fractorium/Source/Ember/Curves.h
Person de613404de Features:
--Add support for Exr files which use 32-bit floats for each RGBA channel. Seems to come out too washed out.
--Allow for clearing an individual color curve.
--Allow for saving multiple image types in EmberRender and EmberAnimate. All writes are threaded.
--Remove --bpc command line argument. Add format png16 as a replacement.
--Remove --enable_jpg_comments and --enable_png_comments command line arguments, and replace them with --enable_comments which applies to jpg, png and exr.
--Add menu items to variations and affine spinners which allow for easy entry of specific numeric values like pi.
--Make final render dialog be wider rather than so tall.

Bug fixes:
--Fix some OpenCL compile errors on Mac.
--Remove ability to save bitmap files on all platforms but Windows.

Code changes:
--New dependency on OpenEXR.
--Allow Curves class to interact with objects of a different template type.
--Make m_Curves member of Ember always use float as template type.
--Set the length of the curves array to always be 2^17 which should offer enough precision with new 32-bit float pixel types.
--Set pixel types to always be 32-bit float. This results in a major reduction of code in the final accumulation part of Renderer.h/cpp.
--Remove corresponding code from RendererCL and FinalAccumOpenCLKernelCreator.
--Remove Transparency, NumChannels and BytesPerPixel setters from Renderer.h/cpp.
--Add new global functions to format final image buffers and place all alpha calculation and scaling code in them.
--Blending is no longer needed in OpenGLWidget because of the new pixel type.
--Make new class, AffineDoubleSpinBox.
--Attempt to make file save dialog code work the same on all OSes.
--Remove some unused functions.
2017-07-22 13:43:35 -07:00

291 lines
7.8 KiB
C++

#pragma once
#include "Utils.h"
#include "Isaac.h"
/// <summary>
/// Curves class.
/// </summary>
namespace EmberNs
{
/// <summary>
/// The Bezier curves used to adjust the colors during final accumulation.
/// This functionality was gotten directly from Apophysis.
/// </summary>
template <typename T>
class EMBER_API Curves
{
public:
/// <summary>
/// Constructor which sets the curve and weight values to their defaults.
/// </summary>
Curves(bool init = false)
{
if (init)
Init();
else
Clear();
}
/// <summary>
/// Default copy constructor.
/// </summary>
/// <param name="curves">The Curves object to copy</param>
Curves(const Curves<T>& curves)
{
Curves<T>::operator=<T>(curves);
}
/// <summary>
/// Copy constructor to copy a Curves object of type U.
/// Special case that must be here in the header because it has
/// a second template parameter.
/// </summary>
/// <param name="curves">The Curves object to copy</param>
template <typename U>
Curves(const Curves<U>& curves)
{
Curves<T>::operator=<U>(curves);
}
/// <summary>
/// Default assignment operator.
/// </summary>
/// <param name="curves">The Curves object to copy</param>
Curves<T>& operator = (const Curves<T>& curves)
{
if (this != &curves)
Curves<T>::operator=<T>(curves);
return *this;
}
/// <summary>
/// Assignment operator to assign a Curves object of type U.
/// </summary>
/// <param name="curves">The Curves object to copy</param>
/// <returns>Reference to updated self</returns>
template <typename U>
Curves<T>& operator = (const Curves<U>& curves)
{
for (size_t i = 0; i < 4; i++)
{
m_Points[i][0].x = T(curves.m_Points[i][0].x); m_Points[i][0].y = T(curves.m_Points[i][0].y); m_Weights[i].x = T(curves.m_Weights[i].x);
m_Points[i][1].x = T(curves.m_Points[i][1].x); m_Points[i][1].y = T(curves.m_Points[i][1].y); m_Weights[i].y = T(curves.m_Weights[i].y);
m_Points[i][2].x = T(curves.m_Points[i][2].x); m_Points[i][2].y = T(curves.m_Points[i][2].y); m_Weights[i].z = T(curves.m_Weights[i].z);
m_Points[i][3].x = T(curves.m_Points[i][3].x); m_Points[i][3].y = T(curves.m_Points[i][3].y); m_Weights[i].w = T(curves.m_Weights[i].w);
}
return *this;
}
/// <summary>
/// Unary addition operator to add a Curves<T> object to this one.
/// </summary>
/// <param name="curves">The Curves object to add</param>
/// <returns>Reference to updated self</returns>
template <typename U>
Curves<T>& operator += (const Curves<U>& curves)
{
for (size_t i = 0; i < 4; i++)
{
m_Points[i][0] += curves.m_Points[i][0];
m_Points[i][1] += curves.m_Points[i][1];
m_Points[i][2] += curves.m_Points[i][2];
m_Points[i][3] += curves.m_Points[i][3];
m_Weights[i] += curves.m_Weights[i];
}
return *this;
}
/// <summary>
/// Unary multiplication operator to multiply this object by another Curves<T> object.
/// </summary>
/// <param name="curves">The Curves object to multiply this one by</param>
/// <returns>Reference to updated self</returns>
template <typename U>
Curves<T>& operator *= (const Curves<U>& curves)
{
for (size_t i = 0; i < 4; i++)
{
m_Points[i][0] *= curves.m_Points[i][0];
m_Points[i][1] *= curves.m_Points[i][1];
m_Points[i][2] *= curves.m_Points[i][2];
m_Points[i][3] *= curves.m_Points[i][3];
m_Weights[i] *= curves.m_Weights[i];
}
return *this;
}
/// <summary>
/// Unary multiplication operator to multiply this object by a scalar of type T.
/// </summary>
/// <param name="t">The scalar to multiply this object by</param>
/// <returns>Reference to updated self</returns>
template <typename U>
Curves<T>& operator *= (const U& t)
{
for (size_t i = 0; i < 4; i++)
{
m_Points[i][0] *= T(t);
m_Points[i][1] *= T(t);
m_Points[i][2] *= T(t);
m_Points[i][3] *= T(t);
m_Weights[i] *= T(t);
}
return *this;
}
/// <summary>
/// Set the curve and weight values to their default state.
/// </summary>
void Init()
{
for (size_t i = 0; i < 4; i++)
{
m_Points[i][0] = v2T(0);//0,0 -> 0,0 -> 1,1 -> 1,1.
m_Points[i][1] = v2T(0);
m_Points[i][2] = v2T(1);
m_Points[i][3] = v2T(1);
m_Weights[i] = v4T(1);
}
}
/// <summary>
/// Set the a specific curve and its weight value to their default state.
/// </summary>
void Init(size_t i)
{
if (i < 4)
{
m_Points[i][0] = v2T(0);//0,0 -> 0,0 -> 1,1 -> 1,1.
m_Points[i][1] = v2T(0);
m_Points[i][2] = v2T(1);
m_Points[i][3] = v2T(1);
m_Weights[i] = v4T(1);
}
}
/// <summary>
/// Set the curve and weight values to an empty state.
/// </summary>
void Clear()
{
memset(&m_Points, 0, sizeof(m_Points));
memset(&m_Weights, 0, sizeof(m_Weights));
}
/// <summary>
/// Whether any points are not the default.
/// </summary>
/// <returns>True if any point has been set to a value other than the default, else false.</returns>
bool CurvesSet()
{
bool set = false;
for (size_t i = 0; i < 4; i++)
{
if ((m_Points[i][0] != v2T(0)) ||
(m_Points[i][1] != v2T(0)) ||
(m_Points[i][2] != v2T(1)) ||
(m_Points[i][3] != v2T(1)))
{
set = true;
break;
}
}
return set;
}
/// <summary>
/// Wrapper around calling BezierSolve() on each of the 4 weight and point vectors.
/// </summary>
/// <param name="t">The position to apply</param>
/// <returns>vec4<T> that contains the y component of the solution for each vector in each component</returns>
v4T BezierFunc(const T& t)
{
v4T result;
v2T solution(0, 0);
BezierSolve(t, m_Points[0], &m_Weights[0], solution); result.x = solution.y;
BezierSolve(t, m_Points[1], &m_Weights[1], solution); result.y = solution.y;
BezierSolve(t, m_Points[2], &m_Weights[2], solution); result.z = solution.y;
BezierSolve(t, m_Points[3], &m_Weights[3], solution); result.w = solution.y;
return result;
}
private:
/// <summary>
/// Solve the given point and weight vectors for the given position and store
/// the output in the solution vec2 passed in.
/// </summary>
/// <param name="t">The position to apply</param>
/// <param name="src">A pointer to an array of 4 vec2</param>
/// <param name="w">A pointer to an array of 4 weights</param>
/// <param name="solution">The vec2 to store the solution in</param>
void BezierSolve(const T& t, v2T* src, v4T* w, v2T& solution)
{
T s = 1 - t;
T s2 = s * s;
T s3 = s * s * s;
T t2 = t * t;
T t3 = t * t * t;
T nom_x = (w->x * s3 * src->x) + (w->y * s2 * 3 * t * src[1].x) + (w->z * s * 3 * t2 * src[2].x) + (w->w * t3 * src[3].x);
T nom_y = (w->x * s3 * src->y) + (w->y * s2 * 3 * t * src[1].y) + (w->z * s * 3 * t2 * src[2].y) + (w->w * t3 * src[3].y);
T denom = (w->x * s3) + (w->y * s2 * 3 * t) + (w->z * s * 3 * t2) + (w->w * t3);
if (std::isnan(nom_x) || std::isnan(nom_y) || std::isnan(denom) || denom == 0)
return;
solution.x = nom_x / denom;
solution.y = nom_y / denom;
}
public:
v2T m_Points[4][4];
v4T m_Weights[4];
};
//Must declare this outside of the class to provide for both orders of parameters.
/// <summary>
/// Multiplication operator to multiply a Curves<T> object by a scalar of type U.
/// </summary>
/// <param name="curves">The curves object to multiply</param>
/// <param name="t">The scalar to multiply curves by by</param>
/// <returns>Copy of new Curves<T></returns>
template <typename T, typename U>
Curves<T> operator * (const Curves<T>& curves, const U& t)
{
T tt = T(t);
Curves<T> c(curves);
for (size_t i = 0; i < 4; i++)
{
c.m_Points[i][0] *= tt;
c.m_Points[i][1] *= tt;
c.m_Points[i][2] *= tt;
c.m_Points[i][3] *= tt;
c.m_Weights[i] *= tt;
}
return c;
}
/// <summary>
/// Multiplication operator for reverse order.
/// </summary>
/// <param name="t">The scalar to multiply curves by by</param>
/// <param name="curves">The curves object to multiply</param>
/// <returns>Copy of new Curves<T></returns>
template <typename T, typename U>
Curves<T> operator * (const U& t, const Curves<T>& curves)
{
return curves * t;
}
}