mirror of
https://bitbucket.org/mfeemster/fractorium.git
synced 2025-01-22 13:40:06 -05:00
a800b08b67
-Add variations changes to the list of functionality that can be applied to all xforms using the Select tab. -Allow for graphical affine adjustments to apply to multiple selected xforms. -Slight optimization of the pie variation. -Undo state is only saved when the render completes and the mouse buttons are released. This helps avoid intermediate steps for quickly completing renders while dragging. -Add some keyboard shortcuts for toolbar and menu items. -Make info tab tree always expanded. --Bug fixes -Make precalcs for all hypertile variations safer by using Zeps() for denominators. -Changing the current xform with more than one selected would set all xform's color index value that of the current one. -Use hard found palette path information for randoms as well. -OpenCL build and assignment errors for Z value in epispiral variation. -Unitialized local variables in hexaplay3D, crob, pRose3D. --Code changes -Change static member variables from m_ to s_. -Get rid of excessive endl and replace with "\n". -Remove old IMAGEGL2D define from before Nvidia supported OpenCL 1.2. -Remove old CriticalSection code and use std::recursive_mutex. -Make Affine2D Rotate() and RotateTrans() take radians instead of angles. -More C++11 work. -General cleanup.
1831 lines
72 KiB
C++
1831 lines
72 KiB
C++
#include "EmberCLPch.h"
|
|
#include "RendererCL.h"
|
|
|
|
namespace EmberCLns
|
|
{
|
|
/// <summary>
|
|
/// Constructor that inintializes various buffer names, block dimensions, image formats
|
|
/// and finally initializes one or more OpenCL devices using the passed in parameters.
|
|
/// When running with multiple devices, the first device is considered the "primary", while
|
|
/// others are "secondary".
|
|
/// The differences are:
|
|
/// -Only the primary device will report progress, however the progress count will contain the combined progress of all devices.
|
|
/// -The primary device runs in this thread, while others run on their own threads.
|
|
/// -The primary device does density filtering and final accumulation, while the others only iterate.
|
|
/// -Upon completion of iteration, the histograms from the secondary devices are:
|
|
/// Copied to a temporary host side buffer.
|
|
/// Copied from the host side buffer to the primary device's density filtering buffer as a temporary device storage area.
|
|
/// Summed from the density filtering buffer, to the primary device's histogram.
|
|
/// When this process happens for the last device, the density filtering buffer is cleared since it will be used shortly.
|
|
/// Kernel creators are set to be non-nvidia by default. Will be properly set in Init().
|
|
/// </summary>
|
|
/// <param name="devices">A vector of the platform,device index pairs to use. The first device will be the primary and will run non-threaded.</param>
|
|
/// <param name="shared">True if shared with OpenGL, else false. Default: false.</param>
|
|
/// <param name="outputTexID">The texture ID of the shared OpenGL texture if shared. Default: 0.</param>
|
|
template <typename T, typename bucketT>
|
|
RendererCL<T, bucketT>::RendererCL(const vector<pair<size_t, size_t>>& devices, bool shared, GLuint outputTexID)
|
|
:
|
|
m_IterOpenCLKernelCreator(),
|
|
m_DEOpenCLKernelCreator(typeid(T) == typeid(double), false),
|
|
m_FinalAccumOpenCLKernelCreator(typeid(T) == typeid(double))
|
|
{
|
|
Init();
|
|
Init(devices, shared, outputTexID);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initialization of fields, no OpenCL initialization is done here.
|
|
template <typename T, typename bucketT>
|
|
void RendererCL<T, bucketT>::Init()
|
|
{
|
|
m_Init = false;
|
|
m_DoublePrecision = typeid(T) == typeid(double);
|
|
m_NumChannels = 4;
|
|
//Buffer names.
|
|
m_EmberBufferName = "Ember";
|
|
m_XformsBufferName = "Xforms";
|
|
m_ParVarsBufferName = "ParVars";
|
|
m_GlobalSharedBufferName = "GlobalShared";
|
|
m_SeedsBufferName = "Seeds";
|
|
m_DistBufferName = "Dist";
|
|
m_CarToRasBufferName = "CarToRas";
|
|
m_DEFilterParamsBufferName = "DEFilterParams";
|
|
m_SpatialFilterParamsBufferName = "SpatialFilterParams";
|
|
m_DECoefsBufferName = "DECoefs";
|
|
m_DEWidthsBufferName = "DEWidths";
|
|
m_DECoefIndicesBufferName = "DECoefIndices";
|
|
m_SpatialFilterCoefsBufferName = "SpatialFilterCoefs";
|
|
m_CurvesCsaName = "CurvesCsa";
|
|
m_HistBufferName = "Hist";
|
|
m_AccumBufferName = "Accum";
|
|
m_FinalImageName = "Final";
|
|
m_PointsBufferName = "Points";
|
|
//It's critical that these numbers never change. They are
|
|
//based on the cuburn model of each kernel launch containing
|
|
//256 threads. 32 wide by 8 high. Everything done in the OpenCL
|
|
//iteraion kernel depends on these dimensions.
|
|
m_IterCountPerKernel = 256;
|
|
m_IterBlockWidth = 32;
|
|
m_IterBlockHeight = 8;
|
|
m_IterBlocksWide = 64;
|
|
m_IterBlocksHigh = 2;
|
|
m_PaletteFormat.image_channel_order = CL_RGBA;
|
|
m_PaletteFormat.image_channel_data_type = CL_FLOAT;
|
|
m_FinalFormat.image_channel_order = CL_RGBA;
|
|
m_FinalFormat.image_channel_data_type = CL_UNORM_INT8;//Change if this ever supports 2BPC outputs for PNG.
|
|
}
|
|
|
|
/// <summary>
|
|
/// Virtual destructor.
|
|
/// </summary>
|
|
template <typename T, typename bucketT>
|
|
RendererCL<T, bucketT>::~RendererCL()
|
|
{
|
|
}
|
|
|
|
/// <summary>
|
|
/// Non-virtual member functions for OpenCL specific tasks.
|
|
/// </summary>
|
|
|
|
/// <summary>
|
|
/// Initialize OpenCL.
|
|
/// In addition to initializing, this function will create the zeroization program,
|
|
/// as well as the basic log scale filtering programs. This is done to ensure basic
|
|
/// compilation works. Further compilation will be done later for iteration, density filtering,
|
|
/// and final accumulation.
|
|
/// </summary>
|
|
/// <param name="devices">A vector of the platform,device index pairs to use. The first device will be the primary and will run non-threaded.</param>
|
|
/// <param name="shared">True if shared with OpenGL, else false.</param>
|
|
/// <param name="outputTexID">The texture ID of the shared OpenGL texture if shared</param>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::Init(const vector<pair<size_t, size_t>>& devices, bool shared, GLuint outputTexID)
|
|
{
|
|
if (devices.empty())
|
|
return false;
|
|
|
|
bool b = false;
|
|
const char* loc = __FUNCTION__;
|
|
auto& zeroizeProgram = m_IterOpenCLKernelCreator.ZeroizeKernel();
|
|
auto& sumHistProgram = m_IterOpenCLKernelCreator.SumHistKernel();
|
|
ostringstream os;
|
|
m_Init = false;
|
|
m_Devices.clear();
|
|
m_Devices.reserve(devices.size());
|
|
m_OutputTexID = outputTexID;
|
|
m_GlobalShared.second.resize(16);//Dummy data until a real alloc is needed.
|
|
|
|
for (size_t i = 0; i < devices.size(); i++)
|
|
{
|
|
try
|
|
{
|
|
unique_ptr<RendererClDevice> cld(new RendererClDevice(typeid(T) == typeid(double), devices[i].first, devices[i].second, i == 0 ? shared : false));
|
|
|
|
if ((b = cld->Init()))//Build a simple program to ensure OpenCL is working right.
|
|
{
|
|
if (b && !(b = cld->m_Wrapper.AddProgram(m_IterOpenCLKernelCreator.ZeroizeEntryPoint(), zeroizeProgram, m_IterOpenCLKernelCreator.ZeroizeEntryPoint(), m_DoublePrecision))) { AddToReport(loc); }
|
|
|
|
if (b && !(b = cld->m_Wrapper.AddAndWriteImage("Palette", CL_MEM_READ_ONLY, m_PaletteFormat, 256, 1, 0, nullptr))) { AddToReport(loc); }
|
|
|
|
if (b && !(b = cld->m_Wrapper.AddAndWriteBuffer(m_GlobalSharedBufferName, m_GlobalShared.second.data(), m_GlobalShared.second.size() * sizeof(m_GlobalShared.second[0])))) { AddToReport(loc); }//Empty at start, will be filled in later if needed.
|
|
|
|
if (b)
|
|
{
|
|
m_Devices.push_back(std::move(cld));//Success, so move to the vector, else it will go out of scope and be deleted.
|
|
}
|
|
else
|
|
{
|
|
os << loc << ": failed to init platform " << devices[i].first << ", device " << devices[i].second;
|
|
AddToReport(loc);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
os << loc << ": failed to init platform " << devices[i].first << ", device " << devices[i].second << ": " << e.what();
|
|
AddToReport(os.str());
|
|
}
|
|
catch (...)
|
|
{
|
|
os << loc << ": failed to init platform " << devices[i].first << ", device " << devices[i].second;
|
|
AddToReport(os.str());
|
|
}
|
|
}
|
|
|
|
if (b && m_Devices.size() == devices.size())
|
|
{
|
|
auto& firstWrapper = m_Devices[0]->m_Wrapper;
|
|
m_DEOpenCLKernelCreator = DEOpenCLKernelCreator(m_DoublePrecision, m_Devices[0]->Nvidia());
|
|
|
|
//Build a simple program to ensure OpenCL is working right.
|
|
if (b && !(b = firstWrapper.AddProgram(m_DEOpenCLKernelCreator.LogScaleAssignDEEntryPoint(), m_DEOpenCLKernelCreator.LogScaleAssignDEKernel(), m_DEOpenCLKernelCreator.LogScaleAssignDEEntryPoint(), m_DoublePrecision))) { AddToReport(loc); }
|
|
|
|
if (b && !(b = firstWrapper.AddProgram(m_IterOpenCLKernelCreator.SumHistEntryPoint(), sumHistProgram, m_IterOpenCLKernelCreator.SumHistEntryPoint(), m_DoublePrecision))) { AddToReport(loc); }
|
|
|
|
if (b)
|
|
{
|
|
//This is the maximum box dimension for density filtering which consists of (blockSize * blockSize) + (2 * filterWidth).
|
|
//These blocks must be square, and ideally, 32x32.
|
|
//Sadly, at the moment, Fermi runs out of resources at that block size because the DE filter function is so complex.
|
|
//The next best block size seems to be 24x24.
|
|
//AMD is further limited because of less local memory so these have to be 16 on AMD.
|
|
m_MaxDEBlockSizeW = m_Devices[0]->Nvidia() ? 24 : 16;//These *must* both be divisible by 8 or else pixels will go missing.
|
|
m_MaxDEBlockSizeH = m_Devices[0]->Nvidia() ? 24 : 16;
|
|
FillSeeds();
|
|
|
|
for (size_t device = 0; device < m_Devices.size(); device++)
|
|
if (b && !(b = m_Devices[device]->m_Wrapper.AddAndWriteBuffer(m_SeedsBufferName, reinterpret_cast<void*>(m_Seeds[device].data()), SizeOf(m_Seeds[device])))) { AddToReport(loc); break; }
|
|
}
|
|
|
|
m_Init = b;
|
|
}
|
|
else
|
|
{
|
|
m_Devices.clear();
|
|
os << loc << ": failed to init all devices and platforms.";
|
|
AddToReport(os.str());
|
|
}
|
|
|
|
return m_Init;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Set the shared output texture of the primary device where final accumulation will be written to.
|
|
/// </summary>
|
|
/// <param name="outputTexID">The texture ID of the shared OpenGL texture if shared</param>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::SetOutputTexture(GLuint outputTexID)
|
|
{
|
|
bool success = true;
|
|
const char* loc = __FUNCTION__;
|
|
|
|
if (!m_Devices.empty())
|
|
{
|
|
OpenCLWrapper& firstWrapper = m_Devices[0]->m_Wrapper;
|
|
m_OutputTexID = outputTexID;
|
|
EnterResize();
|
|
|
|
if (!firstWrapper.AddAndWriteImage(m_FinalImageName, CL_MEM_WRITE_ONLY, m_FinalFormat, FinalRasW(), FinalRasH(), 0, nullptr, firstWrapper.Shared(), m_OutputTexID))
|
|
{
|
|
AddToReport(loc);
|
|
success = false;
|
|
}
|
|
|
|
LeaveResize();
|
|
}
|
|
else
|
|
success = false;
|
|
|
|
return success;
|
|
}
|
|
|
|
/// <summary>
|
|
/// OpenCL property accessors, getters only.
|
|
/// </summary>
|
|
|
|
//Iters per kernel/block/grid.
|
|
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterCountPerKernel() const { return m_IterCountPerKernel; }
|
|
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterCountPerBlock() const { return IterCountPerKernel() * IterBlockKernelCount(); }
|
|
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterCountPerGrid() const { return IterCountPerKernel() * IterGridKernelCount(); }
|
|
|
|
//Kernels per block.
|
|
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterBlockKernelWidth() const { return m_IterBlockWidth; }
|
|
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterBlockKernelHeight() const { return m_IterBlockHeight; }
|
|
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterBlockKernelCount() const { return IterBlockKernelWidth() * IterBlockKernelHeight(); }
|
|
|
|
//Kernels per grid.
|
|
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterGridKernelWidth() const { return IterGridBlockWidth() * IterBlockKernelWidth(); }
|
|
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterGridKernelHeight() const { return IterGridBlockHeight() * IterBlockKernelHeight(); }
|
|
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterGridKernelCount() const { return IterGridKernelWidth() * IterGridKernelHeight(); }
|
|
|
|
//Blocks per grid.
|
|
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterGridBlockWidth() const { return m_IterBlocksWide; }
|
|
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterGridBlockHeight() const { return m_IterBlocksHigh; }
|
|
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterGridBlockCount() const { return IterGridBlockWidth() * IterGridBlockHeight(); }
|
|
|
|
/// <summary>
|
|
/// Read the histogram of the specified into the host side CPU buffer.
|
|
/// </summary>
|
|
/// <param name="device">The index device of the device whose histogram will be read</param>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::ReadHist(size_t device)
|
|
{
|
|
if (device < m_Devices.size())
|
|
if (Renderer<T, bucketT>::Alloc(true))//Allocate the histogram memory to read into, other buffers not needed.
|
|
return m_Devices[device]->m_Wrapper.ReadBuffer(m_HistBufferName, reinterpret_cast<void*>(HistBuckets()), SuperSize() * sizeof(v4bT));
|
|
|
|
return false;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Read the density filtering buffer into the host side CPU buffer.
|
|
/// Used for debugging.
|
|
/// </summary>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::ReadAccum()
|
|
{
|
|
if (Renderer<T, bucketT>::Alloc() && !m_Devices.empty())//Allocate the memory to read into.
|
|
return m_Devices[0]->m_Wrapper.ReadBuffer(m_AccumBufferName, reinterpret_cast<void*>(AccumulatorBuckets()), SuperSize() * sizeof(v4bT));
|
|
|
|
return false;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Read the temporary points buffer from a device into a host side CPU buffer.
|
|
/// Used for debugging.
|
|
/// </summary>
|
|
/// <param name="device">The index in the device buffer whose points will be read</param>
|
|
/// <param name="vec">The host side buffer to read into</param>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::ReadPoints(size_t device, vector<PointCL<T>>& vec)
|
|
{
|
|
vec.resize(IterGridKernelCount());//Allocate the memory to read into.
|
|
|
|
if (vec.size() >= IterGridKernelCount() && device < m_Devices.size())
|
|
return m_Devices[device]->m_Wrapper.ReadBuffer(m_PointsBufferName, reinterpret_cast<void*>(vec.data()), IterGridKernelCount() * sizeof(PointCL<T>));
|
|
|
|
return false;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Clear the histogram buffer for all devices with all zeroes.
|
|
/// </summary>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::ClearHist()
|
|
{
|
|
bool b = !m_Devices.empty();
|
|
const char* loc = __FUNCTION__;
|
|
|
|
for (size_t i = 0; i < m_Devices.size(); i++)
|
|
if (b && !(b = ClearBuffer(i, m_HistBufferName, uint(SuperRasW()), uint(SuperRasH()), sizeof(v4bT)))) { AddToReport(loc); break; }
|
|
|
|
return b;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Clear the histogram buffer for a single device with all zeroes.
|
|
/// </summary>
|
|
/// <param name="device">The index in the device buffer whose histogram will be cleared</param>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::ClearHist(size_t device)
|
|
{
|
|
bool b = device < m_Devices.size();
|
|
const char* loc = __FUNCTION__;
|
|
|
|
if (b && !(b = ClearBuffer(device, m_HistBufferName, uint(SuperRasW()), uint(SuperRasH()), sizeof(v4bT)))) { AddToReport(loc); }
|
|
|
|
return b;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Clear the density filtering buffer with all zeroes.
|
|
/// </summary>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::ClearAccum()
|
|
{
|
|
return ClearBuffer(0, m_AccumBufferName, uint(SuperRasW()), uint(SuperRasH()), sizeof(v4bT));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Write values from a host side CPU buffer into the temporary points buffer for the specified device.
|
|
/// Used for debugging.
|
|
/// </summary>
|
|
/// <param name="device">The index in the device buffer whose points will be written to</param>
|
|
/// <param name="vec">The host side buffer whose values to write</param>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::WritePoints(size_t device, vector<PointCL<T>>& vec)
|
|
{
|
|
bool b = false;
|
|
const char* loc = __FUNCTION__;
|
|
|
|
if (device < m_Devices.size())
|
|
if (!(b = m_Devices[device]->m_Wrapper.WriteBuffer(m_PointsBufferName, reinterpret_cast<void*>(vec.data()), SizeOf(vec)))) { AddToReport(loc); }
|
|
|
|
return b;
|
|
}
|
|
|
|
#ifdef TEST_CL
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::WriteRandomPoints(size_t device)
|
|
{
|
|
size_t size = IterGridKernelCount();
|
|
vector<PointCL<T>> vec(size);
|
|
|
|
for (int i = 0; i < size; i++)
|
|
{
|
|
vec[i].m_X = m_Rand[0].Frand11<T>();
|
|
vec[i].m_Y = m_Rand[0].Frand11<T>();
|
|
vec[i].m_Z = 0;
|
|
vec[i].m_ColorX = m_Rand[0].Frand01<T>();
|
|
vec[i].m_LastXfUsed = 0;
|
|
}
|
|
|
|
return WritePoints(device, vec);
|
|
}
|
|
#endif
|
|
|
|
/// <summary>
|
|
/// Get the kernel string for the last built iter program.
|
|
/// </summary>
|
|
/// <returns>The string representation of the kernel for the last built iter program.</returns>
|
|
template <typename T, typename bucketT>
|
|
const string& RendererCL<T, bucketT>::IterKernel() const { return m_IterKernel; }
|
|
|
|
/// <summary>
|
|
/// Get the kernel string for the last built density filtering program.
|
|
/// </summary>
|
|
/// <returns>The string representation of the kernel for the last built density filtering program.</returns>
|
|
template <typename T, typename bucketT>
|
|
const string& RendererCL<T, bucketT>::DEKernel() const { return m_DEOpenCLKernelCreator.GaussianDEKernel(Supersample(), m_DensityFilterCL.m_FilterWidth); }
|
|
|
|
/// <summary>
|
|
/// Get the kernel string for the last built final accumulation program.
|
|
/// </summary>
|
|
/// <returns>The string representation of the kernel for the last built final accumulation program.</returns>
|
|
template <typename T, typename bucketT>
|
|
const string& RendererCL<T, bucketT>::FinalAccumKernel() const { return m_FinalAccumOpenCLKernelCreator.FinalAccumKernel(EarlyClip(), Renderer<T, bucketT>::NumChannels(), Transparency()); }
|
|
|
|
/// <summary>
|
|
/// Virtual functions overridden from RendererCLBase.
|
|
/// </summary>
|
|
|
|
/// <summary>
|
|
/// Read the final image buffer buffer from the primary device into the host side CPU buffer.
|
|
/// This must be called before saving the final output image to file.
|
|
/// </summary>
|
|
/// <param name="pixels">The host side buffer to read into</param>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::ReadFinal(byte* pixels)
|
|
{
|
|
if (pixels && !m_Devices.empty())
|
|
return m_Devices[0]->m_Wrapper.ReadImage(m_FinalImageName, FinalRasW(), FinalRasH(), 0, m_Devices[0]->m_Wrapper.Shared(), pixels);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Clear the final image output buffer of the primary device with all zeroes by copying a host side buffer.
|
|
/// Slow, but never used because the final output image is always completely overwritten.
|
|
/// </summary>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::ClearFinal()
|
|
{
|
|
vector<byte> v;
|
|
|
|
if (!m_Devices.empty())
|
|
{
|
|
auto& wrapper = m_Devices[0]->m_Wrapper;
|
|
uint index = wrapper.FindImageIndex(m_FinalImageName, wrapper.Shared());
|
|
|
|
if (this->PrepFinalAccumVector(v))
|
|
{
|
|
bool b = wrapper.WriteImage2D(index, wrapper.Shared(), FinalRasW(), FinalRasH(), 0, v.data());
|
|
|
|
if (!b)
|
|
AddToReport(__FUNCTION__);
|
|
|
|
return b;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Public virtual functions overridden from Renderer or RendererBase.
|
|
/// </summary>
|
|
|
|
/// <summary>
|
|
/// The amount of video RAM available on the first GPU to render with.
|
|
/// </summary>
|
|
/// <returns>An unsigned 64-bit integer specifying how much video memory is available</returns>
|
|
template <typename T, typename bucketT>
|
|
size_t RendererCL<T, bucketT>::MemoryAvailable()
|
|
{
|
|
return Ok() ? m_Devices[0]->m_Wrapper.GlobalMemSize() : 0ULL;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Return whether OpenCL has been properly initialized.
|
|
/// </summary>
|
|
/// <returns>True if OpenCL has been properly initialized, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::Ok() const
|
|
{
|
|
return !m_Devices.empty() && m_Init;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Override to force num channels to be 4 because RGBA is always used for OpenCL
|
|
/// since the output is actually an image rather than just a buffer.
|
|
/// </summary>
|
|
/// <param name="numChannels">The number of channels, ignored.</param>
|
|
template <typename T, typename bucketT>
|
|
void RendererCL<T, bucketT>::NumChannels(size_t numChannels)
|
|
{
|
|
m_NumChannels = 4;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Clear the error report for this class as well as the OpenCLWrapper members of each device.
|
|
/// </summary>
|
|
template <typename T, typename bucketT>
|
|
void RendererCL<T, bucketT>::ClearErrorReport()
|
|
{
|
|
EmberReport::ClearErrorReport();
|
|
|
|
for (auto& device : m_Devices)
|
|
device->m_Wrapper.ClearErrorReport();
|
|
}
|
|
|
|
/// <summary>
|
|
/// The sub batch size for OpenCL will always be how many
|
|
/// iterations are ran per kernel call. The caller can't
|
|
/// change this.
|
|
/// </summary>
|
|
/// <returns>The number of iterations ran in a single kernel call</returns>
|
|
template <typename T, typename bucketT>
|
|
size_t RendererCL<T, bucketT>::SubBatchSize() const
|
|
{
|
|
return IterCountPerGrid();
|
|
}
|
|
|
|
/// <summary>
|
|
/// The thread count for OpenCL is always considered to be 1, however
|
|
/// the kernel internally runs many threads.
|
|
/// </summary>
|
|
/// <returns>1</returns>
|
|
template <typename T, typename bucketT>
|
|
size_t RendererCL<T, bucketT>::ThreadCount() const
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Create the density filter in the base class and copy the filter values
|
|
/// to the corresponding OpenCL buffers on the primary device.
|
|
/// </summary>
|
|
/// <param name="newAlloc">True if a new filter instance was created, else false.</param>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::CreateDEFilter(bool& newAlloc)
|
|
{
|
|
bool b = true;
|
|
|
|
if (!m_Devices.empty() && Renderer<T, bucketT>::CreateDEFilter(newAlloc))
|
|
{
|
|
//Copy coefs and widths here. Convert and copy the other filter params right before calling the filtering kernel.
|
|
if (newAlloc)
|
|
{
|
|
const char* loc = __FUNCTION__;
|
|
auto& wrapper = m_Devices[0]->m_Wrapper;
|
|
|
|
if (b && !(b = wrapper.AddAndWriteBuffer(m_DECoefsBufferName, reinterpret_cast<void*>(const_cast<bucketT*>(m_DensityFilter->Coefs())), m_DensityFilter->CoefsSizeBytes()))) { AddToReport(loc); }
|
|
|
|
if (b && !(b = wrapper.AddAndWriteBuffer(m_DEWidthsBufferName, reinterpret_cast<void*>(const_cast<bucketT*>(m_DensityFilter->Widths())), m_DensityFilter->WidthsSizeBytes()))) { AddToReport(loc); }
|
|
|
|
if (b && !(b = wrapper.AddAndWriteBuffer(m_DECoefIndicesBufferName, reinterpret_cast<void*>(const_cast<uint*>(m_DensityFilter->CoefIndices())), m_DensityFilter->CoefsIndicesSizeBytes()))) { AddToReport(loc); }
|
|
}
|
|
}
|
|
else
|
|
b = false;
|
|
|
|
return b;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Create the spatial filter in the base class and copy the filter values
|
|
/// to the corresponding OpenCL buffers on the primary device.
|
|
/// </summary>
|
|
/// <param name="newAlloc">True if a new filter instance was created, else false.</param>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::CreateSpatialFilter(bool& newAlloc)
|
|
{
|
|
bool b = true;
|
|
|
|
if (!m_Devices.empty() && Renderer<T, bucketT>::CreateSpatialFilter(newAlloc))
|
|
{
|
|
if (newAlloc)
|
|
if (!(b = m_Devices[0]->m_Wrapper.AddAndWriteBuffer(m_SpatialFilterCoefsBufferName, reinterpret_cast<void*>(m_SpatialFilter->Filter()), m_SpatialFilter->BufferSizeBytes()))) { AddToReport(__FUNCTION__); }
|
|
}
|
|
else
|
|
b = false;
|
|
|
|
return b;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get the renderer type enum.
|
|
/// </summary>
|
|
/// <returns>eRendererType::OPENCL_RENDERER</returns>
|
|
template <typename T, typename bucketT>
|
|
eRendererType RendererCL<T, bucketT>::RendererType() const
|
|
{
|
|
return eRendererType::OPENCL_RENDERER;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Concatenate and return the error report for this class and the
|
|
/// OpenCLWrapper member of each device as a single string.
|
|
/// </summary>
|
|
/// <returns>The concatenated error report string</returns>
|
|
template <typename T, typename bucketT>
|
|
string RendererCL<T, bucketT>::ErrorReportString()
|
|
{
|
|
auto s = EmberReport::ErrorReportString();
|
|
|
|
for (auto& device : m_Devices)
|
|
s += device->m_Wrapper.ErrorReportString();
|
|
|
|
return s;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Concatenate and return the error report for this class and the
|
|
/// OpenCLWrapper member of each device as a vector of strings.
|
|
/// </summary>
|
|
/// <returns>The concatenated error report vector of strings</returns>
|
|
template <typename T, typename bucketT>
|
|
vector<string> RendererCL<T, bucketT>::ErrorReport()
|
|
{
|
|
auto ours = EmberReport::ErrorReport();
|
|
|
|
for (auto& device : m_Devices)
|
|
{
|
|
auto s = device->m_Wrapper.ErrorReport();
|
|
ours.insert(ours.end(), s.begin(), s.end());
|
|
}
|
|
|
|
return ours;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Set the vector of random contexts on every device.
|
|
/// Call the base, and reset the seeds vector.
|
|
/// Used on the command line when the user wants a specific set of seeds to start with to
|
|
/// produce an exact result. Mostly for debugging.
|
|
/// </summary>
|
|
/// <param name="randVec">The vector of random contexts to assign</param>
|
|
/// <returns>True if the size of the vector matched the number of threads used for rendering and writing seeds to OpenCL succeeded, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::RandVec(vector<QTIsaac<ISAAC_SIZE, ISAAC_INT>>& randVec)
|
|
{
|
|
bool b = Renderer<T, bucketT>::RandVec(randVec);
|
|
const char* loc = __FUNCTION__;
|
|
|
|
if (!m_Devices.empty())
|
|
{
|
|
FillSeeds();
|
|
|
|
for (size_t device = 0; device < m_Devices.size(); device++)
|
|
if (b && !(b = m_Devices[device]->m_Wrapper.AddAndWriteBuffer(m_SeedsBufferName, reinterpret_cast<void*>(m_Seeds[device].data()), SizeOf(m_Seeds[device])))) { AddToReport(loc); break; }
|
|
}
|
|
else
|
|
b = false;
|
|
|
|
return b;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Protected virtual functions overridden from Renderer.
|
|
/// </summary>
|
|
|
|
/// <summary>
|
|
/// Allocate all buffers required for running as well as the final
|
|
/// 2D image.
|
|
/// Note that only iteration-related buffers are allocated on secondary devices.
|
|
/// </summary>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::Alloc(bool histOnly)
|
|
{
|
|
if (!Ok())
|
|
return false;
|
|
|
|
EnterResize();
|
|
m_XformsCL.resize(m_Ember.TotalXformCount());
|
|
bool b = true;
|
|
size_t histLength = SuperSize() * sizeof(v4bT);
|
|
size_t accumLength = SuperSize() * sizeof(v4bT);
|
|
const char* loc = __FUNCTION__;
|
|
auto& wrapper = m_Devices[0]->m_Wrapper;
|
|
|
|
if (b && !(b = wrapper.AddBuffer(m_DEFilterParamsBufferName, sizeof(m_DensityFilterCL)))) { AddToReport(loc); }
|
|
|
|
if (b && !(b = wrapper.AddBuffer(m_SpatialFilterParamsBufferName, sizeof(m_SpatialFilterCL)))) { AddToReport(loc); }
|
|
|
|
if (b && !(b = wrapper.AddBuffer(m_CurvesCsaName, SizeOf(m_Csa.m_Entries)))) { AddToReport(loc); }
|
|
|
|
if (b && !(b = wrapper.AddBuffer(m_AccumBufferName, accumLength))) { AddToReport(loc); }//Accum buffer.
|
|
|
|
for (auto& device : m_Devices)
|
|
{
|
|
if (b && !(b = device->m_Wrapper.AddBuffer(m_EmberBufferName, sizeof(m_EmberCL)))) { AddToReport(loc); break; }
|
|
|
|
if (b && !(b = device->m_Wrapper.AddBuffer(m_XformsBufferName, SizeOf(m_XformsCL)))) { AddToReport(loc); break; }
|
|
|
|
if (b && !(b = device->m_Wrapper.AddBuffer(m_ParVarsBufferName, 128 * sizeof(T)))) { AddToReport(loc); break; }
|
|
|
|
if (b && !(b = device->m_Wrapper.AddBuffer(m_DistBufferName, CHOOSE_XFORM_GRAIN))) { AddToReport(loc); break; }//Will be resized for xaos.
|
|
|
|
if (b && !(b = device->m_Wrapper.AddBuffer(m_CarToRasBufferName, sizeof(m_CarToRasCL)))) { AddToReport(loc); break; }
|
|
|
|
if (b && !(b = device->m_Wrapper.AddBuffer(m_HistBufferName, histLength))) { AddToReport(loc); break; }//Histogram. Will memset to zero later.
|
|
|
|
if (b && !(b = device->m_Wrapper.AddBuffer(m_PointsBufferName, IterGridKernelCount() * sizeof(PointCL<T>)))) { AddToReport(loc); break; }//Points between iter calls.
|
|
|
|
//Global shared is allocated once and written when building the kernel.
|
|
}
|
|
|
|
LeaveResize();
|
|
|
|
if (b && !(b = SetOutputTexture(m_OutputTexID))) { AddToReport(loc); }
|
|
|
|
return b;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Clear OpenCL histogram on all devices and/or density filtering buffer on the primary device to all zeroes.
|
|
/// </summary>
|
|
/// <param name="resetHist">Clear histogram if true, else don't.</param>
|
|
/// <param name="resetAccum">Clear density filtering buffer if true, else don't.</param>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::ResetBuckets(bool resetHist, bool resetAccum)
|
|
{
|
|
bool b = true;
|
|
|
|
if (resetHist)
|
|
b &= ClearHist();
|
|
|
|
if (resetAccum)
|
|
b &= ClearAccum();
|
|
|
|
return b;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Perform log scale density filtering on the primary device.
|
|
/// </summary>
|
|
/// <param name="forceOutput">Whether this output was forced due to an interactive render</param>
|
|
/// <returns>True if success and not aborted, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
eRenderStatus RendererCL<T, bucketT>::LogScaleDensityFilter(bool forceOutput)
|
|
{
|
|
return RunLogScaleFilter();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Run gaussian density estimation filtering on the primary device.
|
|
/// </summary>
|
|
/// <returns>True if success and not aborted, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
eRenderStatus RendererCL<T, bucketT>::GaussianDensityFilter()
|
|
{
|
|
//This commented section is for debugging density filtering by making it run on the CPU
|
|
//then copying the results back to the GPU.
|
|
//if (ReadHist())
|
|
//{
|
|
// uint accumLength = SuperSize() * sizeof(glm::detail::tvec4<T>);
|
|
// const char* loc = __FUNCTION__;
|
|
//
|
|
// Renderer<T, bucketT>::ResetBuckets(false, true);
|
|
// Renderer<T, bucketT>::GaussianDensityFilter();
|
|
//
|
|
// if (!m_Wrapper.WriteBuffer(m_AccumBufferName, AccumulatorBuckets(), accumLength)) { AddToReport(loc); return RENDER_ERROR; }
|
|
// return RENDER_OK;
|
|
//}
|
|
//else
|
|
// return RENDER_ERROR;
|
|
//Timing t(4);
|
|
eRenderStatus status = RunDensityFilter();
|
|
//t.Toc(__FUNCTION__ " RunKernel()");
|
|
return status;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Run final accumulation on the primary device.
|
|
/// If pixels is nullptr, the output will remain in the OpenCL 2D image.
|
|
/// However, if pixels is not nullptr, the output will be copied. This is
|
|
/// useful when rendering in OpenCL, but saving the output to a file.
|
|
/// </summary>
|
|
/// <param name="pixels">The pixels to copy the final image to if not nullptr</param>
|
|
/// <param name="finalOffset">Offset in the buffer to store the pixels to</param>
|
|
/// <returns>True if success and not aborted, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
eRenderStatus RendererCL<T, bucketT>::AccumulatorToFinalImage(byte* pixels, size_t finalOffset)
|
|
{
|
|
auto status = RunFinalAccum();
|
|
|
|
if (status == eRenderStatus::RENDER_OK && pixels && !m_Devices.empty() && !m_Devices[0]->m_Wrapper.Shared())
|
|
{
|
|
pixels += finalOffset;
|
|
|
|
if (!ReadFinal(pixels))
|
|
status = eRenderStatus::RENDER_ERROR;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Run the iteration algorithm for the specified number of iterations, splitting the work
|
|
/// across devices.
|
|
/// This is only called after all other setup has been done.
|
|
/// This will recompile the OpenCL program on every device if this ember differs significantly
|
|
/// from the previous run.
|
|
/// Note that the bad value count is not recorded when running with OpenCL. If it's
|
|
/// needed, run on the CPU.
|
|
/// </summary>
|
|
/// <param name="iterCount">The number of iterations to run</param>
|
|
/// <param name="temporalSample">The temporal sample within the current pass this is running for</param>
|
|
/// <returns>Rendering statistics</returns>
|
|
template <typename T, typename bucketT>
|
|
EmberStats RendererCL<T, bucketT>::Iterate(size_t iterCount, size_t temporalSample)
|
|
{
|
|
bool b = true;
|
|
EmberStats stats;//Do not record bad vals with with GPU. If the user needs to investigate bad vals, use the CPU.
|
|
const char* loc = __FUNCTION__;
|
|
|
|
//Only need to do this once on the beginning of a new render. Last iter will always be 0 at the beginning of a full render or temporal sample.
|
|
if (m_LastIter == 0)
|
|
{
|
|
ConvertEmber(m_Ember, m_EmberCL, m_XformsCL);
|
|
ConvertCarToRas(CoordMap());
|
|
|
|
//Rebuilding is expensive, so only do it if it's required.
|
|
if (IterOpenCLKernelCreator<T>::IsBuildRequired(m_Ember, m_LastBuiltEmber))
|
|
b = BuildIterProgramForEmber(true);
|
|
|
|
if (b)
|
|
{
|
|
//Setup buffers on all devices.
|
|
for (auto& device : m_Devices)
|
|
{
|
|
auto& wrapper = device->m_Wrapper;
|
|
|
|
if (b && !(b = wrapper.WriteBuffer(m_EmberBufferName, reinterpret_cast<void*>(&m_EmberCL), sizeof(m_EmberCL))))
|
|
break;
|
|
|
|
if (b && !(b = wrapper.WriteBuffer(m_XformsBufferName, reinterpret_cast<void*>(m_XformsCL.data()), sizeof(m_XformsCL[0]) * m_XformsCL.size())))
|
|
break;
|
|
|
|
if (b && !(b = wrapper.AddAndWriteBuffer(m_DistBufferName, reinterpret_cast<void*>(const_cast<byte*>(XformDistributions())), XformDistributionsSize())))//Will be resized for xaos.
|
|
break;
|
|
|
|
if (b && !(b = wrapper.WriteBuffer(m_CarToRasBufferName, reinterpret_cast<void*>(&m_CarToRasCL), sizeof(m_CarToRasCL))))
|
|
break;
|
|
|
|
if (b && !(b = wrapper.AddAndWriteImage("Palette", CL_MEM_READ_ONLY, m_PaletteFormat, m_Dmap.m_Entries.size(), 1, 0, m_Dmap.m_Entries.data())))
|
|
break;
|
|
|
|
if (b)
|
|
{
|
|
IterOpenCLKernelCreator<T>::ParVarIndexDefines(m_Ember, m_Params, true, false);//Always do this to get the values (but no string), regardless of whether a rebuild is necessary.
|
|
|
|
//Don't know the size of the parametric varations parameters buffer until the ember is examined.
|
|
//So set it up right before the run.
|
|
if (!m_Params.second.empty())
|
|
if (!wrapper.AddAndWriteBuffer(m_ParVarsBufferName, m_Params.second.data(), m_Params.second.size() * sizeof(m_Params.second[0])))
|
|
break;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (b)
|
|
{
|
|
m_IterTimer.Tic();//Tic() here to avoid including build time in iter time measurement.
|
|
|
|
if (m_LastIter == 0 && m_ProcessAction != eProcessAction::KEEP_ITERATING)//Only reset the call count on the beginning of a new render. Do not reset on KEEP_ITERATING.
|
|
for (auto& dev : m_Devices)
|
|
dev->m_Calls = 0;
|
|
|
|
b = RunIter(iterCount, temporalSample, stats.m_Iters);
|
|
|
|
if (!b || stats.m_Iters == 0)//If no iters were executed, something went catastrophically wrong.
|
|
m_Abort = true;
|
|
|
|
stats.m_IterMs = m_IterTimer.Toc();
|
|
}
|
|
else
|
|
{
|
|
m_Abort = true;
|
|
AddToReport(loc);
|
|
}
|
|
|
|
return stats;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Private functions for making and running OpenCL programs.
|
|
/// </summary>
|
|
|
|
/// <summary>
|
|
/// Build the iteration program on every device for the current ember.
|
|
/// This is parallelized by placing the build for each device on its own thread.
|
|
/// </summary>
|
|
/// <param name="doAccum">Whether to build in accumulation, only for debugging. Default: true.</param>
|
|
/// <returns>True if successful for all devices, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::BuildIterProgramForEmber(bool doAccum)
|
|
{
|
|
//Timing t;
|
|
bool b = !m_Devices.empty();
|
|
const char* loc = __FUNCTION__;
|
|
IterOpenCLKernelCreator<T>::ParVarIndexDefines(m_Ember, m_Params, false, true);//Do with string and no vals.
|
|
IterOpenCLKernelCreator<T>::SharedDataIndexDefines(m_Ember, m_GlobalShared, true, true);//Do with string and vals only once on build since it won't change until another build occurs.
|
|
|
|
if (b)
|
|
{
|
|
m_IterKernel = m_IterOpenCLKernelCreator.CreateIterKernelString(m_Ember, m_Params.first, m_GlobalShared.first, m_LockAccum, doAccum);
|
|
//cout << "Building: " << "\n" << iterProgram << "\n";
|
|
vector<std::thread> threads;
|
|
std::function<void(RendererClDevice*)> func = [&](RendererClDevice * dev)
|
|
{
|
|
if (!dev->m_Wrapper.AddProgram(m_IterOpenCLKernelCreator.IterEntryPoint(), m_IterKernel, m_IterOpenCLKernelCreator.IterEntryPoint(), m_DoublePrecision))
|
|
{
|
|
rlg l(m_ResizeCs);//Just use the resize CS for lack of a better one.
|
|
b = false;
|
|
AddToReport(string(loc) + "()\n" + dev->m_Wrapper.DeviceName() + ":\nBuilding the following program failed: \n" + m_IterKernel + "\n");
|
|
}
|
|
else if (!m_GlobalShared.second.empty())
|
|
{
|
|
if (!dev->m_Wrapper.AddAndWriteBuffer(m_GlobalSharedBufferName, m_GlobalShared.second.data(), m_GlobalShared.second.size() * sizeof(m_GlobalShared.second[0])))
|
|
{
|
|
rlg l(m_ResizeCs);//Just use the resize CS for lack of a better one.
|
|
b = false;
|
|
AddToReport(string(loc) + "()\n" + dev->m_Wrapper.DeviceName() + ":\nAdding global shared buffer failed.\n");
|
|
}
|
|
}
|
|
};
|
|
threads.reserve(m_Devices.size() - 1);
|
|
|
|
for (size_t device = m_Devices.size() - 1; device >= 0 && device < m_Devices.size(); device--)//Check both extents because size_t will wrap.
|
|
{
|
|
if (!device)//Secondary devices on their own threads.
|
|
threads.push_back(std::thread([&](RendererClDevice * dev) { func(dev); }, m_Devices[device].get()));
|
|
else//Primary device on this thread.
|
|
func(m_Devices[device].get());
|
|
}
|
|
|
|
for (auto& th : threads)
|
|
if (th.joinable())
|
|
th.join();
|
|
|
|
if (b)
|
|
{
|
|
//t.Toc(__FUNCTION__ " program build");
|
|
//cout << string(loc) << "():\nBuilding the following program succeeded: \n" << iterProgram << "\n";
|
|
m_LastBuiltEmber = m_Ember;
|
|
}
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Run the iteration kernel on all devices.
|
|
/// Fusing on the CPU is done once per sub batch, usually 10,000 iters. Here,
|
|
/// the same fusing frequency is kept, but is done per kernel thread.
|
|
/// </summary>
|
|
/// <param name="iterCount">The number of iterations to run</param>
|
|
/// <param name="temporalSample">The temporal sample this is running for</param>
|
|
/// <param name="itersRan">The storage for the number of iterations ran</param>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::RunIter(size_t iterCount, size_t temporalSample, size_t& itersRan)
|
|
{
|
|
//Timing t;//, t2(4);
|
|
bool success = !m_Devices.empty();
|
|
uint histSuperSize = uint(SuperSize());
|
|
size_t launches = size_t(ceil(double(iterCount) / IterCountPerGrid()));
|
|
const char* loc = __FUNCTION__;
|
|
vector<std::thread> threadVec;
|
|
std::atomic<size_t> atomLaunchesRan;
|
|
std::atomic<intmax_t> atomItersRan, atomItersRemaining;
|
|
size_t adjustedIterCountPerKernel = m_IterCountPerKernel;
|
|
itersRan = 0;
|
|
atomItersRan.store(0);
|
|
atomItersRemaining.store(iterCount);
|
|
atomLaunchesRan.store(0);
|
|
threadVec.reserve(m_Devices.size());
|
|
|
|
//If a very small number of iters is requested, and multiple devices
|
|
//are present, then try to spread the launches over the devices.
|
|
//Otherwise, only one device would get used.
|
|
//Note that this can lead to doing a few more iterations than requested
|
|
//due to rounding up to ~32k kernel threads per launch.
|
|
if (m_Devices.size() >= launches)
|
|
{
|
|
launches = m_Devices.size();
|
|
adjustedIterCountPerKernel = size_t(ceil(ceil(double(iterCount) / m_Devices.size()) / IterGridKernelCount()));
|
|
}
|
|
|
|
size_t fuseFreq = Renderer<T, bucketT>::SubBatchSize() / adjustedIterCountPerKernel;//Use the base sbs to determine when to fuse.
|
|
#ifdef TEST_CL
|
|
m_Abort = false;
|
|
#endif
|
|
std::function<void(size_t, int)> iterFunc = [&](size_t dev, int kernelIndex)
|
|
{
|
|
bool b = true;
|
|
auto& wrapper = m_Devices[dev]->m_Wrapper;
|
|
intmax_t itersRemaining = 0;
|
|
|
|
while (atomLaunchesRan.fetch_add(1), (b && (atomLaunchesRan.load() <= launches) && ((itersRemaining = atomItersRemaining.load()) > 0) && !m_Abort))
|
|
{
|
|
cl_uint argIndex = 0;
|
|
#ifdef TEST_CL
|
|
uint fuse = 0;
|
|
#else
|
|
uint fuse = uint((m_Devices[dev]->m_Calls % fuseFreq) == 0u ? FuseCount() : 0u);
|
|
#endif
|
|
//Similar to what's done in the base class.
|
|
//The number of iters per thread must be adjusted if they've requested less iters than is normally ran in a grid (256 * 256 * 64 * 2 = 32,768).
|
|
uint iterCountPerKernel = std::min<uint>(uint(adjustedIterCountPerKernel), uint(ceil(double(itersRemaining) / IterGridKernelCount())));
|
|
size_t iterCountThisLaunch = iterCountPerKernel * IterGridKernelWidth() * IterGridKernelHeight();
|
|
//cout << "itersRemaining " << itersRemaining << ", iterCountPerKernel " << iterCountPerKernel << ", iterCountThisLaunch " << iterCountThisLaunch << "\n";
|
|
|
|
if (b && !(b = wrapper.SetArg (kernelIndex, argIndex++, iterCountPerKernel))) { AddToReport(loc); }//Number of iters for each thread to run.
|
|
|
|
if (b && !(b = wrapper.SetArg (kernelIndex, argIndex++, fuse))) { AddToReport(loc); }//Number of iters to fuse.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_SeedsBufferName))) { AddToReport(loc); }//Seeds.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_EmberBufferName))) { AddToReport(loc); }//Ember.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_XformsBufferName))) { AddToReport(loc); }//Xforms.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_ParVarsBufferName))) { AddToReport(loc); }//Parametric variation parameters.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_GlobalSharedBufferName))) { AddToReport(loc); }//Global shared data.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_DistBufferName))) { AddToReport(loc); }//Xform distributions.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_CarToRasBufferName))) { AddToReport(loc); }//Coordinate converter.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_HistBufferName))) { AddToReport(loc); }//Histogram.
|
|
|
|
if (b && !(b = wrapper.SetArg (kernelIndex, argIndex++, histSuperSize))) { AddToReport(loc); }//Histogram size.
|
|
|
|
if (b && !(b = wrapper.SetImageArg (kernelIndex, argIndex++, false, "Palette"))) { AddToReport(loc); }//Palette.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_PointsBufferName))) { AddToReport(loc); }//Random start points.
|
|
|
|
if (b && !(b = wrapper.RunKernel(kernelIndex,
|
|
IterGridKernelWidth(),//Total grid dims.
|
|
IterGridKernelHeight(),
|
|
1,
|
|
IterBlockKernelWidth(),//Individual block dims.
|
|
IterBlockKernelHeight(),
|
|
1)))
|
|
{
|
|
success = false;
|
|
m_Abort = true;
|
|
AddToReport(loc);
|
|
atomLaunchesRan.fetch_sub(1);
|
|
break;
|
|
}
|
|
|
|
atomItersRan.fetch_add(iterCountThisLaunch);
|
|
atomItersRemaining.store(iterCount - atomItersRan.load());
|
|
m_Devices[dev]->m_Calls++;
|
|
|
|
if (m_Callback && !dev)//Will only do callback on the first device, however it will report the progress of all devices.
|
|
{
|
|
double percent = 100.0 *
|
|
double
|
|
(
|
|
double
|
|
(
|
|
double
|
|
(
|
|
double(m_LastIter + atomItersRan.load()) / double(ItersPerTemporalSample())
|
|
) + temporalSample
|
|
) / double(TemporalSamples())
|
|
);
|
|
double percentDiff = percent - m_LastIterPercent;
|
|
double toc = m_ProgressTimer.Toc();
|
|
|
|
if (percentDiff >= 10 || (toc > 1000 && percentDiff >= 1))//Call callback function if either 10% has passed, or one second (and 1%).
|
|
{
|
|
double etaMs = ((100.0 - percent) / percent) * m_RenderTimer.Toc();
|
|
|
|
if (!m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, percent, 0, etaMs))
|
|
Abort();
|
|
|
|
m_LastIterPercent = percent;
|
|
m_ProgressTimer.Tic();
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
//Iterate backward to run all secondary devices on threads first, then finally the primary device on this thread.
|
|
for (size_t device = m_Devices.size() - 1; device >= 0 && device < m_Devices.size(); device--)//Check both extents because size_t will wrap.
|
|
{
|
|
int index = m_Devices[device]->m_Wrapper.FindKernelIndex(m_IterOpenCLKernelCreator.IterEntryPoint());
|
|
|
|
if (index == -1)
|
|
{
|
|
success = false;
|
|
break;
|
|
}
|
|
|
|
//If animating, treat each temporal sample as a newly started render for fusing purposes.
|
|
if (temporalSample > 0)
|
|
m_Devices[device]->m_Calls = 0;
|
|
|
|
if (device != 0)//Secondary devices on their own threads.
|
|
threadVec.push_back(std::thread([&](size_t dev, int kernelIndex) { iterFunc(dev, kernelIndex); }, device, index));
|
|
else//Primary device on this thread.
|
|
iterFunc(device, index);
|
|
}
|
|
|
|
for (auto& th : threadVec)
|
|
if (th.joinable())
|
|
th.join();
|
|
|
|
itersRan = atomItersRan.load();
|
|
|
|
if (m_Devices.size() > 1)//Determine whether/when to sum histograms of secondary devices with the primary.
|
|
{
|
|
if (((TemporalSamples() == 1) || (temporalSample == TemporalSamples() - 1)) &&//If there are no temporal samples (not animating), or the current one is the last...
|
|
((m_LastIter + itersRan) >= ItersPerTemporalSample()))//...and the required number of iters for that sample have completed...
|
|
if (success && !(success = SumDeviceHist())) { AddToReport(loc); }//...read the histogram from the secondary devices and sum them to the primary.
|
|
}
|
|
|
|
//t2.Toc(__FUNCTION__);
|
|
return success;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Run the log scale filter on the primary device.
|
|
/// </summary>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
eRenderStatus RendererCL<T, bucketT>::RunLogScaleFilter()
|
|
{
|
|
//Timing t(4);
|
|
bool b = !m_Devices.empty();
|
|
|
|
if (b)
|
|
{
|
|
auto& wrapper = m_Devices[0]->m_Wrapper;
|
|
int kernelIndex = wrapper.FindKernelIndex(m_DEOpenCLKernelCreator.LogScaleAssignDEEntryPoint());
|
|
const char* loc = __FUNCTION__;
|
|
|
|
if (kernelIndex != -1)
|
|
{
|
|
ConvertDensityFilter();
|
|
cl_uint argIndex = 0;
|
|
size_t blockW = m_Devices[0]->WarpSize();
|
|
size_t blockH = 4;//A height of 4 seems to run the fastest.
|
|
size_t gridW = m_DensityFilterCL.m_SuperRasW;
|
|
size_t gridH = m_DensityFilterCL.m_SuperRasH;
|
|
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
|
|
|
|
if (b && !(b = wrapper.AddAndWriteBuffer(m_DEFilterParamsBufferName, reinterpret_cast<void*>(&m_DensityFilterCL), sizeof(m_DensityFilterCL)))) { AddToReport(loc); }
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_HistBufferName))) { AddToReport(loc); }//Histogram.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_AccumBufferName))) { AddToReport(loc); }//Accumulator.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_DEFilterParamsBufferName))) { AddToReport(loc); }//DensityFilterCL.
|
|
|
|
//t.Tic();
|
|
if (b && !(b = wrapper.RunKernel(kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { AddToReport(loc); }
|
|
|
|
//t.Toc(loc);
|
|
}
|
|
else
|
|
{
|
|
b = false;
|
|
AddToReport(loc);
|
|
}
|
|
|
|
if (b && m_Callback && m_LastIterPercent >= 99.0)//Only update progress if we've really reached the end, not via forced output.
|
|
m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, 100.0, 1, 0.0);
|
|
}
|
|
|
|
return b ? eRenderStatus::RENDER_OK : eRenderStatus::RENDER_ERROR;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Run the Gaussian density filter on the primary device.
|
|
/// Method 7: Each block processes a 16x16(AMD) or 24x24(Nvidia) block and exits. No column or row advancements happen.
|
|
/// </summary>
|
|
/// <returns>True if success and not aborted, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
eRenderStatus RendererCL<T, bucketT>::RunDensityFilter()
|
|
{
|
|
bool b = !m_Devices.empty();
|
|
Timing t(4);// , t2(4);
|
|
ConvertDensityFilter();
|
|
int kernelIndex = MakeAndGetDensityFilterProgram(Supersample(), m_DensityFilterCL.m_FilterWidth);
|
|
const char* loc = __FUNCTION__;
|
|
|
|
if (kernelIndex != -1)
|
|
{
|
|
uint leftBound = m_DensityFilterCL.m_Supersample - 1;
|
|
uint rightBound = m_DensityFilterCL.m_SuperRasW - (m_DensityFilterCL.m_Supersample - 1);
|
|
uint topBound = leftBound;
|
|
uint botBound = m_DensityFilterCL.m_SuperRasH - (m_DensityFilterCL.m_Supersample - 1);
|
|
size_t gridW = rightBound - leftBound;
|
|
size_t gridH = botBound - topBound;
|
|
size_t blockSizeW = m_MaxDEBlockSizeW;//These *must* both be divisible by 16 or else pixels will go missing.
|
|
size_t blockSizeH = m_MaxDEBlockSizeH;
|
|
auto& wrapper = m_Devices[0]->m_Wrapper;
|
|
|
|
//OpenCL runs out of resources when using double or a supersample of 2.
|
|
//Remedy this by reducing the height of the block by 2.
|
|
if (m_DoublePrecision || m_DensityFilterCL.m_Supersample > 1)
|
|
blockSizeH -= 2;
|
|
|
|
//Can't just blindly pass dimension in vals. Must adjust them first to evenly divide the block count
|
|
//into the total grid dimensions.
|
|
OpenCLWrapper::MakeEvenGridDims(blockSizeW, blockSizeH, gridW, gridH);
|
|
//t.Tic();
|
|
//The classic problem with performing DE on adjacent pixels is that the filter will overlap.
|
|
//This can be solved in 2 ways. One is to use atomics, which is unacceptably slow.
|
|
//The other is to proces the entire image in multiple passes, and each pass processes blocks of pixels
|
|
//that are far enough apart such that their filters do not overlap.
|
|
//Do the latter.
|
|
//Gap is in terms of blocks. How many blocks must separate two blocks running at the same time.
|
|
uint gapW = uint(ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / double(blockSizeW)));
|
|
uint chunkSizeW = gapW + 1;
|
|
uint gapH = uint(ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / double(blockSizeH)));
|
|
uint chunkSizeH = gapH + 1;
|
|
double totalChunks = chunkSizeW * chunkSizeH;
|
|
|
|
if (b && !(b = wrapper.AddAndWriteBuffer(m_DEFilterParamsBufferName, reinterpret_cast<void*>(&m_DensityFilterCL), sizeof(m_DensityFilterCL)))) { AddToReport(loc); }
|
|
|
|
#ifdef ROW_ONLY_DE
|
|
blockSizeW = 64;//These *must* both be divisible by 16 or else pixels will go missing.
|
|
blockSizeH = 1;
|
|
gapW = (uint)ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / (double)blockSizeW);
|
|
chunkSizeW = gapW + 1;
|
|
gapH = (uint)ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / (double)32);//Block height is 1, but iterates over 32 rows.
|
|
chunkSizeH = gapH + 1;
|
|
totalChunks = chunkSizeW * chunkSizeH;
|
|
OpenCLWrapper::MakeEvenGridDims(blockSizeW, blockSizeH, gridW, gridH);
|
|
gridW /= chunkSizeW;
|
|
gridH /= chunkSizeH;
|
|
|
|
for (uint rowChunk = 0; b && !m_Abort && rowChunk < chunkSizeH; rowChunk++)
|
|
{
|
|
for (uint colChunk = 0; b && !m_Abort && colChunk < chunkSizeW; colChunk++)
|
|
{
|
|
//t2.Tic();
|
|
if (b && !(b = RunDensityFilterPrivate(kernelIndex, gridW, gridH, blockSizeW, blockSizeH, chunkSizeW, chunkSizeH, colChunk, rowChunk))) { m_Abort = true; AddToReport(loc); }
|
|
|
|
//t2.Toc(loc);
|
|
|
|
if (b && m_Callback)
|
|
{
|
|
double percent = (double((rowChunk * chunkSizeW) + (colChunk + 1)) / totalChunks) * 100.0;
|
|
double etaMs = ((100.0 - percent) / percent) * t.Toc();
|
|
|
|
if (!m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, percent, 1, etaMs))
|
|
Abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
#else
|
|
gridW /= chunkSizeW;
|
|
gridH /= chunkSizeH;
|
|
OpenCLWrapper::MakeEvenGridDims(blockSizeW, blockSizeH, gridW, gridH);
|
|
|
|
for (uint rowChunk = 0; b && !m_Abort && rowChunk < chunkSizeH; rowChunk++)
|
|
{
|
|
for (uint colChunk = 0; b && !m_Abort && colChunk < chunkSizeW; colChunk++)
|
|
{
|
|
//t2.Tic();
|
|
if (b && !(b = RunDensityFilterPrivate(kernelIndex, gridW, gridH, blockSizeW, blockSizeH, chunkSizeW, chunkSizeH, colChunk, rowChunk))) { m_Abort = true; AddToReport(loc); }
|
|
|
|
//t2.Toc(loc);
|
|
|
|
if (b && m_Callback)
|
|
{
|
|
double percent = (double((rowChunk * chunkSizeW) + (colChunk + 1)) / totalChunks) * 100.0;
|
|
double etaMs = ((100.0 - percent) / percent) * t.Toc();
|
|
|
|
if (!m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, percent, 1, etaMs))
|
|
Abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
if (b && m_Callback)
|
|
m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, 100.0, 1, 0.0);
|
|
|
|
//t2.Toc(__FUNCTION__ " all passes");
|
|
}
|
|
else
|
|
{
|
|
b = false;
|
|
AddToReport(loc);
|
|
}
|
|
|
|
return m_Abort ? eRenderStatus::RENDER_ABORT : (b ? eRenderStatus::RENDER_OK : eRenderStatus::RENDER_ERROR);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Run final accumulation to the 2D output image on the primary device.
|
|
/// </summary>
|
|
/// <returns>True if success and not aborted, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
eRenderStatus RendererCL<T, bucketT>::RunFinalAccum()
|
|
{
|
|
//Timing t(4);
|
|
bool b = true;
|
|
double alphaBase;
|
|
double alphaScale;
|
|
int accumKernelIndex = MakeAndGetFinalAccumProgram(alphaBase, alphaScale);
|
|
cl_uint argIndex;
|
|
size_t gridW;
|
|
size_t gridH;
|
|
size_t blockW;
|
|
size_t blockH;
|
|
uint curvesSet = m_CurvesSet ? 1 : 0;
|
|
const char* loc = __FUNCTION__;
|
|
|
|
if (!m_Abort && accumKernelIndex != -1)
|
|
{
|
|
auto& wrapper = m_Devices[0]->m_Wrapper;
|
|
//This is needed with or without early clip.
|
|
ConvertSpatialFilter();
|
|
|
|
if (b && !(b = wrapper.AddAndWriteBuffer(m_SpatialFilterParamsBufferName, reinterpret_cast<void*>(&m_SpatialFilterCL), sizeof(m_SpatialFilterCL)))) { AddToReport(loc); }
|
|
|
|
if (b && !(b = wrapper.AddAndWriteBuffer(m_CurvesCsaName, m_Csa.m_Entries.data(), SizeOf(m_Csa.m_Entries)))) { AddToReport(loc); }
|
|
|
|
//Since early clip requires gamma correcting the entire accumulator first,
|
|
//it can't be done inside of the normal final accumulation kernel, so
|
|
//an additional kernel must be launched first.
|
|
if (b && EarlyClip())
|
|
{
|
|
int gammaCorrectKernelIndex = MakeAndGetGammaCorrectionProgram();
|
|
|
|
if (gammaCorrectKernelIndex != -1)
|
|
{
|
|
argIndex = 0;
|
|
blockW = m_Devices[0]->WarpSize();
|
|
blockH = 4;//A height of 4 seems to run the fastest.
|
|
gridW = m_SpatialFilterCL.m_SuperRasW;//Using super dimensions because this processes the density filtering bufer.
|
|
gridH = m_SpatialFilterCL.m_SuperRasH;
|
|
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(gammaCorrectKernelIndex, argIndex++, m_AccumBufferName))) { AddToReport(loc); }//Accumulator.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(gammaCorrectKernelIndex, argIndex++, m_SpatialFilterParamsBufferName))) { AddToReport(loc); }//SpatialFilterCL.
|
|
|
|
if (b && !(b = wrapper.RunKernel(gammaCorrectKernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { AddToReport(loc); }
|
|
}
|
|
else
|
|
{
|
|
b = false;
|
|
AddToReport(loc);
|
|
}
|
|
}
|
|
|
|
argIndex = 0;
|
|
blockW = m_Devices[0]->WarpSize();
|
|
blockH = 4;//A height of 4 seems to run the fastest.
|
|
gridW = m_SpatialFilterCL.m_FinalRasW;
|
|
gridH = m_SpatialFilterCL.m_FinalRasH;
|
|
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_AccumBufferName))) { AddToReport(loc); }//Accumulator.
|
|
|
|
if (b && !(b = wrapper.SetImageArg(accumKernelIndex, argIndex++, wrapper.Shared(), m_FinalImageName))) { AddToReport(loc); }//Final image.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_SpatialFilterParamsBufferName))) { AddToReport(loc); }//SpatialFilterCL.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_SpatialFilterCoefsBufferName))) { AddToReport(loc); }//Filter coefs.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_CurvesCsaName))) { AddToReport(loc); }//Curve points.
|
|
|
|
if (b && !(b = wrapper.SetArg (accumKernelIndex, argIndex++, curvesSet))) { AddToReport(loc); }//Do curves.
|
|
|
|
if (b && !(b = wrapper.SetArg (accumKernelIndex, argIndex++, bucketT(alphaBase)))) { AddToReport(loc); }//Alpha base.
|
|
|
|
if (b && !(b = wrapper.SetArg (accumKernelIndex, argIndex++, bucketT(alphaScale)))) { AddToReport(loc); }//Alpha scale.
|
|
|
|
if (b && wrapper.Shared())
|
|
if (b && !(b = wrapper.EnqueueAcquireGLObjects(m_FinalImageName))) { AddToReport(loc); }
|
|
|
|
if (b && !(b = wrapper.RunKernel(accumKernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { AddToReport(loc); }
|
|
|
|
if (b && wrapper.Shared())
|
|
if (b && !(b = wrapper.EnqueueReleaseGLObjects(m_FinalImageName))) { AddToReport(loc); }
|
|
|
|
//t.Toc((char*)loc);
|
|
}
|
|
else
|
|
{
|
|
b = false;
|
|
AddToReport(loc);
|
|
}
|
|
|
|
return b ? eRenderStatus::RENDER_OK : eRenderStatus::RENDER_ERROR;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Zeroize a buffer of the specified size on the specified device.
|
|
/// </summary>
|
|
/// <param name="device">The index in the device buffer to clear</param>
|
|
/// <param name="bufferName">Name of the buffer to clear</param>
|
|
/// <param name="width">Width in elements</param>
|
|
/// <param name="height">Height in elements</param>
|
|
/// <param name="elementSize">Size of each element</param>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::ClearBuffer(size_t device, const string& bufferName, uint width, uint height, uint elementSize)
|
|
{
|
|
bool b = false;
|
|
|
|
if (device < m_Devices.size())
|
|
{
|
|
auto& wrapper = m_Devices[device]->m_Wrapper;
|
|
int kernelIndex = wrapper.FindKernelIndex(m_IterOpenCLKernelCreator.ZeroizeEntryPoint());
|
|
cl_uint argIndex = 0;
|
|
const char* loc = __FUNCTION__;
|
|
|
|
if (kernelIndex != -1)
|
|
{
|
|
size_t blockW = m_Devices[device]->Nvidia() ? 32 : 16;//Max work group size is 256 on AMD, which means 16x16.
|
|
size_t blockH = m_Devices[device]->Nvidia() ? 32 : 16;
|
|
size_t gridW = width * elementSize;
|
|
size_t gridH = height;
|
|
b = true;
|
|
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, bufferName))) { AddToReport(loc); }//Buffer of byte.
|
|
|
|
if (b && !(b = wrapper.SetArg(kernelIndex, argIndex++, width * elementSize))) { AddToReport(loc); }//Width.
|
|
|
|
if (b && !(b = wrapper.SetArg(kernelIndex, argIndex++, height))) { AddToReport(loc); }//Height.
|
|
|
|
if (b && !(b = wrapper.RunKernel(kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { AddToReport(loc); }
|
|
}
|
|
else
|
|
{
|
|
AddToReport(loc);
|
|
}
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Private wrapper around calling Gaussian density filtering kernel.
|
|
/// The parameters are very specific to how the kernel is internally implemented.
|
|
/// </summary>
|
|
/// <param name="kernelIndex">Index of the kernel to call</param>
|
|
/// <param name="gridW">Grid width</param>
|
|
/// <param name="gridH">Grid height</param>
|
|
/// <param name="blockW">Block width</param>
|
|
/// <param name="blockH">Block height</param>
|
|
/// <param name="chunkSizeW">Chunk size width (gapW + 1)</param>
|
|
/// <param name="chunkSizeH">Chunk size height (gapH + 1)</param>
|
|
/// <param name="rowParity">Row parity</param>
|
|
/// <param name="colParity">Column parity</param>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::RunDensityFilterPrivate(size_t kernelIndex, size_t gridW, size_t gridH, size_t blockW, size_t blockH, uint chunkSizeW, uint chunkSizeH, uint chunkW, uint chunkH)
|
|
{
|
|
//Timing t(4);
|
|
bool b = true;
|
|
cl_uint argIndex = 0;
|
|
const char* loc = __FUNCTION__;
|
|
|
|
if (!m_Devices.empty())
|
|
{
|
|
auto& wrapper = m_Devices[0]->m_Wrapper;
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex, m_HistBufferName))) { AddToReport(loc); } argIndex++;//Histogram.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex, m_AccumBufferName))) { AddToReport(loc); } argIndex++;//Accumulator.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex, m_DEFilterParamsBufferName))) { AddToReport(loc); } argIndex++;//FlameDensityFilterCL.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex, m_DECoefsBufferName))) { AddToReport(loc); } argIndex++;//Coefs.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex, m_DEWidthsBufferName))) { AddToReport(loc); } argIndex++;//Widths.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex, m_DECoefIndicesBufferName))) { AddToReport(loc); } argIndex++;//Coef indices.
|
|
|
|
if (b && !(b = wrapper.SetArg(kernelIndex, argIndex, chunkSizeW))) { AddToReport(loc); } argIndex++;//Chunk size width (gapW + 1).
|
|
|
|
if (b && !(b = wrapper.SetArg(kernelIndex, argIndex, chunkSizeH))) { AddToReport(loc); } argIndex++;//Chunk size height (gapH + 1).
|
|
|
|
if (b && !(b = wrapper.SetArg(kernelIndex, argIndex, chunkW))) { AddToReport(loc); } argIndex++;//Column chunk.
|
|
|
|
if (b && !(b = wrapper.SetArg(kernelIndex, argIndex, chunkH))) { AddToReport(loc); } argIndex++;//Row chunk.
|
|
|
|
//t.Toc(__FUNCTION__ " set args");
|
|
|
|
//t.Tic();
|
|
if (b && !(b = wrapper.RunKernel(kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { AddToReport(loc); }//Method 7, accumulating to temp box area.
|
|
|
|
//t.Toc(__FUNCTION__ " RunKernel()");
|
|
return b;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Make the Gaussian density filter program on the primary device and return its index.
|
|
/// </summary>
|
|
/// <param name="ss">The supersample being used for the current ember</param>
|
|
/// <param name="filterWidth">Width of the gaussian filter</param>
|
|
/// <returns>The kernel index if successful, else -1.</returns>
|
|
template <typename T, typename bucketT>
|
|
int RendererCL<T, bucketT>::MakeAndGetDensityFilterProgram(size_t ss, uint filterWidth)
|
|
{
|
|
int kernelIndex = -1;
|
|
|
|
if (!m_Devices.empty())
|
|
{
|
|
auto& wrapper = m_Devices[0]->m_Wrapper;
|
|
auto& deEntryPoint = m_DEOpenCLKernelCreator.GaussianDEEntryPoint(ss, filterWidth);
|
|
const char* loc = __FUNCTION__;
|
|
|
|
if ((kernelIndex = wrapper.FindKernelIndex(deEntryPoint)) == -1)//Has not been built yet.
|
|
{
|
|
auto& kernel = m_DEOpenCLKernelCreator.GaussianDEKernel(ss, filterWidth);
|
|
|
|
if (wrapper.AddProgram(deEntryPoint, kernel, deEntryPoint, m_DoublePrecision))
|
|
kernelIndex = wrapper.FindKernelIndex(deEntryPoint);//Try to find it again, it will be present if successfully built.
|
|
else
|
|
AddToReport(string(loc) + "():\nBuilding the following program failed: \n" + kernel + "\n");
|
|
}
|
|
}
|
|
|
|
return kernelIndex;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Make the final accumulation on the primary device program and return its index.
|
|
/// There are many different kernels for final accum, depending on early clip, alpha channel, and transparency.
|
|
/// Loading all of these in the beginning is too much, so only load the one for the current case being worked with.
|
|
/// </summary>
|
|
/// <param name="alphaBase">Storage for the alpha base value used in the kernel. 0 if transparency is true, else 255.</param>
|
|
/// <param name="alphaScale">Storage for the alpha scale value used in the kernel. 255 if transparency is true, else 0.</param>
|
|
/// <returns>The kernel index if successful, else -1.</returns>
|
|
template <typename T, typename bucketT>
|
|
int RendererCL<T, bucketT>::MakeAndGetFinalAccumProgram(double& alphaBase, double& alphaScale)
|
|
{
|
|
int kernelIndex = -1;
|
|
|
|
if (!m_Devices.empty())
|
|
{
|
|
auto& wrapper = m_Devices[0]->m_Wrapper;
|
|
auto& finalAccumEntryPoint = m_FinalAccumOpenCLKernelCreator.FinalAccumEntryPoint(EarlyClip(), Renderer<T, bucketT>::NumChannels(), Transparency(), alphaBase, alphaScale);
|
|
const char* loc = __FUNCTION__;
|
|
|
|
if ((kernelIndex = wrapper.FindKernelIndex(finalAccumEntryPoint)) == -1)//Has not been built yet.
|
|
{
|
|
auto& kernel = m_FinalAccumOpenCLKernelCreator.FinalAccumKernel(EarlyClip(), Renderer<T, bucketT>::NumChannels(), Transparency());
|
|
|
|
if (wrapper.AddProgram(finalAccumEntryPoint, kernel, finalAccumEntryPoint, m_DoublePrecision))
|
|
kernelIndex = wrapper.FindKernelIndex(finalAccumEntryPoint);//Try to find it again, it will be present if successfully built.
|
|
else
|
|
AddToReport(loc);
|
|
}
|
|
}
|
|
|
|
return kernelIndex;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Make the gamma correction program on the primary device for early clipping and return its index.
|
|
/// </summary>
|
|
/// <returns>The kernel index if successful, else -1.</returns>
|
|
template <typename T, typename bucketT>
|
|
int RendererCL<T, bucketT>::MakeAndGetGammaCorrectionProgram()
|
|
{
|
|
if (!m_Devices.empty())
|
|
{
|
|
auto& wrapper = m_Devices[0]->m_Wrapper;
|
|
auto& gammaEntryPoint = m_FinalAccumOpenCLKernelCreator.GammaCorrectionEntryPoint(Renderer<T, bucketT>::NumChannels(), Transparency());
|
|
int kernelIndex = wrapper.FindKernelIndex(gammaEntryPoint);
|
|
const char* loc = __FUNCTION__;
|
|
|
|
if (kernelIndex == -1)//Has not been built yet.
|
|
{
|
|
auto& kernel = m_FinalAccumOpenCLKernelCreator.GammaCorrectionKernel(Renderer<T, bucketT>::NumChannels(), Transparency());
|
|
bool b = wrapper.AddProgram(gammaEntryPoint, kernel, gammaEntryPoint, m_DoublePrecision);
|
|
|
|
if (b)
|
|
kernelIndex = wrapper.FindKernelIndex(gammaEntryPoint);//Try to find it again, it will be present if successfully built.
|
|
else
|
|
AddToReport(loc);
|
|
}
|
|
|
|
return kernelIndex;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Sum all histograms from the secondary devices with the histogram on the primary device.
|
|
/// </summary>
|
|
/// <returns>True if success, else false.</returns>
|
|
template <typename T, typename bucketT>
|
|
bool RendererCL<T, bucketT>::SumDeviceHist()
|
|
{
|
|
if (m_Devices.size() > 1)
|
|
{
|
|
//Timing t;
|
|
bool b = true;
|
|
auto& wrapper = m_Devices[0]->m_Wrapper;
|
|
const char* loc = __FUNCTION__;
|
|
size_t blockW = m_Devices[0]->Nvidia() ? 32 : 16;//Max work group size is 256 on AMD, which means 16x16.
|
|
size_t blockH = m_Devices[0]->Nvidia() ? 32 : 16;
|
|
size_t gridW = SuperRasW();
|
|
size_t gridH = SuperRasH();
|
|
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
|
|
int kernelIndex = wrapper.FindKernelIndex(m_IterOpenCLKernelCreator.SumHistEntryPoint());
|
|
|
|
if ((b = (kernelIndex != -1)))
|
|
{
|
|
for (size_t device = 1; device < m_Devices.size(); device++)
|
|
{
|
|
if ((b = (ReadHist(device) && ClearHist(device))))//Must clear hist on secondary devices after reading and summing because they'll be reused on a quality increase (KEEP_ITERATING).
|
|
{
|
|
if ((b = wrapper.WriteBuffer(m_AccumBufferName, reinterpret_cast<void*>(HistBuckets()), SuperSize() * sizeof(v4bT))))
|
|
{
|
|
cl_uint argIndex = 0;
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_AccumBufferName))) { break; }//Source buffer of v4bT.
|
|
|
|
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_HistBufferName))) { break; }//Dest buffer of v4bT.
|
|
|
|
if (b && !(b = wrapper.SetArg (kernelIndex, argIndex++, uint(SuperRasW())))) { break; }//Width in pixels.
|
|
|
|
if (b && !(b = wrapper.SetArg (kernelIndex, argIndex++, uint(SuperRasH())))) { break; }//Height in pixels.
|
|
|
|
if (b && !(b = wrapper.SetArg (kernelIndex, argIndex++, (device == m_Devices.size() - 1) ? 1 : 0))) { break; }//Clear the source buffer on the last device.
|
|
|
|
if (b && !(b = wrapper.RunKernel (kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { break; }
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!b)
|
|
{
|
|
ostringstream os;
|
|
os << loc << ": failed to sum histograms from the secondary device(s) to the primary device.";
|
|
AddToReport(os.str());
|
|
}
|
|
|
|
//t.Toc(loc);
|
|
return b;
|
|
}
|
|
else
|
|
{
|
|
return m_Devices.size() == 1;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Private functions passing data to OpenCL programs.
|
|
/// </summary>
|
|
|
|
/// <summary>
|
|
/// Convert the currently used host side DensityFilter object into the DensityFilterCL member
|
|
/// for passing to OpenCL.
|
|
/// Some of the values are note populated when the filter object is null. This will be the case
|
|
/// when only log scaling is needed.
|
|
/// </summary>
|
|
template <typename T, typename bucketT>
|
|
void RendererCL<T, bucketT>::ConvertDensityFilter()
|
|
{
|
|
m_DensityFilterCL.m_Supersample = uint(Supersample());
|
|
m_DensityFilterCL.m_SuperRasW = uint(SuperRasW());
|
|
m_DensityFilterCL.m_SuperRasH = uint(SuperRasH());
|
|
m_DensityFilterCL.m_K1 = K1();
|
|
m_DensityFilterCL.m_K2 = K2();
|
|
|
|
if (m_DensityFilter.get())
|
|
{
|
|
m_DensityFilterCL.m_Curve = m_DensityFilter->Curve();
|
|
m_DensityFilterCL.m_KernelSize = uint(m_DensityFilter->KernelSize());
|
|
m_DensityFilterCL.m_MaxFilterIndex = uint(m_DensityFilter->MaxFilterIndex());
|
|
m_DensityFilterCL.m_MaxFilteredCounts = uint(m_DensityFilter->MaxFilteredCounts());
|
|
m_DensityFilterCL.m_FilterWidth = uint(m_DensityFilter->FilterWidth());
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Convert the currently used host side SpatialFilter object into the SpatialFilterCL member
|
|
/// for passing to OpenCL.
|
|
/// </summary>
|
|
template <typename T, typename bucketT>
|
|
void RendererCL<T, bucketT>::ConvertSpatialFilter()
|
|
{
|
|
bucketT g, linRange, vibrancy;
|
|
Color<bucketT> background;
|
|
|
|
if (m_SpatialFilter.get())
|
|
{
|
|
this->PrepFinalAccumVals(background, g, linRange, vibrancy);
|
|
m_SpatialFilterCL.m_SuperRasW = uint(SuperRasW());
|
|
m_SpatialFilterCL.m_SuperRasH = uint(SuperRasH());
|
|
m_SpatialFilterCL.m_FinalRasW = uint(FinalRasW());
|
|
m_SpatialFilterCL.m_FinalRasH = uint(FinalRasH());
|
|
m_SpatialFilterCL.m_Supersample = uint(Supersample());
|
|
m_SpatialFilterCL.m_FilterWidth = uint(m_SpatialFilter->FinalFilterWidth());
|
|
m_SpatialFilterCL.m_NumChannels = uint(Renderer<T, bucketT>::NumChannels());
|
|
m_SpatialFilterCL.m_BytesPerChannel = uint(BytesPerChannel());
|
|
m_SpatialFilterCL.m_DensityFilterOffset = uint(DensityFilterOffset());
|
|
m_SpatialFilterCL.m_Transparency = Transparency();
|
|
m_SpatialFilterCL.m_YAxisUp = uint(m_YAxisUp);
|
|
m_SpatialFilterCL.m_Vibrancy = vibrancy;
|
|
m_SpatialFilterCL.m_HighlightPower = HighlightPower();
|
|
m_SpatialFilterCL.m_Gamma = g;
|
|
m_SpatialFilterCL.m_LinRange = linRange;
|
|
m_SpatialFilterCL.m_Background = background;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Convert the host side Ember object into an EmberCL object
|
|
/// and a vector of XformCL for passing to OpenCL.
|
|
/// </summary>
|
|
/// <param name="ember">The Ember object to convert</param>
|
|
/// <param name="emberCL">The converted EmberCL</param>
|
|
/// <param name="xformsCL">The converted vector of XformCL</param>
|
|
template <typename T, typename bucketT>
|
|
void RendererCL<T, bucketT>::ConvertEmber(Ember<T>& ember, EmberCL<T>& emberCL, vector<XformCL<T>>& xformsCL)
|
|
{
|
|
memset(&emberCL, 0, sizeof(EmberCL<T>));//Might not really be needed.
|
|
emberCL.m_RotA = m_RotMat.A();
|
|
emberCL.m_RotB = m_RotMat.B();
|
|
emberCL.m_RotD = m_RotMat.D();
|
|
emberCL.m_RotE = m_RotMat.E();
|
|
emberCL.m_CamMat = ember.m_CamMat;
|
|
emberCL.m_CenterX = CenterX();
|
|
emberCL.m_CenterY = ember.m_RotCenterY;
|
|
emberCL.m_CamZPos = ember.m_CamZPos;
|
|
emberCL.m_CamPerspective = ember.m_CamPerspective;
|
|
emberCL.m_CamYaw = ember.m_CamYaw;
|
|
emberCL.m_CamPitch = ember.m_CamPitch;
|
|
emberCL.m_CamDepthBlur = ember.m_CamDepthBlur;
|
|
emberCL.m_BlurCoef = ember.BlurCoef();
|
|
|
|
for (size_t i = 0; i < ember.TotalXformCount() && i < xformsCL.size(); i++)
|
|
{
|
|
auto xform = ember.GetTotalXform(i);
|
|
xformsCL[i].m_A = xform->m_Affine.A();
|
|
xformsCL[i].m_B = xform->m_Affine.B();
|
|
xformsCL[i].m_C = xform->m_Affine.C();
|
|
xformsCL[i].m_D = xform->m_Affine.D();
|
|
xformsCL[i].m_E = xform->m_Affine.E();
|
|
xformsCL[i].m_F = xform->m_Affine.F();
|
|
xformsCL[i].m_PostA = xform->m_Post.A();
|
|
xformsCL[i].m_PostB = xform->m_Post.B();
|
|
xformsCL[i].m_PostC = xform->m_Post.C();
|
|
xformsCL[i].m_PostD = xform->m_Post.D();
|
|
xformsCL[i].m_PostE = xform->m_Post.E();
|
|
xformsCL[i].m_PostF = xform->m_Post.F();
|
|
xformsCL[i].m_DirectColor = xform->m_DirectColor;
|
|
xformsCL[i].m_ColorSpeedCache = xform->ColorSpeedCache();
|
|
xformsCL[i].m_OneMinusColorCache = xform->OneMinusColorCache();
|
|
xformsCL[i].m_Opacity = xform->m_Opacity;
|
|
xformsCL[i].m_VizAdjusted = xform->VizAdjusted();
|
|
|
|
for (size_t varIndex = 0; varIndex < xform->TotalVariationCount() && varIndex < MAX_CL_VARS; varIndex++)//Assign all variation weights for this xform, with a max of MAX_CL_VARS.
|
|
xformsCL[i].m_VariationWeights[varIndex] = xform->GetVariation(varIndex)->m_Weight;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Convert the host side CarToRas object into the CarToRasCL member
|
|
/// for passing to OpenCL.
|
|
/// </summary>
|
|
/// <param name="carToRas">The CarToRas object to convert</param>
|
|
template <typename T, typename bucketT>
|
|
void RendererCL<T, bucketT>::ConvertCarToRas(const CarToRas<T>& carToRas)
|
|
{
|
|
m_CarToRasCL.m_RasWidth = uint(carToRas.RasWidth());
|
|
m_CarToRasCL.m_PixPerImageUnitW = carToRas.PixPerImageUnitW();
|
|
m_CarToRasCL.m_RasLlX = carToRas.RasLlX();
|
|
m_CarToRasCL.m_PixPerImageUnitH = carToRas.PixPerImageUnitH();
|
|
m_CarToRasCL.m_RasLlY = carToRas.RasLlY();
|
|
m_CarToRasCL.m_CarLlX = carToRas.CarLlX();
|
|
m_CarToRasCL.m_CarLlY = carToRas.CarLlY();
|
|
m_CarToRasCL.m_CarUrX = carToRas.CarUrX();
|
|
m_CarToRasCL.m_CarUrY = carToRas.CarUrY();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Fill a seeds buffer for all devices, each of which gets passed to its
|
|
/// respective device when launching the iteration kernel.
|
|
/// The range of each seed will be spaced to ensure no duplicates are added.
|
|
/// Note, WriteBuffer() must be called after this to actually copy the
|
|
/// data from the host to the device.
|
|
/// </summary>
|
|
template <typename T, typename bucketT>
|
|
void RendererCL<T, bucketT>::FillSeeds()
|
|
{
|
|
if (!m_Devices.empty())
|
|
{
|
|
double start, delta = std::floor(double(std::numeric_limits<uint>::max()) / (IterGridKernelCount() * 2 * m_Devices.size()));
|
|
m_Seeds.resize(m_Devices.size());
|
|
start = delta;
|
|
|
|
for (size_t device = 0; device < m_Devices.size(); device++)
|
|
{
|
|
m_Seeds[device].resize(IterGridKernelCount());
|
|
|
|
for (auto& seed : m_Seeds[device])
|
|
{
|
|
seed.x = uint(m_Rand[0].template Frand<double>(start, start + delta));
|
|
start += delta;
|
|
seed.y = uint(m_Rand[0].template Frand<double>(start, start + delta));
|
|
start += delta;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template EMBERCL_API class RendererCL<float, float>;
|
|
|
|
#ifdef DO_DOUBLE
|
|
template EMBERCL_API class RendererCL<double, float>;
|
|
#endif
|
|
}
|