In.y;
T tr = m_T3 * (xcb - 3 * helper.In.x * ysqr) + m_T2 * (xsqr - ysqr) + m_T1 * helper.In.x + m_Tc;
T ti = m_T3 * (3 * xsqr * helper.In.y - ycb) + m_T2 * 2 * helper.In.x * helper.In.y + m_T1 * helper.In.y;
T br = m_B3 * (xcb - 3 * helper.In.x * ysqr) + m_B2 * (xsqr - ysqr) + m_B1 * helper.In.x + m_Bc;
T bi = m_B3 * (3 * xsqr * helper.In.y - ycb) + m_B2 * 2 * helper.In.x * helper.In.y + m_B1 * helper.In.y;
T r3den = 1 / Zeps(br * br + bi * bi);
helper.Out.x = m_Weight * (tr * br + ti * bi) * r3den;
helper.Out.y = m_Weight * (ti * br - tr * bi) * r3den;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string t3 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string t2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string t1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string tc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b3 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t xsqr = vIn.x * vIn.x;\n"
<< "\t\treal_t ysqr = vIn.y * vIn.y;\n"
<< "\t\treal_t xcb = vIn.x * vIn.x * vIn.x;\n"
<< "\t\treal_t ycb = vIn.y * vIn.y * vIn.y;\n"
<< "\n"
<< "\t\treal_t tr = fma(" << t3 << ", (xcb - (real_t)(3.0) * vIn.x * ysqr), fma(" << t2 << ", (xsqr - ysqr), fma(" << t1 << ", vIn.x, " << tc << ")));\n"
<< "\t\treal_t ti = fma(" << t3 << ", ((real_t)(3.0) * xsqr * vIn.y - ycb), fma(" << t2 << " * (real_t)(2.0), vIn.x * vIn.y, " << t1 << " * vIn.y));\n"
<< "\n"
<< "\t\treal_t br = fma(" << b3 << ", (xcb - (real_t)(3.0) * vIn.x * ysqr), fma(" << b2 << ", (xsqr - ysqr), fma(" << b1 << ", vIn.x, " << bc << ")));\n"
<< "\t\treal_t bi = fma(" << b3 << ", ((real_t)(3.0) * xsqr * vIn.y - ycb), fma(" << b2 << ", (real_t)(2.0) * vIn.x * vIn.y, " << b1 << " * vIn.y));\n"
<< "\n"
<< "\t\treal_t r3den = 1 / Zeps(fma(br, br, bi * bi));\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * fma(tr, br, ti * bi) * r3den;\n"
<< "\t\tvOut.y = " << weight << " * fma(ti, br, -(tr * bi)) * r3den;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_T3, prefix + "rational3_t3", 1));
m_Params.push_back(ParamWithName<T>(&m_T2, prefix + "rational3_t2"));
m_Params.push_back(ParamWithName<T>(&m_T1, prefix + "rational3_t1"));
m_Params.push_back(ParamWithName<T>(&m_Tc, prefix + "rational3_tc", 1));
m_Params.push_back(ParamWithName<T>(&m_B3, prefix + "rational3_b3"));
m_Params.push_back(ParamWithName<T>(&m_B2, prefix + "rational3_b2", 1));
m_Params.push_back(ParamWithName<T>(&m_B1, prefix + "rational3_b1"));
m_Params.push_back(ParamWithName<T>(&m_Bc, prefix + "rational3_bc", 1));
}
private:
T m_T3;
T m_T2;
T m_T1;
T m_Tc;
T m_B3;
T m_B2;
T m_B1;
T m_Bc;
};
/// <summary>
/// Ripple.
/// </summary>
template <typename T>
class RippleVariation : public ParametricVariation<T>
{
public:
RippleVariation(T weight = 1.0) : ParametricVariation<T>("ripple", eVariationId::VAR_RIPPLE, weight)
{
Init();
}
PARVARCOPY(RippleVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
//Align input x, y to given center and multiply with scale.
T x = (helper.In.x * m_S) - m_CenterX;
T y = (helper.In.y * m_S) + m_CenterY;
//Calculate distance from center but constrain it to EPS.
T d = std::max(EPS, std::sqrt(SQR(x) * SQR(y)));
//Normalize x and y.
T nx = x / d;
T ny = y / d;
//Calculate cosine wave with given frequency, velocity
//and phase based on the distance to center.
T wave = std::cos(m_F * d - m_Vxp);
//Calculate the wave offsets
T d1 = wave * m_Pxa + d;
T d2 = wave * m_Pixa + d;
//We got two offsets, so we also got two new positions (u,v).
T u1 = m_CenterX + nx * d1;
T v1 = -m_CenterY + ny * d1;
T u2 = m_CenterX + nx * d2;
T v2 = -m_CenterY + ny * d2;
//Interpolate the two positions by the given phase and
//invert the multiplication with scale from before.
helper.Out.x = m_Weight * Lerp<T>(u1, u2, m_P) * m_Is;//Original did a direct assignment to outPoint, which is incompatible with Ember's design.
helper.Out.y = m_Weight * Lerp<T>(v1, v2, m_P) * m_Is;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string frequency = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string velocity = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string amplitude = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centerx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centery = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string phase = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string f = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string p = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string s = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string is = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vxp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pxa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pixa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = fma(vIn.x, " << s << ", -" << centerx << ");\n"
<< "\t\treal_t y = fma(vIn.y, " << s << ", " << centery << ");\n"
<< "\n"
<< "\t\treal_t d = max(EPS, sqrt(SQR(x) * SQR(y)));\n"
<< "\n"
<< "\t\treal_t nx = x / d;\n"
<< "\t\treal_t ny = y / d;\n"
<< "\n"
<< "\t\treal_t wave = cos(fma(" << f << ", d, -" << vxp << "));\n"
<< "\n"
<< "\t\treal_t d1 = fma(wave, " << pxa << ", d);\n"
<< "\t\treal_t d2 = fma(wave, " << pixa << ", d);\n"
<< "\n"
<< "\t\treal_t u1 = fma(nx, d1, " << centerx << ");\n"
<< "\t\treal_t v1 = fma(ny, d1, -" << centery << ");\n"
<< "\t\treal_t u2 = fma(nx, d2, " << centerx << ");\n"
<< "\t\treal_t v2 = fma(ny, d2, -" << centery << ");\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * Lerp(u1, u2, " << p << ") * " << is << ";\n"
<< "\t\tvOut.y = " << weight << " * Lerp(v1, v2, " << p << ") * " << is << ";\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Lerp" };
}
virtual void Precalc() override
{
m_F = m_Frequency * 5;
m_A = m_Amplitude * T(0.01);
m_P = m_Phase * M_2PI - T(M_PI);
m_S = Zeps(m_Scale);//Scale must not be zero.
m_Is = 1 / m_S;//Need the inverse scale.
//Pre-multiply velocity + phase, phase + amplitude and (PI - phase) + amplitude.
m_Vxp = m_Velocity * m_P;
m_Pxa = m_P * m_A;
m_Pixa = (T(M_PI) - m_P) * m_A;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Frequency, prefix + "ripple_frequency", 2));
m_Params.push_back(ParamWithName<T>(&m_Velocity, prefix + "ripple_velocity", 1));
m_Params.push_back(ParamWithName<T>(&m_Amplitude, prefix + "ripple_amplitude", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_CenterX, prefix + "ripple_centerx"));
m_Params.push_back(ParamWithName<T>(&m_CenterY, prefix + "ripple_centery"));
m_Params.push_back(ParamWithName<T>(&m_Phase, prefix + "ripple_phase"));
m_Params.push_back(ParamWithName<T>(&m_Scale, prefix + "ripple_scale", 1));
m_Params.push_back(ParamWithName<T>(true, &m_F, prefix + "ripple_f"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_A, prefix + "ripple_a"));
m_Params.push_back(ParamWithName<T>(true, &m_P, prefix + "ripple_p"));
m_Params.push_back(ParamWithName<T>(true, &m_S, prefix + "ripple_s"));
m_Params.push_back(ParamWithName<T>(true, &m_Is, prefix + "ripple_is"));
m_Params.push_back(ParamWithName<T>(true, &m_Vxp, prefix + "ripple_vxp"));
m_Params.push_back(ParamWithName<T>(true, &m_Pxa, prefix + "ripple_pxa"));
m_Params.push_back(ParamWithName<T>(true, &m_Pixa, prefix + "ripple_pixa"));
}
private:
T m_Frequency;
T m_Velocity;
T m_Amplitude;
T m_CenterX;
T m_CenterY;
T m_Phase;
T m_Scale;
T m_F;//Precalc.
T m_A;
T m_P;
T m_S;
T m_Is;
T m_Vxp;
T m_Pxa;
T m_Pixa;
};
/// <summary>
/// Sigmoid.
/// </summary>
template <typename T>
class SigmoidVariation : public ParametricVariation<T>
{
public:
SigmoidVariation(T weight = 1.0) : ParametricVariation<T>("sigmoid", eVariationId::VAR_SIGMOID, weight)
{
Init();
}
PARVARCOPY(SigmoidVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T c0 = m_Ax / Zeps(1 + std::exp(m_Sx * helper.In.x));
T c1 = m_Ay / Zeps(1 + std::exp(m_Sy * helper.In.y));
T x = (2 * (c0 - T(0.5)));
T y = (2 * (c1 - T(0.5)));
helper.Out.x = m_Vv * x;
helper.Out.y = m_Vv * y;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string shiftX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string shiftY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ax = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ay = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string vv = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t c0 = " << ax << " / Zeps(1 + exp(" << sx << " * vIn.x));\n"
<< "\t\treal_t c1 = " << ay << " / Zeps(1 + exp(" << sy << " * vIn.y));\n"
<< "\t\treal_t x = (2 * (c0 - (real_t)(0.5)));\n"
<< "\t\treal_t y = (2 * (c1 - (real_t)(0.5)));\n"
<< "\n"
<< "\t\tvOut.x = " << vv << " * x;\n"
<< "\t\tvOut.y = " << vv << " * y;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Sx = m_ShiftX;
m_Sy = m_ShiftY;
m_Ax = 1;
m_Ay = 1;
if (m_Sx < 1 && m_Sx > -1)
{
if (m_Sx == 0)
{
m_Sx = EPS;
m_Ax = 1;
}
else
{
m_Ax = T(m_Sx < 0 ? -1 : 1);
m_Sx = 1 / m_Sx;
}
}
if (m_Sy < 1 && m_Sy > -1)
{
if (m_Sy == 0)
{
m_Sy = EPS;
m_Ay = 1;
}
else
{
m_Ay = T(m_Sy < 0 ? -1 : 1);
m_Sy = 1 / m_Sy;
}
}
m_Sx *= -5;
m_Sy *= -5;
m_Vv = std::abs(m_Weight);
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_ShiftX, prefix + "sigmoid_shiftx", 1));
m_Params.push_back(ParamWithName<T>(&m_ShiftY, prefix + "sigmoid_shifty", 1));
m_Params.push_back(ParamWithName<T>(true, &m_Sx, prefix + "sigmoid_sx"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Sy, prefix + "sigmoid_sy"));
m_Params.push_back(ParamWithName<T>(true, &m_Ax, prefix + "sigmoid_ax"));
m_Params.push_back(ParamWithName<T>(true, &m_Ay, prefix + "sigmoid_ay"));
m_Params.push_back(ParamWithName<T>(true, &m_Vv, prefix + "sigmoid_vv"));
}
private:
T m_ShiftX;
T m_ShiftY;
T m_Sx;//Precalc.
T m_Sy;
T m_Ax;
T m_Ay;
T m_Vv;
};
/// <summary>
/// SinusGrid.
/// </summary>
template <typename T>
class SinusGridVariation : public ParametricVariation<T>
{
public:
SinusGridVariation(T weight = 1.0) : ParametricVariation<T>("sinusgrid", eVariationId::VAR_SINUS_GRID, weight)
{
Init();
}
PARVARCOPY(SinusGridVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T x = helper.In.x;
T y = helper.In.y;
T sx = -1 * std::cos(x * m_Fx);
T sy = -1 * std::cos(y * m_Fy);
T tx = Lerp(helper.In.x, sx, m_Ax);
T ty = Lerp(helper.In.y, sy, m_Ay);
helper.Out.x = m_Weight * tx;
helper.Out.y = m_Weight * ty;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string ampX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ampY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string freqX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string freqY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string fx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string fy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ax = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ay = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = vIn.x;\n"
<< "\t\treal_t y = vIn.y;\n"
<< "\t\treal_t sx = -1 * cos(x * " << fx << ");\n"
<< "\t\treal_t sy = -1 * cos(y * " << fy << ");\n"
<< "\t\treal_t tx = Lerp(vIn.x, sx, " << ax << ");\n"
<< "\t\treal_t ty = Lerp(vIn.y, sy, " << ay << ");\n"
<< "\t\treal_t tz = vIn.z;\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * tx;\n"
<< "\t\tvOut.y = " << weight << " * ty;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Lerp" };
}
virtual void Precalc() override
{
m_Ax = m_AmpX;
m_Ay = m_AmpY;
m_Fx = Zeps(m_FreqX * M_2PI);
m_Fy = Zeps(m_FreqY * M_2PI);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_AmpX, prefix + "sinusgrid_ampx", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_AmpY, prefix + "sinusgrid_ampy", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_FreqX, prefix + "sinusgrid_freqx", 1));
m_Params.push_back(ParamWithName<T>(&m_FreqY, prefix + "sinusgrid_freqy", 1));
m_Params.push_back(ParamWithName<T>(true, &m_Fx, prefix + "sinusgrid_fx"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Fy, prefix + "sinusgrid_fy"));
m_Params.push_back(ParamWithName<T>(true, &m_Ax, prefix + "sinusgrid_ax"));
m_Params.push_back(ParamWithName<T>(true, &m_Ay, prefix + "sinusgrid_ay"));
}
private:
T m_AmpX;
T m_AmpY;
T m_FreqX;
T m_FreqY;
T m_Fx;//Precalc.
T m_Fy;
T m_Ax;
T m_Ay;
};
/// <summary>
/// Stwin.
/// </summary>
template <typename T>
class StwinVariation : public ParametricVariation<T>
{
public:
StwinVariation(T weight = 1.0) : ParametricVariation<T>("stwin", eVariationId::VAR_STWIN, weight)
{
Init();
}
PARVARCOPY(StwinVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
const T multiplier = T(0.05);
T x = helper.In.x * m_Weight * multiplier;
T y = helper.In.y * m_Weight * multiplier;
T x2 = SQR(x);
T y2 = SQR(y);
T xPlusy = x + y;
T x2Minusy2 = x2 - y2;
T x2Plusy2 = x2 + y2;
T result = x2Minusy2 * std::sin(M_2PI * m_Distort * xPlusy);
T divident = 1;
if (x2Plusy2 != 0)
divident = x2Plusy2;
result /= divident;
helper.Out.x = m_Weight * helper.In.x + result;
helper.Out.y = m_Weight * helper.In.y + result;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string distort = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x = vIn.x * " << weight << " * (real_t)(0.05);\n"
<< "\t\treal_t y = vIn.y * " << weight << " * (real_t)(0.05);\n"
<< "\t\treal_t x2 = SQR(x);\n"
<< "\t\treal_t y2 = SQR(y);\n"
<< "\t\treal_t xPlusy = x + y;\n"
<< "\t\treal_t x2Minusy2 = x2 - y2;\n"
<< "\t\treal_t x2Plusy2 = x2 + y2;\n"
<< "\t\treal_t result = x2Minusy2 * sin(M_2PI * " << distort << " * xPlusy);\n"
<< "\t\treal_t divident = 1;\n"
<< "\n"
<< "\t\tif (x2Plusy2 != 0)\n"
<< "\t\t divident = x2Plusy2;\n"
<< "\n"
<< "\t\tresult /= divident;\n"
<< "\n"
<< "\t\tvOut.x = fma(" << weight << ", vIn.x, result);\n"
<< "\t\tvOut.y = fma(" << weight << ", vIn.y, result);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Distort, prefix + "stwin_distort", 1));//Original had a misspelling of swtin, which is incompatible with Ember's design.
}
private:
T m_Distort;
};
/// <summary>
/// TwoFace.
/// </summary>
template <typename T>
class TwoFaceVariation : public Variation<T>
{
public:
TwoFaceVariation(T weight = 1.0) : Variation<T>("twoface", eVariationId::VAR_TWO_FACE, weight, true) { }
VARCOPY(TwoFaceVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = m_Weight;
if (helper.In.x > 0)
r /= helper.m_PrecalcSumSquares;
helper.Out.x = r * helper.In.x;
helper.Out.y = r * helper.In.y;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t r = " << weight << ";\n"
<< "\n"
<< "\t\tif (vIn.x > 0)\n"
<< "\t\t r /= precalcSumSquares;\n"
<< "\n"
<< "\t\tvOut.x = r * vIn.x;\n"
<< "\t\tvOut.y = r * vIn.y;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Unpolar.
/// </summary>
template <typename T>
class UnpolarVariation : public ParametricVariation<T>
{
public:
UnpolarVariation(T weight = 1.0) : ParametricVariation<T>("unpolar", eVariationId::VAR_UNPOLAR, weight)
{
Init();
}
PARVARCOPY(UnpolarVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r = std::exp(helper.In.y);
T s = std::sin(helper.In.x);
T c = std::cos(helper.In.x);
helper.Out.x = m_Vvar2 * r * s;
helper.Out.y = m_Vvar2 * r * c;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string vvar2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalcs only, no params.
ss << "\t{\n"
<< "\t\treal_t r = exp(vIn.y);\n"
<< "\t\treal_t s = sin(vIn.x);\n"
<< "\t\treal_t c = cos(vIn.x);\n"
<< "\n"
<< "\t\tvOut.x = " << vvar2 << " * r * s;\n"
<< "\t\tvOut.y = " << vvar2 << " * r * c;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Vvar2 = (m_Weight / T(M_PI)) * T(0.5);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_Vvar2, prefix + "unpolar_vvar_2"));//Precalcs only, no params.
}
private:
T m_Vvar2;//Precalcs only, no params.
};
/// <summary>
/// WavesN.
/// </summary>
template <typename T>
class WavesNVariation : public ParametricVariation<T>
{
public:
WavesNVariation(T weight = 1.0) : ParametricVariation<T>("wavesn", eVariationId::VAR_WAVESN, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(WavesNVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T angle = (helper.m_PrecalcAtanyx + M_2PI * rand.Rand(size_t(m_AbsN))) / m_Power;
T r = m_Weight * std::pow(helper.m_PrecalcSumSquares, m_Cn);
T sina = std::sin(angle);
T cosa = std::cos(angle);
T xn = r * cosa;
T yn = r * sina;
T siny = std::sin(m_FreqX * yn);
T sinx = std::sin(m_FreqY * xn);
T dx = xn + T(0.5) * (m_ScaleX * siny + std::abs(xn) * m_IncX * siny);
T dy = yn + T(0.5) * (m_ScaleY * sinx + std::abs(yn) * m_IncY * sinx);
helper.Out.x = m_Weight * dx;
helper.Out.y = m_Weight * dy;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string freqX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string freqY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scaleX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scaleY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string incX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string incY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string power = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cn = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t angle = fma(M_2PI, (real_t)MwcNextRange(mwc, (uint)" << absn << "), precalcAtanyx) / " << power << ";\n"
<< "\t\treal_t r = " << weight << " * pow(precalcSumSquares, " << cn << ");\n"
<< "\t\treal_t sina = sin(angle);\n"
<< "\t\treal_t cosa = cos(angle);\n"
<< "\t\treal_t xn = r * cosa;\n"
<< "\t\treal_t yn = r * sina;\n"
<< "\t\treal_t siny = sin(" << freqX << " * yn);\n"
<< "\t\treal_t sinx = sin(" << freqY << " * xn);\n"
<< "\t\treal_t dx = fma((real_t)(0.5), fma(" << scaleX << ", siny, fabs(xn) * " << incX << " * siny), xn);\n"
<< "\t\treal_t dy = fma((real_t)(0.5), fma(" << scaleY << ", sinx, fabs(yn) * " << incY << " * sinx), yn);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * dx;\n"
<< "\t\tvOut.y = " << weight << " * dy;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
if (m_Power == 0)
m_Power = 2;
m_AbsN = T(int(std::abs(m_Power)));
m_Cn = 1 / m_Power / 2;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_FreqX, prefix + "wavesn_freqx", 2));
m_Params.push_back(ParamWithName<T>(&m_FreqY, prefix + "wavesn_freqy", 2));
m_Params.push_back(ParamWithName<T>(&m_ScaleX, prefix + "wavesn_scalex", 1));
m_Params.push_back(ParamWithName<T>(&m_ScaleY, prefix + "wavesn_scaley", 1));
m_Params.push_back(ParamWithName<T>(&m_IncX, prefix + "wavesn_incx"));
m_Params.push_back(ParamWithName<T>(&m_IncY, prefix + "wavesn_incy"));
m_Params.push_back(ParamWithName<T>(&m_Power, prefix + "wavesn_power", 1, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(true, &m_AbsN, prefix + "wavesn_absn"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Cn, prefix + "wavesn_cn"));
}
private:
T m_FreqX;
T m_FreqY;
T m_ScaleX;
T m_ScaleY;
T m_IncX;
T m_IncY;
T m_Power;
T m_AbsN;//Precalc.
T m_Cn;
};
/// <summary>
/// XHeart.
/// </summary>
template <typename T>
class XHeartVariation : public ParametricVariation<T>
{
public:
XHeartVariation(T weight = 1.0) : ParametricVariation<T>("xheart", eVariationId::VAR_XHEART, weight, true)
{
Init();
}
PARVARCOPY(XHeartVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T r2_4 = helper.m_PrecalcSumSquares + 4;
if (r2_4 == 0)
r2_4 = 1;
T bx = 4 / r2_4;
T by = m_Rat / r2_4;
T x = m_Cosa * (bx * helper.In.x) - m_Sina * (by * helper.In.y);
T y = m_Sina * (bx * helper.In.x) + m_Cosa * (by * helper.In.y);
if (x > 0)
{
helper.Out.x = m_Weight * x;
helper.Out.y = m_Weight * y;
}
else
{
helper.Out.x = m_Weight * x;
helper.Out.y = -m_Weight * y;
}
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string angle = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ratio = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cosa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sina = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string rat = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t r2_4 = precalcSumSquares + 4;\n"
<< "\n"
<< "\t\tif (r2_4 == 0)\n"
<< "\t\t r2_4 = 1;\n"
<< "\n"
<< "\t\treal_t bx = 4 / r2_4;\n"
<< "\t\treal_t by = " << rat << " / r2_4;\n"
<< "\t\treal_t bxx = bx * vIn.x;\n"
<< "\t\treal_t byy = by * vIn.y;\n"
<< "\t\treal_t x = fma(" << cosa << ", bxx, -(" << sina << " * byy));\n"
<< "\t\treal_t y = fma(" << sina << ", bxx, " << cosa << " * byy);\n"
<< "\n"
<< "\t\tif (x > 0)\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * x;\n"
<< "\t\t vOut.y = " << weight << " * y;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t vOut.x = " << weight << " * x;\n"
<< "\t\t vOut.y = -" << weight << " * y;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
T ang = T(M_PI_4) + (T(0.5) * T(M_PI_4) * m_Angle);
sincos(ang, &m_Sina, &m_Cosa);
m_Rat = 6 + 2 * m_Ratio;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Angle, prefix + "xheart_angle"));
m_Params.push_back(ParamWithName<T>(&m_Ratio, prefix + "xheart_ratio"));
m_Params.push_back(ParamWithName<T>(true, &m_Cosa, prefix + "xheart_cosa"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Sina, prefix + "xheart_sina"));
m_Params.push_back(ParamWithName<T>(true, &m_Rat, prefix + "xheart_rat"));
}
private:
T m_Angle;
T m_Ratio;
T m_Cosa;//Precalc.
T m_Sina;
T m_Rat;
};
/// <summary>
/// Barycentroid.
/// </summary>
template <typename T>
class BarycentroidVariation : public ParametricVariation<T>
{
public:
BarycentroidVariation(T weight = 1.0) : ParametricVariation<T>("barycentroid", eVariationId::VAR_BARYCENTROID, weight)
{
Init();
}
PARVARCOPY(BarycentroidVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
//Compute dot products.
T dot00 = SQR(m_A) + SQR(m_B);//v0 * v0.
T dot01 = m_A * m_C + m_B * m_D;//v0 * v1.
T dot02 = m_A * helper.In.x + m_B * helper.In.y;//v0 * v2.
T dot11 = SQR(m_C) + SQR(m_D);//v1 * v1.
T dot12 = m_C * helper.In.x + m_D * helper.In.y;//v1 * v2.
//Compute inverse denomiator.
T invDenom = 1 / Zeps(dot00 * dot11 - dot01 * dot01);
//Now we can pull [u,v] as the barycentric coordinates of the point
//P in the triangle [A, B, C].
T u = (dot11 * dot02 - dot01 * dot12) * invDenom;
T v = (dot00 * dot12 - dot01 * dot02) * invDenom;
// now combine with input
T um = std::sqrt(SQR(u) + SQR(helper.In.x)) * VarFuncs<T>::Sign(u);
T vm = std::sqrt(SQR(v) + SQR(helper.In.y)) * VarFuncs<T>::Sign(v);
helper.Out.x = m_Weight * um;
helper.Out.y = m_Weight * vm;
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string b = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string d = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t dot00 = fma(" << a << ", " << a << ", SQR(" << b << "));\n"
<< "\t\treal_t dot01 = fma(" << a << ", " << c << ", " << b << " * " << d << ");\n"
<< "\t\treal_t dot02 = fma(" << a << ", vIn.x, " << b << " * vIn.y);\n"
<< "\t\treal_t dot11 = fma(" << c << ", " << c << ", SQR(" << d << "));\n"
<< "\t\treal_t dot12 = fma(" << c << ", vIn.x, " << d << " * vIn.y);\n"
<< "\t\treal_t invDenom = (real_t)(1.0) / Zeps(fma(dot00, dot11, -(dot01 * dot01)));\n"
<< "\t\treal_t u = fma(dot11, dot02, -(dot01 * dot12)) * invDenom;\n"
<< "\t\treal_t v = fma(dot00, dot12, -(dot01 * dot02)) * invDenom;\n"
<< "\t\treal_t um = sqrt(fma(u, u, SQR(vIn.x))) * Sign(u);\n"
<< "\t\treal_t vm = sqrt(fma(v, v, SQR(vIn.y))) * Sign(v);\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * um;\n"
<< "\t\tvOut.y = " << weight << " * vm;\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Sign", "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "barycentroid_a", 1));
m_Params.push_back(ParamWithName<T>(&m_B, prefix + "barycentroid_b"));
m_Params.push_back(ParamWithName<T>(&m_C, prefix + "barycentroid_c"));
m_Params.push_back(ParamWithName<T>(&m_D, prefix + "barycentroid_d", 1));
}
private:
T m_A;
T m_B;
T m_C;
T m_D;
};
/// <summary>
/// BiSplit.
/// </summary>
template <typename T>
class BiSplitVariation : public ParametricVariation<T>
{
public:
BiSplitVariation(T weight = 1.0) : ParametricVariation<T>("bisplit", eVariationId::VAR_BISPLIT, weight)
{
Init();
}
PARVARCOPY(BiSplitVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = m_Weight01 / SafeTan<T>(helper.In.x) * std::cos(helper.In.y);
helper.Out.y = m_Weight01 / std::sin(helper.In.x) * (-helper.In.y);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string weight01 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tvOut.x = " << weight01 << " / tan(vIn.x) * cos(vIn.y);\n"
<< "\t\tvOut.y = " << weight01 << " / sin(vIn.x) * (-vIn.y);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Weight01 = m_Weight * T(0.1);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(true, &m_Weight01, prefix + "bisplit_weight01"));//Precalc only.
}
private:
T m_Weight01;
};
/// <summary>
/// Crescents.
/// </summary>
template <typename T>
class CrescentsVariation : public Variation<T>
{
public:
CrescentsVariation(T weight = 1.0) : Variation<T>("crescents", eVariationId::VAR_CRESCENTS, weight) { }
VARCOPY(CrescentsVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T sinx = std::sin(helper.In.x);
T sinx2 = SQR(sinx);
T cosx = std::cos(helper.In.x);
T coshy1 = std::cosh(helper.In.y) + 1;
helper.Out.x = m_Weight * sinx * coshy1 * sinx2;
helper.Out.y = m_Weight * cosx * coshy1 * sinx2;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t sinx = sin(vIn.x);\n"
<< "\t\treal_t sinx2 = SQR(sinx);\n"
<< "\t\treal_t cosx = cos(vIn.x);\n"
<< "\t\treal_t coshy1 = cosh(vIn.y) + 1.0;\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * sinx * coshy1 * sinx2;\n"
<< "\t\tvOut.y = " << weight << " * cosx * coshy1 * sinx2;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// Mask.
/// </summary>
template <typename T>
class MaskVariation : public Variation<T>
{
public:
MaskVariation(T weight = 1.0) : Variation<T>("mask", eVariationId::VAR_MASK, weight, true) { }
VARCOPY(MaskVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T d = m_Weight / Zeps(helper.m_PrecalcSumSquares);
T sinx = std::sin(helper.In.x);
T sinx2 = SQR(sinx);
T cosx = std::cos(helper.In.x);
T coshy1 = std::cosh(helper.In.y) + 1;
helper.Out.x = d * sinx * coshy1 * sinx2;
helper.Out.y = d * cosx * coshy1 * sinx2;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss;
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t d = " << weight << " / Zeps(precalcSumSquares);\n"
<< "\t\treal_t sinx = sin(vIn.x);\n"
<< "\t\treal_t sinx2 = SQR(sinx);\n"
<< "\t\treal_t cosx = cos(vIn.x);\n"
<< "\t\treal_t coshy1 = cosh(vIn.y) + 1.0;\n"
<< "\n"
<< "\t\tvOut.x = d * sinx * coshy1 * sinx2;\n"
<< "\t\tvOut.y = d * cosx * coshy1 * sinx2;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
};
/// <summary>
/// Cpow2.
/// </summary>
template <typename T>
class Cpow2Variation : public ParametricVariation<T>
{
public:
Cpow2Variation(T weight = 1.0) : ParametricVariation<T>("cpow2", eVariationId::VAR_CPOW2, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(Cpow2Variation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T a = helper.m_PrecalcAtanyx;
int n = rand.Rand(m_SpreadUint);
if (a < 0)
n++;
a += M_2PI * n;
if (std::cos(a * m_InvSpread) < rand.Frand11<T>())
a -= m_FullSpread;
T lnr2 = std::log(helper.m_PrecalcSumSquares);
T r = m_Weight * std::exp(m_HalfC * lnr2 - m_D * a);
T temp = m_C * a + m_HalfD * lnr2 + m_Ang * rand.Crand();
helper.Out.x = r * std::cos(temp);
helper.Out.y = r * std::sin(temp);
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0;
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string r = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string divisor = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string spread = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string halfC = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string d = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string halfD = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ang = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string invSpread = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string fullSpread = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t a = precalcAtanyx;\n"
<< "\t\tint n = MwcNextRange(mwc, (uint)" << spread << ");\n"
<< "\n"
<< "\t\tif (a < 0)\n"
<< "\t\t n++;\n"
<< "\n"
<< "\t\ta += M_2PI * n;\n"
<< "\n"
<< "\t\tif (cos(a * " << invSpread << ") < MwcNextNeg1Pos1(mwc))\n"
<< "\t\t a -= " << fullSpread << ";\n"
<< "\n"
<< "\t\treal_t lnr2 = log(precalcSumSquares);\n"
<< "\t\treal_t r = " << weight << " * exp(fma(" << halfC << ", lnr2, -(" << d << " * a)));\n"
<< "\t\treal_t temp = fma(" << c << ", a, fma(" << halfD << ", lnr2, " << ang << " * MwcNextCrand(mwc)));\n"
<< "\n"
<< "\t\tvOut.x = r * cos(temp);\n"
<< "\t\tvOut.y = r * sin(temp);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Ang = M_2PI / m_Divisor;
m_C = m_R * std::cos(T(M_PI) / 2 * m_A) / m_Divisor;
m_D = m_R * std::sin(T(M_PI) / 2 * m_A) / m_Divisor;
m_HalfC = m_C / 2;
m_HalfD = m_D / 2;
m_InvSpread = T(0.5) / m_Spread;
m_FullSpread = M_2PI * m_Spread;
m_SpreadUint = uint(m_Spread);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_R, prefix + "cpow2_r", 1));
m_Params.push_back(ParamWithName<T>(&m_A, prefix + "cpow2_a"));
m_Params.push_back(ParamWithName<T>(&m_Divisor, prefix + "cpow2_divisor", 1, eParamType::INTEGER_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_Spread, prefix + "cpow2_spread", 1, eParamType::INTEGER, 1, T(0x7FFFFFFF)));
m_Params.push_back(ParamWithName<T>(true, &m_C, prefix + "cpow2_c"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_HalfC, prefix + "cpow2_halfc"));
m_Params.push_back(ParamWithName<T>(true, &m_D, prefix + "cpow2_d"));
m_Params.push_back(ParamWithName<T>(true, &m_HalfD, prefix + "cpow2_halfd"));
m_Params.push_back(ParamWithName<T>(true, &m_Ang, prefix + "cpow2_ang"));
m_Params.push_back(ParamWithName<T>(true, &m_InvSpread, prefix + "cpow2_inv_spread"));
m_Params.push_back(ParamWithName<T>(true, &m_FullSpread, prefix + "cpow2_full_spread"));
}
private:
T m_R;
T m_A;
T m_Divisor;
T m_Spread;
uint m_SpreadUint;//Precalc.
T m_C;
T m_HalfC;
T m_D;
T m_HalfD;
T m_Ang;
T m_InvSpread;
T m_FullSpread;
};
MAKEPREPOSTVAR(Hemisphere, hemisphere, HEMISPHERE)
MAKEPREPOSTPARVAR(Epispiral, epispiral, EPISPIRAL)
MAKEPREPOSTPARVAR(Bwraps, bwraps, BWRAPS)
MAKEPREPOSTPARVAR(BwrapsRand, bwraps_rand, BWRAPS_RAND)
MAKEPREPOSTVARASSIGN(BlurCircle, blur_circle, BLUR_CIRCLE, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTPARVAR(BlurZoom, blur_zoom, BLUR_ZOOM)
MAKEPREPOSTPARVAR(BlurPixelize, blur_pixelize, BLUR_PIXELIZE)
MAKEPREPOSTPARVAR(Crop, crop, CROP)
MAKEPREPOSTPARVAR(BCircle, bcircle, BCIRCLE)
MAKEPREPOSTPARVAR(BlurLinear, blur_linear, BLUR_LINEAR)
MAKEPREPOSTPARVARASSIGN(BlurSquare, blur_square, BLUR_SQUARE, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTVAR(Flatten, flatten, FLATTEN)
MAKEPREPOSTVARASSIGN(Zblur, zblur, ZBLUR, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTVARASSIGN(Blur3D, blur3D, BLUR3D, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTVAR(ZScale, zscale, ZSCALE)
MAKEPREPOSTVARASSIGN(ZTranslate, ztranslate, ZTRANSLATE, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTVAR(ZCone, zcone, ZCONE)
MAKEPREPOSTVAR(Spherical3D, Spherical3D, SPHERICAL3D)
MAKEPREPOSTPARVAR(Curl3D, curl3D, CURL3D)
MAKEPREPOSTPARVAR(Disc3D, disc3d, DISC3D)
MAKEPREPOSTPARVAR(Boarders2, boarders2, BOARDERS2)
MAKEPREPOSTPARVAR(Cardioid, cardioid, CARDIOID)
MAKEPREPOSTPARVAR(Checks, checks, CHECKS)
MAKEPREPOSTPARVAR(Circlize, circlize, CIRCLIZE)
MAKEPREPOSTPARVAR(Circlize2, circlize2, CIRCLIZE2)
MAKEPREPOSTPARVAR(CosWrap, coswrap, COS_WRAP)
MAKEPREPOSTVAR(DeltaA, deltaa, DELTA_A)
MAKEPREPOSTPARVAR(Expo, expo, EXPO)
MAKEPREPOSTPARVAR(Extrude, extrude, EXTRUDE)
MAKEPREPOSTVAR(FDisc, fdisc, FDISC)
MAKEPREPOSTPARVAR(Fibonacci, fibonacci, FIBONACCI)
MAKEPREPOSTPARVAR(Fibonacci2, fibonacci2, FIBONACCI2)
MAKEPREPOSTPARVAR(Glynnia, glynnia, GLYNNIA)
MAKEPREPOSTPARVAR(Glynnia2, glynnia2, GLYNNIA2)
MAKEPREPOSTVAR(GridOut, gridout, GRIDOUT)
MAKEPREPOSTPARVAR(Hole, hole, HOLE)
MAKEPREPOSTPARVAR(Hypertile, hypertile, HYPERTILE)
MAKEPREPOSTPARVAR(Hypertile1, hypertile1, HYPERTILE1)
MAKEPREPOSTPARVAR(Hypertile2, hypertile2, HYPERTILE2)
MAKEPREPOSTPARVAR(Hypertile3D, hypertile3D, HYPERTILE3D)
MAKEPREPOSTPARVAR(Hypertile3D1, hypertile3D1, HYPERTILE3D1)
MAKEPREPOSTPARVAR(Hypertile3D2, hypertile3D2, HYPERTILE3D2)
MAKEPREPOSTPARVAR(IDisc, idisc, IDISC)
MAKEPREPOSTPARVAR(Julian2, julian2, JULIAN2)
MAKEPREPOSTPARVAR(JuliaQ, juliaq, JULIAQ)
MAKEPREPOSTPARVAR(Murl, murl, MURL)
MAKEPREPOSTPARVAR(Murl2, murl2, MURL2)
MAKEPREPOSTPARVAR(NPolar, npolar, NPOLAR)
MAKEPREPOSTPARVAR(Ortho, ortho, ORTHO)
MAKEPREPOSTPARVAR(Poincare, poincare, POINCARE)
MAKEPREPOSTPARVAR(Poincare2, poincare2, POINCARE2)
MAKEPREPOSTPARVAR(Poincare3D, poincare3D, POINCARE3D)
MAKEPREPOSTPARVAR(Polynomial, polynomial, POLYNOMIAL)
MAKEPREPOSTPARVAR(PSphere, psphere, PSPHERE)
MAKEPREPOSTPARVAR(Rational3, rational3, RATIONAL3)
MAKEPREPOSTPARVAR(Ripple, ripple, RIPPLE)
MAKEPREPOSTPARVAR(Sigmoid, sigmoid, SIGMOID)
MAKEPREPOSTPARVAR(SinusGrid, sinusgrid, SINUS_GRID)
MAKEPREPOSTPARVAR(Stwin, stwin, STWIN)
MAKEPREPOSTVAR(TwoFace, twoface, TWO_FACE)
MAKEPREPOSTPARVAR(Unpolar, unpolar, UNPOLAR)
MAKEPREPOSTPARVAR(WavesN, wavesn, WAVESN)
MAKEPREPOSTPARVAR(XHeart, xheart, XHEART)
MAKEPREPOSTPARVAR(Barycentroid, barycentroid, BARYCENTROID)
MAKEPREPOSTPARVAR(BiSplit, bisplit, BISPLIT)
MAKEPREPOSTVAR(Crescents, crescents, CRESCENTS)
MAKEPREPOSTVAR(Mask, mask, MASK)
MAKEPREPOSTPARVAR(Cpow2, cpow2, CPOW2)
}