mirror of
https://bitbucket.org/mfeemster/fractorium.git
synced 2025-01-22 05:30:06 -05:00
1dfbd4eff2
-Add new preset dimensions to the right click menu of the width and height fields in the editor. -Change QSS stylesheets to properly handle tabs. -Make tabs rectangular by default. For some reason, they had always been triangular. --Bug fixes -Incremental rendering times in the editor were wrong. --Code changes -Migrate to Qt6. There is probably more work to be done here. -Migrate to VS2022. -Migrate to Wix 4 installer. -Change installer to install to program files for all users. -Fix many VS2022 code analysis warnings. -No longer use byte typedef, because std::byte is now a type. Revert all back to unsigned char. -Upgrade OpenCL headers to version 3.0 and keep locally now rather than trying to look for system files. -No longer link to Nvidia or AMD specific OpenCL libraries. Use the generic installer located at OCL_ROOT too. -Add the ability to change OpenCL grid dimensions. This was attempted for investigating possible performance improvments, but made no difference. This has not been verified on Linux or Mac yet.
573 lines
16 KiB
C++
573 lines
16 KiB
C++
#include "EmberCLPch.h"
|
|
#include "FunctionMapper.h"
|
|
|
|
namespace EmberCLns
|
|
{
|
|
std::unordered_map<string, string> FunctionMapper::s_GlobalMap;
|
|
|
|
FunctionMapper::FunctionMapper()
|
|
{
|
|
if (s_GlobalMap.empty())
|
|
{
|
|
s_GlobalMap["LRint"] =
|
|
"inline real_t LRint(real_t x)\n"
|
|
"{\n"
|
|
" intPrec temp = (x >= (real_t)0.0 ? (intPrec)(x + (real_t)0.5) : (intPrec)(x - (real_t)0.5));\n"
|
|
" return (real_t)temp;\n"
|
|
"}\n";
|
|
s_GlobalMap["Round"] =
|
|
"inline real_t Round(real_t r)\n"
|
|
"{\n"
|
|
" return (r > (real_t)0.0) ? floor(r + (real_t)0.5) : ceil(r - (real_t)0.5);\n"
|
|
"}\n";
|
|
s_GlobalMap["Fract"] =
|
|
"inline real_t Fract(real_t x)\n"
|
|
"{\n"
|
|
" return x - floor(x);\n"
|
|
"}\n";
|
|
s_GlobalMap["HashShadertoy"] =
|
|
"inline real_t HashShadertoy(real_t x, real_t y, real_t seed)\n"
|
|
"{\n"
|
|
" return Fract(sin(fma(x, (real_t)12.9898, fma(y, (real_t)78.233, seed))) * (real_t)43758.5453);\n"
|
|
"}\n";
|
|
s_GlobalMap["Sign"] =
|
|
"inline real_t Sign(real_t v)\n"
|
|
"{\n"
|
|
" return (v < (real_t)0.0) ? (real_t)-1.0 : (v > (real_t)0.0) ? 1 : (real_t)0.0;\n"
|
|
"}\n";
|
|
s_GlobalMap["SignNz"] =
|
|
"inline real_t SignNz(real_t v)\n"
|
|
"{\n"
|
|
" return (v < (real_t)0.0) ? (real_t)-1.0 : (real_t)1.0;\n"
|
|
"}\n";
|
|
s_GlobalMap["Sqr"] =
|
|
"inline real_t Sqr(real_t v)\n"
|
|
"{\n"
|
|
" return v * v;\n"
|
|
"}\n";
|
|
s_GlobalMap["SafeSqrt"] =
|
|
"inline real_t SafeSqrt(real_t x)\n"
|
|
"{\n"
|
|
" if (x <= (real_t)0.0)\n"
|
|
" return (real_t)0.0;\n"
|
|
"\n"
|
|
" return sqrt(x);\n"
|
|
"}\n";
|
|
s_GlobalMap["SafeDivInv"] =
|
|
"inline real_t SafeDivInv(real_t q, real_t r)\n"
|
|
"{\n"
|
|
" if (r < EPS)\n"
|
|
" return (real_t)1.0 / r;\n"
|
|
"\n"
|
|
" return q / r;\n"
|
|
"}\n";
|
|
s_GlobalMap["Cube"] =
|
|
"inline real_t Cube(real_t v)\n"
|
|
"{\n"
|
|
" return v * v * v;\n"
|
|
"}\n";
|
|
s_GlobalMap["Hypot"] =
|
|
"inline real_t Hypot(real_t x, real_t y)\n"
|
|
"{\n"
|
|
" return sqrt(fma(x, x, SQR(y)));\n"
|
|
"}\n";
|
|
s_GlobalMap["Spread"] =
|
|
"inline real_t Spread(real_t x, real_t y)\n"
|
|
"{\n"
|
|
" return Hypot(x, y) * ((x) > (real_t)0.0 ? (real_t)1.0 : (real_t)-1.0);\n"
|
|
"}\n";
|
|
s_GlobalMap["Powq4"] =
|
|
"inline real_t Powq4(real_t x, real_t y)\n"
|
|
"{\n"
|
|
" return pow(fabs(x), y) * SignNz(x);\n"
|
|
"}\n";
|
|
s_GlobalMap["Powq4c"] =
|
|
"inline real_t Powq4c(real_t x, real_t y)\n"
|
|
"{\n"
|
|
" return y == (real_t)1.0 ? x : Powq4(x, y);\n"
|
|
"}\n";
|
|
s_GlobalMap["Zeps"] =
|
|
"inline real_t Zeps(real_t x)\n"
|
|
"{\n"
|
|
" return x != (real_t)0.0 ? x : EPS;\n"
|
|
"}\n";
|
|
s_GlobalMap["Lerp"] =
|
|
"inline real_t Lerp(real_t a, real_t b, real_t p)\n"
|
|
"{\n"
|
|
" return fma(p, (b - a), a);\n"
|
|
"}\n";
|
|
s_GlobalMap["Fabsmod"] =
|
|
"inline real_t Fabsmod(real_t v)\n"
|
|
"{\n"
|
|
" real_t dummy;\n"
|
|
"\n"
|
|
" return modf(v, &dummy);\n"
|
|
"}\n";
|
|
s_GlobalMap["Fosc"] =
|
|
"inline real_t Fosc(real_t p, real_t amp, real_t ph)\n"
|
|
"{\n"
|
|
" return (real_t)0.5 - cos(fma(p, amp, ph)) * (real_t)0.5;\n"
|
|
"}\n";
|
|
s_GlobalMap["Foscn"] =
|
|
"inline real_t Foscn(real_t p, real_t ph)\n"
|
|
"{\n"
|
|
" return (real_t)0.5 - cos(p + ph) * (real_t)0.5;\n"
|
|
"}\n";
|
|
s_GlobalMap["LogScale"] =
|
|
"inline real_t LogScale(real_t x)\n"
|
|
"{\n"
|
|
" return x == (real_t)0.0 ? (real_t)0.0 : log((fabs(x) + 1) * M_E) * SignNz(x) / M_E;\n"
|
|
"}\n";
|
|
s_GlobalMap["LogMap"] =
|
|
"inline real_t LogMap(real_t x)\n"
|
|
"{\n"
|
|
" return x == (real_t)0.0 ? (real_t)0.0 : (M_E + log(x * M_E)) * (real_t)0.25 * SignNz(x);\n"
|
|
"}\n";
|
|
s_GlobalMap["ClampGte"] =
|
|
"inline real_t ClampGte(real_t val, real_t gte)\n"
|
|
"{\n"
|
|
" return (val < gte) ? gte : val;\n"
|
|
"}\n";
|
|
s_GlobalMap["Swap"] =
|
|
"inline void Swap(real_t* val1, real_t* val2)\n"
|
|
"{\n"
|
|
" real_t tmp = *val1;\n"
|
|
" *val1 = *val2;\n"
|
|
" *val2 = tmp;\n"
|
|
"}\n";
|
|
s_GlobalMap["Modulate"] =
|
|
"inline real_t Modulate(real_t amp, real_t freq, real_t x)\n"
|
|
"{\n"
|
|
" return amp * cos(x * freq * M_2PI);\n"
|
|
"}\n";
|
|
s_GlobalMap["RealDivComplex"] =
|
|
"inline real2 RealDivComplex(real_t x, real2 a)\n"
|
|
"{\n"
|
|
" real_t s = x / Zeps(fma(a.x, a.x, a.y * a.y));\n"
|
|
" return (real2)(a.x * s, -a.y * s);\n"
|
|
"}\n";
|
|
s_GlobalMap["ComplexDivComplex"] =
|
|
"inline real2 ComplexDivComplex(real2 a, real2 b)\n"
|
|
"{\n"
|
|
" real_t s = (real_t)1.0 / Zeps(fma(b.x, b.x, b.y * b.y));\n"
|
|
" return (real2)(fma(a.x, b.x, a.y * b.y), fma(a.y, b.x, -(a.x * b.y))) * s;\n"
|
|
"}\n";
|
|
s_GlobalMap["ComplexMultReal"] =
|
|
"inline real2 ComplexMultReal(real2 a, real_t x)\n"
|
|
"{\n"
|
|
" return (real2)(a.x * x, a.y * x);\n"
|
|
"}\n";
|
|
s_GlobalMap["ComplexMultComplex"] =
|
|
"inline real2 ComplexMultComplex(real2 a, real2 b)\n"
|
|
"{\n"
|
|
" return (real2)(fma(a.x, b.x, -(a.y * b.y)), fma(a.x, b.y, a.y * b.x));\n"
|
|
"}\n";
|
|
s_GlobalMap["ComplexPlusReal"] =
|
|
"inline real2 ComplexPlusReal(real2 a, real_t x)\n"
|
|
"{\n"
|
|
" return (real2)(a.x + x, a.y);\n"
|
|
"}\n";
|
|
s_GlobalMap["ComplexPlusComplex"] =
|
|
"inline real2 ComplexPlusComplex(real2 a, real2 b)\n"
|
|
"{\n"
|
|
" return (real2)(a.x + b.x, a.y + b.y);\n"
|
|
"}\n";
|
|
s_GlobalMap["ComplexMinusReal"] =
|
|
"inline real2 ComplexMinusReal(real2 a, real_t x)\n"
|
|
"{\n"
|
|
" return (real2)(a.x - x, a.y);\n"
|
|
"}\n";
|
|
s_GlobalMap["ComplexMinusComplex"] =
|
|
"inline real2 ComplexMinusComplex(real2 a, real2 b)\n"
|
|
"{\n"
|
|
" return (real2)(a.x - b.x, a.y - b.y);\n"
|
|
"}\n";
|
|
s_GlobalMap["ComplexSqrt"] =
|
|
"inline real2 ComplexSqrt(real2 a)\n"
|
|
"{\n"
|
|
" real_t mag = Hypot(a.x, a.y);\n"
|
|
" return ComplexMultReal((real2)(sqrt(mag + a.x), Sign(a.y) * sqrt(mag - a.x)), (real_t)0.5 * sqrt((real_t)2.0));\n"
|
|
"}\n";
|
|
s_GlobalMap["ComplexLog"] =
|
|
"inline real2 ComplexLog(real2 a)\n"
|
|
"{\n"
|
|
" return (real2)((real_t)0.5 * log(fma(a.x, a.x, a.y * a.y)), atan2(a.y, a.x));\n"
|
|
"}\n";
|
|
s_GlobalMap["ComplexExp"] =
|
|
"inline real2 ComplexExp(real2 a)\n"
|
|
"{\n"
|
|
" return (real2)(cos(a.y), sin(a.y)) * exp(a.x);\n"
|
|
"}\n";
|
|
s_GlobalMap["Hash"] =
|
|
"inline real_t Hash(int a)\n"
|
|
"{\n"
|
|
" a = (a ^ 61) ^ (a >> 16);\n"
|
|
" a = a + (a << 3);\n"
|
|
" a = a ^ (a >> 4);\n"
|
|
" a = a * 0x27d4eb2d;\n"
|
|
" a = a ^ (a >> 15);\n"
|
|
" return (real_t)a / INT_MAX;\n"
|
|
"}\n";
|
|
s_GlobalMap["Vratio"] =
|
|
"inline real_t Vratio(real2* p, real2* q, real2* u)\n"
|
|
"{\n"
|
|
" real2 pmq = *p - *q;\n"
|
|
"\n"
|
|
" if (pmq.x == (real_t)0.0 && pmq.y == (real_t)0.0)\n"
|
|
" return 1.0;\n"
|
|
"\n"
|
|
" return 2 * (((*u).x - (*q).x) * pmq.x + ((*u).y - (*q).y) * pmq.y) / Zeps(SQR(pmq.x) + SQR(pmq.y));\n"
|
|
"}\n";
|
|
s_GlobalMap["Closest"] =
|
|
"inline int Closest(real2* p, int n, real2* u)\n"
|
|
"{\n"
|
|
" real_t d2;\n"
|
|
" real_t d2min = TMAX;\n"
|
|
" int i, j = 0;\n"
|
|
"\n"
|
|
" for (i = 0; i < n; i++)\n"
|
|
" {\n"
|
|
" real_t pxmx = p[i].x - (*u).x;\n"
|
|
" d2 = fma(pxmx, pxmx, Sqr(p[i].y - (*u).y));\n"
|
|
"\n"
|
|
" if (d2 < d2min)\n"
|
|
" {\n"
|
|
" d2min = d2;\n"
|
|
" j = i;\n"
|
|
" }\n"
|
|
" }\n"
|
|
"\n"
|
|
" return j;\n"
|
|
"}\n";
|
|
s_GlobalMap["Voronoi"] =
|
|
"inline real_t Voronoi(real2* p, int n, int q, real2* u)\n"
|
|
"{\n"
|
|
" real_t ratio;\n"
|
|
" real_t ratiomax = TLOW;\n"
|
|
" int i;\n"
|
|
"\n"
|
|
" for (i = 0; i < n; i++)\n"
|
|
" {\n"
|
|
" if (i != q)\n"
|
|
" {\n"
|
|
" ratio = Vratio(&p[i], &p[q], u);\n"
|
|
"\n"
|
|
" if (ratio > ratiomax)\n"
|
|
" ratiomax = ratio;\n"
|
|
" }\n"
|
|
" }\n"
|
|
"\n"
|
|
" return ratiomax;\n"
|
|
"}\n";
|
|
s_GlobalMap["SimplexNoise3D"] =
|
|
"inline real_t SimplexNoise3D(real4* v, __global real_t* p, __global real_t* grad)\n"
|
|
"{\n"
|
|
" real4 c[4];\n"
|
|
" real_t n = 0;\n"
|
|
" int gi[4];\n"
|
|
" real_t skewIn = ((*v).x + (*v).y + (*v).z) * (real_t)0.333333;\n"
|
|
" int i = (int)floor((*v).x + skewIn);\n"
|
|
" int j = (int)floor((*v).y + skewIn);\n"
|
|
" int k = (int)floor((*v).z + skewIn);\n"
|
|
" real_t t = (i + j + k) * (real_t)0.1666666;\n"
|
|
" real_t x0 = i - t;\n"
|
|
" real_t y0 = j - t;\n"
|
|
" real_t z0 = k - t;\n"
|
|
" c[0].x = (*v).x - x0;\n"
|
|
" c[0].y = (*v).y - y0;\n"
|
|
" c[0].z = (*v).z - z0;\n"
|
|
" int i1, j1, k1;\n"
|
|
" int i2, j2, k2;\n"
|
|
" real4 u;\n"
|
|
"\n"
|
|
" if (c[0].x >= c[0].y)\n"
|
|
" {\n"
|
|
" if (c[0].y >= c[0].z)\n"
|
|
" {\n"
|
|
" i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0;\n"
|
|
" }\n"
|
|
" else\n"
|
|
" {\n"
|
|
" if (c[0].x >= c[0].z)\n"
|
|
" {\n"
|
|
" i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1;\n"
|
|
" }\n"
|
|
" else\n"
|
|
" {\n"
|
|
" i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1;\n"
|
|
" }\n"
|
|
" }\n"
|
|
" }\n"
|
|
" else\n"
|
|
" {\n"
|
|
" if (c[0].y < c[0].z)\n"
|
|
" {\n"
|
|
" i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1;\n"
|
|
" }\n"
|
|
" else\n"
|
|
" {\n"
|
|
" if (c[0].x < c[0].z)\n"
|
|
" {\n"
|
|
" i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1;\n"
|
|
" }\n"
|
|
" else\n"
|
|
" {\n"
|
|
" i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0;\n"
|
|
" }\n"
|
|
" }\n"
|
|
" }\n"
|
|
"\n"
|
|
" c[1].x = c[0].x - i1 + (real_t)0.1666666;\n"
|
|
" c[1].y = c[0].y - j1 + (real_t)0.1666666;\n"
|
|
" c[1].z = c[0].z - k1 + (real_t)0.1666666;\n"
|
|
" c[2].x = c[0].x - i2 + 2 * (real_t)0.1666666;\n"
|
|
" c[2].y = c[0].y - j2 + 2 * (real_t)0.1666666;\n"
|
|
" c[2].z = c[0].z - k2 + 2 * (real_t)0.1666666;\n"
|
|
" c[3].x = c[0].x - 1 + 3 * (real_t)0.1666666;\n"
|
|
" c[3].y = c[0].y - 1 + 3 * (real_t)0.1666666;\n"
|
|
" c[3].z = c[0].z - 1 + 3 * (real_t)0.1666666;\n"
|
|
" int ii = i & 0x3ff;\n"
|
|
" int jj = j & 0x3ff;\n"
|
|
" int kk = k & 0x3ff;\n"
|
|
" gi[0] = (int)p[ii + (int)p[jj + (int)p[kk]]];\n"
|
|
" gi[1] = (int)p[ii + i1 + (int)p[jj + j1 + (int)p[kk + k1]]];\n"
|
|
" gi[2] = (int)p[ii + i2 + (int)p[jj + j2 + (int)p[kk + k2]]];\n"
|
|
" gi[3] = (int)p[ii + 1 + (int)p[jj + 1 + (int)p[kk + 1]]];\n"
|
|
"\n"
|
|
" for (uint corner = 0; corner < 4; corner++)\n"
|
|
" {\n"
|
|
" t = 0.6 - Sqr(c[corner].x) - Sqr(c[corner].y) - Sqr(c[corner].z);\n"
|
|
"\n"
|
|
" if (t > 0)\n"
|
|
" {\n"
|
|
" int index = gi[corner] * 3;\n"
|
|
" u.x = grad[index];\n"
|
|
" u.y = grad[index + 1];\n"
|
|
" u.z = grad[index + 2];\n"
|
|
" t *= t;\n"
|
|
" n += t * t * (u.x * c[corner].x + u.y * c[corner].y + u.z * c[corner].z);\n"
|
|
" }\n"
|
|
" }\n"
|
|
"\n"
|
|
" return 32.0 * n;\n"
|
|
"}\n";
|
|
s_GlobalMap["PerlinNoise3D"] =
|
|
"inline real_t PerlinNoise3D(real4* v, __global real_t* p, __global real_t* grad, real_t aScale, real_t fScale, int octaves)\n"
|
|
"{\n"
|
|
" int i;\n"
|
|
" real_t n = 0.0, a = (real_t)1.0;\n"
|
|
" real4 u = *v;\n"
|
|
"\n"
|
|
" for (i = 0; i < octaves; i++)\n"
|
|
" {\n"
|
|
" n += SimplexNoise3D(&u, p, grad) / Zeps(a);\n"
|
|
" a *= aScale;\n"
|
|
" u.x *= fScale;\n"
|
|
" u.y *= fScale;\n"
|
|
" u.x *= fScale;\n"
|
|
" }\n"
|
|
"\n"
|
|
" return n;\n"
|
|
"}\n";
|
|
s_GlobalMap["EvalRational"] =
|
|
"inline real_t EvalRational(__global real_t* num, __global real_t* denom, real_t z_, int count)//This function was taken from boost.org.\n"
|
|
"{\n"
|
|
" real_t z = z_;\n"
|
|
" real_t s1, s2;\n"
|
|
"\n"
|
|
" if (z <= 1)\n"
|
|
" {\n"
|
|
" s1 = num[count - 1];\n"
|
|
" s2 = denom[count - 1];\n"
|
|
"\n"
|
|
" for (int i = count - 2; i >= 0; --i)\n"
|
|
" {\n"
|
|
" s1 *= z;\n"
|
|
" s2 *= z;\n"
|
|
" s1 += num[i];\n"
|
|
" s2 += denom[i];\n"
|
|
" }\n"
|
|
" }\n"
|
|
" else\n"
|
|
" {\n"
|
|
" z = (real_t)1.0 / z;\n"
|
|
" s1 = num[0];\n"
|
|
" s2 = denom[0];\n"
|
|
"\n"
|
|
" for (unsigned i = 1; i < count; ++i)\n"
|
|
" {\n"
|
|
" s1 *= z;\n"
|
|
" s2 *= z;\n"
|
|
" s1 += num[i];\n"
|
|
" s2 += denom[i];\n"
|
|
" }\n"
|
|
" }\n"
|
|
"\n"
|
|
" return s1 / s2;\n"
|
|
"}\n";
|
|
s_GlobalMap["J1"] =
|
|
"inline real_t J1(real_t x, __global real_t* P1, __global real_t* Q1, __global real_t* P2, __global real_t* Q2, __global real_t* PC, __global real_t* QC, __global real_t* PS, __global real_t* QS)//This function was taken from boost.org.\n"
|
|
"{\n"
|
|
" real_t x1 = (real_t)3.8317059702075123156e+00,\n"
|
|
" x2 = (real_t)7.0155866698156187535e+00,\n"
|
|
" x11 = (real_t)9.810e+02,\n"
|
|
" x12 = (real_t)-3.2527979248768438556e-04,\n"
|
|
" x21 = (real_t)1.7960e+03,\n"
|
|
" x22 = (real_t)-3.8330184381246462950e-05;\n"
|
|
" real_t value, factor, r, rc, rs, w;\n"
|
|
" w = fabs(x);\n"
|
|
"\n"
|
|
" if (x == (real_t)0.0)\n"
|
|
" {\n"
|
|
" return (real_t)0.0;\n"
|
|
" }\n"
|
|
"\n"
|
|
" if (w <= (real_t)4.0)\n"
|
|
" {\n"
|
|
" real_t y = x * x;\n"
|
|
" r = EvalRational(P1, Q1, y, 7);\n"
|
|
" factor = w * (w + x1) * ((w - x11 / (real_t)256.0) - x12);\n"
|
|
" value = factor * r;\n"
|
|
" }\n"
|
|
" else if (w <= (real_t)8.0)\n"
|
|
" {\n"
|
|
" real_t y = x * x;\n"
|
|
" r = EvalRational(P2, Q2, y, 8);\n"
|
|
" factor = w * (w + x2) * ((w - x21 / (real_t)256.0) - x22);\n"
|
|
" value = factor * r;\n"
|
|
" }\n"
|
|
" else\n"
|
|
" {\n"
|
|
" real_t y = (real_t)8.0 / w;\n"
|
|
" real_t y2 = y * y;\n"
|
|
" rc = EvalRational(PC, QC, y2, 7);\n"
|
|
" rs = EvalRational(PS, QS, y2, 7);\n"
|
|
" factor = 1 / (sqrt(w) * (real_t)1.772453850905516027);//sqrt pi\n"
|
|
" real_t sx = sin(x);\n"
|
|
" real_t cx = cos(x);\n"
|
|
" value = factor * (rc * (sx - cx) + y * rs * (sx + cx));\n"
|
|
" }\n"
|
|
"\n"
|
|
" if (x < (real_t)0.0)\n"
|
|
" {\n"
|
|
" value *= (real_t)-1.0;\n"
|
|
" }\n"
|
|
"\n"
|
|
" return value;\n"
|
|
"}\n";
|
|
s_GlobalMap["JacobiElliptic"] =
|
|
"inline void JacobiElliptic(real_t uu, real_t emmc, real_t* sn, real_t* cn, real_t* dn)\n"
|
|
"{\n"
|
|
" real_t CA = (real_t)0.0003;\n"
|
|
" real_t a, b, c, d = (real_t)1.0, em[13], en[13];\n"
|
|
" int bo;\n"
|
|
" int l;\n"
|
|
" int ii;\n"
|
|
" int i;\n"
|
|
" real_t emc = emmc;\n"
|
|
" real_t u = uu;\n"
|
|
"\n"
|
|
" if (emc != 0)\n"
|
|
" {\n"
|
|
" bo = 0;\n"
|
|
"\n"
|
|
" if (emc < 0)\n"
|
|
" bo = 1;\n"
|
|
"\n"
|
|
" if (bo != 0)\n"
|
|
" {\n"
|
|
" d = (real_t)1.0 - emc;\n"
|
|
" emc = -emc / d;\n"
|
|
" d = sqrt(d);\n"
|
|
" u = d * u;\n"
|
|
" }\n"
|
|
"\n"
|
|
" a = (real_t)1.0;\n"
|
|
" *dn = (real_t)1.0;\n"
|
|
"\n"
|
|
" for (i = 0; i < 8; i++)\n"
|
|
" {\n"
|
|
" l = i;\n"
|
|
" em[i] = a;\n"
|
|
" emc = sqrt(emc);\n"
|
|
" en[i] = emc;\n"
|
|
" c = (real_t)0.5 * (a + emc);\n"
|
|
"\n"
|
|
" if (fabs(a - emc) <= CA * a)\n"
|
|
" break;\n"
|
|
"\n"
|
|
" emc = a * emc;\n"
|
|
" a = c;\n"
|
|
" }\n"
|
|
"\n"
|
|
" u = c * u;\n"
|
|
" *sn = sincos(u, cn);\n"
|
|
"\n"
|
|
" if (*sn != (real_t)0.0)\n"
|
|
" {\n"
|
|
" a = *cn / *sn;\n"
|
|
" c = a * c;\n"
|
|
"\n"
|
|
" for (ii = l; ii >= 0; --ii)\n"
|
|
" {\n"
|
|
" b = em[ii];\n"
|
|
" a = c * a;\n"
|
|
" c = *dn * c;\n"
|
|
" *dn = (en[ii] + a) / (b + a);\n"
|
|
" a = c / b;\n"
|
|
" }\n"
|
|
"\n"
|
|
" a = 1 / sqrt(fma(c, c, (real_t)(1.0)));\n"
|
|
"\n"
|
|
" if (*sn < (real_t)0.0)\n"
|
|
" *sn = -a;\n"
|
|
" else\n"
|
|
" *sn = a;\n"
|
|
"\n"
|
|
" *cn = c * *sn;\n"
|
|
" }\n"
|
|
"\n"
|
|
" if (bo != 0)\n"
|
|
" {\n"
|
|
" a = *dn;\n"
|
|
" *dn = *cn;\n"
|
|
" *cn = a;\n"
|
|
" *sn = *sn / d;\n"
|
|
" }\n"
|
|
" }\n"
|
|
" else\n"
|
|
" {\n"
|
|
" *cn = 1 / cosh(u);\n"
|
|
" *dn = *cn;\n"
|
|
" *sn = tanh(u);\n"
|
|
" }\n"
|
|
"}\n";
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get a pointer to the text of the global function whose name is the passed in string.
|
|
/// </summary>
|
|
/// <param name="func">The function name to retrieve</param>
|
|
/// <returns>A pointer to the function body string if found, else nullptr.</returns>
|
|
const string* FunctionMapper::GetGlobalFunc(const string& func)
|
|
{
|
|
const auto& text = s_GlobalMap.find(func);
|
|
|
|
if (text != s_GlobalMap.end())
|
|
return &text->second;
|
|
else
|
|
return nullptr;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get a copy of the function map.
|
|
/// This is useful only for debugging/testing.
|
|
/// </summary>
|
|
/// <returns>A copy of the function map</returns>
|
|
const std::unordered_map<string, string> FunctionMapper::GetGlobalMapCopy()
|
|
{
|
|
return s_GlobalMap;
|
|
}
|
|
}
|