fractorium/Source/Ember/Variations07.h
mfeemster 0efb319b12 --Code changes
-Make usage of VarFuncs more consistent by moving some global functions there.
 -Make CircleTrans1 a little safer by calling Zeps() on m_Sc during precalc.
 -Begin prepping for 0.9.9.5 release.
2016-03-04 18:54:06 -08:00

961 lines
34 KiB
C++

#pragma once
#include "Variation.h"
namespace EmberNs
{
/// <summary>
/// splits3D.
/// </summary>
template <typename T>
class Splits3DVariation : public ParametricVariation<T>
{
public:
Splits3DVariation(T weight = 1.0) : ParametricVariation<T>("splits3D", eVariationId::VAR_SPLITS3D, weight)
{
Init();
}
PARVARCOPY(Splits3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
if (helper.In.x >= 0)
helper.Out.x = m_Weight * (helper.In.x + m_X);
else
helper.Out.x = m_Weight * (helper.In.x - m_X);
if (helper.In.y >= 0)
helper.Out.y = m_Weight * (helper.In.y + m_Y);
else
helper.Out.y = m_Weight * (helper.In.y - m_Y);
if (helper.In.z >= 0)
helper.Out.z = m_Weight * (helper.In.z + m_Z);
else
helper.Out.z = m_Weight * (helper.In.z - m_Z);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tif (vIn.x >= 0)\n"
<< "\t\t vOut.x = xform->m_VariationWeights[" << varIndex << "] * (vIn.x + " << x << ");\n"
<< "\t\telse\n"
<< "\t\t vOut.x = xform->m_VariationWeights[" << varIndex << "] * (vIn.x - " << x << ");\n"
<< "\n"
<< "\t\tif (vIn.y >= 0)\n"
<< "\t\t vOut.y = xform->m_VariationWeights[" << varIndex << "] * (vIn.y + " << y << ");\n"
<< "\t\telse\n"
<< "\t\t vOut.y = xform->m_VariationWeights[" << varIndex << "] * (vIn.y - " << y << ");\n"
<< "\n"
<< "\t\tif (vIn.z >= 0)\n"
<< "\t\t vOut.z = xform->m_VariationWeights[" << varIndex << "] * (vIn.z + " << z << ");\n"
<< "\t\telse\n"
<< "\t\t vOut.z = xform->m_VariationWeights[" << varIndex << "] * (vIn.z - " << z << ");\n"
<< "\t}\n";
return ss.str();
}
virtual void Random(QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
m_X = rand.Frand11<T>();
m_Y = rand.Frand11<T>();
m_Z = rand.Frand11<T>();
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "splits3D_x"));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "splits3D_y"));
m_Params.push_back(ParamWithName<T>(&m_Z, prefix + "splits3D_z"));
}
private:
T m_X;
T m_Y;
T m_Z;
};
/// <summary>
/// waves2b.
/// Note that _j1() is not implemented in OpenCL, so that conditional is skipped
/// when running on the GPU. The results might look different.
/// </summary>
template <typename T>
class Waves2BVariation : public ParametricVariation<T>
{
public:
Waves2BVariation(T weight = 1.0) : ParametricVariation<T>("waves2b", eVariationId::VAR_WAVES2B, weight)
{
Init();
}
PARVARCOPY(Waves2BVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T CsX = 1;
T CsY = 1;
T jcbSn = 0, jcbCn, jcbDn;
CsX = VarFuncs<T>::SafeDivInv(m_Unity, (m_Unity + Sqr(helper.In.x)));
CsX = CsX * m_Six + m_Scaleinfx;
CsY = VarFuncs<T>::SafeDivInv(m_Unity, (m_Unity + Sqr(helper.In.y)));
CsY = CsY * m_Siy + m_Scaleinfy;
if (m_Pwx >= 0 && m_Pwx < 1e-4)
{
VarFuncs<T>::JacobiElliptic(helper.In.y * m_Freqx, m_Jacok, jcbSn, jcbCn, jcbDn);
helper.Out.x = m_Weight * (helper.In.x + CsX * jcbSn);
}
else if (m_Pwx < 0 && m_Pwx > -1e-4)
#ifdef _WIN32
helper.Out.x = m_Weight * (helper.In.x + CsX * T(_j1(helper.In.y * m_Freqx)));//This is not implemented in OpenCL.
#else
helper.Out.x = m_Weight * (helper.In.x + CsX * T(j1(helper.In.y * m_Freqx)));//This is not implemented in OpenCL.
#endif
else
helper.Out.x = m_Weight * (helper.In.x + CsX * std::sin(VarFuncs<T>::SignNz(helper.In.y) * std::pow(Zeps(std::abs(helper.In.y)), m_Pwx) * m_Freqx));
if (m_Pwy >= 0 && m_Pwy < 1e-4)
{
VarFuncs<T>::JacobiElliptic(helper.In.x * m_Freqy, m_Jacok, jcbSn, jcbCn, jcbDn);
helper.Out.y = m_Weight * (helper.In.y + CsY * jcbSn);
}
else if (m_Pwy < 0 && m_Pwy > -1e-4)
#ifdef _WIN32
helper.Out.y = m_Weight * (helper.In.y + CsY * T(_j1(helper.In.x * m_Freqy)));
#else
helper.Out.y = m_Weight * (helper.In.y + CsY * T(j1(helper.In.x * m_Freqy)));
#endif
else
helper.Out.y = m_Weight * (helper.In.y + CsY * std::sin(VarFuncs<T>::SignNz(helper.In.x) * std::pow(Zeps(std::abs(helper.In.x)), m_Pwy) * m_Freqy));
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string freqx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string freqy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pwx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string pwy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scalex = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scaleinfx = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scaley = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scaleinfy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string unity = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string jacok = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string six = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalc.
string siy = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t CsX = 1;\n"
<< "\t\treal_t CsY = 1;\n"
<< "\t\treal_t jcbSn = 0, jcbCn, jcbDn;\n"
<< "\t\tCsX = SafeDivInv(" << unity << ", (" << unity << " + Sqr(vIn.x)));\n"
<< "\t\tCsX = CsX * " << six << " + " << scaleinfx << ";\n"
<< "\t\tCsY = SafeDivInv(" << unity << ", (" << unity << " + Sqr(vIn.y)));\n"
<< "\t\tCsY = CsY * " << siy << " + " << scaleinfy << ";\n"
<< "\n"
<< "\t\tif (" << pwx << " >= 0 && " << pwx << " < 1e-4)\n"
<< "\t\t{\n"
<< "\t\t JacobiElliptic(vIn.y * " << freqx << ", " << jacok << ", &jcbSn, &jcbCn, &jcbDn);\n"
<< "\t\t vOut.x = xform->m_VariationWeights[" << varIndex << "] * (vIn.x + CsX * jcbSn);\n"
<< "\t\t}\n"
//<< "\t\telse if (" << pwx << " < 0 && " << pwx << " > -1e-4)\n"
//<< "\t\t vOut.x = xform->m_VariationWeights[" << varIndex << "] * (vIn.x + CsX * _j1(vIn.y * " << freqx << "));\n"//This is not implemented in OpenCL.
<< "\t\telse\n"
<< "\t\t vOut.x = xform->m_VariationWeights[" << varIndex << "] * (vIn.x + CsX * sin(SignNz(vIn.y) * pow(Zeps(fabs(vIn.y)), " << pwx << ") * " << freqx << "));\n"
<< "\n"
<< "\t\tif (" << pwy << " >= 0 && " << pwy << " < 1e-4)\n"
<< "\t\t{\n"
<< "\t\t JacobiElliptic(vIn.x * " << freqy << ", " << jacok << ", &jcbSn, &jcbCn, &jcbDn);\n"
<< "\t\t vOut.y = xform->m_VariationWeights[" << varIndex << "] * (vIn.y + CsY * jcbSn);\n"
<< "\t\t}\n"
//<< "\t\telse if (" << pwy << " < 0 && " << pwy << " > -1e-4)\n"
//<< "\t\t vOut.y = xform->m_VariationWeights[" << varIndex << "] * (vIn.y + CsY * _j1(vIn.x * " << freqy << "));\n"//This is not implemented in OpenCL.
<< "\t\telse\n"
<< "\t\t vOut.y = xform->m_VariationWeights[" << varIndex << "] * (vIn.y + CsY * sin(SignNz(vIn.x) * pow(Zeps(fabs(vIn.x)), " << pwy << ") * " << freqy << "));\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps", "Sqr", "SignNz", "SafeDivInv", "JacobiElliptic" };
}
virtual void Precalc() override
{
m_Six = m_Scalex - m_Scaleinfx;
m_Siy = m_Scaley - m_Scaleinfy;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Freqx, prefix + "waves2b_freqx", 2));
m_Params.push_back(ParamWithName<T>(&m_Freqy, prefix + "waves2b_freqy", 2));
m_Params.push_back(ParamWithName<T>(&m_Pwx, prefix + "waves2b_pwx", 1, eParamType::REAL, -10, 10));
m_Params.push_back(ParamWithName<T>(&m_Pwy, prefix + "waves2b_pwy", 1, eParamType::REAL, -10, 10));
m_Params.push_back(ParamWithName<T>(&m_Scalex, prefix + "waves2b_scalex", 1));
m_Params.push_back(ParamWithName<T>(&m_Scaleinfx, prefix + "waves2b_scaleinfx", 1));
m_Params.push_back(ParamWithName<T>(&m_Scaley, prefix + "waves2b_scaley", 1));
m_Params.push_back(ParamWithName<T>(&m_Scaleinfy, prefix + "waves2b_scaleinfy", 1));
m_Params.push_back(ParamWithName<T>(&m_Unity, prefix + "waves2b_unity", 1));
m_Params.push_back(ParamWithName<T>(&m_Jacok, prefix + "waves2b_jacok", T(0.25), eParamType::REAL, -1, 1));
m_Params.push_back(ParamWithName<T>(true, &m_Six, prefix + "waves2b_six"));//Precalc.
m_Params.push_back(ParamWithName<T>(true, &m_Siy, prefix + "waves2b_siy"));
}
private:
T m_Freqx;
T m_Freqy;
T m_Pwx;
T m_Pwy;
T m_Scalex;
T m_Scaleinfx;
T m_Scaley;
T m_Scaleinfy;
T m_Unity;
T m_Jacok;
T m_Six;//Precalc.
T m_Siy;
};
/// <summary>
/// jac_cn.
/// </summary>
template <typename T>
class JacCnVariation : public ParametricVariation<T>
{
public:
JacCnVariation(T weight = 1.0) : ParametricVariation<T>("jac_cn", eVariationId::VAR_JAC_CN, weight)
{
Init();
}
PARVARCOPY(JacCnVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T snx, cnx, dnx;
T sny, cny, dny;
T numX, numY, denom;
VarFuncs<T>::JacobiElliptic(helper.In.x, m_K, snx, cnx, dnx);
VarFuncs<T>::JacobiElliptic(helper.In.y, 1 - m_K, sny, cny, dny);
numX = cnx * cny;
numY = -dnx * snx * dny * sny;
denom = SQR(snx) * SQR(sny) * m_K + SQR(cny);
denom = m_Weight / Zeps(denom);
helper.Out.x = denom * numX;
helper.Out.y = denom * numY;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string k = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t snx, cnx, dnx;\n"
<< "\t\treal_t sny, cny, dny;\n"
<< "\t\treal_t numX, numY, denom;\n"
<< "\t\tJacobiElliptic(vIn.x, " << k << ", &snx, &cnx, &dnx);\n"
<< "\t\tJacobiElliptic(vIn.y, 1 - " << k << ", &sny, &cny, &dny);\n"
<< "\t\tnumX = cnx * cny;\n"
<< "\t\tnumY = -dnx * snx * dny * sny;\n"
<< "\t\tdenom = SQR(snx) * SQR(sny) * " << k << " + SQR(cny);\n"
<< "\t\tdenom = xform->m_VariationWeights[" << varIndex << "] / Zeps(denom);\n"
<< "\t\tvOut.x = denom * numX;\n"
<< "\t\tvOut.y = denom * numY;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps", "JacobiElliptic" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_K, prefix + "jac_cn_k", T(0.5), eParamType::REAL, -1, 1));
}
private:
T m_K;
};
/// <summary>
/// jac_dn.
/// </summary>
template <typename T>
class JacDnVariation : public ParametricVariation<T>
{
public:
JacDnVariation(T weight = 1.0) : ParametricVariation<T>("jac_dn", eVariationId::VAR_JAC_DN, weight)
{
Init();
}
PARVARCOPY(JacDnVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T snx, cnx, dnx;
T sny, cny, dny;
T numX, numY, denom;
VarFuncs<T>::JacobiElliptic(helper.In.x, m_K, snx, cnx, dnx);
VarFuncs<T>::JacobiElliptic(helper.In.y, 1 - m_K, sny, cny, dny);
numX = dnx * cny * dny;
numY = -cnx * snx * sny * m_K;
denom = SQR(snx) * SQR(sny) * m_K + SQR(cny);
denom = m_Weight / Zeps(denom);
helper.Out.x = denom * numX;
helper.Out.y = denom * numY;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string k = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t snx, cnx, dnx;\n"
<< "\t\treal_t sny, cny, dny;\n"
<< "\t\treal_t numX, numY, denom;\n"
<< "\t\tJacobiElliptic(vIn.x, " << k << ", &snx, &cnx, &dnx);\n"
<< "\t\tJacobiElliptic(vIn.y, 1 - " << k << ", &sny, &cny, &dny);\n"
<< "\t\tnumX = dnx * cny * dny;\n"
<< "\t\tnumY = -cnx * snx * sny * " << k << ";\n"
<< "\t\tdenom = SQR(snx) * SQR(sny) * " << k << " + SQR(cny);\n"
<< "\t\tdenom = xform->m_VariationWeights[" << varIndex << "] / Zeps(denom);\n"
<< "\t\tvOut.x = denom * numX;\n"
<< "\t\tvOut.y = denom * numY;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps", "JacobiElliptic" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_K, prefix + "jac_dn_k", T(0.5), eParamType::REAL, -1, 1));
}
private:
T m_K;
};
/// <summary>
/// jac_sn.
/// </summary>
template <typename T>
class JacSnVariation : public ParametricVariation<T>
{
public:
JacSnVariation(T weight = 1.0) : ParametricVariation<T>("jac_sn", eVariationId::VAR_JAC_SN, weight)
{
Init();
}
PARVARCOPY(JacSnVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
T snx, cnx, dnx;
T sny, cny, dny;
T numX, numY, denom;
VarFuncs<T>::JacobiElliptic(helper.In.x, m_K, snx, cnx, dnx);
VarFuncs<T>::JacobiElliptic(helper.In.y, 1 - m_K, sny, cny, dny);
numX = snx * dny;
numY = cnx * dnx * cny * sny;
denom = SQR(snx) * SQR(sny) * m_K + SQR(cny);
denom = m_Weight / Zeps(denom);
helper.Out.x = denom * numX;
helper.Out.y = denom * numY;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string k = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t snx, cnx, dnx;\n"
<< "\t\treal_t sny, cny, dny;\n"
<< "\t\treal_t numX, numY, denom;\n"
<< "\t\tJacobiElliptic(vIn.x, " << k << ", &snx, &cnx, &dnx);\n"
<< "\t\tJacobiElliptic(vIn.y, 1 - " << k << ", &sny, &cny, &dny);\n"
<< "\t\tnumX = snx * dny;\n"
<< "\t\tnumY = cnx * dnx * cny * sny;\n"
<< "\t\tdenom = SQR(snx) * SQR(sny) * " << k << " + SQR(cny);\n"
<< "\t\tdenom = xform->m_VariationWeights[" << varIndex << "] / Zeps(denom);\n"
<< "\t\tvOut.x = denom * numX;\n"
<< "\t\tvOut.y = denom * numY;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps", "JacobiElliptic" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_K, prefix + "jac_sn_k", T(0.5), eParamType::REAL, -1, 1));
}
private:
T m_K;
};
/// <summary>
/// pressure_wave.
/// </summary>
template <typename T>
class PressureWaveVariation : public ParametricVariation<T>
{
public:
PressureWaveVariation(T weight = 1.0) : ParametricVariation<T>("pressure_wave", eVariationId::VAR_PRESSURE_WAVE, weight)
{
Init();
}
PARVARCOPY(PressureWaveVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = m_Weight * (helper.In.x + (1 / Zeps(m_X * M_2PI)) * std::sin(m_X * M_2PI * helper.In.x));
helper.Out.y = m_Weight * (helper.In.y + (1 / Zeps(m_Y * M_2PI)) * std::sin(m_Y * M_2PI * helper.In.y));
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tvOut.x = xform->m_VariationWeights[" << varIndex << "] * (vIn.x + (1 / Zeps(" << x << " * M_2PI)) * sin(" << x << " * M_2PI * vIn.x));\n"
<< "\t\tvOut.y = xform->m_VariationWeights[" << varIndex << "] * (vIn.y + (1 / Zeps(" << y << " * M_2PI)) * sin(" << y << " * M_2PI * vIn.y));\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Zeps" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_X, prefix + "pressure_wave_x_freq", 1));
m_Params.push_back(ParamWithName<T>(&m_Y, prefix + "pressure_wave_y_freq", 1));
}
private:
T m_X;
T m_Y;
};
/// <summary>
/// gamma.
/// </summary>
template <typename T>
class GammaVariation : public Variation<T>
{
public:
GammaVariation(T weight = 1.0) : Variation<T>("gamma", eVariationId::VAR_GAMMA, weight, true, true, false, false, true)
{
}
VARCOPY(GammaVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
helper.Out.x = m_Weight * std::lgamma(helper.m_PrecalcSqrtSumSquares);
helper.Out.y = m_Weight * helper.m_PrecalcAtanyx;
helper.Out.z = DefaultZ(helper);
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
ss << "\t{\n"
<< "\t\tvOut.x = xform->m_VariationWeights[" << varIndex << "] * lgamma(precalcSqrtSumSquares);\n"
<< "\t\tvOut.y = xform->m_VariationWeights[" << varIndex << "] * precalcAtanyx;\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t}\n";
return ss.str();
}
};
/// <summary>
/// prose3D.
/// </summary>
template <typename T>
class PRose3DVariation : public ParametricVariation<T>
{
public:
PRose3DVariation(T weight = 1.0) : ParametricVariation<T>("pRose3D", eVariationId::VAR_PROSE3D, weight, true, true, false, false, true)
{
Init();
}
PARVARCOPY(PRose3DVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
int posNeg = 1;
T th = 0;
T sth, cth, pang, wig, wag, wag2, wag3, wag12 = 0, waggle = 0;
T rad = helper.m_PrecalcSqrtSumSquares;
T curve1 = rad / m_L;
T curve2 = Sqr(curve1);
T curve3 = (rad - m_L * T(0.5)) / m_L;
T curve4 = Sqr(curve2);
th = helper.m_PrecalcAtanyx;
sincos(th, &sth, &cth);
if (rand.Frand01<T>() < T(0.5))
posNeg = -1;
pang = th / Zeps(m_Cycle);
wig = pang * m_Freq * T(0.5) + m_Offset * m_Cycle;
if (m_OptDir < 0)
{
wag = std::sin(curve1 * T(M_PI) * m_AbsOptSc) + m_Wagsc * T(0.4) * rad + m_Crvsc * T(0.5) * (std::sin(curve2 * T(M_PI)));
wag3 = std::sin(curve4 * T(M_PI) * m_AbsOptSc) + m_Wagsc * SQR(rad) * T(0.4) + m_Crvsc * T(0.5) * (std::cos(curve3 * T(M_PI)));
}
else
{
wag = std::sin(curve1 * T(M_PI) * m_AbsOptSc) + m_Wagsc * T(0.4) * rad + m_Crvsc * T(0.5) * (std::cos(curve3 * T(M_PI)));
wag3 = std::sin(curve4 * T(M_PI) * m_AbsOptSc) + m_Wagsc * SQR(rad) * T(0.4) + m_Crvsc * T(0.5) * (std::sin(curve2 * T(M_PI)));
}
wag2 = std::sin(curve2 * T(M_PI) * m_AbsOptSc) + m_Wagsc * T(0.4) * rad + m_Crvsc * T(0.5) * (std::cos(curve3 * T(M_PI)));
if (m_Smooth12 <= 1)
wag12 = wag;
else if (m_Smooth12 <= 2 && m_Smooth12 > 1)
wag12 = wag2 * (1 - m_AntiOpt1) + wag * m_AntiOpt1;
else if (m_Smooth12 > 2)
wag12 = wag2;
if (m_Smooth3 == 0)
waggle = wag12;
else if (m_Smooth3 > 0)
waggle = wag12 * (1 - m_Smooth3) + wag3 * m_Smooth3;
if (rand.Frand01<T>() < m_Ghost)
{
if (posNeg < 0)
{
helper.Out.x = m_Weight * T(0.5) * m_RefSc * (m_L * std::cos(m_NumPetals * th + m_C)) * cth;
helper.Out.y = m_Weight * T(0.5) * m_RefSc * (m_L * std::cos(m_NumPetals * th + m_C)) * sth;
helper.Out.z = m_Weight * T(-0.5) * ((m_Z2 * waggle + Sqr(rad * T(0.5)) * std::sin(wig) * m_WigScale) + m_Dist);
}
else
{
helper.Out.x = m_Weight * T(0.5) * (m_L * std::cos(m_NumPetals * th + m_C)) * cth;
helper.Out.y = m_Weight * T(0.5) * (m_L * std::cos(m_NumPetals * th + m_C)) * sth;
helper.Out.z = m_Weight * T(0.5) * ((m_Z1 * waggle + Sqr(rad * T(0.5)) * std::sin(wig) * m_WigScale) + m_Dist);
}
}
else
{
if (posNeg < 0)
{
helper.Out.x = m_Weight * T(0.5) * (m_L * std::cos(m_NumPetals * th + m_C)) * cth;
helper.Out.y = m_Weight * T(0.5) * (m_L * std::cos(m_NumPetals * th + m_C)) * sth;
helper.Out.z = m_Weight * T(0.5) * ((m_Z1 * waggle + Sqr(rad * T(0.5)) * std::sin(wig) * m_WigScale) + m_Dist);
}
else
{
helper.Out.x = m_Weight * T(0.5) * (m_L * std::cos(m_NumPetals * th + m_C)) * cth;
helper.Out.y = m_Weight * T(0.5) * (m_L * std::cos(m_NumPetals * th + m_C)) * sth;
helper.Out.z = m_Weight * T(0.5) * ((m_Z1 * waggle + Sqr(rad * T(0.5)) * std::sin(wig) * m_WigScale) + m_Dist);
}
}
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string l = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string k = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string c = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string z1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string z2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string refSc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string opt = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string optSc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string opt3 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string transp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string dist = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string wagsc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string crvsc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string f = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string wigsc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string offset = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cycle = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalc.
string optDir = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string petalsSign = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string numPetals = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string absOptSc = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string smooth12 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string smooth3 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string antiOpt1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ghost = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string freq = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string wigScale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tint posNeg = 1;\n"
<< "\t\treal_t th = 0;\n"
<< "\t\treal_t sth, cth, pang, wig, wag, wag2, wag3, wag12, waggle;\n"
<< "\t\treal_t rad = precalcSqrtSumSquares;\n"
<< "\t\treal_t curve1 = rad / " << l << ";\n"
<< "\t\treal_t curveTwo = Sqr(curve1);\n"
<< "\t\treal_t curve3 = (rad - " << l << " * 0.5) / " << l << ";\n"
<< "\t\treal_t curve4 = Sqr(curveTwo);\n"
<< "\t\tth = precalcAtanyx;\n"
<< "\t\tsth = sincos(th, &cth);\n"
<< "\n"
<< "\t\tif (MwcNext01(mwc) < 0.5)\n"
<< "\t\t posNeg = -1;\n"
<< "\n"
<< "\t\tpang = th / Zeps(" << cycle << ");\n"
<< "\t\twig = pang * " << freq << " * 0.5 + " << offset << " * " << cycle << ";\n"
<< "\n"
<< "\t\tif (" << optDir << " < 0)\n"
<< "\t\t{\n"
<< "\t\t wag = sin(curve1 * M_PI * " << absOptSc << ") + " << wagsc << " * 0.4 * rad + " << crvsc << " * 0.5 * (sin(curveTwo * M_PI));\n"
<< "\t\t wag3 = sin(curve4 * M_PI * " << absOptSc << ") + " << wagsc << " * SQR(rad) * 0.4 + " << crvsc << " * 0.5 * (cos(curve3 * M_PI));\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t wag = sin(curve1 * M_PI * " << absOptSc << ") + " << wagsc << " * 0.4 * rad + " << crvsc << " * 0.5 * (cos(curve3 * M_PI));\n"
<< "\t\t wag3 = sin(curve4 * M_PI * " << absOptSc << ") + " << wagsc << " * SQR(rad) * 0.4 + " << crvsc << " * 0.5 * (sin(curveTwo * M_PI));\n"
<< "\t\t}\n"
<< "\n"
<< "\t\twag2 = sin(curveTwo * M_PI * " << absOptSc << ") + " << wagsc << " * 0.4 * rad + " << crvsc << " * 0.5 * (cos(curve3 * M_PI));\n"
<< "\n"
<< "\t\tif (" << smooth12 << " <= 1)\n"
<< "\t\t wag12 = wag;\n"
<< "\t\telse if (" << smooth12 << " <= 2 && " << smooth12 << " > 1)\n"
<< "\t\t wag12 = wag2 * (1 - " << antiOpt1 << ") + wag * " << antiOpt1 << ";\n"
<< "\t\telse if (" << smooth12 << " > 2)\n"
<< "\t\t wag12 = wag2;\n"
<< "\n"
<< "\t\tif (" << smooth3 << " == 0)\n"
<< "\t\t waggle = wag12;\n"
<< "\t\telse if (" << smooth3 << " > 0)\n"
<< "\t\t waggle = wag12 * (1 - " << smooth3 << ") + wag3 * " << smooth3 << ";\n"
<< "\n"
<< "\t\tif (MwcNext01(mwc) < " << ghost << ")\n"
<< "\t\t{\n"
<< "\t\t if (posNeg < 0)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = xform->m_VariationWeights[" << varIndex << "] * 0.5 * " << refSc << " * (" << l << " * cos(" << numPetals << " * th + " << c << ")) * cth;\n"
<< "\t\t vOut.y = xform->m_VariationWeights[" << varIndex << "] * 0.5 * " << refSc << " * (" << l << " * cos(" << numPetals << " * th + " << c << ")) * sth;\n"
<< "\t\t vOut.z = xform->m_VariationWeights[" << varIndex << "] * -0.5 * ((" << z2 << " * waggle + Sqr(rad * 0.5) * sin(wig) * " << wigScale << ") + " << dist << ");\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = xform->m_VariationWeights[" << varIndex << "] * 0.5 * (" << l << " * cos(" << numPetals << " * th + " << c << ")) * cth;\n"
<< "\t\t vOut.y = xform->m_VariationWeights[" << varIndex << "] * 0.5 * (" << l << " * cos(" << numPetals << " * th + " << c << ")) * sth;\n"
<< "\t\t vOut.z = xform->m_VariationWeights[" << varIndex << "] * 0.5 * ((" << z1 << " * waggle + Sqr(rad * 0.5) * sin(wig) * " << wigScale << ") + " << dist << ");\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (posNeg < 0)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = xform->m_VariationWeights[" << varIndex << "] * 0.5 * (" << l << " * cos(" << numPetals << " * th + " << c << ")) * cth;\n"
<< "\t\t vOut.y = xform->m_VariationWeights[" << varIndex << "] * 0.5 * (" << l << " * cos(" << numPetals << " * th + " << c << ")) * sth;\n"
<< "\t\t vOut.z = xform->m_VariationWeights[" << varIndex << "] * 0.5 * ((" << z1 << " * waggle + Sqr(rad * 0.5) * sin(wig) * " << wigScale << ") + " << dist << ");\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = xform->m_VariationWeights[" << varIndex << "] * 0.5 * (" << l << " * cos(" << numPetals << " * th + " << c << ")) * cth;\n"
<< "\t\t vOut.y = xform->m_VariationWeights[" << varIndex << "] * 0.5 * (" << l << " * cos(" << numPetals << " * th + " << c << ")) * sth;\n"
<< "\t\t vOut.z = xform->m_VariationWeights[" << varIndex << "] * 0.5 * ((" << z1 << " * waggle + Sqr(rad * 0.5) * sin(wig) * " << wigScale << ") + " << dist << ");\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t}\n";
return ss.str();
}
virtual vector<string> OpenCLGlobalFuncNames() const override
{
return vector<string> { "Sqr", "Zeps" };
}
virtual void Precalc() override
{
m_Cycle = M_2PI / Zeps(m_K);
m_NumPetals = m_K;
m_Ghost = Sqr(m_Transp);
m_Freq = m_F * M_2PI;
m_WigScale = m_Wigsc * T(0.5);
if (std::abs(m_NumPetals) < T(0.0001))
m_NumPetals = T(0.0001) * m_PetalsSign;
m_Smooth12 = std::abs(m_Opt);
m_Smooth3 = std::abs(m_Opt3);
m_AbsOptSc = std::abs(m_OptSc);
if (m_Smooth12 > 2)
m_Smooth12 = 2;
m_AntiOpt1 = 2 - m_Smooth12;
if (m_Smooth3 > 1)
m_Smooth3 = 1;
m_OptDir = std::copysign(T(1.0), m_Opt);
m_PetalsSign = std::copysign(T(1.0), m_K);
if (m_Opt3 < 0)
m_OptDir = -1;
if (m_OptDir > 0)
m_Ghost = 0;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_L, prefix + "pRose3D_l", 1, eParamType::REAL_NONZERO));
m_Params.push_back(ParamWithName<T>(&m_K, prefix + "pRose3D_k", 3));
m_Params.push_back(ParamWithName<T>(&m_C, prefix + "pRose3D_c"));
m_Params.push_back(ParamWithName<T>(&m_Z1, prefix + "pRose3D_z1", 1));
m_Params.push_back(ParamWithName<T>(&m_Z2, prefix + "pRose3D_z2", 1));
m_Params.push_back(ParamWithName<T>(&m_RefSc, prefix + "pRose3D_refSc", 1));
m_Params.push_back(ParamWithName<T>(&m_Opt, prefix + "pRose3D_opt", 1));
m_Params.push_back(ParamWithName<T>(&m_OptSc, prefix + "pRose3D_optSc", 1));
m_Params.push_back(ParamWithName<T>(&m_Opt3, prefix + "pRose3D_opt3"));
m_Params.push_back(ParamWithName<T>(&m_Transp, prefix + "pRose3D_transp", T(0.5)));
m_Params.push_back(ParamWithName<T>(&m_Dist, prefix + "pRose3D_dist", 1));
m_Params.push_back(ParamWithName<T>(&m_Wagsc, prefix + "pRose3D_wagsc", 0));
m_Params.push_back(ParamWithName<T>(&m_Crvsc, prefix + "pRose3D_crvsc", 0));
m_Params.push_back(ParamWithName<T>(&m_F, prefix + "pRose3D_f", 3));
m_Params.push_back(ParamWithName<T>(&m_Wigsc, prefix + "pRose3D_wigsc"));
m_Params.push_back(ParamWithName<T>(&m_Offset, prefix + "pRose3D_offset"));
m_Params.push_back(ParamWithName<T>(true, &m_Cycle, prefix + "pRose3D_cycle"));
m_Params.push_back(ParamWithName<T>(true, &m_OptDir, prefix + "pRose3D_opt_dir"));
m_Params.push_back(ParamWithName<T>(true, &m_PetalsSign, prefix + "pRose3D_petals_sign"));
m_Params.push_back(ParamWithName<T>(true, &m_NumPetals, prefix + "pRose3D_num_petals"));
m_Params.push_back(ParamWithName<T>(true, &m_AbsOptSc, prefix + "pRose3D_abs_optSc"));
m_Params.push_back(ParamWithName<T>(true, &m_Smooth12, prefix + "pRose3D_smooth12"));
m_Params.push_back(ParamWithName<T>(true, &m_Smooth3, prefix + "pRose3D_smooth3"));
m_Params.push_back(ParamWithName<T>(true, &m_AntiOpt1, prefix + "pRose3D_anti_opt1"));
m_Params.push_back(ParamWithName<T>(true, &m_Ghost, prefix + "pRose3D_ghost"));
m_Params.push_back(ParamWithName<T>(true, &m_Freq, prefix + "pRose3D_freq"));
m_Params.push_back(ParamWithName<T>(true, &m_WigScale, prefix + "pRose3D_wig_scale"));
}
private:
T m_L;
T m_K;
T m_C;
T m_Z1;
T m_Z2;
T m_RefSc;
T m_Opt;
T m_OptSc;
T m_Opt3;
T m_Transp;
T m_Dist;
T m_Wagsc;
T m_Crvsc;
T m_F;
T m_Wigsc;
T m_Offset;
T m_Cycle;//Precalc.
T m_OptDir;
T m_PetalsSign;
T m_NumPetals;
T m_AbsOptSc;
T m_Smooth12;
T m_Smooth3;
T m_AntiOpt1;
T m_Ghost;
T m_Freq;
T m_WigScale;
};
/// <summary>
/// log_db.
/// By DarkBeam, taken from JWildfire.
/// http://jwildfire.org/forum/viewtopic.php?f=23&t=1450&p=2692#p2692
/// </summary>
template <typename T>
class LogDBVariation : public ParametricVariation<T>
{
public:
LogDBVariation(T weight = 1.0) : ParametricVariation<T>("log_db", eVariationId::VAR_LOG_DB, weight, true, false, false, false, true)
{
Init();
}
PARVARCOPY(LogDBVariation)
virtual void Func(IteratorHelper<T>& helper, Point<T>& outPoint, QTIsaac<ISAAC_SIZE, ISAAC_INT>& rand) override
{
int i, adp;
T atanPeriod = 0;
for (i = 0; i < 7; i++)
{
adp = rand.Rand(10) - 5;
if (std::abs(adp) >= 3)
adp = 0;
atanPeriod += adp;
}
atanPeriod *= m_FixPe;
helper.Out.x = m_Denom * std::log(helper.m_PrecalcSumSquares);
helper.Out.y = m_Weight * (helper.m_PrecalcAtanyx + atanPeriod);
helper.Out.z = m_Weight * helper.In.z;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string base = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string fixPeriod = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string denom = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string fixPe = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tint i, adp;\n"
<< "\t\treal_t atanPeriod = 0;\n"
<< "\n"
<< "\t\tfor (i = 0; i < 7; i++)\n"
<< "\t\t{\n"
<< "\t\t adp = MwcNextRange(mwc, 10) - 5;\n"
<< "\n"
<< "\t\t if (abs(adp) >= 3)\n"
<< "\t\t adp = 0;\n"
<< "\n"
<< "\t\t atanPeriod += adp;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tatanPeriod *= " << fixPe << ";\n"
<< "\t\tvOut.x = " << denom << " * log(precalcSumSquares);\n"
<< "\t\tvOut.y = xform->m_VariationWeights[" << varIndex << "] * (precalcAtanyx + atanPeriod);\n"
<< "\t\tvOut.z = xform->m_VariationWeights[" << varIndex << "] * vIn.z;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Denom = T(0.5);
if (m_Base > EPS)
m_Denom = m_Denom / std::log(T(M_E) * m_Base);
m_Denom *= m_Weight;
m_FixPe = T(M_PI);
if (m_FixPeriod > EPS)
m_FixPe *= m_FixPeriod;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName<T>(&m_Base, prefix + "log_db_base", 1));
m_Params.push_back(ParamWithName<T>(&m_FixPeriod, prefix + "log_db_fix_period", 1));
m_Params.push_back(ParamWithName<T>(true, &m_Denom, prefix + "log_db_denom"));
m_Params.push_back(ParamWithName<T>(true, &m_FixPe, prefix + "log_db_fix_pe"));
}
private:
T m_Base;
T m_FixPeriod;
T m_Denom;
T m_FixPe;
};
MAKEPREPOSTPARVAR(Splits3D, splits3D, SPLITS3D)
MAKEPREPOSTPARVAR(Waves2B, waves2b, WAVES2B)
MAKEPREPOSTPARVAR(JacCn, jac_cn, JAC_CN)
MAKEPREPOSTPARVAR(JacDn, jac_dn, JAC_DN)
MAKEPREPOSTPARVAR(JacSn, jac_sn, JAC_SN)
MAKEPREPOSTPARVAR(PressureWave, pressure_wave, PRESSURE_WAVE)
MAKEPREPOSTVAR(Gamma, gamma, GAMMA)
MAKEPREPOSTPARVAR(PRose3D, pRose3D, PROSE3D)
MAKEPREPOSTPARVAR(LogDB, log_db, LOG_DB)
}