fractorium/Source/Ember/Interpolate.h
Person 8086cfa731 22.21.4.2 4/19/2021
--User changes
 -Allow users to set the Exp value when using the Exp temporal filter type.
 -Set the default temporal filter type to be Box, which does not alter the palette values at all during animation. This is done to avoid confusion when using Gaussian or Exp which can produce darkened images.

--Bug fixes
 -Sending a sequence to the final render dialog when the keyframes had non zero rotate and center Y values would produce off center animations when rendered.
 -Temporal filters were being unnecessarily recreated many times when rendering or generating sequences.
 -Exp filter was always treated like a Box filter.

--Code changes
 -Add a new member function SaveCurrentAsXml(QString filename = "") to the controllers which is only used for testing.
 -Modernize some C++ code.
2021-04-19 21:07:24 -06:00

1030 lines
34 KiB
C++

#pragma once
#include "Ember.h"
#include "VariationList.h"
/// <summary>
/// Interpolater class.
/// </summary>
namespace EmberNs
{
/// <summary>
/// g++ needs a forward declaration here.
/// </summary>
template <typename T> class Ember;
template <typename T> class VariationList;
/// <summary>
/// Contains many static functions for handling interpolation and other miscellaneous operations on
/// embers and vectors of embers. This class is similar to, and used in conjunction with SheepTools.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
class EMBER_API Interpolater
{
public:
/// <summary>
/// Determine if the xform at a given index in an ember is a padding xform.
/// </summary>
/// <param name="ember">The ember whose xforms will be examined for padding</param>
/// <param name="xf">The index of the ember to examine</param>
/// <param name="isFinal">Whether the xform being examined is the final one</param>
/// <returns>True the xform at index xf is a padding one, else false.</returns>
static bool IsPadding(const Ember<T>& ember, size_t xf, bool isFinal)
{
if (!isFinal)//Either a final wasn't present in any ember, or if there was, this xform is a normal one, so do not include final in the index check.
{
return xf >= ember.XformCount();
}
else//There was a final present, and we are checking it, so just see if its presence differs.
{
return !ember.UseFinalXform();
}
}
/// <summary>
/// Aligns the specified array of embers and stores in the output array.
/// This is used to prepare embers before interpolating them.
/// Alignment means that every ember in a list will have the same number of xforms.
/// Each xform at a given position will have mostly the same variations as the xform
/// in the same position in the rest of the embers. However some
/// intelligence is applied to add or remove variations that wouldn't look good with
/// the others present.
/// After this function completes, sourceEmbers will remain unchanged and destEmbers
/// will contain the aligned list of embers from sourceEmbers.
/// </summary>
/// <param name="sourceEmbers">The array of embers to align</param>
/// <param name="destEmbers">The array which will contain the aligned embers </param>
/// <param name="count">The number of elements in sourceEmbers</param>
static void Align(const Ember<T>* sourceEmbers, Ember<T>* destEmbers, size_t count)
{
bool aligned = true;
bool currentFinal, hasFinal = sourceEmbers[0].UseFinalXform();
size_t xf, currentCount, maxCount = sourceEmbers[0].XformCount();
Xform<T>* destOtherXform;
auto variationList = VariationList<T>::Instance();
//Determine the max number of xforms present in sourceEmbers.
//Also check if final xforms are used in any of them.
for (size_t i = 1; i < count; i++)
{
currentCount = sourceEmbers[i].XformCount();
if (currentCount != maxCount)//Any difference, less or more, means unaligned.
{
aligned = false;
if (currentCount > maxCount)
maxCount = currentCount;
}
currentFinal = sourceEmbers[i].UseFinalXform();
if (hasFinal != currentFinal)//Check if any used final.
{
aligned = false;
hasFinal |= currentFinal;
}
}
//Copy them using the max xform count, and do final if any had final.
for (size_t i = 0; i < count; i++)
destEmbers[i] = sourceEmbers[i].Copy(maxCount, hasFinal);
if (hasFinal)
maxCount++;
std::array<size_t, 4> maxCurvePoints = { 0, 0, 0, 0 };
//Find the maximum number of points for each curve type in all curves.
for (size_t e = 0; e < count; e++)
for (size_t j = 0; j < sourceEmbers[0].m_Curves.m_Points.size(); j++)//Should always be 4 for every ember.
maxCurvePoints[j] = std::max(maxCurvePoints[j], sourceEmbers[e].m_Curves.m_Points[j].size());
//Check to see if there's a parametric variation present in one xform
//but not in an aligned xform. If this is the case, use the parameters
//from the xform with the variation as the defaults for the blank one.
//All embers will have the same number of xforms at this point.
for (size_t i = 0; i < count; i++)
{
intmax_t ii;
destEmbers[i].m_Curves = sourceEmbers[i].m_Curves;
for (size_t j = 0; j < sourceEmbers[0].m_Curves.m_Points.size(); j++)//Should always be 4 for every ember.
while (destEmbers[i].m_Curves.m_Points[j].size() < maxCurvePoints[j])
destEmbers[i].m_Curves.m_Points[j].push_back(sourceEmbers[i].m_Curves.m_Points[j].back());
for (xf = 0; xf < maxCount; xf++)//This will include both normal xforms and the final.
{
bool isFinal = hasFinal && (xf == maxCount - 1);
auto destXform = destEmbers[i].GetTotalXform(xf, hasFinal);
Variation<T>* dummyvar = nullptr;
//Ensure every parametric variation contained in every xform at either position i - 1 or i + 1 is also contained in the dest xform.
if (i > 0)
destOtherXform = destEmbers[i - 1].GetTotalXform(xf);
else if (i < count - 1)
destOtherXform = destEmbers[i + 1].GetTotalXform(xf);
else
destOtherXform = nullptr;//Should never happen
if (destOtherXform)
MergeXformVariations1Way(destOtherXform, destXform, true, true);
//This is a new xform. Let's see if it's possible to choose a better 'identity' xform.
//Check the neighbors to see if any of these variations are used:
//rings2, fan2, blob, perspective, julian, juliascope, ngon, curl, super_shape, split
//If so, can use a better starting point for these.
//If the current xform index is greater than what the original xform count was for this ember, then it's a padding xform.
if (IsPadding(sourceEmbers[i], xf, isFinal) && !aligned)
{
intmax_t found = 0;
//Remove linear.
destXform->DeleteVariationById(eVariationId::VAR_LINEAR);
//Only do the next substitution for log interpolation.
if ((i == 0 && destEmbers[i].m_AffineInterp == eAffineInterp::AFFINE_INTERP_LOG) ||
(i > 0 && destEmbers[i - 1].m_AffineInterp == eAffineInterp::AFFINE_INTERP_LOG))
{
for (ii = -1; ii <= 1; ii += 2)
{
//Skip if out of bounds.
if (i + ii < 0 || i + ii >= count)
continue;
//Skip if this is also padding.
if (IsPadding(sourceEmbers[i + ii], xf, isFinal))
continue;
if (destOtherXform = destEmbers[i + ii].GetTotalXform(xf))
{
//Spherical / Ngon (trumps all others due to holes)
//Interpolate these against a 180 degree rotated identity
//with weight -1.
//Added JULIAN/JULIASCOPE to get rid of black wedges.
//Testing for variation weight > 0 is to make the behavior match flam3 exactly, even though that doesn't really make sense in the modern era
//Because variations can use negative weights.
if (((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_SPHERICAL) ) && dummyvar->m_Weight > 0) ||
((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_NGON) ) && dummyvar->m_Weight > 0) ||
((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_JULIAN) ) && dummyvar->m_Weight > 0) ||
((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_JULIASCOPE) ) && dummyvar->m_Weight > 0) ||
((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_POLAR) ) && dummyvar->m_Weight > 0) ||
((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_WEDGE_SPH) ) && dummyvar->m_Weight > 0) ||
((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_WEDGE_JULIA)) && dummyvar->m_Weight > 0))
{
destXform->AddVariation(variationList->GetVariationCopy(eVariationId::VAR_LINEAR, -1));
//Set the coefs appropriately.
destXform->m_Affine.A(-1);
destXform->m_Affine.D(0);
destXform->m_Affine.B(0);
destXform->m_Affine.E(-1);
destXform->m_Affine.C(0);
destXform->m_Affine.F(0);
found = -1;
}
}
}
}
if (found == 0)
{
for (ii = -1; ii <= 1; ii += 2)
{
//Skip if out of bounds.
if (i + ii < 0 || i + ii >= count)
continue;
//Skip if this is also padding.
if (IsPadding(sourceEmbers[i + ii], xf, isFinal))
continue;
if (destOtherXform = destEmbers[i + ii].GetTotalXform(xf))
{
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_RECTANGLES)) && dummyvar->m_Weight > 0)
{
destXform->DeleteVariationById(eVariationId::VAR_RECTANGLES);//In case it was there, remove it first so the add below succeeds.
if (auto var = variationList->GetParametricVariationCopy(eVariationId::VAR_RECTANGLES))
{
var->SetParamVal("rectangles_x", 0);
var->SetParamVal("rectangles_y", 0);
if (!destXform->AddVariation(var))
delete var;
}
found++;
}
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_RINGS2)) && dummyvar->m_Weight > 0)
{
destXform->DeleteVariationById(eVariationId::VAR_RINGS2);
if (auto var = variationList->GetParametricVariationCopy(eVariationId::VAR_RINGS2))
{
var->SetParamVal("rings2_val", 0);
if (!destXform->AddVariation(var))
delete var;
}
found++;
}
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_FAN2)) && dummyvar->m_Weight > 0)
{
destXform->DeleteVariationById(eVariationId::VAR_FAN2);
if (auto var = variationList->GetVariationCopy(eVariationId::VAR_FAN2))
if (!destXform->AddVariation(var))
delete var;
found++;
}
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_BLOB)) && dummyvar->m_Weight > 0)
{
destXform->DeleteVariationById(eVariationId::VAR_BLOB);
if (auto var = variationList->GetParametricVariationCopy(eVariationId::VAR_BLOB))
{
var->SetParamVal("blob_low", 1);
if (!destXform->AddVariation(var))
delete var;
}
found++;
}
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_PERSPECTIVE)) && dummyvar->m_Weight > 0)
{
destXform->DeleteVariationById(eVariationId::VAR_PERSPECTIVE);
if (auto var = variationList->GetVariationCopy(eVariationId::VAR_PERSPECTIVE))
if (!destXform->AddVariation(var))
delete var;
found++;
}
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_CURL)) && dummyvar->m_Weight > 0)
{
destXform->DeleteVariationById(eVariationId::VAR_CURL);
if (auto var = variationList->GetParametricVariationCopy(eVariationId::VAR_CURL))
{
var->SetParamVal("curl_c1", 0);
if (!destXform->AddVariation(var))
delete var;
}
found++;
}
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_SUPER_SHAPE)) && dummyvar->m_Weight > 0)
{
destXform->DeleteVariationById(eVariationId::VAR_SUPER_SHAPE);
if (auto var = variationList->GetParametricVariationCopy(eVariationId::VAR_SUPER_SHAPE))
{
var->SetParamVal("super_shape_n1", 2);
var->SetParamVal("super_shape_n2", 2);
var->SetParamVal("super_shape_n3", 2);
if (!destXform->AddVariation(var))
delete var;
}
found++;
}
}
}
}
//If none matched those, try the affine ones, fan and rings.
if (found == 0)
{
for (ii = -1; ii <= 1; ii += 2)
{
//Skip if out of bounds.
if (i + ii < 0 || i + ii >= count)
continue;
//Skip if this is also padding.
if (IsPadding(sourceEmbers[i + ii], xf, isFinal))
continue;
if (destOtherXform = destEmbers[i + ii].GetTotalXform(xf))
{
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_FAN)) && dummyvar->m_Weight > 0)
{
destXform->DeleteVariationById(eVariationId::VAR_FAN);
if (auto var = variationList->GetVariationCopy(eVariationId::VAR_FAN))
if (!destXform->AddVariation(var))
delete var;
found++;
}
if ((dummyvar = destOtherXform->GetVariationById(eVariationId::VAR_RINGS)) && dummyvar->m_Weight > 0)
{
destXform->DeleteVariationById(eVariationId::VAR_RINGS);
if (auto var = variationList->GetVariationCopy(eVariationId::VAR_RINGS))
if (!destXform->AddVariation(var))
delete var;
found++;
}
}
}
if (destXform && (found > 0))
{
//Set the coefs appropriately.
destXform->m_Affine.A(0);
destXform->m_Affine.B(1);//This will be swapping x and y, seems strange, but it's what the original did.
destXform->m_Affine.C(0);
destXform->m_Affine.D(1);
destXform->m_Affine.E(0);
destXform->m_Affine.F(0);
}
}
//If there still are no matches, switch back to linear.
if (destXform)
{
if (found == 0)
{
destXform->DeleteVariationById(eVariationId::VAR_LINEAR);
if (auto var = variationList->GetVariationCopy(eVariationId::VAR_LINEAR))
if (!destXform->AddVariation(var))
delete var;
}
else if (found > 0)
{
destXform->NormalizeVariationWeights();//Otherwise, normalize the weights.
}
}
}
}//Xforms.
}//Embers.
}
/// <summary>
/// Thin wrapper around AnyXaosPresent().
/// </summary>
/// <param name="embers">The vector of embers to inspect for xaos</param>
/// <returns>True if at least one ember contained xaos, else false.</returns>
static bool AnyXaosPresent(const vector<Ember<T>>& embers)
{
return AnyXaosPresent(embers.data(), embers.size());
}
/// <summary>
/// Determine whether at least one ember in the array contained xaos.
/// </summary>
/// <param name="embers">The array of embers to inspect</param>
/// <param name="size">The size of the embers array</param>
/// <returns>True if at least one ember contained xaos, else false.</returns>
static bool AnyXaosPresent(const Ember<T>* embers, size_t size)
{
for (size_t i = 0; i < size; i++)
if (embers[i].XaosPresent())
return true;
return false;
}
/// <summary>
/// Thin wrapper around MaxXformCount().
/// </summary>
/// <param name="embers">The vector of embers to inspect for the greatest xform count</param>
/// <returns>The greatest non-final xform count in any of the embers</returns>
static size_t MaxXformCount(vector<Ember<T>>& embers)
{
return MaxXformCount(embers.data(), embers.size());
}
/// <summary>
/// Find the maximum number of non-final xforms present in the array of embers.
/// </summary>
/// <param name="embers">The array of embers to inspect</param>
/// <param name="size">The size of the embers array</param>
/// <returns>The greatest non-final xform count in any of the embers</returns>
static size_t MaxXformCount(const Ember<T>* embers, size_t size)
{
size_t i, maxCount = 0;
for (i = 0; i < size; i++)
if (embers[i].XformCount() > maxCount)
maxCount = embers[i].XformCount();
return maxCount;
}
/// <summary>
/// Thin wrapper around AnyFinalPresent().
/// </summary>
/// <param name="embers">The vector of embers to inspect the presence of a final xform</param>
/// <returns>True if any contained a non-empty final xform, else false.</returns>
static bool AnyFinalPresent(const vector<Ember<T>>& embers)
{
return AnyFinalPresent(embers.data(), embers.size());
}
/// <summary>
/// Determine whether at least one ember in the array contained a non-empty final xform.
/// </summary>
/// <param name="embers">The array of embers to inspect the presence of a final xform</param>
/// <param name="size">The size of the embers array</param>
/// <returns>True if any contained a final xform, else false.</returns>
static bool AnyFinalPresent(const Ember<T>* embers, size_t size)
{
for (size_t i = 0; i < size; i++)
if (embers[i].UseFinalXform())
return true;
return false;
}
/// <summary>
/// Thin wrapper around Interpolate().
/// </summary>
/// <param name="embers">The vector of embers to interpolate</param>
/// <param name="time">The time position in the vector specifying the point of interpolation</param>
/// <param name="stagger">Stagger if > 0</param>
/// <param name="result">The interpolated result</param>
void Interpolate(const vector<Ember<T>>& embers, T time, T stagger, Ember<T>& result)
{
Interpolate(embers.data(), embers.size(), time, stagger, result);
}
/// <summary>
/// Interpolates the array of embers at a specified time and stores the result.
/// </summary>
/// <param name="embers">The embers array</param>
/// <param name="size">The size of the embers array</param>
/// <param name="time">The time position in the vector specifying the point of interpolation</param>
/// <param name="stagger">Stagger if > 0</param>
/// <param name="result">The interpolated result</param>
void Interpolate(const Ember<T>* embers, size_t size, T time, T stagger, Ember<T>& result)
{
if (size == 1)
{
result = embers[0];//Deep copy.
return;
}
size_t i1, i2;
bool smoothFlag = false;
if (embers[0].m_Time >= time)
{
i1 = 0;
i2 = 1;
}
else if (embers[size - 1].m_Time <= time)
{
i1 = size - 2;
i2 = size - 1;
}
else
{
i1 = 0;
while (embers[i1].m_Time < time)
i1++;
i1--;
i2 = i1 + 1;
}
m_Coeffs[0] = (embers[i2].m_Time - time) / (embers[i2].m_Time - embers[i1].m_Time);
m_Coeffs[1] = 1 - m_Coeffs[0];
//To interpolate the xforms, make copies of the source embers
//and ensure that they both have the same number of xforms before progressing.
if (embers[i1].m_Interp == eInterp::EMBER_INTERP_LINEAR)
{
Align(&embers[i1], &m_Embers[0], 2);
smoothFlag = false;
}
else
{
if (i1 == 0)
{
Align(&embers[i1], &m_Embers[0], 2);
smoothFlag = false;
}
else if (i2 == size - 1)
{
Align(&embers[i1], &m_Embers[0], 2);
smoothFlag = false;
}
else
{
Align(&embers[i1 - 1], &m_Embers[0], 4);//Should really be doing some sort of checking here to ensure the ember vectors have 4 elements.
smoothFlag = true;
}
//smoothFlag = true;
}
result.m_Time = time;
result.m_Interp = eInterp::EMBER_INTERP_LINEAR;
result.m_AffineInterp = embers[0].m_AffineInterp;
result.m_PaletteInterp = ePaletteInterp::INTERP_HSV;
if (!smoothFlag)
result.Interpolate(&m_Embers[0], 2, m_Coeffs, stagger);
else
result.InterpolateCatmullRom(&m_Embers[0], 4, m_Coeffs[1]);
}
/// <summary>
/// Merge the variations in a vector of xforms into a single xform so that
/// it contains one variation for each variation type that was present in the
/// vector of xforms.
/// </summary>
/// <param name="xforms">The xforms to merge</param>
/// <param name="clearWeights">Clear weights if true, else copy weights</param>
/// <returns>The xform whose variations are a result of the merge</returns>
static Xform<T> MergeXforms(vector<Xform<T>*>& xforms, bool clearWeights = false)
{
Xform<T> xform;
for (auto xf : xforms)
MergeXformVariations1Way(xf, &xform, false, clearWeights);
return xform;
}
/// <summary>
/// Merges the xform variations from one xform to another, but not back.
/// </summary>
/// <param name="source">The source xform to merge from</param>
/// <param name="dest">The destination xform to merge to</param>
/// <param name="parVarsOnly">If true, only merge parametric variations, else merge all</param>
/// <param name="clearWeights">If true, set variation weights in dest to 0, else copy weights</param>
static void MergeXformVariations1Way(Xform<T>* source, Xform<T>* dest, bool parVarsOnly, bool clearWeights)
{
for (size_t i = 0; i < source->TotalVariationCount(); i++)//Iterate through the first xform's variations.
{
auto var = source->GetVariation(i);//Grab the variation at index in in the first xform.
auto var2 = dest->GetVariationById(var->VariationId());//See if the same variation exists in the second xform.
auto parVar = dynamic_cast<ParametricVariation<T>*>(var);//Parametric cast of the first var for later.
if (!var2)//Only take action if the second xform did not contain this variation.
{
if (parVarsOnly)//Only add if parametric.
{
if (parVar)
{
auto parVarCopy = parVar->Copy();
if (clearWeights)
parVarCopy->m_Weight = 0;
dest->AddVariation(parVarCopy);
}
}
else//Add regardless of type.
{
auto varCopy = var->Copy();
if (clearWeights)
varCopy->m_Weight = 0;
dest->AddVariation(varCopy);
}
}
}
}
/// <summary>
/// Merges the xform variations from one xform to another, and back.
/// After this function completes, both xforms will have the same variations.
/// </summary>
/// <param name="source">The source xform to merge from, and to</param>
/// <param name="dest">The destination xform to merge to, and from</param>
/// <param name="parVarsOnly">If true, only merge parametric variations, else merge all</param>
/// <param name="clearWeights">If true, set variation weights in dest to 0, else copy weights</param>
static void MergeXformVariations2Way(Xform<T>* source, Xform<T>* dest, bool parVarsOnly, bool clearWeights)
{
MergeXformVariations1Way(source, dest, parVarsOnly, clearWeights);
MergeXformVariations1Way(dest, source, parVarsOnly, clearWeights);
}
/// <summary>
/// Interpolate a vector of parametric variations by a vector of coefficients and store the ouput in a new parametric variation.
/// Elements in first which are not the same variation type as second will be ignored.
/// </summary>
/// <param name="first">The vector of parametric variations to interpolate</param>
/// <param name="second">The parametric variation to store the output. This must be initialized first to the desired type.</param>
/// <param name="c">The vector of coefficients used to interpolate</param>
static void InterpParametricVar(vector<ParametricVariation<T>*>& first, ParametricVariation<T>* second, vector<T>& c)
{
//First, make sure the variation vector is the same size as the coefficient vector.
if (second && first.size() == c.size())
{
second->Clear();
auto secondParams = second->Params();
//Iterate through each of the source variations.
for (size_t i = 0; i < first.size(); i++)
{
auto firstVar = first[i];
//Make sure the source variation at this index is the same type as the variation being written to.
if (firstVar->VariationId() == second->VariationId())
{
size_t size = firstVar->ParamCount();
auto firstParams = firstVar->Params();
//Multiply each parameter of the variation at this index by the coefficient at this index, and add
//the result to the corresponding parameter in second.
for (size_t j = 0; j < size; j++)
{
if (!firstParams[j].IsPrecalc())
*(secondParams[j].Param()) += c[i] * firstParams[j].ParamVal();
}
}
}
second->Precalc();
}
}
/// <summary>
/// Thin wrapper around ConvertLinearToPolar().
/// </summary>
/// <param name="embers">The vector of embers whose affine transforms will be copied and converted</param>
/// <param name="xfi">The xform index in each ember to convert</param>
/// <param name="post">True to convert post affine, else convert pre affine.</param>
/// <param name="cxAng">The vec2 vector to store the polar angular values</param>
/// <param name="cxMag">The vec2 vector to store the polar magnitude values</param>
/// <param name="cxTrn">The vec2 vector to store the polar translation values</param>
static void ConvertLinearToPolar(const vector<Ember<T>>& embers, size_t xfi, bool post, vector<v2T>& cxAng, vector<v2T>& cxMag, vector<v2T>& cxTrn)
{
ConvertLinearToPolar(embers.data(), embers.size(), xfi, post, cxAng, cxMag, cxTrn);
}
/// <summary>
/// Convert pre or post affine coordinates of the xform at a specific index in each ember from linear to polar and store as separate
/// vec2 components in the vector parameters cxAng, cxMag and cxTrn.
/// </summary>
/// <param name="embers">The array of embers whose affine transforms will be copied and converted</param>
/// <param name="size">The size of the embers array</param>
/// <param name="xfi">The xform index in each ember to convert</param>
/// <param name="post">True to convert post affine, else convert pre affine.</param>
/// <param name="cxAng">The vec2 vector to store the polar angular values</param>
/// <param name="cxMag">The vec2 vector to store the polar magnitude values</param>
/// <param name="cxTrn">The vec2 vector to store the polar translation values</param>
static void ConvertLinearToPolar(const Ember<T>* embers, size_t size, size_t xfi, bool post, vector<v2T>& cxAng, vector<v2T>& cxMag, vector<v2T>& cxTrn)
{
const auto LOCALEPS = T(1e-10);//Even though EPS is defined elsewhere, need this here for full compatibility with flam3.
if (size == cxAng.size() &&
size == cxMag.size() &&
size == cxTrn.size())
{
T c1[2], d, t, refang;
glm::length_t col, k;
int zlm[2];
const char* loc = __FUNCTION__;
for (k = 0; k < size; k++)
{
//Establish the angles and magnitudes for each component.
//Keep translation linear.
zlm[0] = zlm[1] = 0;
if (auto xform = embers[k].GetTotalXform(xfi))
{
for (col = 0; col < 2; col++)
{
if (!post)
{
c1[0] = xform->m_Affine.m_Mat[0][col];//a or b.
c1[1] = xform->m_Affine.m_Mat[1][col];//d or e.
t = xform->m_Affine.m_Mat[col][2];//c or f.
}
else
{
c1[0] = xform->m_Post.m_Mat[0][col];
c1[1] = xform->m_Post.m_Mat[1][col];
t = xform->m_Post.m_Mat[col][2];
}
cxAng[k][col] = std::atan2(c1[1], c1[0]);
cxMag[k][col] = std::sqrt(c1[0] * c1[0] + c1[1] * c1[1]);
if (cxMag[k][col] == 0)
zlm[col] = 1;
cxTrn[k][col] = t;
}
if (zlm[0] == 1 && zlm[1] == 0)
cxAng[k][0] = cxAng[k][1];
else if (zlm[0] == 0 && zlm[1] == 1)
cxAng[k][1] = cxAng[k][0];
}
else
{
cout << loc << ": xform " << xfi << " is missing when it was expected, something is severely wrong.\n";
}
}
//Make sure the rotation is the shorter direction around the circle
//by adjusting each angle in succession, and rotate clockwise if 180 degrees.
for (col = 0; col < 2; col++)
{
for (k = 1; k < size; k++)
{
if (auto xform = embers[k].GetTotalXform(xfi))
{
//Adjust angles differently if an asymmetric case.
if (xform->m_Wind[col] > 0 && !post)
{
//Adjust the angles to make sure that it's within wind : wind + 2pi.
refang = xform->m_Wind[col] - M_2PI;
//Make sure both angles are within [refang refang + 2 * pi].
while (cxAng[k - 1][col] < refang)
cxAng[k - 1][col] += M_2PI;
while (cxAng[k - 1][col] > refang + M_2PI)
cxAng[k - 1][col] -= M_2PI;
while (cxAng[k][col] < refang)
cxAng[k][col] += M_2PI;
while (cxAng[k][col] > refang + M_2PI)
cxAng[k][col] -= M_2PI;
}
else
{
//Normal way of adjusting angles.
d = cxAng[k][col] - cxAng[k - 1][col];
//Adjust to avoid the -pi/pi discontinuity.
if (d > M_PI + LOCALEPS)
cxAng[k][col] -= M_2PI;
else if (d < -(M_PI - LOCALEPS))//Forces clockwise rotation at 180.
cxAng[k][col] += M_2PI;
}
}
else
{
cout << loc << ": xform " << xfi << " is missing when it was expected, something is severely wrong.\n";
}
}
}
}
}
/// <summary>
/// Never really understood what this did, but it has to do with winding.
/// </summary>
/// <param name="embers">The array of embers</param>
/// <param name="count">The size of the embers array</param>
static void AsymmetricRefAngles(Ember<T>* embers, size_t count)
{
const auto LOCALEPS = T(1e-10);//Even though EPS is defined elsewhere, need this here for full compatibility with flam3.
size_t k, xfi;
T cxang[4][2], c1[2], d;
for (xfi = 0; xfi < embers[0].XformCount(); xfi++)//Final xforms don't rotate regardless of their symmetry.
{
for (k = 0; k < count; k++)
{
//Establish the angle for each component.
//Should potentially functionalize.
for (glm::length_t col = 0; col < 2; col++)
{
c1[0] = embers[k].GetXform(xfi)->m_Affine.m_Mat[0][col];//A,D then B,E.
c1[1] = embers[k].GetXform(xfi)->m_Affine.m_Mat[1][col];
cxang[k][col] = std::atan2(c1[1], c1[0]);
}
}
for (k = 1; k < count; k++)
{
for (size_t col = 0; col < 2; col++)
{
bool sym0, sym1, padSymFlag = false;
d = cxang[k][col] - cxang[k - 1][col];
//Adjust to avoid the -pi/pi discontinuity.
if (d > T(M_PI + LOCALEPS))
cxang[k][col] -= 2 * T(M_PI);
else if (d < -T(M_PI - LOCALEPS))
cxang[k][col] += 2 * T(M_PI);
//If this is an asymmetric case, store the NON-symmetric angle
//Check them pairwise and store the reference angle in the second
//to avoid overwriting if asymmetric on both sides.
sym0 = (embers[k - 1].GetXform(xfi)->m_Animate == 0 || (embers[k - 1].GetXform(xfi)->Empty() && padSymFlag));
sym1 = (embers[k ].GetXform(xfi)->m_Animate == 0 || (embers[k ].GetXform(xfi)->Empty() && padSymFlag));
if (sym1 && !sym0)
embers[k].GetXform(xfi)->m_Wind[col] = cxang[k - 1][col] + 2 * T(M_PI);
else if (sym0 && !sym1)
embers[k].GetXform(xfi)->m_Wind[col] = cxang[k][col] + 2 * T(M_PI);
}
}
}
}
/// <summary>
/// Never really understood what this did.
/// </summary>
/// <param name="coefs">The coefficients vector</param>
/// <param name="cxAng">The vec2 vector to store the polar angular values</param>
/// <param name="cxMag">The vec2 vector to store the polar magnitude values</param>
/// <param name="cxTrn">The vec2 vector to store the polar translation values</param>
/// <param name="store">The Affine2D to store the inerpolated values in</param>
static void InterpAndConvertBack(const vector<T>& coefs, const vector<v2T>& cxAng, const vector<v2T>& cxMag, const vector<v2T>& cxTrn, Affine2D<T>& store)
{
size_t size = coefs.size();
glm::length_t i, col, accmode[2] = { 0, 0 };
T expmag, accang[2] = { 0, 0 }, accmag[2] = { 0, 0 };
//Accumulation mode defaults to logarithmic, but in special
//cases switch to linear accumulation.
for (col = 0; col < 2; col++)
{
for (i = 0; i < size; i++)
{
if (std::log(cxMag[i][col]) < -10)
accmode[col] = 1;//Mode set to linear interp.
}
}
for (i = 0; i < size; i++)
{
for (col = 0; col < 2; col++)
{
accang[col] += coefs[i] * cxAng[i][col];
if (accmode[col] == 0)
accmag[col] += coefs[i] * std::log(cxMag[i][col]);
else
accmag[col] += coefs[i] * (cxMag[i][col]);
store.m_Mat[col][2] += coefs[i] * cxTrn[i][col];
}
}
//Convert the angle back to rectangular.
for (col = 0; col < 2; col++)
{
if (accmode[col] == 0)
expmag = std::exp(accmag[col]);
else
expmag = accmag[col];
store.m_Mat[0][col] = expmag * std::cos(accang[col]);
store.m_Mat[1][col] = expmag * std::sin(accang[col]);
}
}
/// <summary>
/// Smooths the time values for animations.
/// </summary>
/// <param name="t">The time value to smooth</param>
/// <returns>the smoothed time value</returns>
static inline T Smoother(T t)
{
return 3 * t * t - 2 * t * t * t;
}
/// <summary>
/// Gets the stagger coef based on the position of the current xform among the others.
/// Never really understood what this did.
/// </summary>
/// <param name="t">The time value</param>
/// <param name="staggerPercent">The stagger percentage</param>
/// <param name="numXforms">The number xforms in the ember</param>
/// <param name="thisXform">The index of this xform within the ember</param>
/// <returns>The stagger coefficient</returns>
static inline T GetStaggerCoef(T t, T staggerPercent, size_t numXforms, size_t thisXform)
{
//maxStag is the spacing between xform start times if staggerPercent = 1.0.
T maxStag = T(numXforms - 1) / numXforms;
//Scale the spacing by staggerPercent.
T stagScaled = staggerPercent * maxStag;
//t ranges from 1 to 0 (the contribution of cp[0] to the blend).
//The first line below makes the first xform interpolate first.
//The second line makes the last xform interpolate first.
T st = stagScaled * (numXforms - 1 - thisXform) / (numXforms - 1);
T ett = st + (1 - stagScaled);
if (t <= st)
return 0;
else if (t >= ett)
return 1;
else
return Smoother((t - st) / (1 - stagScaled));
}
/// <summary>
/// Apply the specified motion function to a value.
/// </summary>
/// <param name="funcNum">The function type to apply, sin, triangle, hill or saw.</param>
/// <param name="timeVal">The time value to apply the motion function to</param>
/// <returns>The new time value computed by applying the specified motion function to the time value</returns>
static T MotionFuncs(eMotion funcNum, T timeVal)
{
//Motion funcs should be cyclic, and equal to 0 at integral time values
//abs peak values should be not be greater than 1.
switch (funcNum)
{
case EmberNs::eMotion::MOTION_SIN:
{
return std::sin(T(2.0) * T(M_PI) * timeVal);
}
break;
case EmberNs::eMotion::MOTION_TRIANGLE:
{
T fr = fmod(timeVal, T(1.0));
if (fr < 0)
fr += 1;
if (fr <= T(0.25))
fr *= 4;
else if (fr <= T(0.75))
fr = -4 * fr + 2;
else
fr = 4 * fr - 4;
return fr;
}
break;
case EmberNs::eMotion::MOTION_HILL:
{
return ((1 - std::cos(T(2.0) * T(M_PI) * timeVal)) * T(0.5));
}
break;
case EmberNs::eMotion::MOTION_SAW:
{
return (T(2.0) * fmod(timeVal - T(0.5), T(1.0)) - T(1.0));
}
break;
default:
return timeVal;
break;
}
}
/// <summary>
/// Compare xforms for sorting based first on color speed and second on determinants if
/// color speeds are equal.
/// </summary>
/// <param name="a">The first xform to compare</param>
/// <param name="b">The second xform to compare</param>
/// <returns>true if a > b, else false.</returns>
static inline bool CompareXforms(const Xform<T>& a, const Xform<T>& b)
{
if (a.m_ColorSpeed > b.m_ColorSpeed) return true;
if (a.m_ColorSpeed < b.m_ColorSpeed) return false;
//Original did this every time, even though it's only needed if the color speeds are equal.
const auto aMat2 = a.m_Affine.ToMat2ColMajor();
const auto bMat2 = b.m_Affine.ToMat2ColMajor();
T ad = glm::determinant(aMat2);
T bd = glm::determinant(bMat2);
if (a.m_ColorSpeed > 0)
{
if (ad < 0) return false;
if (bd < 0) return true;
ad = std::atan2(a.m_Affine.A(), a.m_Affine.D());
bd = std::atan2(b.m_Affine.A(), b.m_Affine.D());
}
return ad > bd;
}
private:
vector<T> m_Coeffs = vector<T>(2);
Ember<T> m_Embers[4];
};
}