fractorium/Source/EmberCL/RendererCL.cpp
mfeemster 124f807772 --Code changes
-Make summing histograms from one or more secondary devices to the primary a little more elegant by using HOST_PTR. This requires one less copy.
2016-03-28 21:30:08 -07:00

1860 lines
74 KiB
C++

#include "EmberCLPch.h"
#include "RendererCL.h"
namespace EmberCLns
{
/// <summary>
/// Constructor that inintializes various buffer names, block dimensions, image formats
/// and finally initializes one or more OpenCL devices using the passed in parameters.
/// When running with multiple devices, the first device is considered the "primary", while
/// others are "secondary".
/// The differences are:
/// -Only the primary device will report progress, however the progress count will contain the combined progress of all devices.
/// -The primary device runs in this thread, while others run on their own threads.
/// -The primary device does density filtering and final accumulation, while the others only iterate.
/// -Upon completion of iteration, the histograms from the secondary devices are:
/// Copied to a temporary host side buffer.
/// Copied from the host side buffer to the primary device's density filtering buffer as a temporary device storage area.
/// Summed from the density filtering buffer, to the primary device's histogram.
/// When this process happens for the last device, the density filtering buffer is cleared since it will be used shortly.
/// Kernel creators are set to be non-nvidia by default. Will be properly set in Init().
/// </summary>
/// <param name="devices">A vector of the platform,device index pairs to use. The first device will be the primary and will run non-threaded.</param>
/// <param name="shared">True if shared with OpenGL, else false. Default: false.</param>
/// <param name="outputTexID">The texture ID of the shared OpenGL texture if shared. Default: 0.</param>
template <typename T, typename bucketT>
RendererCL<T, bucketT>::RendererCL(const vector<pair<size_t, size_t>>& devices, bool shared, GLuint outputTexID)
:
m_IterOpenCLKernelCreator(),
m_DEOpenCLKernelCreator(typeid(T) == typeid(double), false),
m_FinalAccumOpenCLKernelCreator(typeid(T) == typeid(double))
{
Init();
Init(devices, shared, outputTexID);
}
/// <summary>
/// Initialization of fields, no OpenCL initialization is done here.
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::Init()
{
m_Init = false;
m_DoublePrecision = typeid(T) == typeid(double);
m_NumChannels = 4;
//Buffer names.
m_EmberBufferName = "Ember";
m_XformsBufferName = "Xforms";
m_ParVarsBufferName = "ParVars";
m_GlobalSharedBufferName = "GlobalShared";
m_SeedsBufferName = "Seeds";
m_DistBufferName = "Dist";
m_CarToRasBufferName = "CarToRas";
m_DEFilterParamsBufferName = "DEFilterParams";
m_SpatialFilterParamsBufferName = "SpatialFilterParams";
m_DECoefsBufferName = "DECoefs";
m_DEWidthsBufferName = "DEWidths";
m_DECoefIndicesBufferName = "DECoefIndices";
m_SpatialFilterCoefsBufferName = "SpatialFilterCoefs";
m_CurvesCsaName = "CurvesCsa";
m_HostBufferName = "Host";
m_HistBufferName = "Hist";
m_AccumBufferName = "Accum";
m_FinalImageName = "Final";
m_PointsBufferName = "Points";
//It's critical that these numbers never change. They are
//based on the cuburn model of each kernel launch containing
//256 threads. 32 wide by 8 high. Everything done in the OpenCL
//iteraion kernel depends on these dimensions.
m_IterCountPerKernel = 256;
m_IterBlockWidth = 32;
m_IterBlockHeight = 8;
m_IterBlocksWide = 64;
m_IterBlocksHigh = 2;
m_PaletteFormat.image_channel_order = CL_RGBA;
m_PaletteFormat.image_channel_data_type = CL_FLOAT;
m_FinalFormat.image_channel_order = CL_RGBA;
m_FinalFormat.image_channel_data_type = CL_UNORM_INT8;//Change if this ever supports 2BPC outputs for PNG.
}
/// <summary>
/// Virtual destructor.
/// </summary>
template <typename T, typename bucketT>
RendererCL<T, bucketT>::~RendererCL()
{
}
/// <summary>
/// Non-virtual member functions for OpenCL specific tasks.
/// </summary>
/// <summary>
/// Initialize OpenCL.
/// In addition to initializing, this function will create the zeroization program,
/// as well as the basic log scale filtering programs. This is done to ensure basic
/// compilation works. Further compilation will be done later for iteration, density filtering,
/// and final accumulation.
/// </summary>
/// <param name="devices">A vector of the platform,device index pairs to use. The first device will be the primary and will run non-threaded.</param>
/// <param name="shared">True if shared with OpenGL, else false.</param>
/// <param name="outputTexID">The texture ID of the shared OpenGL texture if shared</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::Init(const vector<pair<size_t, size_t>>& devices, bool shared, GLuint outputTexID)
{
if (devices.empty())
return false;
bool b = false;
const char* loc = __FUNCTION__;
auto& zeroizeProgram = m_IterOpenCLKernelCreator.ZeroizeKernel();
auto& sumHistProgram = m_IterOpenCLKernelCreator.SumHistKernel();
ostringstream os;
m_Init = false;
m_Devices.clear();
m_Devices.reserve(devices.size());
m_OutputTexID = outputTexID;
m_GlobalShared.second.resize(16);//Dummy data until a real alloc is needed.
for (size_t i = 0; i < devices.size(); i++)
{
try
{
unique_ptr<RendererClDevice> cld(new RendererClDevice(devices[i].first, devices[i].second, i == 0 ? shared : false));
if ((b = cld->Init()))//Build a simple program to ensure OpenCL is working right.
{
if (b && !(b = cld->m_Wrapper.AddProgram(m_IterOpenCLKernelCreator.ZeroizeEntryPoint(), zeroizeProgram, m_IterOpenCLKernelCreator.ZeroizeEntryPoint(), m_DoublePrecision))) { AddToReport(loc); }
if (b && !(b = cld->m_Wrapper.AddAndWriteImage("Palette", CL_MEM_READ_ONLY, m_PaletteFormat, 256, 1, 0, nullptr))) { AddToReport(loc); }
if (b && !(b = cld->m_Wrapper.AddAndWriteBuffer(m_GlobalSharedBufferName, m_GlobalShared.second.data(), m_GlobalShared.second.size() * sizeof(m_GlobalShared.second[0])))) { AddToReport(loc); }//Empty at start, will be filled in later if needed.
if (b)
{
m_Devices.push_back(std::move(cld));//Success, so move to the vector, else it will go out of scope and be deleted.
}
else
{
os << loc << ": failed to init platform " << devices[i].first << ", device " << devices[i].second;
AddToReport(loc);
break;
}
}
}
catch (const std::exception& e)
{
os << loc << ": failed to init platform " << devices[i].first << ", device " << devices[i].second << ": " << e.what();
AddToReport(os.str());
}
catch (...)
{
os << loc << ": failed to init platform " << devices[i].first << ", device " << devices[i].second;
AddToReport(os.str());
}
}
if (b && m_Devices.size() == devices.size())
{
auto& firstWrapper = m_Devices[0]->m_Wrapper;
m_DEOpenCLKernelCreator = DEOpenCLKernelCreator(m_DoublePrecision, m_Devices[0]->Nvidia());
//Build a simple program to ensure OpenCL is working right.
if (b && !(b = firstWrapper.AddProgram(m_DEOpenCLKernelCreator.LogScaleAssignDEEntryPoint(), m_DEOpenCLKernelCreator.LogScaleAssignDEKernel(), m_DEOpenCLKernelCreator.LogScaleAssignDEEntryPoint(), m_DoublePrecision))) { AddToReport(loc); }
if (b && !(b = firstWrapper.AddProgram(m_IterOpenCLKernelCreator.SumHistEntryPoint(), sumHistProgram, m_IterOpenCLKernelCreator.SumHistEntryPoint(), m_DoublePrecision))) { AddToReport(loc); }
if (b)
{
//This is the maximum box dimension for density filtering which consists of (blockSize * blockSize) + (2 * filterWidth).
//These blocks should be square, and ideally, 32x32.
//Sadly, at the moment, the GPU runs out of resources at that block size because the DE filter function is so complex.
//The next best block size seems to be 24x24.
//AMD is further limited because of less local memory so these have to be 16 on AMD.
//Users have reported crashes on Nvidia cards even at size 24, so just to be safe, make them both 16 for all manufacturers.
m_MaxDEBlockSizeW = 16;
m_MaxDEBlockSizeH = 16;
FillSeeds();
for (size_t device = 0; device < m_Devices.size(); device++)
if (b && !(b = m_Devices[device]->m_Wrapper.AddAndWriteBuffer(m_SeedsBufferName, reinterpret_cast<void*>(m_Seeds[device].data()), SizeOf(m_Seeds[device])))) { AddToReport(loc); break; }
}
m_Init = b;
}
else
{
m_Devices.clear();
os << loc << ": failed to init all devices and platforms.";
AddToReport(os.str());
}
return m_Init;
}
/// <summary>
/// Set the shared output texture of the primary device where final accumulation will be written to.
/// </summary>
/// <param name="outputTexID">The texture ID of the shared OpenGL texture if shared</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::SetOutputTexture(GLuint outputTexID)
{
bool success = true;
const char* loc = __FUNCTION__;
if (!m_Devices.empty())
{
OpenCLWrapper& firstWrapper = m_Devices[0]->m_Wrapper;
m_OutputTexID = outputTexID;
EnterResize();
if (!firstWrapper.AddAndWriteImage(m_FinalImageName, CL_MEM_WRITE_ONLY, m_FinalFormat, FinalRasW(), FinalRasH(), 0, nullptr, firstWrapper.Shared(), m_OutputTexID))
{
AddToReport(loc);
success = false;
}
LeaveResize();
}
else
success = false;
return success;
}
/// <summary>
/// OpenCL property accessors, getters only.
/// </summary>
//Iters per kernel/block/grid.
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterCountPerKernel() const { return m_IterCountPerKernel; }
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterCountPerBlock() const { return IterCountPerKernel() * IterBlockKernelCount(); }
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterCountPerGrid() const { return IterCountPerKernel() * IterGridKernelCount(); }
//Kernels per block.
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterBlockKernelWidth() const { return m_IterBlockWidth; }
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterBlockKernelHeight() const { return m_IterBlockHeight; }
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterBlockKernelCount() const { return IterBlockKernelWidth() * IterBlockKernelHeight(); }
//Kernels per grid.
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterGridKernelWidth() const { return IterGridBlockWidth() * IterBlockKernelWidth(); }
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterGridKernelHeight() const { return IterGridBlockHeight() * IterBlockKernelHeight(); }
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterGridKernelCount() const { return IterGridKernelWidth() * IterGridKernelHeight(); }
//Blocks per grid.
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterGridBlockWidth() const { return m_IterBlocksWide; }
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterGridBlockHeight() const { return m_IterBlocksHigh; }
template <typename T, typename bucketT> size_t RendererCL<T, bucketT>::IterGridBlockCount() const { return IterGridBlockWidth() * IterGridBlockHeight(); }
/// <summary>
/// Read the histogram of the specified into the host side CPU buffer.
/// </summary>
/// <param name="device">The index device of the device whose histogram will be read</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ReadHist(size_t device)
{
if (device < m_Devices.size())
if (Renderer<T, bucketT>::Alloc(true))//Allocate the histogram memory to read into, other buffers not needed.
return m_Devices[device]->m_Wrapper.ReadBuffer(m_HistBufferName, reinterpret_cast<void*>(HistBuckets()), SuperSize() * sizeof(v4bT));//HistBuckets should have been created as a ClBuffer with HOST_PTR if more than one device is used.
return false;
}
/// <summary>
/// Read the density filtering buffer into the host side CPU buffer.
/// Used for debugging.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ReadAccum()
{
if (Renderer<T, bucketT>::Alloc() && !m_Devices.empty())//Allocate the memory to read into.
return m_Devices[0]->m_Wrapper.ReadBuffer(m_AccumBufferName, reinterpret_cast<void*>(AccumulatorBuckets()), SuperSize() * sizeof(v4bT));
return false;
}
/// <summary>
/// Read the temporary points buffer from a device into a host side CPU buffer.
/// Used for debugging.
/// </summary>
/// <param name="device">The index in the device buffer whose points will be read</param>
/// <param name="vec">The host side buffer to read into</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ReadPoints(size_t device, vector<PointCL<T>>& vec)
{
vec.resize(IterGridKernelCount());//Allocate the memory to read into.
if (vec.size() >= IterGridKernelCount() && device < m_Devices.size())
return m_Devices[device]->m_Wrapper.ReadBuffer(m_PointsBufferName, reinterpret_cast<void*>(vec.data()), IterGridKernelCount() * sizeof(PointCL<T>));
return false;
}
/// <summary>
/// Clear the histogram buffer for all devices with all zeroes.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ClearHist()
{
bool b = !m_Devices.empty();
const char* loc = __FUNCTION__;
for (size_t i = 0; i < m_Devices.size(); i++)
if (b && !(b = ClearBuffer(i, m_HistBufferName, uint(SuperRasW()), uint(SuperRasH()), sizeof(v4bT)))) { AddToReport(loc); break; }
return b;
}
/// <summary>
/// Clear the histogram buffer for a single device with all zeroes.
/// </summary>
/// <param name="device">The index in the device buffer whose histogram will be cleared</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ClearHist(size_t device)
{
bool b = device < m_Devices.size();
const char* loc = __FUNCTION__;
if (b && !(b = ClearBuffer(device, m_HistBufferName, uint(SuperRasW()), uint(SuperRasH()), sizeof(v4bT)))) { AddToReport(loc); }
return b;
}
/// <summary>
/// Clear the density filtering buffer with all zeroes.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ClearAccum()
{
return ClearBuffer(0, m_AccumBufferName, uint(SuperRasW()), uint(SuperRasH()), sizeof(v4bT));
}
/// <summary>
/// Write values from a host side CPU buffer into the temporary points buffer for the specified device.
/// Used for debugging.
/// </summary>
/// <param name="device">The index in the device buffer whose points will be written to</param>
/// <param name="vec">The host side buffer whose values to write</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::WritePoints(size_t device, vector<PointCL<T>>& vec)
{
bool b = false;
const char* loc = __FUNCTION__;
if (device < m_Devices.size())
if (!(b = m_Devices[device]->m_Wrapper.WriteBuffer(m_PointsBufferName, reinterpret_cast<void*>(vec.data()), SizeOf(vec)))) { AddToReport(loc); }
return b;
}
#ifdef TEST_CL
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::WriteRandomPoints(size_t device)
{
size_t size = IterGridKernelCount();
vector<PointCL<T>> vec(size);
for (int i = 0; i < size; i++)
{
vec[i].m_X = m_Rand[0].Frand11<T>();
vec[i].m_Y = m_Rand[0].Frand11<T>();
vec[i].m_Z = 0;
vec[i].m_ColorX = m_Rand[0].Frand01<T>();
vec[i].m_LastXfUsed = 0;
}
return WritePoints(device, vec);
}
#endif
/// <summary>
/// Get the kernel string for the last built iter program.
/// </summary>
/// <returns>The string representation of the kernel for the last built iter program.</returns>
template <typename T, typename bucketT>
const string& RendererCL<T, bucketT>::IterKernel() const { return m_IterKernel; }
/// <summary>
/// Get the kernel string for the last built density filtering program.
/// </summary>
/// <returns>The string representation of the kernel for the last built density filtering program.</returns>
template <typename T, typename bucketT>
const string& RendererCL<T, bucketT>::DEKernel() const { return m_DEOpenCLKernelCreator.GaussianDEKernel(Supersample(), m_DensityFilterCL.m_FilterWidth); }
/// <summary>
/// Get the kernel string for the last built final accumulation program.
/// </summary>
/// <returns>The string representation of the kernel for the last built final accumulation program.</returns>
template <typename T, typename bucketT>
const string& RendererCL<T, bucketT>::FinalAccumKernel() const { return m_FinalAccumOpenCLKernelCreator.FinalAccumKernel(EarlyClip(), Renderer<T, bucketT>::NumChannels(), Transparency()); }
/// <summary>
/// Get the a const referece to the devices this renderer will use.
/// Use this cautiously and do not use const_cast to manipulate the vector.
/// </summary>
/// <returns>A const reference to a vector of unique_ptr of devices</returns>
template <typename T, typename bucketT>
const vector<unique_ptr<RendererClDevice>>& RendererCL<T, bucketT>::Devices() const { return m_Devices; }
/// <summary>
/// Virtual functions overridden from RendererCLBase.
/// </summary>
/// <summary>
/// Read the final image buffer buffer from the primary device into the host side CPU buffer.
/// This must be called before saving the final output image to file.
/// </summary>
/// <param name="pixels">The host side buffer to read into</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ReadFinal(byte* pixels)
{
if (pixels && !m_Devices.empty())
return m_Devices[0]->m_Wrapper.ReadImage(m_FinalImageName, FinalRasW(), FinalRasH(), 0, m_Devices[0]->m_Wrapper.Shared(), pixels);
return false;
}
/// <summary>
/// Clear the final image output buffer of the primary device with all zeroes by copying a host side buffer.
/// Slow, but never used because the final output image is always completely overwritten.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ClearFinal()
{
vector<byte> v;
if (!m_Devices.empty())
{
auto& wrapper = m_Devices[0]->m_Wrapper;
uint index = wrapper.FindImageIndex(m_FinalImageName, wrapper.Shared());
if (this->PrepFinalAccumVector(v))
{
bool b = wrapper.WriteImage2D(index, wrapper.Shared(), FinalRasW(), FinalRasH(), 0, v.data());
if (!b)
AddToReport(__FUNCTION__);
return b;
}
else
return false;
}
else
return false;
}
/// <summary>
/// Public virtual functions overridden from Renderer or RendererBase.
/// </summary>
/// <summary>
/// The amount of video RAM available on the first GPU to render with.
/// </summary>
/// <returns>An unsigned 64-bit integer specifying how much video memory is available</returns>
template <typename T, typename bucketT>
size_t RendererCL<T, bucketT>::MemoryAvailable()
{
return Ok() ? m_Devices[0]->m_Wrapper.GlobalMemSize() : 0ULL;
}
/// <summary>
/// Return whether OpenCL has been properly initialized.
/// </summary>
/// <returns>True if OpenCL has been properly initialized, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::Ok() const
{
return !m_Devices.empty() && m_Init;
}
/// <summary>
/// Override to force num channels to be 4 because RGBA is always used for OpenCL
/// since the output is actually an image rather than just a buffer.
/// </summary>
/// <param name="numChannels">The number of channels, ignored.</param>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::NumChannels(size_t numChannels)
{
m_NumChannels = 4;
}
/// <summary>
/// Clear the error report for this class as well as the OpenCLWrapper members of each device.
/// </summary>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::ClearErrorReport()
{
EmberReport::ClearErrorReport();
for (auto& device : m_Devices)
device->m_Wrapper.ClearErrorReport();
}
/// <summary>
/// The sub batch size for OpenCL will always be how many
/// iterations are ran per kernel call. The caller can't
/// change this.
/// </summary>
/// <returns>The number of iterations ran in a single kernel call</returns>
template <typename T, typename bucketT>
size_t RendererCL<T, bucketT>::SubBatchSize() const
{
return IterCountPerGrid();
}
/// <summary>
/// The thread count for OpenCL is always considered to be 1, however
/// the kernel internally runs many threads.
/// </summary>
/// <returns>1</returns>
template <typename T, typename bucketT>
size_t RendererCL<T, bucketT>::ThreadCount() const
{
return 1;
}
/// <summary>
/// Create the density filter in the base class and copy the filter values
/// to the corresponding OpenCL buffers on the primary device.
/// </summary>
/// <param name="newAlloc">True if a new filter instance was created, else false.</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::CreateDEFilter(bool& newAlloc)
{
bool b = true;
if (!m_Devices.empty() && Renderer<T, bucketT>::CreateDEFilter(newAlloc))
{
//Copy coefs and widths here. Convert and copy the other filter params right before calling the filtering kernel.
if (newAlloc)
{
const char* loc = __FUNCTION__;
auto& wrapper = m_Devices[0]->m_Wrapper;
if (b && !(b = wrapper.AddAndWriteBuffer(m_DECoefsBufferName, reinterpret_cast<void*>(const_cast<bucketT*>(m_DensityFilter->Coefs())), m_DensityFilter->CoefsSizeBytes()))) { AddToReport(loc); }
if (b && !(b = wrapper.AddAndWriteBuffer(m_DEWidthsBufferName, reinterpret_cast<void*>(const_cast<bucketT*>(m_DensityFilter->Widths())), m_DensityFilter->WidthsSizeBytes()))) { AddToReport(loc); }
if (b && !(b = wrapper.AddAndWriteBuffer(m_DECoefIndicesBufferName, reinterpret_cast<void*>(const_cast<uint*>(m_DensityFilter->CoefIndices())), m_DensityFilter->CoefsIndicesSizeBytes()))) { AddToReport(loc); }
}
}
else
b = false;
return b;
}
/// <summary>
/// Create the spatial filter in the base class and copy the filter values
/// to the corresponding OpenCL buffers on the primary device.
/// </summary>
/// <param name="newAlloc">True if a new filter instance was created, else false.</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::CreateSpatialFilter(bool& newAlloc)
{
bool b = true;
if (!m_Devices.empty() && Renderer<T, bucketT>::CreateSpatialFilter(newAlloc))
{
if (newAlloc)
if (!(b = m_Devices[0]->m_Wrapper.AddAndWriteBuffer(m_SpatialFilterCoefsBufferName, reinterpret_cast<void*>(m_SpatialFilter->Filter()), m_SpatialFilter->BufferSizeBytes()))) { AddToReport(__FUNCTION__); }
}
else
b = false;
return b;
}
/// <summary>
/// Get the renderer type enum.
/// </summary>
/// <returns>eRendererType::OPENCL_RENDERER</returns>
template <typename T, typename bucketT>
eRendererType RendererCL<T, bucketT>::RendererType() const
{
return eRendererType::OPENCL_RENDERER;
}
/// <summary>
/// Concatenate and return the error report for this class and the
/// OpenCLWrapper member of each device as a single string.
/// </summary>
/// <returns>The concatenated error report string</returns>
template <typename T, typename bucketT>
string RendererCL<T, bucketT>::ErrorReportString()
{
auto s = EmberReport::ErrorReportString();
for (auto& device : m_Devices)
s += device->m_Wrapper.ErrorReportString();
return s;
}
/// <summary>
/// Concatenate and return the error report for this class and the
/// OpenCLWrapper member of each device as a vector of strings.
/// </summary>
/// <returns>The concatenated error report vector of strings</returns>
template <typename T, typename bucketT>
vector<string> RendererCL<T, bucketT>::ErrorReport()
{
auto ours = EmberReport::ErrorReport();
for (auto& device : m_Devices)
{
auto s = device->m_Wrapper.ErrorReport();
ours.insert(ours.end(), s.begin(), s.end());
}
return ours;
}
/// <summary>
/// Set the vector of random contexts on every device.
/// Call the base, and reset the seeds vector.
/// Used on the command line when the user wants a specific set of seeds to start with to
/// produce an exact result. Mostly for debugging.
/// </summary>
/// <param name="randVec">The vector of random contexts to assign</param>
/// <returns>True if the size of the vector matched the number of threads used for rendering and writing seeds to OpenCL succeeded, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::RandVec(vector<QTIsaac<ISAAC_SIZE, ISAAC_INT>>& randVec)
{
bool b = Renderer<T, bucketT>::RandVec(randVec);
const char* loc = __FUNCTION__;
if (!m_Devices.empty())
{
FillSeeds();
for (size_t device = 0; device < m_Devices.size(); device++)
if (b && !(b = m_Devices[device]->m_Wrapper.AddAndWriteBuffer(m_SeedsBufferName, reinterpret_cast<void*>(m_Seeds[device].data()), SizeOf(m_Seeds[device])))) { AddToReport(loc); break; }
}
else
b = false;
return b;
}
/// <summary>
/// Protected virtual functions overridden from Renderer.
/// </summary>
/// <summary>
/// Allocate all buffers required for running as well as the final
/// 2D image.
/// Note that only iteration-related buffers are allocated on secondary devices.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::Alloc(bool histOnly)
{
if (!Ok())
return false;
EnterResize();
m_XformsCL.resize(m_Ember.TotalXformCount());
bool b = true;
size_t size = SuperSize() * sizeof(v4bT);//Size of histogram and density filter buffer.
const char* loc = __FUNCTION__;
auto& wrapper = m_Devices[0]->m_Wrapper;
if (b && !(b = wrapper.AddBuffer(m_DEFilterParamsBufferName, sizeof(m_DensityFilterCL)))) { AddToReport(loc); }
if (b && !(b = wrapper.AddBuffer(m_SpatialFilterParamsBufferName, sizeof(m_SpatialFilterCL)))) { AddToReport(loc); }
if (b && !(b = wrapper.AddBuffer(m_CurvesCsaName, SizeOf(m_Csa.m_Entries)))) { AddToReport(loc); }
if (b && !(b = wrapper.AddBuffer(m_AccumBufferName, size))) { AddToReport(loc); }//Accum buffer.
for (auto& device : m_Devices)
{
if (b && !(b = device->m_Wrapper.AddBuffer(m_EmberBufferName, sizeof(m_EmberCL)))) { AddToReport(loc); break; }
if (b && !(b = device->m_Wrapper.AddBuffer(m_XformsBufferName, SizeOf(m_XformsCL)))) { AddToReport(loc); break; }
if (b && !(b = device->m_Wrapper.AddBuffer(m_ParVarsBufferName, 128 * sizeof(T)))) { AddToReport(loc); break; }
if (b && !(b = device->m_Wrapper.AddBuffer(m_DistBufferName, CHOOSE_XFORM_GRAIN))) { AddToReport(loc); break; }//Will be resized for xaos.
if (b && !(b = device->m_Wrapper.AddBuffer(m_CarToRasBufferName, sizeof(m_CarToRasCL)))) { AddToReport(loc); break; }
if (b && !(b = device->m_Wrapper.AddBuffer(m_HistBufferName, size))) { AddToReport(loc); break; }//Histogram. Will memset to zero later.
if (b && !(b = device->m_Wrapper.AddBuffer(m_PointsBufferName, IterGridKernelCount() * sizeof(PointCL<T>)))) { AddToReport(loc); break; }//Points between iter calls.
//Global shared is allocated once and written when building the kernel.
}
if (m_Devices.size() > 1)
b = CreateHostBuffer();
LeaveResize();
if (b && !(b = SetOutputTexture(m_OutputTexID))) { AddToReport(loc); }
return b;
}
/// <summary>
/// Clear OpenCL histogram on all devices and/or density filtering buffer on the primary device to all zeroes.
/// </summary>
/// <param name="resetHist">Clear histogram if true, else don't.</param>
/// <param name="resetAccum">Clear density filtering buffer if true, else don't.</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ResetBuckets(bool resetHist, bool resetAccum)
{
bool b = true;
if (resetHist)
b &= ClearHist();
if (resetAccum)
b &= ClearAccum();
return b;
}
/// <summary>
/// Perform log scale density filtering on the primary device.
/// </summary>
/// <param name="forceOutput">Whether this output was forced due to an interactive render</param>
/// <returns>True if success and not aborted, else false.</returns>
template <typename T, typename bucketT>
eRenderStatus RendererCL<T, bucketT>::LogScaleDensityFilter(bool forceOutput)
{
return RunLogScaleFilter();
}
/// <summary>
/// Run gaussian density estimation filtering on the primary device.
/// </summary>
/// <returns>True if success and not aborted, else false.</returns>
template <typename T, typename bucketT>
eRenderStatus RendererCL<T, bucketT>::GaussianDensityFilter()
{
//This commented section is for debugging density filtering by making it run on the CPU
//then copying the results back to the GPU.
//if (ReadHist())
//{
// uint accumLength = SuperSize() * sizeof(glm::detail::tvec4<T>);
// const char* loc = __FUNCTION__;
//
// Renderer<T, bucketT>::ResetBuckets(false, true);
// Renderer<T, bucketT>::GaussianDensityFilter();
//
// if (!m_Wrapper.WriteBuffer(m_AccumBufferName, AccumulatorBuckets(), accumLength)) { AddToReport(loc); return RENDER_ERROR; }
// return RENDER_OK;
//}
//else
// return RENDER_ERROR;
//Timing t(4);
eRenderStatus status = RunDensityFilter();
//t.Toc(__FUNCTION__ " RunKernel()");
return status;
}
/// <summary>
/// Run final accumulation on the primary device.
/// If pixels is nullptr, the output will remain in the OpenCL 2D image.
/// However, if pixels is not nullptr, the output will be copied. This is
/// useful when rendering in OpenCL, but saving the output to a file.
/// </summary>
/// <param name="pixels">The pixels to copy the final image to if not nullptr</param>
/// <param name="finalOffset">Offset in the buffer to store the pixels to</param>
/// <returns>True if success and not aborted, else false.</returns>
template <typename T, typename bucketT>
eRenderStatus RendererCL<T, bucketT>::AccumulatorToFinalImage(byte* pixels, size_t finalOffset)
{
auto status = RunFinalAccum();
if (status == eRenderStatus::RENDER_OK && pixels && !m_Devices.empty() && !m_Devices[0]->m_Wrapper.Shared())
{
pixels += finalOffset;
if (!ReadFinal(pixels))
status = eRenderStatus::RENDER_ERROR;
}
return status;
}
/// <summary>
/// Run the iteration algorithm for the specified number of iterations, splitting the work
/// across devices.
/// This is only called after all other setup has been done.
/// This will recompile the OpenCL program on every device if this ember differs significantly
/// from the previous run.
/// Note that the bad value count is not recorded when running with OpenCL. If it's
/// needed, run on the CPU.
/// </summary>
/// <param name="iterCount">The number of iterations to run</param>
/// <param name="temporalSample">The temporal sample within the current pass this is running for</param>
/// <returns>Rendering statistics</returns>
template <typename T, typename bucketT>
EmberStats RendererCL<T, bucketT>::Iterate(size_t iterCount, size_t temporalSample)
{
bool b = true;
EmberStats stats;//Do not record bad vals with with GPU. If the user needs to investigate bad vals, use the CPU.
const char* loc = __FUNCTION__;
//Only need to do this once on the beginning of a new render. Last iter will always be 0 at the beginning of a full render or temporal sample.
if (m_LastIter == 0)
{
ConvertEmber(m_Ember, m_EmberCL, m_XformsCL);
ConvertCarToRas(CoordMap());
//Rebuilding is expensive, so only do it if it's required.
if (IterOpenCLKernelCreator<T>::IsBuildRequired(m_Ember, m_LastBuiltEmber))
b = BuildIterProgramForEmber(true);
if (b)
{
//Setup buffers on all devices.
for (auto& device : m_Devices)
{
auto& wrapper = device->m_Wrapper;
if (b && !(b = wrapper.WriteBuffer(m_EmberBufferName, reinterpret_cast<void*>(&m_EmberCL), sizeof(m_EmberCL))))
break;
if (b && !(b = wrapper.WriteBuffer(m_XformsBufferName, reinterpret_cast<void*>(m_XformsCL.data()), sizeof(m_XformsCL[0]) * m_XformsCL.size())))
break;
if (b && !(b = wrapper.AddAndWriteBuffer(m_DistBufferName, reinterpret_cast<void*>(const_cast<byte*>(XformDistributions())), XformDistributionsSize())))//Will be resized for xaos.
break;
if (b && !(b = wrapper.WriteBuffer(m_CarToRasBufferName, reinterpret_cast<void*>(&m_CarToRasCL), sizeof(m_CarToRasCL))))
break;
if (b && !(b = wrapper.AddAndWriteImage("Palette", CL_MEM_READ_ONLY, m_PaletteFormat, m_Dmap.m_Entries.size(), 1, 0, m_Dmap.m_Entries.data())))
break;
if (b)
{
IterOpenCLKernelCreator<T>::ParVarIndexDefines(m_Ember, m_Params, true, false);//Always do this to get the values (but no string), regardless of whether a rebuild is necessary.
//Don't know the size of the parametric varations parameters buffer until the ember is examined.
//So set it up right before the run.
if (!m_Params.second.empty())
if (!wrapper.AddAndWriteBuffer(m_ParVarsBufferName, m_Params.second.data(), m_Params.second.size() * sizeof(m_Params.second[0])))
break;
}
else
break;
}
}
}
if (b)
{
m_IterTimer.Tic();//Tic() here to avoid including build time in iter time measurement.
if (m_LastIter == 0 && m_ProcessAction != eProcessAction::KEEP_ITERATING)//Only reset the call count on the beginning of a new render. Do not reset on KEEP_ITERATING.
for (auto& dev : m_Devices)
dev->m_Calls = 0;
b = RunIter(iterCount, temporalSample, stats.m_Iters);
if (!b || stats.m_Iters == 0)//If no iters were executed, something went catastrophically wrong.
m_Abort = true;
stats.m_IterMs = m_IterTimer.Toc();
}
else
{
m_Abort = true;
AddToReport(loc);
}
return stats;
}
/// <summary>
/// Private functions for making and running OpenCL programs.
/// </summary>
/// <summary>
/// Build the iteration program on every device for the current ember.
/// This is parallelized by placing the build for each device on its own thread.
/// </summary>
/// <param name="doAccum">Whether to build in accumulation, only for debugging. Default: true.</param>
/// <returns>True if successful for all devices, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::BuildIterProgramForEmber(bool doAccum)
{
//Timing t;
bool b = !m_Devices.empty();
const char* loc = __FUNCTION__;
IterOpenCLKernelCreator<T>::ParVarIndexDefines(m_Ember, m_Params, false, true);//Do with string and no vals.
IterOpenCLKernelCreator<T>::SharedDataIndexDefines(m_Ember, m_GlobalShared, true, true);//Do with string and vals only once on build since it won't change until another build occurs.
if (b)
{
m_IterKernel = m_IterOpenCLKernelCreator.CreateIterKernelString(m_Ember, m_Params.first, m_GlobalShared.first, m_LockAccum, doAccum);
//cout << "Building: " << "\n" << iterProgram << "\n";
vector<std::thread> threads;
std::function<void(RendererClDevice*)> func = [&](RendererClDevice * dev)
{
if (!dev->m_Wrapper.AddProgram(m_IterOpenCLKernelCreator.IterEntryPoint(), m_IterKernel, m_IterOpenCLKernelCreator.IterEntryPoint(), m_DoublePrecision))
{
rlg l(m_ResizeCs);//Just use the resize CS for lack of a better one.
b = false;
AddToReport(string(loc) + "()\n" + dev->m_Wrapper.DeviceName() + ":\nBuilding the following program failed: \n" + m_IterKernel + "\n");
}
else if (!m_GlobalShared.second.empty())
{
if (!dev->m_Wrapper.AddAndWriteBuffer(m_GlobalSharedBufferName, m_GlobalShared.second.data(), m_GlobalShared.second.size() * sizeof(m_GlobalShared.second[0])))
{
rlg l(m_ResizeCs);//Just use the resize CS for lack of a better one.
b = false;
AddToReport(string(loc) + "()\n" + dev->m_Wrapper.DeviceName() + ":\nAdding global shared buffer failed.\n");
}
}
};
threads.reserve(m_Devices.size() - 1);
for (size_t device = m_Devices.size() - 1; device >= 0 && device < m_Devices.size(); device--)//Check both extents because size_t will wrap.
{
if (!device)//Secondary devices on their own threads.
threads.push_back(std::thread([&](RendererClDevice * dev) { func(dev); }, m_Devices[device].get()));
else//Primary device on this thread.
func(m_Devices[device].get());
}
for (auto& th : threads)
if (th.joinable())
th.join();
if (b)
{
//t.Toc(__FUNCTION__ " program build");
//cout << string(loc) << "():\nBuilding the following program succeeded: \n" << iterProgram << "\n";
m_LastBuiltEmber = m_Ember;
}
}
return b;
}
/// <summary>
/// Run the iteration kernel on all devices.
/// Fusing on the CPU is done once per sub batch, usually 10,000 iters. Here,
/// the same fusing frequency is kept, but is done per kernel thread.
/// </summary>
/// <param name="iterCount">The number of iterations to run</param>
/// <param name="temporalSample">The temporal sample this is running for</param>
/// <param name="itersRan">The storage for the number of iterations ran</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::RunIter(size_t iterCount, size_t temporalSample, size_t& itersRan)
{
//Timing t;//, t2(4);
bool success = !m_Devices.empty();
uint histSuperSize = uint(SuperSize());
size_t launches = size_t(ceil(double(iterCount) / IterCountPerGrid()));
const char* loc = __FUNCTION__;
vector<std::thread> threadVec;
std::atomic<size_t> atomLaunchesRan;
std::atomic<intmax_t> atomItersRan, atomItersRemaining;
size_t adjustedIterCountPerKernel = m_IterCountPerKernel;
itersRan = 0;
atomItersRan.store(0);
atomItersRemaining.store(iterCount);
atomLaunchesRan.store(0);
threadVec.reserve(m_Devices.size());
//If a very small number of iters is requested, and multiple devices
//are present, then try to spread the launches over the devices.
//Otherwise, only one device would get used.
//Note that this can lead to doing a few more iterations than requested
//due to rounding up to ~32k kernel threads per launch.
if (m_Devices.size() >= launches)
{
launches = m_Devices.size();
adjustedIterCountPerKernel = size_t(ceil(ceil(double(iterCount) / m_Devices.size()) / IterGridKernelCount()));
}
size_t fuseFreq = Renderer<T, bucketT>::SubBatchSize() / adjustedIterCountPerKernel;//Use the base sbs to determine when to fuse.
#ifdef TEST_CL
m_Abort = false;
#endif
std::function<void(size_t, int)> iterFunc = [&](size_t dev, int kernelIndex)
{
bool b = true;
auto& wrapper = m_Devices[dev]->m_Wrapper;
intmax_t itersRemaining = 0;
while (atomLaunchesRan.fetch_add(1), (b && (atomLaunchesRan.load() <= launches) && ((itersRemaining = atomItersRemaining.load()) > 0) && !m_Abort))
{
cl_uint argIndex = 0;
#ifdef TEST_CL
uint fuse = 0;
#else
uint fuse = uint((m_Devices[dev]->m_Calls % fuseFreq) == 0u ? FuseCount() : 0u);
#endif
//Similar to what's done in the base class.
//The number of iters per thread must be adjusted if they've requested less iters than is normally ran in a grid (256 * 256 * 64 * 2 = 32,768).
uint iterCountPerKernel = std::min<uint>(uint(adjustedIterCountPerKernel), uint(ceil(double(itersRemaining) / IterGridKernelCount())));
size_t iterCountThisLaunch = iterCountPerKernel * IterGridKernelWidth() * IterGridKernelHeight();
//cout << "itersRemaining " << itersRemaining << ", iterCountPerKernel " << iterCountPerKernel << ", iterCountThisLaunch " << iterCountThisLaunch << "\n";
if (b && !(b = wrapper.SetArg (kernelIndex, argIndex++, iterCountPerKernel))) { AddToReport(loc); }//Number of iters for each thread to run.
if (b && !(b = wrapper.SetArg (kernelIndex, argIndex++, fuse))) { AddToReport(loc); }//Number of iters to fuse.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_SeedsBufferName))) { AddToReport(loc); }//Seeds.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_EmberBufferName))) { AddToReport(loc); }//Ember.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_XformsBufferName))) { AddToReport(loc); }//Xforms.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_ParVarsBufferName))) { AddToReport(loc); }//Parametric variation parameters.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_GlobalSharedBufferName))) { AddToReport(loc); }//Global shared data.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_DistBufferName))) { AddToReport(loc); }//Xform distributions.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_CarToRasBufferName))) { AddToReport(loc); }//Coordinate converter.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_HistBufferName))) { AddToReport(loc); }//Histogram.
if (b && !(b = wrapper.SetArg (kernelIndex, argIndex++, histSuperSize))) { AddToReport(loc); }//Histogram size.
if (b && !(b = wrapper.SetImageArg (kernelIndex, argIndex++, false, "Palette"))) { AddToReport(loc); }//Palette.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_PointsBufferName))) { AddToReport(loc); }//Random start points.
if (b && !(b = wrapper.RunKernel(kernelIndex,
IterGridKernelWidth(),//Total grid dims.
IterGridKernelHeight(),
1,
IterBlockKernelWidth(),//Individual block dims.
IterBlockKernelHeight(),
1)))
{
success = false;
m_Abort = true;
AddToReport(loc);
atomLaunchesRan.fetch_sub(1);
break;
}
atomItersRan.fetch_add(iterCountThisLaunch);
atomItersRemaining.store(iterCount - atomItersRan.load());
m_Devices[dev]->m_Calls++;
if (m_Callback && !dev)//Will only do callback on the first device, however it will report the progress of all devices.
{
double percent = 100.0 *
double
(
double
(
double
(
double(m_LastIter + atomItersRan.load()) / double(ItersPerTemporalSample())
) + temporalSample
) / double(TemporalSamples())
);
double percentDiff = percent - m_LastIterPercent;
double toc = m_ProgressTimer.Toc();
if (percentDiff >= 10 || (toc > 1000 && percentDiff >= 1))//Call callback function if either 10% has passed, or one second (and 1%).
{
double etaMs = ((100.0 - percent) / percent) * m_RenderTimer.Toc();
if (!m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, percent, 0, etaMs))
Abort();
m_LastIterPercent = percent;
m_ProgressTimer.Tic();
}
}
}
};
//Iterate backward to run all secondary devices on threads first, then finally the primary device on this thread.
for (size_t device = m_Devices.size() - 1; device >= 0 && device < m_Devices.size(); device--)//Check both extents because size_t will wrap.
{
int index = m_Devices[device]->m_Wrapper.FindKernelIndex(m_IterOpenCLKernelCreator.IterEntryPoint());
if (index == -1)
{
success = false;
break;
}
//If animating, treat each temporal sample as a newly started render for fusing purposes.
if (temporalSample > 0)
m_Devices[device]->m_Calls = 0;
if (device != 0)//Secondary devices on their own threads.
threadVec.push_back(std::thread([&](size_t dev, int kernelIndex) { iterFunc(dev, kernelIndex); }, device, index));
else//Primary device on this thread.
iterFunc(device, index);
}
for (auto& th : threadVec)
if (th.joinable())
th.join();
itersRan = atomItersRan.load();
if (m_Devices.size() > 1)//Determine whether/when to sum histograms of secondary devices with the primary.
{
if (((TemporalSamples() == 1) || (temporalSample == TemporalSamples() - 1)) &&//If there are no temporal samples (not animating), or the current one is the last...
((m_LastIter + itersRan) >= ItersPerTemporalSample()))//...and the required number of iters for that sample have completed...
if (success && !(success = SumDeviceHist())) { AddToReport(loc); }//...read the histogram from the secondary devices and sum them to the primary.
}
//t2.Toc(__FUNCTION__);
return success;
}
/// <summary>
/// Run the log scale filter on the primary device.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
eRenderStatus RendererCL<T, bucketT>::RunLogScaleFilter()
{
//Timing t(4);
bool b = !m_Devices.empty();
if (b)
{
auto& wrapper = m_Devices[0]->m_Wrapper;
int kernelIndex = wrapper.FindKernelIndex(m_DEOpenCLKernelCreator.LogScaleAssignDEEntryPoint());
const char* loc = __FUNCTION__;
if (kernelIndex != -1)
{
ConvertDensityFilter();
cl_uint argIndex = 0;
size_t blockW = m_Devices[0]->WarpSize();
size_t blockH = 4;//A height of 4 seems to run the fastest.
size_t gridW = m_DensityFilterCL.m_SuperRasW;
size_t gridH = m_DensityFilterCL.m_SuperRasH;
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
if (b && !(b = wrapper.AddAndWriteBuffer(m_DEFilterParamsBufferName, reinterpret_cast<void*>(&m_DensityFilterCL), sizeof(m_DensityFilterCL)))) { AddToReport(loc); }
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_HistBufferName))) { AddToReport(loc); }//Histogram.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_AccumBufferName))) { AddToReport(loc); }//Accumulator.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_DEFilterParamsBufferName))) { AddToReport(loc); }//DensityFilterCL.
//t.Tic();
if (b && !(b = wrapper.RunKernel(kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { AddToReport(loc); }
//t.Toc(loc);
}
else
{
b = false;
AddToReport(loc);
}
if (b && m_Callback && m_LastIterPercent >= 99.0)//Only update progress if we've really reached the end, not via forced output.
m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, 100.0, 1, 0.0);
}
return b ? eRenderStatus::RENDER_OK : eRenderStatus::RENDER_ERROR;
}
/// <summary>
/// Run the Gaussian density filter on the primary device.
/// Method 7: Each block processes a 16x16(AMD) or 24x24(Nvidia) block and exits. No column or row advancements happen.
/// </summary>
/// <returns>True if success and not aborted, else false.</returns>
template <typename T, typename bucketT>
eRenderStatus RendererCL<T, bucketT>::RunDensityFilter()
{
bool b = !m_Devices.empty();
Timing t(4);// , t2(4);
ConvertDensityFilter();
int kernelIndex = MakeAndGetDensityFilterProgram(Supersample(), m_DensityFilterCL.m_FilterWidth);
const char* loc = __FUNCTION__;
if (kernelIndex != -1)
{
uint ssm1 = m_DensityFilterCL.m_Supersample - 1;
uint leftBound = ssm1;
uint rightBound = m_DensityFilterCL.m_SuperRasW - ssm1;
uint topBound = leftBound;
uint botBound = m_DensityFilterCL.m_SuperRasH - ssm1;
size_t gridW = rightBound - leftBound;
size_t gridH = botBound - topBound;
size_t blockSizeW = m_MaxDEBlockSizeW;
size_t blockSizeH = m_MaxDEBlockSizeH;
double fw2 = m_DensityFilterCL.m_FilterWidth * 2.0;
auto& wrapper = m_Devices[0]->m_Wrapper;
//Can't just blindly pass dimension in vals. Must adjust them first to evenly divide the thread count
//into the total grid dimensions.
OpenCLWrapper::MakeEvenGridDims(blockSizeW, blockSizeH, gridW, gridH);
//t.Tic();
//The classic problem with performing DE on adjacent pixels is that the filter will overlap.
//This can be solved in 2 ways. One is to use atomics, which is unacceptably slow.
//The other is to proces the entire image in multiple passes, and each pass processes blocks of pixels
//that are far enough apart such that their filters do not overlap.
//Do the latter.
//Gap is in terms of blocks and specifies how many blocks must separate two blocks running at the same time.
uint gapW = uint(ceil(fw2 / blockSizeW));
uint chunkSizeW = gapW + 1;//Chunk size is also in terms of blocks and is one block (the one running) plus the gap to the right of it.
uint gapH = uint(ceil(fw2 / blockSizeH));
uint chunkSizeH = gapH + 1;//Chunk size is also in terms of blocks and is one block (the one running) plus the gap below it.
double totalChunks = chunkSizeW * chunkSizeH;
if (b && !(b = wrapper.AddAndWriteBuffer(m_DEFilterParamsBufferName, reinterpret_cast<void*>(&m_DensityFilterCL), sizeof(m_DensityFilterCL)))) { AddToReport(loc); }
#ifdef ROW_ONLY_DE
blockSizeW = 64;//These *must* both be divisible by 16 or else pixels will go missing.
blockSizeH = 1;
gapW = (uint)ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / (double)blockSizeW);
chunkSizeW = gapW + 1;
gapH = (uint)ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / (double)32);//Block height is 1, but iterates over 32 rows.
chunkSizeH = gapH + 1;
totalChunks = chunkSizeW * chunkSizeH;
OpenCLWrapper::MakeEvenGridDims(blockSizeW, blockSizeH, gridW, gridH);
gridW /= chunkSizeW;
gridH /= chunkSizeH;
for (uint rowChunk = 0; b && !m_Abort && rowChunk < chunkSizeH; rowChunk++)
{
for (uint colChunk = 0; b && !m_Abort && colChunk < chunkSizeW; colChunk++)
{
//t2.Tic();
if (b && !(b = RunDensityFilterPrivate(kernelIndex, gridW, gridH, blockSizeW, blockSizeH, chunkSizeW, chunkSizeH, colChunk, rowChunk))) { m_Abort = true; AddToReport(loc); }
//t2.Toc(loc);
if (b && m_Callback)
{
double percent = (double((rowChunk * chunkSizeW) + (colChunk + 1)) / totalChunks) * 100.0;
double etaMs = ((100.0 - percent) / percent) * t.Toc();
if (!m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, percent, 1, etaMs))
Abort();
}
}
}
#else
gridW /= chunkSizeW;//Grid must be scaled down by number of chunks.
gridH /= chunkSizeH;
OpenCLWrapper::MakeEvenGridDims(blockSizeW, blockSizeH, gridW, gridH);
for (uint rowChunkPass = 0; b && !m_Abort && rowChunkPass < chunkSizeH; rowChunkPass++)//Number of vertical passes.
{
for (uint colChunkPass = 0; b && !m_Abort && colChunkPass < chunkSizeW; colChunkPass++)//Number of horizontal passes.
{
//t2.Tic();
if (b && !(b = RunDensityFilterPrivate(kernelIndex, gridW, gridH, blockSizeW, blockSizeH, chunkSizeW, chunkSizeH, colChunkPass, rowChunkPass))) { m_Abort = true; AddToReport(loc); }
//t2.Toc(loc);
if (b && m_Callback)
{
double percent = (double((rowChunkPass * chunkSizeW) + (colChunkPass + 1)) / totalChunks) * 100.0;
double etaMs = ((100.0 - percent) / percent) * t.Toc();
if (!m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, percent, 1, etaMs))
Abort();
}
}
}
#endif
if (b && m_Callback)
m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, 100.0, 1, 0.0);
//t2.Toc(__FUNCTION__ " all passes");
}
else
{
b = false;
AddToReport(loc);
}
return m_Abort ? eRenderStatus::RENDER_ABORT : (b ? eRenderStatus::RENDER_OK : eRenderStatus::RENDER_ERROR);
}
/// <summary>
/// Run final accumulation to the 2D output image on the primary device.
/// </summary>
/// <returns>True if success and not aborted, else false.</returns>
template <typename T, typename bucketT>
eRenderStatus RendererCL<T, bucketT>::RunFinalAccum()
{
//Timing t(4);
bool b = true;
double alphaBase;
double alphaScale;
int accumKernelIndex = MakeAndGetFinalAccumProgram(alphaBase, alphaScale);
cl_uint argIndex;
size_t gridW;
size_t gridH;
size_t blockW;
size_t blockH;
uint curvesSet = m_CurvesSet ? 1 : 0;
const char* loc = __FUNCTION__;
if (!m_Abort && accumKernelIndex != -1)
{
auto& wrapper = m_Devices[0]->m_Wrapper;
//This is needed with or without early clip.
ConvertSpatialFilter();
if (b && !(b = wrapper.AddAndWriteBuffer(m_SpatialFilterParamsBufferName, reinterpret_cast<void*>(&m_SpatialFilterCL), sizeof(m_SpatialFilterCL)))) { AddToReport(loc); }
if (b && !(b = wrapper.AddAndWriteBuffer(m_CurvesCsaName, m_Csa.m_Entries.data(), SizeOf(m_Csa.m_Entries)))) { AddToReport(loc); }
//Since early clip requires gamma correcting the entire accumulator first,
//it can't be done inside of the normal final accumulation kernel, so
//an additional kernel must be launched first.
if (b && EarlyClip())
{
int gammaCorrectKernelIndex = MakeAndGetGammaCorrectionProgram();
if (gammaCorrectKernelIndex != -1)
{
argIndex = 0;
blockW = m_Devices[0]->WarpSize();
blockH = 4;//A height of 4 seems to run the fastest.
gridW = m_SpatialFilterCL.m_SuperRasW;//Using super dimensions because this processes the density filtering bufer.
gridH = m_SpatialFilterCL.m_SuperRasH;
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
if (b && !(b = wrapper.SetBufferArg(gammaCorrectKernelIndex, argIndex++, m_AccumBufferName))) { AddToReport(loc); }//Accumulator.
if (b && !(b = wrapper.SetBufferArg(gammaCorrectKernelIndex, argIndex++, m_SpatialFilterParamsBufferName))) { AddToReport(loc); }//SpatialFilterCL.
if (b && !(b = wrapper.RunKernel(gammaCorrectKernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { AddToReport(loc); }
}
else
{
b = false;
AddToReport(loc);
}
}
argIndex = 0;
blockW = m_Devices[0]->WarpSize();
blockH = 4;//A height of 4 seems to run the fastest.
gridW = m_SpatialFilterCL.m_FinalRasW;
gridH = m_SpatialFilterCL.m_FinalRasH;
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
if (b && !(b = wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_AccumBufferName))) { AddToReport(loc); }//Accumulator.
if (b && !(b = wrapper.SetImageArg(accumKernelIndex, argIndex++, wrapper.Shared(), m_FinalImageName))) { AddToReport(loc); }//Final image.
if (b && !(b = wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_SpatialFilterParamsBufferName))) { AddToReport(loc); }//SpatialFilterCL.
if (b && !(b = wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_SpatialFilterCoefsBufferName))) { AddToReport(loc); }//Filter coefs.
if (b && !(b = wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_CurvesCsaName))) { AddToReport(loc); }//Curve points.
if (b && !(b = wrapper.SetArg (accumKernelIndex, argIndex++, curvesSet))) { AddToReport(loc); }//Do curves.
if (b && !(b = wrapper.SetArg (accumKernelIndex, argIndex++, bucketT(alphaBase)))) { AddToReport(loc); }//Alpha base.
if (b && !(b = wrapper.SetArg (accumKernelIndex, argIndex++, bucketT(alphaScale)))) { AddToReport(loc); }//Alpha scale.
if (b && wrapper.Shared())
if (b && !(b = wrapper.EnqueueAcquireGLObjects(m_FinalImageName))) { AddToReport(loc); }
if (b && !(b = wrapper.RunKernel(accumKernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { AddToReport(loc); }
if (b && wrapper.Shared())
if (b && !(b = wrapper.EnqueueReleaseGLObjects(m_FinalImageName))) { AddToReport(loc); }
//t.Toc((char*)loc);
}
else
{
b = false;
AddToReport(loc);
}
return b ? eRenderStatus::RENDER_OK : eRenderStatus::RENDER_ERROR;
}
/// <summary>
/// Zeroize a buffer of the specified size on the specified device.
/// </summary>
/// <param name="device">The index in the device buffer to clear</param>
/// <param name="bufferName">Name of the buffer to clear</param>
/// <param name="width">Width in elements</param>
/// <param name="height">Height in elements</param>
/// <param name="elementSize">Size of each element</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::ClearBuffer(size_t device, const string& bufferName, uint width, uint height, uint elementSize)
{
bool b = false;
if (device < m_Devices.size())
{
auto& wrapper = m_Devices[device]->m_Wrapper;
int kernelIndex = wrapper.FindKernelIndex(m_IterOpenCLKernelCreator.ZeroizeEntryPoint());
cl_uint argIndex = 0;
const char* loc = __FUNCTION__;
if (kernelIndex != -1)
{
size_t blockW = m_Devices[device]->Nvidia() ? 32 : 16;//Max work group size is 256 on AMD, which means 16x16.
size_t blockH = m_Devices[device]->Nvidia() ? 32 : 16;
size_t gridW = width * elementSize;
size_t gridH = height;
b = true;
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, bufferName))) { AddToReport(loc); }//Buffer of byte.
if (b && !(b = wrapper.SetArg(kernelIndex, argIndex++, width * elementSize))) { AddToReport(loc); }//Width.
if (b && !(b = wrapper.SetArg(kernelIndex, argIndex++, height))) { AddToReport(loc); }//Height.
if (b && !(b = wrapper.RunKernel(kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { AddToReport(loc); }
}
else
{
AddToReport(loc);
}
}
return b;
}
/// <summary>
/// Private wrapper around calling Gaussian density filtering kernel.
/// The parameters are very specific to how the kernel is internally implemented.
/// </summary>
/// <param name="kernelIndex">Index of the kernel to call</param>
/// <param name="gridW">Grid width</param>
/// <param name="gridH">Grid height</param>
/// <param name="blockW">Block width</param>
/// <param name="blockH">Block height</param>
/// <param name="chunkSizeW">Chunk size width (gapW + 1)</param>
/// <param name="chunkSizeH">Chunk size height (gapH + 1)</param>
/// <param name="colChunkPass">The current horizontal pass index</param>
/// <param name="rowChunkPass">The current vertical pass index</param>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::RunDensityFilterPrivate(size_t kernelIndex, size_t gridW, size_t gridH, size_t blockW, size_t blockH, uint chunkSizeW, uint chunkSizeH, uint colChunkPass, uint rowChunkPass)
{
//Timing t(4);
bool b = true;
cl_uint argIndex = 0;
const char* loc = __FUNCTION__;
if (!m_Devices.empty())
{
auto& wrapper = m_Devices[0]->m_Wrapper;
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex, m_HistBufferName))) { AddToReport(loc); } argIndex++;//Histogram.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex, m_AccumBufferName))) { AddToReport(loc); } argIndex++;//Accumulator.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex, m_DEFilterParamsBufferName))) { AddToReport(loc); } argIndex++;//FlameDensityFilterCL.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex, m_DECoefsBufferName))) { AddToReport(loc); } argIndex++;//Coefs.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex, m_DEWidthsBufferName))) { AddToReport(loc); } argIndex++;//Widths.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex, m_DECoefIndicesBufferName))) { AddToReport(loc); } argIndex++;//Coef indices.
if (b && !(b = wrapper.SetArg(kernelIndex, argIndex, chunkSizeW))) { AddToReport(loc); } argIndex++;//Chunk size width (gapW + 1).
if (b && !(b = wrapper.SetArg(kernelIndex, argIndex, chunkSizeH))) { AddToReport(loc); } argIndex++;//Chunk size height (gapH + 1).
if (b && !(b = wrapper.SetArg(kernelIndex, argIndex, colChunkPass))) { AddToReport(loc); } argIndex++;//Column chunk, horizontal pass.
if (b && !(b = wrapper.SetArg(kernelIndex, argIndex, rowChunkPass))) { AddToReport(loc); } argIndex++;//Row chunk, vertical pass.
//t.Toc(__FUNCTION__ " set args");
//t.Tic();
if (b && !(b = wrapper.RunKernel(kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { AddToReport(loc); }//Method 7, accumulating to temp box area.
//t.Toc(__FUNCTION__ " RunKernel()");
return b;
}
return false;
}
/// <summary>
/// Make the Gaussian density filter program on the primary device and return its index.
/// </summary>
/// <param name="ss">The supersample being used for the current ember</param>
/// <param name="filterWidth">Width of the gaussian filter</param>
/// <returns>The kernel index if successful, else -1.</returns>
template <typename T, typename bucketT>
int RendererCL<T, bucketT>::MakeAndGetDensityFilterProgram(size_t ss, uint filterWidth)
{
int kernelIndex = -1;
if (!m_Devices.empty())
{
auto& wrapper = m_Devices[0]->m_Wrapper;
auto& deEntryPoint = m_DEOpenCLKernelCreator.GaussianDEEntryPoint(ss, filterWidth);
const char* loc = __FUNCTION__;
if ((kernelIndex = wrapper.FindKernelIndex(deEntryPoint)) == -1)//Has not been built yet.
{
auto& kernel = m_DEOpenCLKernelCreator.GaussianDEKernel(ss, filterWidth);
if (wrapper.AddProgram(deEntryPoint, kernel, deEntryPoint, m_DoublePrecision))
kernelIndex = wrapper.FindKernelIndex(deEntryPoint);//Try to find it again, it will be present if successfully built.
else
AddToReport(string(loc) + "():\nBuilding the following program failed: \n" + kernel + "\n");
}
}
return kernelIndex;
}
/// <summary>
/// Make the final accumulation on the primary device program and return its index.
/// There are many different kernels for final accum, depending on early clip, alpha channel, and transparency.
/// Loading all of these in the beginning is too much, so only load the one for the current case being worked with.
/// </summary>
/// <param name="alphaBase">Storage for the alpha base value used in the kernel. 0 if transparency is true, else 255.</param>
/// <param name="alphaScale">Storage for the alpha scale value used in the kernel. 255 if transparency is true, else 0.</param>
/// <returns>The kernel index if successful, else -1.</returns>
template <typename T, typename bucketT>
int RendererCL<T, bucketT>::MakeAndGetFinalAccumProgram(double& alphaBase, double& alphaScale)
{
int kernelIndex = -1;
if (!m_Devices.empty())
{
auto& wrapper = m_Devices[0]->m_Wrapper;
auto& finalAccumEntryPoint = m_FinalAccumOpenCLKernelCreator.FinalAccumEntryPoint(EarlyClip(), Renderer<T, bucketT>::NumChannels(), Transparency(), alphaBase, alphaScale);
const char* loc = __FUNCTION__;
if ((kernelIndex = wrapper.FindKernelIndex(finalAccumEntryPoint)) == -1)//Has not been built yet.
{
auto& kernel = m_FinalAccumOpenCLKernelCreator.FinalAccumKernel(EarlyClip(), Renderer<T, bucketT>::NumChannels(), Transparency());
if (wrapper.AddProgram(finalAccumEntryPoint, kernel, finalAccumEntryPoint, m_DoublePrecision))
kernelIndex = wrapper.FindKernelIndex(finalAccumEntryPoint);//Try to find it again, it will be present if successfully built.
else
AddToReport(loc);
}
}
return kernelIndex;
}
/// <summary>
/// Make the gamma correction program on the primary device for early clipping and return its index.
/// </summary>
/// <returns>The kernel index if successful, else -1.</returns>
template <typename T, typename bucketT>
int RendererCL<T, bucketT>::MakeAndGetGammaCorrectionProgram()
{
if (!m_Devices.empty())
{
auto& wrapper = m_Devices[0]->m_Wrapper;
auto& gammaEntryPoint = m_FinalAccumOpenCLKernelCreator.GammaCorrectionEntryPoint(Renderer<T, bucketT>::NumChannels(), Transparency());
int kernelIndex = wrapper.FindKernelIndex(gammaEntryPoint);
const char* loc = __FUNCTION__;
if (kernelIndex == -1)//Has not been built yet.
{
auto& kernel = m_FinalAccumOpenCLKernelCreator.GammaCorrectionKernel(Renderer<T, bucketT>::NumChannels(), Transparency());
bool b = wrapper.AddProgram(gammaEntryPoint, kernel, gammaEntryPoint, m_DoublePrecision);
if (b)
kernelIndex = wrapper.FindKernelIndex(gammaEntryPoint);//Try to find it again, it will be present if successfully built.
else
AddToReport(loc);
}
return kernelIndex;
}
return -1;
}
/// <summary>
/// Create the ClBuffer HOST_PTR wrapper around the CPU histogram buffer.
/// This is only used with multiple devices, and therefore should only be called in such cases.
/// </summary>
/// <returns>True if success, felse false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::CreateHostBuffer()
{
bool b = true;
size_t size = SuperSize() * sizeof(v4bT);//Size of histogram and density filter buffer.
const char* loc = __FUNCTION__;
if (b = Renderer<T, bucketT>::Alloc(true))//Allocate the histogram memory to point this HOST_PTR buffer to, other buffers not needed.
{
if (b && !(b = m_Devices[0]->m_Wrapper.AddHostBuffer(m_HostBufferName, size, reinterpret_cast<void*>(HistBuckets()))))
AddToReport(string(loc) + ": creating OpenCL HOST_PTR buffer to point to host side histogram failed.");//Host side histogram for temporary use with multiple devices.
}
else
AddToReport(string(loc) + ": allocating host side histogram failed.");//Allocating histogram failed, something is seriously wrong.
return b;
}
/// <summary>
/// Sum all histograms from the secondary devices with the histogram on the primary device.
/// This works by reading the histogram from those devices one at a time into the host side buffer, which
/// is just an OpenCL pointer to the CPU histogram to use it as a temp space.
/// Then pass that buffer to a kernel that sums it with the histogram on the primary device.
/// </summary>
/// <returns>True if success, else false.</returns>
template <typename T, typename bucketT>
bool RendererCL<T, bucketT>::SumDeviceHist()
{
if (m_Devices.size() > 1)
{
//Timing t;
bool b = true;
auto& wrapper = m_Devices[0]->m_Wrapper;
const char* loc = __FUNCTION__;
size_t blockW = m_Devices[0]->Nvidia() ? 32 : 16;//Max work group size is 256 on AMD, which means 16x16.
size_t blockH = m_Devices[0]->Nvidia() ? 32 : 16;
size_t gridW = SuperRasW();
size_t gridH = SuperRasH();
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
int kernelIndex = wrapper.FindKernelIndex(m_IterOpenCLKernelCreator.SumHistEntryPoint());
if ((b = (kernelIndex != -1)))
{
for (size_t device = 1; device < m_Devices.size(); device++)//All secondary devices.
{
//m_HostBufferName will have been created as a ClBuffer to wrap the CPU histogram buffer as a temp space.
//So read into it, then pass to the kernel below to sum to the primary device's histogram.
if ((b = (ReadHist(device) && ClearHist(device))))//Must clear hist on secondary devices after reading and summing because they'll be reused on a quality increase (KEEP_ITERATING).
{
cl_uint argIndex = 0;
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_HostBufferName))) { break; }//Source buffer of v4bT.
if (b && !(b = wrapper.SetBufferArg(kernelIndex, argIndex++, m_HistBufferName))) { break; }//Dest buffer of v4bT.
if (b && !(b = wrapper.SetArg (kernelIndex, argIndex++, uint(SuperRasW())))) { break; }//Width in pixels.
if (b && !(b = wrapper.SetArg (kernelIndex, argIndex++, uint(SuperRasH())))) { break; }//Height in pixels.
if (b && !(b = wrapper.SetArg (kernelIndex, argIndex++, (device == m_Devices.size() - 1) ? 1 : 0))) { break; }//Clear the source buffer on the last device.
if (b && !(b = wrapper.RunKernel (kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { break; }
}
else
{
break;
}
}
}
if (!b)
{
ostringstream os;
os << loc << ": failed to sum histograms from the secondary device(s) to the primary device.";
AddToReport(os.str());
}
//t.Toc(loc);
return b;
}
else
{
return m_Devices.size() == 1;
}
}
/// <summary>
/// Private functions passing data to OpenCL programs.
/// </summary>
/// <summary>
/// Convert the currently used host side DensityFilter object into the DensityFilterCL member
/// for passing to OpenCL.
/// Some of the values are note populated when the filter object is null. This will be the case
/// when only log scaling is needed.
/// </summary>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::ConvertDensityFilter()
{
m_DensityFilterCL.m_Supersample = uint(Supersample());
m_DensityFilterCL.m_SuperRasW = uint(SuperRasW());
m_DensityFilterCL.m_SuperRasH = uint(SuperRasH());
m_DensityFilterCL.m_K1 = K1();
m_DensityFilterCL.m_K2 = K2();
if (m_DensityFilter.get())
{
m_DensityFilterCL.m_Curve = m_DensityFilter->Curve();
m_DensityFilterCL.m_KernelSize = uint(m_DensityFilter->KernelSize());
m_DensityFilterCL.m_MaxFilterIndex = uint(m_DensityFilter->MaxFilterIndex());
m_DensityFilterCL.m_MaxFilteredCounts = uint(m_DensityFilter->MaxFilteredCounts());
m_DensityFilterCL.m_FilterWidth = uint(m_DensityFilter->FilterWidth());
}
}
/// <summary>
/// Convert the currently used host side SpatialFilter object into the SpatialFilterCL member
/// for passing to OpenCL.
/// </summary>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::ConvertSpatialFilter()
{
bucketT g, linRange, vibrancy;
Color<bucketT> background;
if (m_SpatialFilter.get())
{
this->PrepFinalAccumVals(background, g, linRange, vibrancy);
m_SpatialFilterCL.m_SuperRasW = uint(SuperRasW());
m_SpatialFilterCL.m_SuperRasH = uint(SuperRasH());
m_SpatialFilterCL.m_FinalRasW = uint(FinalRasW());
m_SpatialFilterCL.m_FinalRasH = uint(FinalRasH());
m_SpatialFilterCL.m_Supersample = uint(Supersample());
m_SpatialFilterCL.m_FilterWidth = uint(m_SpatialFilter->FinalFilterWidth());
m_SpatialFilterCL.m_NumChannels = uint(Renderer<T, bucketT>::NumChannels());
m_SpatialFilterCL.m_BytesPerChannel = uint(BytesPerChannel());
m_SpatialFilterCL.m_DensityFilterOffset = uint(DensityFilterOffset());
m_SpatialFilterCL.m_Transparency = Transparency();
m_SpatialFilterCL.m_YAxisUp = uint(m_YAxisUp);
m_SpatialFilterCL.m_Vibrancy = vibrancy;
m_SpatialFilterCL.m_HighlightPower = HighlightPower();
m_SpatialFilterCL.m_Gamma = g;
m_SpatialFilterCL.m_LinRange = linRange;
m_SpatialFilterCL.m_Background = background;
}
}
/// <summary>
/// Convert the host side Ember object into an EmberCL object
/// and a vector of XformCL for passing to OpenCL.
/// </summary>
/// <param name="ember">The Ember object to convert</param>
/// <param name="emberCL">The converted EmberCL</param>
/// <param name="xformsCL">The converted vector of XformCL</param>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::ConvertEmber(Ember<T>& ember, EmberCL<T>& emberCL, vector<XformCL<T>>& xformsCL)
{
memset(&emberCL, 0, sizeof(EmberCL<T>));//Might not really be needed.
emberCL.m_RotA = m_RotMat.A();
emberCL.m_RotB = m_RotMat.B();
emberCL.m_RotD = m_RotMat.D();
emberCL.m_RotE = m_RotMat.E();
emberCL.m_CamMat = ember.m_CamMat;
emberCL.m_CenterX = CenterX();
emberCL.m_CenterY = ember.m_RotCenterY;
emberCL.m_CamZPos = ember.m_CamZPos;
emberCL.m_CamPerspective = ember.m_CamPerspective;
emberCL.m_CamYaw = ember.m_CamYaw;
emberCL.m_CamPitch = ember.m_CamPitch;
emberCL.m_CamDepthBlur = ember.m_CamDepthBlur;
emberCL.m_BlurCoef = ember.BlurCoef();
for (size_t i = 0; i < ember.TotalXformCount() && i < xformsCL.size(); i++)
{
auto xform = ember.GetTotalXform(i);
xformsCL[i].m_A = xform->m_Affine.A();
xformsCL[i].m_B = xform->m_Affine.B();
xformsCL[i].m_C = xform->m_Affine.C();
xformsCL[i].m_D = xform->m_Affine.D();
xformsCL[i].m_E = xform->m_Affine.E();
xformsCL[i].m_F = xform->m_Affine.F();
xformsCL[i].m_PostA = xform->m_Post.A();
xformsCL[i].m_PostB = xform->m_Post.B();
xformsCL[i].m_PostC = xform->m_Post.C();
xformsCL[i].m_PostD = xform->m_Post.D();
xformsCL[i].m_PostE = xform->m_Post.E();
xformsCL[i].m_PostF = xform->m_Post.F();
xformsCL[i].m_DirectColor = xform->m_DirectColor;
xformsCL[i].m_ColorSpeedCache = xform->ColorSpeedCache();
xformsCL[i].m_OneMinusColorCache = xform->OneMinusColorCache();
xformsCL[i].m_Opacity = xform->m_Opacity;
xformsCL[i].m_VizAdjusted = xform->VizAdjusted();
for (size_t varIndex = 0; varIndex < xform->TotalVariationCount() && varIndex < MAX_CL_VARS; varIndex++)//Assign all variation weights for this xform, with a max of MAX_CL_VARS.
xformsCL[i].m_VariationWeights[varIndex] = xform->GetVariation(varIndex)->m_Weight;
}
}
/// <summary>
/// Convert the host side CarToRas object into the CarToRasCL member
/// for passing to OpenCL.
/// </summary>
/// <param name="carToRas">The CarToRas object to convert</param>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::ConvertCarToRas(const CarToRas<T>& carToRas)
{
m_CarToRasCL.m_RasWidth = uint(carToRas.RasWidth());
m_CarToRasCL.m_PixPerImageUnitW = carToRas.PixPerImageUnitW();
m_CarToRasCL.m_RasLlX = carToRas.RasLlX();
m_CarToRasCL.m_PixPerImageUnitH = carToRas.PixPerImageUnitH();
m_CarToRasCL.m_RasLlY = carToRas.RasLlY();
m_CarToRasCL.m_CarLlX = carToRas.CarLlX();
m_CarToRasCL.m_CarLlY = carToRas.CarLlY();
m_CarToRasCL.m_CarUrX = carToRas.CarUrX();
m_CarToRasCL.m_CarUrY = carToRas.CarUrY();
}
/// <summary>
/// Fill a seeds buffer for all devices, each of which gets passed to its
/// respective device when launching the iteration kernel.
/// The range of each seed will be spaced to ensure no duplicates are added.
/// Note, WriteBuffer() must be called after this to actually copy the
/// data from the host to the device.
/// </summary>
template <typename T, typename bucketT>
void RendererCL<T, bucketT>::FillSeeds()
{
if (!m_Devices.empty())
{
double start, delta = std::floor(double(std::numeric_limits<uint>::max()) / (IterGridKernelCount() * 2 * m_Devices.size()));
m_Seeds.resize(m_Devices.size());
start = delta;
for (size_t device = 0; device < m_Devices.size(); device++)
{
m_Seeds[device].resize(IterGridKernelCount());
for (auto& seed : m_Seeds[device])
{
seed.x = uint(m_Rand[0].template Frand<double>(start, start + delta));
start += delta;
seed.y = uint(m_Rand[0].template Frand<double>(start, start + delta));
start += delta;
}
}
}
}
template EMBERCL_API class RendererCL<float, float>;
#ifdef DO_DOUBLE
template EMBERCL_API class RendererCL<double, float>;
#endif
}