fractorium/Source/Ember/XmlToEmber.cpp
Person 0b0405382f --Bug fixes
-Fix variations: blob2 (broken on CPU), epispiral, hole.
 -Fix reading variations from Apophysis: supershape.
 -Bump render was broken.

--Code changes
 -Flip precalc sina/cosa and apply everywhere by flipping the usage. Flam3 had these reversed and it made the code confusing to read.
2019-12-27 21:04:41 -08:00

2638 lines
92 KiB
C++

#include "EmberPch.h"
#include "XmlToEmber.h"
namespace EmberNs
{
/// <summary>
/// Constructor which saves the state of the current locale and
/// sets the new one based on the parameters passed in.
/// </summary>
/// <param name="category">The locale category. Default: LC_NUMERIC.</param>
/// <param name="loc">The locale. Default: "C".</param>
Locale::Locale(int category, const char* loc)
{
m_Category = category;
m_NewLocale = string(loc);
m_OriginalLocale = setlocale(category, nullptr);//Query.
if (m_OriginalLocale.empty())
cout << "Couldn't get original locale.\n";
if (setlocale(category, loc) == nullptr)//Set.
cout << "Couldn't set new locale " << category << ", " << loc << ".\n";
}
/// <summary>
/// Reset the locale to the value stored during construction.
/// </summary>
Locale::~Locale()
{
if (!m_OriginalLocale.empty())
if (setlocale(m_Category, m_OriginalLocale.c_str()) == nullptr)//Restore.
cout << "Couldn't restore original locale " << m_Category << ", " << m_OriginalLocale << ".\n";
}
/// <summary>
/// Constructor that initializes the random context.
/// </summary>
template <typename T>
XmlToEmber<T>::XmlToEmber()
: m_VariationList(VariationList<T>::Instance()),
m_PaletteList(PaletteList<float>::Instance())
{
Timing t;
if (!m_Init)
{
//This list is for variation params which are incorrect, but their parent variation name may or may not be correct.
//This has some overlap with the list below since some of these have parent variation names that are also incorrect.
m_BadParamNames = unordered_map<string, string>
{
{ "swtin_distort", "stwin_distort" }, //stwin.
{ "pow_numerator", "pow_block_numerator" }, //pow_block.
{ "pow_denominator", "pow_block_denominator" },
{ "pow_root", "pow_block_root" },
{ "pow_correctn", "pow_block_correctn" },
{ "pow_correctd", "pow_block_correctd" },
{ "pow_power", "pow_block_power" },
{ "lt", "linearT_powX" }, //linearT.
{ "lt", "linearT_powY" },
{ "re_a", "Mobius_Re_A" }, //Mobius.
{ "im_a", "Mobius_Im_A" },
{ "re_b", "Mobius_Re_B" },
{ "im_b", "Mobius_Im_B" },
{ "re_c", "Mobius_Re_C" },
{ "im_c", "Mobius_Im_C" },
{ "re_d", "Mobius_Re_D" },
{ "im_d", "Mobius_Im_D" },
{ "rx_sin", "rotate_x_sin" }, //rotate_x.
{ "rx_cos", "rotate_x_cos" },
{ "ry_sin", "rotate_y_sin" }, //rotate_y.
{ "ry_cos", "rotate_y_cos" },
{ "intrfr2_a1", "interference2_a1" }, //interference2.
{ "intrfr2_b1", "interference2_b1" },
{ "intrfr2_c1", "interference2_c1" },
{ "intrfr2_p1", "interference2_p1" },
{ "intrfr2_t1", "interference2_t1" },
{ "intrfr2_a2", "interference2_a2" },
{ "intrfr2_b2", "interference2_b2" },
{ "intrfr2_c2", "interference2_c2" },
{ "intrfr2_p2", "interference2_p2" },
{ "intrfr2_t2", "interference2_t2" },
{ "octa_x", "octagon_x" }, //octagon.
{ "octa_y", "octagon_y" },
{ "octa_z", "octagon_z" },
{ "bubble_x", "bubble2_x" }, //bubble2.
{ "bubble_y", "bubble2_y" },
{ "bubble_z", "bubble2_z" },
{ "cubic3d_xpand", "cubicLattice_3D_xpand" }, //cubicLattice_3D.
{ "cubic3d_style", "cubicLattice_3D_style" },
{ "splitb_x", "SplitBrdr_x" }, //SplitBrdr.
{ "splitb_y", "SplitBrdr_y" },
{ "splitb_px", "SplitBrdr_px" },
{ "splitb_py", "SplitBrdr_py" },
{ "dc_cyl_offset", "dc_cylinder_offset" }, //dc_cylinder.
{ "dc_cyl_angle", "dc_cylinder_angle" },
{ "dc_cyl_scale", "dc_cylinder_scale" },
{ "cyl_x", "dc_cylinder_x" },
{ "cyl_y", "dc_cylinder_y" },
{ "cyl_blur", "dc_cylinder_blur" },
{ "mobius_radius", "mobius_strip_radius" }, //mobius_strip.
{ "mobius_width", "mobius_strip_width" },
{ "mobius_rect_x", "mobius_strip_rect_x" },
{ "mobius_rect_y", "mobius_strip_rect_y" },
{ "mobius_rotate_x", "mobius_strip_rotate_x" },
{ "mobius_rotate_y", "mobius_strip_rotate_y" },
{ "bwraps2_cellsize", "bwraps_cellsize" }, //bwraps2.
{ "bwraps2_space", "bwraps_space" },
{ "bwraps2_gain", "bwraps_gain" },
{ "bwraps2_inner_twist", "bwraps_inner_twist" },
{ "bwraps2_outer_twist", "bwraps_outer_twist" },
{ "bwraps7_cellsize", "bwraps_cellsize" }, //bwraps7.
{ "bwraps7_space", "bwraps_space" },
{ "bwraps7_gain", "bwraps_gain" },
{ "bwraps7_inner_twist", "bwraps_inner_twist" },
{ "bwraps7_outer_twist", "bwraps_outer_twist" },
{ "pre_bwraps2_cellsize", "pre_bwraps_cellsize" }, //bwraps2.
{ "pre_bwraps2_space", "pre_bwraps_space" },
{ "pre_bwraps2_gain", "pre_bwraps_gain" },
{ "pre_bwraps2_inner_twist", "pre_bwraps_inner_twist" },
{ "pre_bwraps2_outer_twist", "pre_bwraps_outer_twist" },
{ "post_bwraps2_cellsize", "post_bwraps_cellsize" },
{ "post_bwraps2_space", "post_bwraps_space" },
{ "post_bwraps2_gain", "post_bwraps_gain" },
{ "post_bwraps2_inner_twist", "post_bwraps_inner_twist" },
{ "post_bwraps2_outer_twist", "post_bwraps_outer_twist" },
{ "hexa3d_majp", "hexaplay3D_majp" }, //hexaplay3D.
{ "hexa3d_scale", "hexaplay3D_scale" },
{ "hexa3d_zlift", "hexaplay3D_zlift" },
{ "nb_numedges", "nBlur_numEdges" }, //nBlur.
{ "nb_numstripes", "nBlur_numStripes" },
{ "nb_ratiostripes", "nBlur_ratioStripes" },
{ "nb_ratiohole", "nBlur_ratioHole" },
{ "nb_circumcircle", "nBlur_circumCircle" },
{ "nb_adjusttolinear", "nBlur_adjustToLinear" },
{ "nb_equalblur", "nBlur_equalBlur" },
{ "nb_exactcalc", "nBlur_exactCalc" },
{ "nb_highlightedges", "nBlur_highlightEdges" },
{ "octapol_r", "octapol_radius" }, //octapol.
{ "number_of_stripes", "bubbleT3D_number_of_stripes" }, //bubbleT3D.
{ "ratio_of_stripes", "bubbleT3D_ratio_of_stripes" },
{ "angle_of_hole", "bubbleT3D_angle_of_hole" },
{ "exponentZ", "bubbleT3D_exponentZ" },
{ "_symmetryZ", "bubbleT3D_symmetryZ" },
{ "_modusBlur", "bubbleT3D_modusBlur" },
{ "post_scrop_power", "post_smartcrop_power" }, //post_smartcrop.
{ "post_scrop_radius", "post_smartcrop_radius" },
{ "post_scrop_roundstr", "post_smartcrop_roundstr" },
{ "post_scrop_roundwidth", "post_smartcrop_roundwidth" },
{ "post_scrop_distortion", "post_smartcrop_distortion" },
{ "post_scrop_edge", "post_smartcrop_edge" },
{ "post_scrop_scatter", "post_smartcrop_scatter" },
{ "post_scrop_offset", "post_smartcrop_offset" },
{ "post_scrop_rotation", "post_smartcrop_rotation" },
{ "post_scrop_cropmode", "post_smartcrop_cropmode" },
{ "post_scrop_static", "post_smartcrop_static" },
{ "cs_radius", "circlesplit_radius" },
{ "cs_split", "circlesplit_split" },
{ "w2r_freqx", "waves2_radial_freqx" },
{ "w2r_scalex", "waves2_radial_scalex" },
{ "w2r_freqy", "waves2_radial_freqy" },
{ "w2r_scaley", "waves2_radial_scaley" },
{ "w2r_null", "waves2_radial_null" },
{ "w2r_distance", "waves2_radial_distance" },
{ "tf_exponent", "Truchet_fill_exponent" },
{ "tf_arc_width", "Truchet_fill_arc_width" },
{ "tf_seed", "Truchet_fill_seed" },
{ "blockSize", "randCubes_blockSize" },
{ "blockHeight", "randCubes_blockHeight" },
{ "spread", "randCubes_spread" },
{ "seed", "randCubes_seed" },
{ "density", "randCubes_density" },
{ "radius", "concentric_radius" },
//{ "density", "concentric_density" },//Can't have two, which means you can never properly paste from Apophysis with both of these in one xform.
{ "r_blur", "concentric_R_blur" },
{ "z_blur", "concentric_Z_blur" },
{ "angle", "pixel_flow_angle" },
{ "len", "pixel_flow_len" },
{ "width", "pixel_flow_width" },
//{ "seed", "pixel_flow_seed" },//randCubes above already uses "seed", but it's just for randomness, so it shouldn't matter.
{ "enable_dc", "pixel_flow_enable_dc" },
{ "radial_gaussian_angle", "radial_blur_angle" },
{ "pr_a", "projective_A" },
{ "pr_b", "projective_B" },
{ "pr_c", "projective_C" },
{ "pr_a1", "projective_A1" },
{ "pr_b1", "projective_B1" },
{ "pr_c1", "projective_C1" },
{ "pr_a2", "projective_A2" },
{ "pr_b2", "projective_B2" },
{ "pr_c2", "projective_C2" },
{ "db_power", "depth_blur_power" },
{ "db_range", "depth_blur_range" },
{ "db_blur", "depth_blur_blur" },
{ "db_radius", "depth_blur_radius" },
{ "osco2_separation", "oscilloscope2_separation" },
{ "osco2_frequencyx", "oscilloscope2_frequencyx" },
{ "osco2_frequencyy", "oscilloscope2_frequencyy" },
{ "osco2_amplitude", "oscilloscope2_amplitude" },
{ "osco2_perturbation", "oscilloscope2_perturbation" },
{ "osco2_damping", "oscilloscope2_damping" },
{ "oscope_separation", "oscilloscope_separation" },
{ "oscope_frequency", "oscilloscope_frequency" },
{ "oscope_amplitude", "oscilloscope_amplitude" },
{ "oscope_damping", "oscilloscope_damping" },
{ "power", "scry2_power" },
{ "faber_w_angle", "w_angle" },
{ "faber_w_hypergon", "w_hypergon" },
{ "faber_w_hypergon_n", "w_hypergon_n" },
{ "faber_w_hypergon_r", "w_hypergon_r" },
{ "faber_w_star", "w_star" },
{ "faber_w_star_n", "w_star_n" },
{ "faber_w_star_slope", "w_star_slope" },
{ "faber_w_lituus", "w_lituus" },
{ "faber_w_lituus_a", "w_lituus_a" },
{ "faber_w_super", "w_super" },
{ "faber_w_super_m", "w_super_m" },
{ "faber_w_super_n1", "w_super_n1" },
{ "faber_w_super_n2", "w_super_n2" },
{ "faber_w_super_n3", "w_super_n3" },
{ "faber_x_hypergon", "x_hypergon" },
{ "faber_x_hypergon_n", "x_hypergon_n" },
{ "faber_x_hypergon_r", "x_hypergon_r" },
{ "faber_x_star", "x_star" },
{ "faber_x_star_n", "x_star_n" },
{ "faber_x_star_slope", "x_star_slope" },
{ "faber_x_lituus", "x_lituus" },
{ "faber_x_lituus_a", "x_lituus_a" },
{ "faber_x_super", "x_super" },
{ "faber_x_super_m", "x_super_m" },
{ "faber_x_super_n1", "x_super_n1" },
{ "faber_x_super_n2", "x_super_n2" },
{ "faber_x_super_n3", "x_super_n3" },
{ "sshape_power", "smartshape_power" },
{ "sshape_roundstr", "smartshape_roundstr" },
{ "sshape_roundwidth", "smartshape_roundwidth" },
{ "sshape_distortion", "smartshape_distortion" },
{ "sshape_compensation", "smartshape_compensation" },
{ "post_sshape_power", "post_smartshape_power" },
{ "post_sshape_roundstr", "post_smartshape_roundstr" },
{ "post_sshape_roundwidth", "post_smartshape_roundwidth" },
{ "post_sshape_distortion", "post_smartshape_distortion" },
{ "post_sshape_compensation", "post_smartshape_compensation" },
{ "mult_x", "unicorngaloshen_mult_x" },
{ "mult_y", "unicorngaloshen_mult_y" },
{ "sine", "unicorngaloshen_sine" },
{ "sin_x_amplitude", "unicorngaloshen_sin_x_amplitude" },
{ "sin_x_freq", "unicorngaloshen_sin_x_freq" },
{ "sin_y_amplitude", "unicorngaloshen_sin_y_amplitude" },
{ "sin_y_freq", "unicorngaloshen_sin_y_freq" },
{ "mode", "unicorngaloshen_mode" },
{ "d_spher_weight", "d_spherical_weight" },
{ "poincare_p", "poincare2_p" },
{ "poincare_q", "poincare2_q" }
};
m_FlattenNames =
{
"pre_crop",
"pre_falloff2",
"pre_rotate_x",
"pre_rotate_y",
"pre_ztranslate",
"blur3D",
"bubble",
"bwraps",
"bwraps2",
"crop",
"cylinder",
"falloff2",
"hemisphere",
"julia3D",
"julia3Dz",
"linear3D",
"zblur",
"zcone",
"ztranslate",
"post_crop",
"post_falloff2",
"post_rotate_x",
"post_rotate_y",
"curl3D_cz",
"flatten"//Of course don't flatten if it's already present.
};
//This is a vector of the incorrect variation names and their param names as they are in the legacy, badly named flam3/Apophysis code.
vector<string> badParams =
{
"bwraps7_cellsize",
"bwraps7_space",
"bwraps7_gain",
"bwraps7_inner_twist",
"bwraps7_outer_twist"
};
m_BadVariationNames.push_back(make_pair(make_pair(string("bwraps7"), string("bwraps")), badParams));//bwraps7 is the same as bwraps.
badParams =
{
"bwraps2_cellsize",
"bwraps2_space",
"bwraps2_gain",
"bwraps2_inner_twist",
"bwraps2_outer_twist"
};
m_BadVariationNames.push_back(make_pair(make_pair(string("bwraps2"), string("bwraps")), badParams));//bwraps2 is the same as bwraps.
badParams =
{
"pre_bwraps2_cellsize",
"pre_bwraps2_space",
"pre_bwraps2_gain",
"pre_bwraps2_inner_twist",
"pre_bwraps2_outer_twist"
};
m_BadVariationNames.push_back(make_pair(make_pair(string("pre_bwraps2"), string("pre_bwraps")), badParams));
badParams =
{
"post_bwraps2_cellsize",
"post_bwraps2_space",
"post_bwraps2_gain",
"post_bwraps2_inner_twist",
"post_bwraps2_outer_twist"
};
m_BadVariationNames.push_back(make_pair(make_pair(string("post_bwraps2"), string("post_bwraps")), badParams));
badParams =
{
"mobius_radius",
"mobius_width",
"mobius_rect_x",
"mobius_rect_y",
"mobius_rotate_x",
"mobius_rotate_y"
};
m_BadVariationNames.push_back(make_pair(make_pair(string("mobius"), string("mobius_strip")), badParams));//mobius_strip clashes with Mobius.
badParams =
{
"post_dcztransl_x0",
"post_dcztransl_x1",
"post_dcztransl_factor",
"post_dcztransl_overwrite",
"post_dcztransl_clamp"
};
m_BadVariationNames.push_back(make_pair(make_pair(string("post_dcztransl"), string("post_dc_ztransl")), badParams));
badParams =
{
"post_scrop_power",
"post_scrop_radius",
"post_scrop_roundstr",
"post_scrop_roundwidth",
"post_scrop_distortion",
"post_scrop_edge",
"post_scrop_scatter",
"post_scrop_offset",
"post_scrop_rotation",
"post_scrop_cropmode",
"post_scrop_static"
};
m_BadVariationNames.push_back(make_pair(make_pair(string("post_scrop"), string("post_smartcrop")), badParams));
badParams =
{
"sshape_power",
"sshape_roundstr",
"sshape_roundwidth",
"sshape_distortion",
"sshape_compensation"
};
m_BadVariationNames.push_back(make_pair(make_pair(string("sshape"), string("smartshape")), badParams));
badParams =
{
"post_sshape_power",
"post_sshape_roundstr",
"post_sshape_roundwidth",
"post_sshape_distortion",
"post_sshape_compensation"
};
m_BadVariationNames.push_back(make_pair(make_pair(string("post_sshape"), string("post_smartshape")), badParams));
badParams =
{
"radial_gaussian_angle"
};
m_BadVariationNames.push_back(make_pair(make_pair(string("radial_gaussian"), string("radial_blur")), badParams));
badParams =
{
"faber_w_angle",
"faber_w_hypergon",
"faber_w_hypergon_n",
"faber_w_hypergon_r",
"faber_w_star",
"faber_w_star_n",
"faber_w_star_slope",
"faber_w_lituus",
"faber_w_lituus_a",
"faber_w_super",
"faber_w_super_m",
"faber_w_super_n1",
"faber_w_super_n2",
"faber_w_super_n3"
};
m_BadVariationNames.push_back(make_pair(make_pair(string("faber_w"), string("w")), badParams));
badParams =
{
"faber_x_angle",
"faber_x_hypergon",
"faber_x_hypergon_n",
"faber_x_hypergon_r",
"faber_x_star",
"faber_x_star_n",
"faber_x_star_slope",
"faber_x_lituus",
"faber_x_lituus_a",
"faber_x_super",
"faber_x_super_m",
"faber_x_super_n1",
"faber_x_super_n2",
"faber_x_super_n3"
};
m_BadVariationNames.push_back(make_pair(make_pair(string("faber_x"), string("x")), badParams));
//Note that splits3D can't be done here because its param names are also used by splits.
badParams.clear();
m_BadVariationNames.push_back(make_pair(make_pair(string("pre_blur"), string("pre_gaussian_blur")), badParams));//No other special params for these.
m_BadVariationNames.push_back(make_pair(make_pair(string("pre_spin_z"), string("pre_rotate_z")), badParams));
m_BadVariationNames.push_back(make_pair(make_pair(string("post_spin_z"), string("post_rotate_z")), badParams));
m_Init = true;
}
}
/// <summary>
/// Parse the specified buffer and place the results in the container of embers passed in.
/// </summary>
/// <param name="buf">The buffer to parse</param>
/// <param name="filename">Full path and filename, optionally empty</param>
/// <param name="embers">The newly constructed embers based on what was parsed</param>
/// <param name="useDefaults">True to use defaults if they are not present in the file, else false to use invalid values as placeholders to indicate the values were not present. Default: true.</param>
/// <returns>True if there were no errors, else false.</returns>
template <typename T>
template <typename Alloc, template <typename, typename> class C>
bool XmlToEmber<T>::Parse(byte* buf, const char* filename, C<Ember<T>, Alloc>& embers, bool useDefaults)
{
const char* xmlPtr;
const char* loc = __FUNCTION__;
size_t emberSize;
size_t bufSize;
xmlDocPtr doc;//Parsed XML document tree.
xmlNodePtr rootnode;
Locale locale;//Sets and restores on exit.
//Timing t;
ClearErrorReport();
//Parse XML string into internal document.
xmlPtr = CX(&buf[0]);
bufSize = strlen(xmlPtr);
//embers.reserve(bufSize / 2500);//The Xml text for an ember is around 2500 bytes, but can be much more. Pre-allocate to aovid unnecessary resizing.
int flags = XML_PARSE_HUGE;// | XML_PARSE_RECOVER;
doc = xmlReadMemory(xmlPtr, int(bufSize), filename, "ISO-8859-1", flags);
//t.Toc("xmlReadMemory");
if (doc == nullptr)
{
doc = xmlReadMemory(xmlPtr, int(bufSize), filename, "UTF-8", flags);
if (doc == nullptr)
{
doc = xmlReadMemory(xmlPtr, int(bufSize), filename, "UTF-16", flags);
}
}
if (doc == nullptr)
{
AddToReport(string(loc) + " : Error parsing xml file " + string(filename));
return false;
}
//What is the root node of the document?
rootnode = xmlDocGetRootElement(doc);
//Scan for <flame> nodes, starting with this node.
//t.Tic();
if (string(filename).empty())
{
ScanForEmberNodes(rootnode, filename, embers, useDefaults);
if (embers.empty())
ScanForChaosNodes(rootnode, filename, embers, useDefaults);
}
else if (EndsWith(filename, ".chaos"))
ScanForChaosNodes(rootnode, filename, embers, useDefaults);
else
ScanForEmberNodes(rootnode, filename, embers, useDefaults);
xmlFreeDoc(doc);
emberSize = embers.size();
auto first = embers.begin();
//t.Toc("ScanForEmberNodes");
//Check to see if the first control point or the second-to-last
//control point has interpolation="smooth". This is invalid
//and should be reset to linear (with a warning).
if (emberSize > 0)
{
if (first->m_Interp == eInterp::EMBER_INTERP_SMOOTH)
first->m_Interp = eInterp::EMBER_INTERP_LINEAR;
if (emberSize >= 2)
{
auto secondToLast = Advance(embers.begin(), emberSize - 2);
if (secondToLast->m_Interp == eInterp::EMBER_INTERP_SMOOTH)
secondToLast->m_Interp = eInterp::EMBER_INTERP_LINEAR;
}
}
else
{
AddToReport(string(loc) + " : Error parsing xml file " + string(filename) + ", no flames present.");
return false;
}
//Finally, ensure that consecutive 'rotate' parameters never exceed
//a difference of more than 180 degrees (+/-) for interpolation.
//An adjustment of +/- 360 degrees is made until this is true.
if (emberSize > 1)
{
auto prev = embers.begin();
auto second = Advance(embers.begin(), 1);
for (auto it = second; it != embers.end(); ++it)
{
//Only do this adjustment if not in compat mode.
if (prev->m_AffineInterp != eAffineInterp::AFFINE_INTERP_COMPAT && prev->m_AffineInterp != eAffineInterp::AFFINE_INTERP_OLDER)
{
while (it->m_Rotate < prev->m_Rotate - 180)
it->m_Rotate += 360;
while (it->m_Rotate > prev->m_Rotate + 180)
it->m_Rotate -= 360;
}
prev = it;
}
}
return true;
}
/// <summary>
/// Parse the specified file and place the results in the container of embers passed in.
/// This will strip out ampersands because the Xml parser can't handle them.
/// </summary>
/// <param name="filename">Full path and filename</param>
/// <param name="embers">The newly constructed embers based on what was parsed</param>
/// <param name="useDefaults">True to use defaults if they are not present in the file, else false to use invalid values as placeholders to indicate the values were not present. Default: true.</param>
/// <returns>True if there were no errors, else false.</returns>
template <typename T>
template <typename Alloc, template <typename, typename> class C>
bool XmlToEmber<T>::Parse(const char* filename, C<Ember<T>, Alloc>& embers, bool useDefaults)
{
const char* loc = __FUNCTION__;
string buf;
//Ensure palette list is setup first.
if (!m_PaletteList->Size())
{
AddToReport(string(loc) + " : Palette list must be initialized before parsing embers.");
return false;
}
if (ReadFile(filename, buf))
{
std::replace(buf.begin(), buf.end(), '&', '+');
return Parse(reinterpret_cast<byte*>(const_cast<char*>(buf.data())), filename, embers, useDefaults);
}
else
return false;
}
/// <summary>
/// Thin wrapper around converting the string to a numeric value and return a bool indicating success.
/// See error report for errors.
/// </summary>
/// <param name="str">The string to convert</param>
/// <param name="val">The converted value</param>
/// <returns>True if success, else false.</returns>
template <typename T>
template <typename valT>
bool XmlToEmber<T>::Aton(const char* str, valT& val)
{
bool b = true;
const char* loc = __FUNCTION__;
std::istringstream istr(str);
istr >> val;
if (istr.bad() || istr.fail())
{
AddToReport(string(loc) + " : Error converting " + string(str));
b = false;
}
return b;
}
/// <summary>
/// Scan the file for ember nodes, and parse them out into the container of embers.
/// </summary>
/// <param name="curNode">The current node to parse</param>
/// <param name="parentFile">The full path and filename</param>
/// <param name="embers">The newly constructed embers based on what was parsed</param>
/// <param name="useDefaults">True to use defaults if they are not present in the file, else false to use invalid values as placeholders to indicate the values were not present.</param>
template <typename T>
template <typename Alloc, template <typename, typename> class C>
void XmlToEmber<T>::ScanForEmberNodes(xmlNode* curNode, const char* parentFile, C<Ember<T>, Alloc>& embers, bool useDefaults)
{
bool parseEmberSuccess;
xmlNodePtr thisNode = nullptr;
const char* loc = __FUNCTION__;
string parentFileString = string(parentFile);
//Original memset to 0, but the constructors should handle that.
//Loop over this level of elements.
for (thisNode = curNode; thisNode; thisNode = thisNode->next)
{
//Check to see if this element is a <ember> element.
if (thisNode->type == XML_ELEMENT_NODE && !Compare(thisNode->name, "flame"))
{
Ember<T> currentEmber;//Place this inside here so its constructor is called each time.
//Useful for parsing templates when not every member should be set.
if (!useDefaults)
currentEmber.Clear(false);
parseEmberSuccess = ParseEmberElement(thisNode, currentEmber);
if (!parseEmberSuccess)
{
//Original leaked memory here, ours doesn't.
AddToReport(string(loc) + " : Error parsing ember element");
return;
}
if (currentEmber.PaletteIndex() != -1)
{
if (auto pal = m_PaletteList->GetPaletteByFilename(m_PaletteList->m_DefaultFilename, currentEmber.PaletteIndex()))
currentEmber.m_Palette = *pal;
else
AddToReport(string(loc) + " : Error assigning palette with index " + std::to_string(currentEmber.PaletteIndex()));
}
if (!currentEmber.XformCount())//Ensure there is always at least one xform or else the renderer will crash when trying to render.
{
Xform<T> xform;
currentEmber.AddXform(xform);
}
currentEmber.CacheXforms();
currentEmber.m_Index = embers.size();
currentEmber.m_ParentFilename = parentFileString;
embers.push_back(currentEmber);
}
else
{
//Check all of the children of this element.
ScanForEmberNodes(thisNode->children, parentFile, embers, useDefaults);
}
}
}
/// <summary>
/// Helper function to verify that the name field of a node
/// matches the one passed in.
/// </summary>
/// <param name="node">The node whose name field will be inspected</param>
/// <param name="name">The name string to compare against</param>
/// <returns>The name value if they matched, else nullptr.</returns>
static const char* CheckNameVal(xmlNode* node, const char* name)
{
if (auto att = node->properties)
{
if (!Compare(att->name, "name"))
{
if (auto attStr = XC(xmlGetProp(node, att->name)))
{
if (!Compare(attStr, name))
{
return CCX(attStr);
}
}
}
}
return nullptr;
};
/// <summary>
/// Helper function to verify that the name of a node
/// matches the one passed in.
/// </summary>
/// <param name="node">The node whose name will be inspected</param>
/// <param name="name">The name string to compare against</param>
/// <returns>The node if they matched, else nullptr.</returns>
static xmlNode* CheckNodeName(xmlNode* node, const char* name)
{
if (!Compare(node->name, name))
return node;
return nullptr;
};
/// <summary>
/// Helper function to get the value of the name field of a node.
/// </summary>
/// <param name="node">The node whose name field will be returned</param>
/// <param name="name">The name of the field whose value will be compared against. Default: "name".</param>
/// <returns>The value of the name field if found, else nullptr.</returns>
static const char* GetNameVal(xmlNode* node, const char* name = "name")
{
if (auto att = node->properties)
{
if (!Compare(att->name, name ? name : "name"))
{
if (auto attStr = XC(xmlGetProp(node, att->name)))
{
return CCX(attStr);
}
}
}
return nullptr;
};
/// <summary>
/// Helper function to get the child of a node based on the value of its name field.
/// </summary>
/// <param name="node">The node whose children will be searched</param>
/// <param name="name">The name string to compare the child nodes' name fields against</param>
/// <returns>The child node if found, else nullptr.</returns>
static xmlNode* GetChildNode(xmlNode* node, const char* name)
{
for (auto childNode = node->children; childNode; childNode = childNode->next)
{
if (childNode->type == XML_ELEMENT_NODE)
{
if (CheckNameVal(childNode, name))
{
return childNode;
}
}
}
return nullptr;
};
/// <summary>
/// Helper function to get the child of a node based on the name of the child node.
/// </summary>
/// <param name="node">The node whose children will be searched</param>
/// <param name="name">The name string to compare the child nodes' name against</param>
/// <returns>The child node if found, else nullptr.</returns>
static xmlNode* GetChildNodeByNodeName(xmlNode* node, const char* name)
{
for (auto childNode = node->children; childNode; childNode = childNode->next)
{
if (childNode->type == XML_ELEMENT_NODE)
{
if (auto node = CheckNodeName(childNode, name))
{
return node;
}
}
}
return nullptr;
};
/// <summary>
/// Helper function to parse the content of a field of a node and convert the string into a value of type T and store in the passed in val parameter.
/// </summary>
/// <param name="node">The node whose property fieldname will be parsed</param>
/// <param name="fieldname">The name of the node's field to parse</param>
/// <param name="fieldnameval">The name of the property within the field</param>
/// <param name="val">The storage location to store the parse and converted value in</param>
/// <returns>True if the field and property were successfully found and parsed, else false.</returns>
template <typename T>
template <typename valT>
bool XmlToEmber<T>::ParseAndAssignContent(xmlNode* node, const char* fieldname, const char* fieldnameval, valT& val)
{
bool ret = false;
if (auto att = node->properties)
{
if (!Compare(att->name, fieldname))
{
if (auto attStr = XC(xmlGetProp(node, att->name)))
{
if (!fieldnameval || !Compare(attStr, fieldnameval))
{
if (auto cont = xmlNodeGetContent(node))
{
istringstream istr(CCX(cont));
istr >> val;
ret = !istr.bad() && !istr.fail();//Means the Compare() was right, and the conversion succeeded.
}
}
}
}
}
return ret;
}
/// <summary>
/// Special overload for string.
/// </summary>
/// <param name="node">The node whose property fieldname will be parsed</param>
/// <param name="fieldname">The name of the node's field to parse</param>
/// <param name="fieldnameval">The name of the property within the field</param>
/// <param name="val">The storage location to store the parse and converted string in</param>
/// <returns>True if the field and property were successfully found and parsed, else false.</returns>
template <typename T>
bool XmlToEmber<T>::ParseAndAssignContent(xmlNode* node, const char* fieldname, const char* fieldnameval, std::string& val)
{
bool ret = false;
if (auto att = node->properties)
{
if (!Compare(att->name, fieldname))
{
if (auto attStr = XC(xmlGetProp(node, att->name)))
{
if (!fieldnameval || !Compare(attStr, fieldnameval))
{
if (auto cont = xmlNodeGetContent(node))
{
val = CX(cont);
return true;
}
}
}
}
}
return ret;
}
/// <summary>
/// Scan the file for chaos nodes from a .chaos file from Chaotica, and parse them out into the container of embers.
/// </summary>
/// <param name="curNode">The current node to parse</param>
/// <param name="parentFile">The full path and filename</param>
/// <param name="embers">The newly constructed embers based on what was parsed</param>
/// <param name="useDefaults">True to use defaults if they are not present in the file, else false to use invalid values as placeholders to indicate the values were not present.</param>
template <typename T>
template <typename Alloc, template <typename, typename> class C>
void XmlToEmber<T>::ScanForChaosNodes(xmlNode* curNode, const char* parentFile, C<Ember<T>, Alloc>& embers, bool useDefaults)
{
bool parseEmberSuccess;
xmlNodePtr thisNode = nullptr;
const char* loc = __FUNCTION__;
string parentFileString = string(parentFile);
//Loop over this level of elements.
for (thisNode = curNode; thisNode; thisNode = thisNode->next)
{
//Check to see if this element is a <ember> element.
if (thisNode->type == XML_ELEMENT_NODE && !Compare(thisNode->name, "IFS"))
{
Ember<T> currentEmber;//Place this inside here so its constructor is called each time.
//Useful for parsing templates when not every member should be set.
if (!useDefaults)
currentEmber.Clear(false);
if (auto embername = GetNameVal(thisNode, "name"))
currentEmber.m_Name = embername;
auto childNode = thisNode;
bool ret = true;
parseEmberSuccess = ParseEmberElementFromChaos(childNode, currentEmber);
if (!parseEmberSuccess)
{
AddToReport(string(loc) + " : Error parsing ember element");
return;
}
if (!currentEmber.XformCount())//Ensure there is always at least one xform or else the renderer will crash when trying to render.
{
Xform<T> xform;
currentEmber.AddXform(xform);
}
currentEmber.CacheXforms();
currentEmber.m_MinRadDE = currentEmber.m_MaxRadDE = 0;//Chaotica doesn't support density filtering.
currentEmber.m_Index = embers.size();
currentEmber.m_FuseCount = 30;//Chaotica doesn't publish its fuse count, but the images appear like they were using a fuse count of at least 30.
currentEmber.m_ParentFilename = parentFileString;
embers.push_back(currentEmber);
}
else
{
//Check all of the children of this element.
ScanForChaosNodes(thisNode->children, parentFile, embers, useDefaults);
}
}
}
/// <summary>
/// Parse an ember element from a .chaos file.
/// </summary>
/// <param name="emberNode">The current node to parse</param>
/// <param name="currentEmber">The newly constructed ember based on what was parsed</param>
/// <returns>True if there were no errors, else false.</returns>
template <typename T>
bool XmlToEmber<T>::ParseEmberElementFromChaos(xmlNode* emberNode, Ember<T>& currentEmber)
{
bool fromEmber = false, ret = true;
const char* loc = __FUNCTION__;
int soloXform = -1;
size_t count = 0, index = 0;
T sensorWidth = 2;
xmlAttrPtr att;
currentEmber.m_Palette.Clear();//Wipe out the current palette.
att = emberNode->properties;//The top level element is a ember element, read the attributes of it and store them.
auto variationsfunc = [&](const string & prefix, const char* nodename, xmlNode * node, Xform<T>& xf, std::vector<std::string>& alliterweights)
{
if (auto transformsChildNode = GetChildNode(node, nodename))
{
for (auto variationNode = transformsChildNode->children; variationNode; variationNode = variationNode->next)
{
if (variationNode->type == XML_ELEMENT_NODE && (!Compare(variationNode->name, "flam3_variation") || !Compare(variationNode->name, "transform")))
{
auto variationNameNode = GetChildNode(variationNode, "variation_name");
if (!variationNameNode)
variationNameNode = GetChildNode(variationNode, "type_name");
if (variationNameNode)
{
std::string varname;
if (ParseAndAssignContent(variationNameNode, "name", "variation_name", varname)) {}
else ParseAndAssignContent(variationNameNode, "name", "type_name", varname);
if (!varname.empty())
{
T weight = 1;
string corrvarname = GetCorrectedVariationName(m_BadVariationNames, varname);
auto corrwprefix = !StartsWith(corrvarname, prefix) ? prefix + corrvarname : corrvarname;
if (auto var = m_VariationList->GetVariation(corrwprefix))
{
auto vc = std::unique_ptr<Variation<T>>(var->Copy());
vc->m_Weight = 1;
auto varCopy = vc.get();
if (xf.AddVariation(varCopy))
{
vc.release();
if (auto paramsNode = GetChildNodeByNodeName(variationNode, "params"))
{
auto parvar = dynamic_cast<ParametricVariation<T>*>(varCopy);
for (auto paramsChildNode = paramsNode->children; paramsChildNode; paramsChildNode = paramsChildNode->next)
{
if (paramsChildNode->type == XML_ELEMENT_NODE)
{
if (auto paramname = GetNameVal(paramsChildNode))
{
T val = 1;
if (auto paramCurveChildNode = GetChildNodeByNodeName(paramsChildNode, "curve"))
{
if (auto paramCurveValuesChildNode = GetChildNode(paramCurveChildNode, "values"))
{
if (auto paramCurveValuesContentChildNode = GetChildNodeByNodeName(paramCurveValuesChildNode, "values"))
{
if (paramCurveValuesContentChildNode->children)
{
string valstr = CCX(paramCurveValuesContentChildNode->children->content);
istringstream istr(valstr);
istr >> val;
varCopy->m_Weight = val;
}
}
}
}
else if (ParseAndAssignContent(paramsChildNode, "name", paramname, val))
{
auto paramstr = GetCorrectedParamName(m_BadParamNames, ToLower(paramname).c_str());
if (paramname == varname)//Compare non corrected names.
{
varCopy->m_Weight = val;
}
else if (parvar)
{
if (!StartsWith(paramstr, prefix))
paramstr = prefix + paramstr;
//Need some special corrections here because Chaotica allows values that don't make sense.
if (varname == "falloff2")
{
if (paramstr == "falloff2_mul_c")
val = 0;
else if (paramstr == "falloff2_type")
val = std::ceil(val);
}
else if (varname == "falloff3")
{
if (paramstr == "falloff3_mul_c")
val = 0;
else if (paramstr == "falloff3_blur_type")
val = std::ceil(val);
}
parvar->SetParamVal(paramstr.c_str(), val);
//if (!parvar->SetParamVal(paramstr.c_str(), val))
// AddToReport(string(loc) + " : Failed to set parametric variation parameter " + paramstr);
}
}
}
}
}
}
}
}
}
}
}
}
}
};
auto xformfunc = [&](xmlNode * node, Xform<T>& xf, std::vector<std::string>& alliterweights) -> bool
{
bool found = false;
if (auto transformChildNode = GetChildNodeByNodeName(node, "flam3_transform"))
{
found = true;
auto itername = GetNameVal(node, "name");
xf.m_Name = itername;
if (auto affineChildNode = GetChildNode(transformChildNode, "Pre affine"))
{
std::string offsetstr;
double xangle = 0, xlength = 1, yangle = 90, ylength = 1, xoffset = 0, yoffset = 0;
if (auto xangleChildNode = GetChildNode(affineChildNode, "x_axis_angle"))
if (auto paramCurveChildNode = GetChildNodeByNodeName(xangleChildNode, "curve"))
{
if (auto paramCurveValuesChildNode = GetChildNode(paramCurveChildNode, "values"))
{
if (auto paramCurveValuesContentChildNode = GetChildNodeByNodeName(paramCurveValuesChildNode, "values"))
{
if (paramCurveValuesContentChildNode->children)
{
string valstr = CCX(paramCurveValuesContentChildNode->children->content);
istringstream istr(valstr);
istr >> xangle;
}
}
}
}
else
ParseAndAssignContent(xangleChildNode, "name", "x_axis_angle", xangle);
if (auto xlengthChildNode = GetChildNode(affineChildNode, "x_axis_length"))
if (ParseAndAssignContent(xlengthChildNode, "name", "x_axis_length", xlength)) {}
if (auto yangleChildNode = GetChildNode(affineChildNode, "y_axis_angle"))
if (auto paramCurveChildNode = GetChildNodeByNodeName(yangleChildNode, "curve"))
{
if (auto paramCurveValuesChildNode = GetChildNode(paramCurveChildNode, "values"))
{
if (auto paramCurveValuesContentChildNode = GetChildNodeByNodeName(paramCurveValuesChildNode, "values"))
{
if (paramCurveValuesContentChildNode->children)
{
string valstr = CCX(paramCurveValuesContentChildNode->children->content);
istringstream istr(valstr);
istr >> yangle;
}
}
}
}
else
ParseAndAssignContent(yangleChildNode, "name", "y_axis_angle", yangle);
if (auto ylengthChildNode = GetChildNode(affineChildNode, "y_axis_length"))
if (ParseAndAssignContent(ylengthChildNode, "name", "y_axis_length", ylength)) {}
if (auto offsetChildNode = GetChildNode(affineChildNode, "offset"))
if (ParseAndAssignContent(offsetChildNode, "name", "offset", offsetstr))
{
istringstream istr(offsetstr);
istr >> xoffset >> yoffset;
}
T x1 = T(xlength * std::cos(xangle * DEG_2_RAD));
T y1 = T(xlength * std::sin(xangle * DEG_2_RAD));
T x2 = T(ylength * std::cos(yangle * DEG_2_RAD));
T y2 = T(ylength * std::sin(yangle * DEG_2_RAD));
T o1 = T(xoffset);
T o2 = T(yoffset);
xf.m_Affine.A(x1);
xf.m_Affine.B(x2);
xf.m_Affine.C(o1);
xf.m_Affine.D(y1);
xf.m_Affine.E(y2);
xf.m_Affine.F(o2);
}
if (auto affineChildNode = GetChildNode(transformChildNode, "Post affine"))
{
std::string offsetstr;
double xangle = 0, xlength = 1, yangle = 90, ylength = 1, xoffset = 0, yoffset = 0;
if (auto xangleChildNode = GetChildNode(affineChildNode, "x_axis_angle"))
if (!ParseAndAssignContent(xangleChildNode, "name", "x_axis_angle", xangle))
if (auto paramCurveChildNode = GetChildNodeByNodeName(affineChildNode, "curve"))
{
if (auto paramCurveValuesChildNode = GetChildNode(paramCurveChildNode, "values"))
{
if (auto paramCurveValuesContentChildNode = GetChildNodeByNodeName(paramCurveValuesChildNode, "values"))
{
if (paramCurveValuesContentChildNode->children)
{
string valstr = CCX(paramCurveValuesContentChildNode->children->content);
istringstream istr(valstr);
istr >> xangle;
}
}
}
}
if (auto xlengthChildNode = GetChildNode(affineChildNode, "x_axis_length"))
if (ParseAndAssignContent(xlengthChildNode, "name", "x_axis_length", xlength)) {}
if (auto yangleChildNode = GetChildNode(affineChildNode, "y_axis_angle"))
if (auto paramCurveChildNode = GetChildNodeByNodeName(yangleChildNode, "curve"))
{
if (auto paramCurveValuesChildNode = GetChildNode(paramCurveChildNode, "values"))
{
if (auto paramCurveValuesContentChildNode = GetChildNodeByNodeName(paramCurveValuesChildNode, "values"))
{
if (paramCurveValuesContentChildNode->children)
{
string valstr = CCX(paramCurveValuesContentChildNode->children->content);
istringstream istr(valstr);
istr >> yangle;
}
}
}
}
else
ParseAndAssignContent(yangleChildNode, "name", "y_axis_angle", yangle);
if (auto ylengthChildNode = GetChildNode(affineChildNode, "y_axis_length"))
if (ParseAndAssignContent(ylengthChildNode, "name", "y_axis_length", ylength)) {}
if (auto offsetChildNode = GetChildNode(affineChildNode, "offset"))
if (ParseAndAssignContent(offsetChildNode, "name", "offset", offsetstr))
{
istringstream istr(offsetstr);
istr >> xoffset >> yoffset;
}
T x1 = T(xlength * std::cos(xangle * DEG_2_RAD));
T y1 = T(xlength * std::sin(xangle * DEG_2_RAD));
T x2 = T(ylength * std::cos(yangle * DEG_2_RAD));
T y2 = T(ylength * std::sin(yangle * DEG_2_RAD));
T o1 = T(xoffset);
T o2 = T(yoffset);
xf.m_Post.A(x1);
xf.m_Post.B(x2);
xf.m_Post.C(o1);
xf.m_Post.D(y1);
xf.m_Post.E(y2);
xf.m_Post.F(o2);
}
string prefix;
variationsfunc(prefix, "transforms", transformChildNode, xf, alliterweights);
prefix = "pre_";
variationsfunc(prefix, "pre_transforms", transformChildNode, xf, alliterweights);
prefix = "post_";
variationsfunc(prefix, "post_transforms", transformChildNode, xf, alliterweights);
}
if (auto shaderChildNode = GetChildNodeByNodeName(node, "flam3_shader"))
{
T paletteIndex = 0, colorSpeed = 0.5, opacity = 1;
if (auto paletteIndexChildNode = GetChildNode(shaderChildNode, "palette_index"))
if (ParseAndAssignContent(paletteIndexChildNode, "name", "palette_index", paletteIndex)) { xf.m_ColorX = xf.m_ColorY = paletteIndex; }
if (auto colrSpeedChildNode = GetChildNode(shaderChildNode, "blend_speed"))
if (ParseAndAssignContent(colrSpeedChildNode, "name", "blend_speed", colorSpeed)) { xf.m_ColorSpeed = colorSpeed; }
if (auto opacityChildNode = GetChildNode(shaderChildNode, "opacity"))
if (ParseAndAssignContent(opacityChildNode, "name", "opacity", opacity)) { xf.m_Opacity = opacity; }
}
if (auto weightsChildNode = GetChildNodeByNodeName(node, "weights_selector"))
{
T weight = 0;
std::string periterweights;
if (auto baseWeightChildNode = GetChildNode(weightsChildNode, "base_weight"))
if (ParseAndAssignContent(baseWeightChildNode, "name", "base_weight", weight)) { xf.m_Weight = weight; }
if (auto periterweightsChildNode = GetChildNode(weightsChildNode, "per_iterator_weights"))
{
for (auto iterweightChildNode = periterweightsChildNode->children; iterweightChildNode; iterweightChildNode = iterweightChildNode->next)
{
if (iterweightChildNode->type == XML_ELEMENT_NODE)
{
std::string iterweight;
if (ParseAndAssignContent(iterweightChildNode, "name", nullptr, iterweight))//All of these subsequent nodes are for iter specific weights (xaos).
periterweights += iterweight + ' ';
}
}
}
if (!periterweights.empty())
alliterweights.push_back(Trim(periterweights));
}
return found;
};
if (att == nullptr)
{
AddToReport(string(loc) + " : <IFS> element has no attributes");
return false;
}
auto childNode = emberNode->children;
for (; childNode; childNode = childNode->next)
{
if (childNode->type == XML_ELEMENT_NODE)
{
if (!Compare(childNode->name, "imaging"))
{
std::string bgstr, useHighlightPower;
for (auto imgChildNode = childNode->children; imgChildNode; imgChildNode = imgChildNode->next)
{
if (imgChildNode->type == XML_ELEMENT_NODE)
{
if (ParseAndAssignContent(imgChildNode, "name", "image_width", currentEmber.m_FinalRasW)) {}
else if (ParseAndAssignContent(imgChildNode, "name", "image_height", currentEmber.m_FinalRasH)) {}
else if (ParseAndAssignContent(imgChildNode, "name", "image_aa_level", currentEmber.m_Supersample)) { ClampRef(currentEmber.m_Supersample, size_t(1), size_t(4)); }
else if (ParseAndAssignContent(imgChildNode, "name", "image_quality", currentEmber.m_Quality)) { currentEmber.m_Quality = std::max(currentEmber.m_Quality, T(1)); }
else if (ParseAndAssignContent(imgChildNode, "name", "brightness", currentEmber.m_Brightness)) {}
else if (ParseAndAssignContent(imgChildNode, "name", "flam3_gamma", currentEmber.m_Gamma)) {}
else if (ParseAndAssignContent(imgChildNode, "name", "flam3_vibrancy", currentEmber.m_Vibrancy)) {}
else if (ParseAndAssignContent(imgChildNode, "name", "flam3_use_highlight_power", useHighlightPower)) {}
else if (ParseAndAssignContent(imgChildNode, "name", "flam3_highlight_power", currentEmber.m_HighlightPower)) {}
else if (ParseAndAssignContent(imgChildNode, "name", "flam3_gamma_linear_threshold", currentEmber.m_GammaThresh)) {}
else if (ParseAndAssignContent(imgChildNode, "name", "background_colour", bgstr))
{
istringstream is(bgstr);
is >> currentEmber.m_Background[0]//[0..1]
>> currentEmber.m_Background[1]
>> currentEmber.m_Background[2]
>> currentEmber.m_Background[3];
}
}
}
// there is no warranty that flam3_use_highlight_power will be read before flam3_highlight_power. So, better to be here.
bool bVal; istringstream istr(useHighlightPower); istr >> std::boolalpha >> bVal;
if (!bVal && !istr.bad() && !istr.fail())
currentEmber.m_HighlightPower = T(-1);
if (auto curvesnode = GetChildNodeByNodeName(childNode, "curves"))
{
T val = 0;
auto curvenodesfunc = [&](xmlNode * node, int index)
{
float x, y;
string knots, values;
vector<v2F> vals;
if (auto knotsnode = GetChildNode(node, "knots"))
{
if (auto knotvalsnode = GetChildNodeByNodeName(knotsnode, "values"))
if (knotvalsnode->children)
knots = CCX(knotvalsnode->children->content);
}
if (auto valuesnode = GetChildNode(node, "values"))
{
if (auto valvalsnode = GetChildNodeByNodeName(valuesnode, "values"))
if (valvalsnode->children)
values = CCX(valvalsnode->children->content);
}
if (knots.empty() && values.empty())
{
bool haveknots = false, havevals = false;
for (auto childNode = node->children; childNode; childNode = childNode->next)
{
if (childNode->type == XML_ELEMENT_NODE)
{
if (auto node = CheckNodeName(childNode, "table"))
{
if (!haveknots)
{
if (auto knotvalsnode = GetChildNodeByNodeName(node, "values"))
{
if (knotvalsnode->children)
{
knots = CCX(knotvalsnode->children->content);
haveknots = true;
}
continue;
}
}
else if (!havevals)
{
if (auto valvalsnode = GetChildNodeByNodeName(node, "values"))
{
if (valvalsnode->children)
{
values = CCX(valvalsnode->children->content);
havevals = true;
}
continue;
}
}
}
}
}
}
istringstream kistr(knots);
istringstream vistr(values);
while (kistr >> x && vistr >> y)
vals.push_back({ x, y });
if (index < currentEmber.m_Curves.m_Points.size() && vals.size() >= 2)
{
std::sort(vals.begin(), vals.end(), [&](auto & lhs, auto & rhs) { return lhs.x < rhs.x; });
currentEmber.m_Curves.m_Points[index].clear();
currentEmber.m_Curves.m_Points[index].push_back(vals[0]);
currentEmber.m_Curves.m_Points[index].push_back(vals[1]);
for (size_t i = 2; i < vals.size(); i++)
if (vals[i] != currentEmber.m_Curves.m_Points[index][i - 1])//An attempt to remove duplicates.
currentEmber.m_Curves.m_Points[index].push_back(vals[i]);
}
};
if (auto overallnode = GetChildNode(curvesnode, "overall"))
curvenodesfunc(overallnode, 0);
if (auto rednode = GetChildNode(curvesnode, "0"))
curvenodesfunc(rednode, 1);
if (auto greennode = GetChildNode(curvesnode, "5"))
curvenodesfunc(greennode, 2);
if (auto bluenode = GetChildNode(curvesnode, "10"))
curvenodesfunc(bluenode, 3);
}
}
else if (!Compare(childNode->name, "camera"))
{
std::string pos;
for (auto camChildNode = childNode->children; camChildNode; camChildNode = camChildNode->next)
{
if (camChildNode->type == XML_ELEMENT_NODE)
{
if (ParseAndAssignContent(camChildNode, "name", "rotate", currentEmber.m_Rotate)) { currentEmber.m_Rotate = NormalizeDeg180<T>(currentEmber.m_Rotate); }
else if (ParseAndAssignContent(camChildNode, "name", "sensor_width", sensorWidth)) { }
else if (ParseAndAssignContent(camChildNode, "name", "pos", pos))
{
istringstream istr(pos);
istr >> currentEmber.m_CenterX >> currentEmber.m_CenterY;
currentEmber.m_CenterY *= -1;
currentEmber.m_RotCenterY = currentEmber.m_CenterY;
}
else
{
Xform<T> finalXform;
std::vector<std::string> alliterweights;
if (xformfunc(childNode, finalXform, alliterweights))//Iter weights are unused in the final xform.
{
finalXform.m_Weight = 0;
finalXform.m_Animate = 0;//Do not animate final by default.
finalXform.m_ColorX = finalXform.m_ColorY = 0;//Chaotica does not support any kind of coloring for final xforms, opacity remains 1 though.
finalXform.m_ColorSpeed = 0;
currentEmber.SetFinalXform(finalXform);
}
}
}
}
}
else if (!Compare(childNode->name, "colouring"))
{
if (auto palettenode = GetChildNode(childNode, "flam3_palette"))
{
if (auto palettevalsnode = GetChildNodeByNodeName(palettenode, "values"))
{
float r = 0, g = 0, b = 0;
auto colors = CCX(palettevalsnode->children->content);
istringstream istr(colors);
currentEmber.m_Palette.m_Entries.clear();
std::vector<v4F> tempv;
tempv.reserve(256);
while (istr >> r && istr >> g && istr >> b)
tempv.push_back(v4F(r, g, b, 1));
if (!tempv.empty())
currentEmber.m_Palette.m_Entries = std::move(tempv);
}
}
else
{
std::string huek, huev, satk, satv, valk, valv;
if (auto huenode = GetChildNode(childNode, "hue"))
{
if (auto knotsnode = GetChildNode(huenode, "knots"))
if (auto knotvalsnode = GetChildNodeByNodeName(knotsnode, "values"))
if (knotvalsnode->children)
huek = CCX(knotvalsnode->children->content);
if (auto valuesnode = GetChildNode(huenode, "values"))
if (auto valvalsnode = GetChildNodeByNodeName(valuesnode, "values"))
if (valvalsnode->children)
huev = CCX(valvalsnode->children->content);
}
if (auto satnode = GetChildNode(childNode, "saturation"))
{
if (auto knotsnode = GetChildNode(satnode, "knots"))
if (auto knotvalsnode = GetChildNodeByNodeName(knotsnode, "values"))
if (knotvalsnode->children)
satk = CCX(knotvalsnode->children->content);
if (auto valuesnode = GetChildNode(satnode, "values"))
if (auto valvalsnode = GetChildNodeByNodeName(valuesnode, "values"))
if (valvalsnode->children)
satv = CCX(valvalsnode->children->content);
}
if (auto valnode = GetChildNode(childNode, "value"))
{
if (auto knotsnode = GetChildNode(valnode, "knots"))
if (auto knotvalsnode = GetChildNodeByNodeName(knotsnode, "values"))
if (knotvalsnode->children)
valk = CCX(knotvalsnode->children->content);
if (auto valuesnode = GetChildNode(valnode, "values"))
if (auto valvalsnode = GetChildNodeByNodeName(valuesnode, "values"))
if (valvalsnode->children)
valv = CCX(valvalsnode->children->content);
}
auto parsehsvfunc = [&](const std::string & knots, const std::string & vals, vector<v2F>& vec)
{
istringstream kstr(knots);
istringstream vstr(vals);
float k, v;
vec.clear();
vec.reserve(8);
while (kstr >> k && vstr >> v)
{
vec.push_back({k, v});
}
};
vector<v2F> hvec, svec, vvec;
parsehsvfunc(huek, huev, hvec);
parsehsvfunc(satk, satv, svec);
parsehsvfunc(valk, valv, vvec);
if (huek.size() >= 2 && huev.size() >= 2 &&
satk.size() >= 2 && satv.size() >= 2 &&
valk.size() >= 2 && valv.size() >= 2)
{
Spline<float> hspline(hvec);
Spline<float> sspline(svec);
Spline<float> vspline(vvec);
currentEmber.m_Palette.m_Entries.resize(COLORMAP_LENGTH);
auto stepsize = (1.0f / (currentEmber.m_Palette.Size() - 1));
for (auto palindex = 0; palindex < currentEmber.m_Palette.Size(); palindex++)
{
float t = palindex * stepsize;
auto h = hspline.Interpolate(t);
auto s = sspline.Interpolate(t);
auto v = vspline.Interpolate(t);
float r, g, b;
Palette<float>::HsvToRgb(float(h * 2 * M_PI), s, v, r, g, b);
currentEmber.m_Palette.m_Entries[palindex][0] = r;
currentEmber.m_Palette.m_Entries[palindex][1] = g;
currentEmber.m_Palette.m_Entries[palindex][2] = b;
currentEmber.m_Palette.m_Entries[palindex][3] = 1;
}
}
}
}
else if (!Compare(childNode->name, "node"))
{
if (auto nodename = CheckNameVal(childNode, "iterators"))
{
std::vector<std::string> alliterweights;
for (auto iterChildNode = childNode->children; iterChildNode; iterChildNode = iterChildNode->next)
{
if (iterChildNode->type == XML_ELEMENT_NODE && !Compare(iterChildNode->name, "iterator"))
{
Xform<T> xf;
xformfunc(iterChildNode, xf, alliterweights);
currentEmber.AddXform(xf);
}
}
if (!alliterweights.empty())
{
size_t i = 0;
while (auto xform = currentEmber.GetXform(i))
{
if (i < alliterweights.size() && !alliterweights[i].empty())
{
istringstream istr(alliterweights[i]);
T xaoselement = 0;
size_t j = 0;
while (istr >> xaoselement)
xform->SetXaos(j++, xaoselement);
}
i++;
}
}
}
}
}
}
currentEmber.m_OrigPixPerUnit = currentEmber.m_PixelsPerUnit = currentEmber.m_FinalRasW / Zeps(sensorWidth);
return currentEmber.XformCount() > 0;
}
/// <summary>
/// Parse an ember element.
/// </summary>
/// <param name="emberNode">The current node to parse</param>
/// <param name="currentEmber">The newly constructed ember based on what was parsed</param>
/// <returns>True if there were no errors, else false.</returns>
template <typename T>
bool XmlToEmber<T>::ParseEmberElement(xmlNode* emberNode, Ember<T>& currentEmber)
{
bool ret = true;
bool fromEmber = false;
size_t newLinear = 0;
char* attStr;
const char* loc = __FUNCTION__;
int soloXform = -1;
size_t i, count = 0, index = 0;
xmlAttrPtr att, curAtt;
xmlNodePtr editNode, childNode, motionNode;
currentEmber.m_Palette.Clear();//Wipe out the current palette.
att = emberNode->properties;//The top level element is a ember element, read the attributes of it and store them.
if (att == nullptr)
{
AddToReport(string(loc) + " : <flame> element has no attributes");
return false;
}
for (curAtt = att; curAtt; curAtt = curAtt->next)
{
attStr = reinterpret_cast<char*>(xmlGetProp(emberNode, curAtt->name));
//First parse out simple float reads.
if (ParseAndAssign(curAtt->name, attStr, "time", currentEmber.m_Time, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "scale", currentEmber.m_PixelsPerUnit, ret)) { currentEmber.m_OrigPixPerUnit = currentEmber.m_PixelsPerUnit; }
else if (ParseAndAssign(curAtt->name, attStr, "rotate", currentEmber.m_Rotate, ret)) { currentEmber.m_Rotate = NormalizeDeg180<T>(currentEmber.m_Rotate); }
else if (ParseAndAssign(curAtt->name, attStr, "zoom", currentEmber.m_Zoom, ret)) { ClampGteRef<T>(currentEmber.m_Zoom, 0); }
else if (ParseAndAssign(curAtt->name, attStr, "cam_zoom", currentEmber.m_Zoom, ret)) { ClampGteRef<T>(currentEmber.m_Zoom, 0); }//JWildfire uses cam_zoom.
else if (ParseAndAssign(curAtt->name, attStr, "filter", currentEmber.m_SpatialFilterRadius, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "temporal_filter_width", currentEmber.m_TemporalFilterWidth, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "temporal_filter_exp", currentEmber.m_TemporalFilterExp, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "quality", currentEmber.m_Quality, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "brightness", currentEmber.m_Brightness, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "gamma", currentEmber.m_Gamma, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "highlight_power", currentEmber.m_HighlightPower, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "logscale_k2", currentEmber.m_K2, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "vibrancy", currentEmber.m_Vibrancy, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "estimator_radius", currentEmber.m_MaxRadDE, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "estimator_minimum", currentEmber.m_MinRadDE, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "estimator_curve", currentEmber.m_CurveDE, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "gamma_threshold", currentEmber.m_GammaThresh, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "cam_zpos", currentEmber.m_CamZPos, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "cam_persp", currentEmber.m_CamPerspective, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "cam_perspective", currentEmber.m_CamPerspective, ret)) {}//Apo bug.
else if (ParseAndAssign(curAtt->name, attStr, "cam_yaw", currentEmber.m_CamYaw, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "cam_pitch", currentEmber.m_CamPitch, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "cam_dof", currentEmber.m_CamDepthBlur, ret)) {}
//Parse simple int reads.
else if (ParseAndAssign(curAtt->name, attStr, "palette", currentEmber.m_Palette.m_Index, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "oversample", currentEmber.m_Supersample, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "supersample", currentEmber.m_Supersample, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "temporal_samples", currentEmber.m_TemporalSamples, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "sub_batch_size", currentEmber.m_SubBatchSize, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "fuse", currentEmber.m_FuseCount, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "rand_range", currentEmber.m_RandPointRange, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "soloxform", soloXform, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "new_linear", newLinear, ret)) {}
//Parse more complicated reads that have multiple possible values.
else if (!Compare(curAtt->name, "interpolation"))
{
if (!_stricmp("linear", attStr))
currentEmber.m_Interp = eInterp::EMBER_INTERP_LINEAR;
else if (!_stricmp("smooth", attStr))
currentEmber.m_Interp = eInterp::EMBER_INTERP_SMOOTH;
else
AddToReport(string(loc) + " : Unrecognized interpolation type " + string(attStr));
}
else if (!Compare(curAtt->name, "palette_interpolation"))
{
if (!_stricmp("hsv", attStr))
currentEmber.m_PaletteInterp = ePaletteInterp::INTERP_HSV;
else if (!_stricmp("sweep", attStr))
currentEmber.m_PaletteInterp = ePaletteInterp::INTERP_SWEEP;
else
AddToReport(string(loc) + " : Unrecognized palette interpolation type " + string(attStr));
}
else if (!Compare(curAtt->name, "interpolation_space") || !Compare(curAtt->name, "interpolation_type"))
{
if (!_stricmp("linear", attStr))
currentEmber.m_AffineInterp = eAffineInterp::AFFINE_INTERP_LINEAR;
else if (!_stricmp("log", attStr))
currentEmber.m_AffineInterp = eAffineInterp::AFFINE_INTERP_LOG;
else if (!_stricmp("old", attStr))
currentEmber.m_AffineInterp = eAffineInterp::AFFINE_INTERP_COMPAT;
else if (!_stricmp("older", attStr))
currentEmber.m_AffineInterp = eAffineInterp::AFFINE_INTERP_OLDER;
else
AddToReport(string(loc) + " : Unrecognized interpolation type " + string(attStr));
}
else if (!Compare(curAtt->name, "name"))
{
currentEmber.m_Name = string(attStr);
std::replace(currentEmber.m_Name.begin(), currentEmber.m_Name.end(), ' ', '_');
}
else if (!Compare(curAtt->name, "version"))
{
if (ToLower(string(attStr)).find("ember") != string::npos)
fromEmber = true;
}
else if (!Compare(curAtt->name, "size"))
{
istringstream is(attStr);
is >> currentEmber.m_FinalRasW >> currentEmber.m_FinalRasH;
currentEmber.m_OrigFinalRasW = currentEmber.m_FinalRasW;
currentEmber.m_OrigFinalRasH = currentEmber.m_FinalRasH;
}
else if (!Compare(curAtt->name, "center"))
{
istringstream is(attStr);
is >> currentEmber.m_CenterX >> currentEmber.m_CenterY;
currentEmber.m_RotCenterY = currentEmber.m_CenterY;
}
else if (!Compare(curAtt->name, "filter_shape"))
{
currentEmber.m_SpatialFilterType = SpatialFilterCreator<T>::FromString(string(attStr));
}
else if (!Compare(curAtt->name, "temporal_filter_type"))
{
currentEmber.m_TemporalFilterType = TemporalFilterCreator<T>::FromString(string(attStr));
}
else if (!Compare(curAtt->name, "palette_mode"))
{
if (!_stricmp("step", attStr))
currentEmber.m_PaletteMode = ePaletteMode::PALETTE_STEP;
else if (!_stricmp("linear", attStr))
currentEmber.m_PaletteMode = ePaletteMode::PALETTE_LINEAR;
else
{
currentEmber.m_PaletteMode = ePaletteMode::PALETTE_STEP;
AddToReport(string(loc) + " : Unrecognized palette mode " + string(attStr) + ", using step");
}
}
else if (!Compare(curAtt->name, "background"))
{
istringstream is(attStr);
is >> currentEmber.m_Background[0]//[0..1]
>> currentEmber.m_Background[1]
>> currentEmber.m_Background[2];
}
else if (!Compare(curAtt->name, "curves"))
{
auto splits = Split(attStr, ' ');
istringstream is(attStr);
for (i = 0; i < 4; i++)
{
vector<v2F> vals;
for (glm::length_t j = 0; j < 4; j++)
{
T w, x = 0, y = 0;
is >> x
>> y
>> w;//Weights appear to be unused.
vals.push_back({ Clamp<T>(x, 0, 1), Clamp<T>(y, 0, 1) });
}
std::sort(vals.begin(), vals.end(), [&](auto & lhs, auto & rhs) { return lhs.x < rhs.x; });
if (vals[0] == v2F(0) && vals[1] == v2F(0))
vals[1] = v2F(0.25);
if (vals[2] == v2F(1) && vals[3] == v2F(1))
vals[3] = v2F(0.75);
currentEmber.m_Curves.m_Points[i] = vals;
}
}
else if (!Compare(curAtt->name, "overall_curve"))
{
//cout << "found overall curves\n";
auto splits = Split(attStr, ' ');
istringstream is(attStr);
vector<v2F> vals;
T x = 0, y = 0;
while (is >> x && is >> y)//No weights when using this format.
{
vals.push_back({ Clamp<T>(x, 0, 1), Clamp<T>(y, 0, 1) });
}
std::sort(vals.begin(), vals.end(), [&](auto & lhs, auto & rhs) { return lhs.x < rhs.x; });
if (vals[0] == v2F(0) && vals[1] == v2F(0))
vals[1] = v2F(0.25);
if (vals[2] == v2F(1) && vals[3] == v2F(1))
vals[3] = v2F(0.75);
currentEmber.m_Curves.m_Points[0] = vals;
}
else if (!Compare(curAtt->name, "red_curve"))
{
//cout << "found red curves\n";
auto splits = Split(attStr, ' ');
istringstream is(attStr);
vector<v2F> vals;
T x = 0, y = 0;
while (is >> x && is >> y)//No weights when using this format.
{
vals.push_back({ Clamp<T>(x, 0, 1), Clamp<T>(y, 0, 1) });
}
std::sort(vals.begin(), vals.end(), [&](auto & lhs, auto & rhs) { return lhs.x < rhs.x; });
if (vals[0] == v2F(0) && vals[1] == v2F(0))
vals[1] = v2F(0.25);
if (vals[2] == v2F(1) && vals[3] == v2F(1))
vals[3] = v2F(0.75);
currentEmber.m_Curves.m_Points[1] = vals;
}
else if (!Compare(curAtt->name, "green_curve"))
{
//cout << "found green curves\n";
auto splits = Split(attStr, ' ');
istringstream is(attStr);
vector<v2F> vals;
T x = 0, y = 0;
while (is >> x && is >> y)//No weights when using this format.
{
vals.push_back({ Clamp<T>(x, 0, 1), Clamp<T>(y, 0, 1) });
}
std::sort(vals.begin(), vals.end(), [&](auto & lhs, auto & rhs) { return lhs.x < rhs.x; });
if (vals[0] == v2F(0) && vals[1] == v2F(0))
vals[1] = v2F(0.25);
if (vals[2] == v2F(1) && vals[3] == v2F(1))
vals[3] = v2F(0.75);
currentEmber.m_Curves.m_Points[2] = vals;
}
else if (!Compare(curAtt->name, "blue_curve"))
{
//cout << "found blue curves\n";
auto splits = Split(attStr, ' ');
istringstream is(attStr);
vector<v2F> vals;
T x = 0, y = 0;
while (is >> x && is >> y)//No weights when using this format.
{
vals.push_back({ Clamp<T>(x, 0, 1), Clamp<T>(y, 0, 1) });
}
std::sort(vals.begin(), vals.end(), [&](auto & lhs, auto & rhs) { return lhs.x < rhs.x; });
if (vals[0] == v2F(0) && vals[1] == v2F(0))
vals[1] = v2F(0.25);
if (vals[2] == v2F(1) && vals[3] == v2F(1))
vals[3] = v2F(0.75);
currentEmber.m_Curves.m_Points[3] = vals;
}
xmlFree(attStr);
}
//Finished with ember attributes. Now look at the children of the ember element.
for (childNode = emberNode->children; childNode; childNode = childNode->next)
{
if (!Compare(childNode->name, "color"))
{
index = -1;
float r = 0, g = 0, b = 0, a = 0;
//Loop through the attributes of the color element.
att = childNode->properties;
if (att == nullptr)
{
AddToReport(string(loc) + " : No attributes for color element");
continue;
}
for (curAtt = att; curAtt; curAtt = curAtt->next)
{
a = 255;
attStr = reinterpret_cast<char*>(xmlGetProp(childNode, curAtt->name));
istringstream is(attStr);
//This signifies that a palette is not being retrieved from the palette file, rather it's being parsed directly out of the ember xml.
//This also means the palette has already been hue adjusted and it doesn't need to be done again, which would be necessary if it were
//coming from the palette file.
currentEmber.m_Palette.m_Index = -1;
if (!Compare(curAtt->name, "index"))
Aton(attStr, index);
else if (!Compare(curAtt->name, "rgb"))
is >> r >> g >> b;
else if (!Compare(curAtt->name, "rgba"))
is >> r >> g >> b >> a;
else if (!Compare(curAtt->name, "a"))
is >> a;
else
AddToReport(string(loc) + " : Unknown color attribute " + string(CCX(curAtt->name)));
xmlFree(attStr);
}
while (index >= currentEmber.m_Palette.Size())
currentEmber.m_Palette.m_Entries.push_back(v4F());
float alphaPercent = a / 255.0f;//Aplha percentage in the range of 0 to 1.
//Premultiply the palette.
currentEmber.m_Palette.m_Entries[index].r = alphaPercent * (r / 255.0f);//Palette colors are [0..255], convert to [0..1].
currentEmber.m_Palette.m_Entries[index].g = alphaPercent * (g / 255.0f);
currentEmber.m_Palette.m_Entries[index].b = alphaPercent * (b / 255.0f);
currentEmber.m_Palette.m_Entries[index].a = a / 255.0f;//Will be one for RGB, and other than one if RGBA with A != 255.
}
else if (!Compare(childNode->name, "colors"))
{
//Loop through the attributes of the color element.
att = childNode->properties;
if (att == nullptr)
{
AddToReport(string(loc) + " : No attributes for colors element");
continue;
}
for (curAtt = att; curAtt; curAtt = curAtt->next)
{
attStr = reinterpret_cast<char*>(xmlGetProp(childNode, curAtt->name));
if (!Compare(curAtt->name, "count"))
{
Aton(attStr, count);
}
else if (!Compare(curAtt->name, "data"))
{
if (!ParseHexColors(attStr, currentEmber, count, -4))
{
AddToReport(string(loc) + " : Error parsing hexformatted colors, some may be set to zero");
}
}
else
{
AddToReport(string(loc) + " : Unknown color attribute " + string(CCX(curAtt->name)));
}
xmlFree(attStr);
}
}
else if (!Compare(childNode->name, "palette"))
{
//This could be either the old form of palette or the new form.
//Make sure BOTH are not specified, otherwise either are ok.
int numColors = 0;
int numBytes = 0;
//Loop through the attributes of the palette element.
att = childNode->properties;
if (att == nullptr)
{
AddToReport(string(loc) + " : No attributes for palette element");
continue;
}
for (curAtt = att; curAtt; curAtt = curAtt->next)
{
attStr = reinterpret_cast<char*>(xmlGetProp(childNode, curAtt->name));
if (!Compare(curAtt->name, "count"))
{
Aton(attStr, numColors);
}
else if (!Compare(curAtt->name, "format"))
{
if (!_stricmp(attStr, "RGB"))
numBytes = 3;
else if (!_stricmp(attStr, "RGBA"))
numBytes = 4;
else
{
AddToReport(string(loc) + " : Unrecognized palette format string " + string(attStr) + ", defaulting to RGB");
numBytes = 3;
}
}
else if (!Compare(curAtt->name, "source_colors"))
{
string s(attStr);
auto vec1 = Split(s, ' ');
for (auto& v : vec1)
{
auto vec2 = Split(v, ',');
if (vec2.size() == 4)
{
float d1 = Clamp(std::stof(vec2[0]), 0.0f, 1.0f);
currentEmber.m_Palette.m_SourceColors[d1] = v4F(
Clamp(std::stof(vec2[1]), 0.0f, 1.0f),
Clamp(std::stof(vec2[2]), 0.0f, 1.0f),
Clamp(std::stof(vec2[3]), 0.0f, 1.0f), 1.0f);
}
else
AddToReport(string(loc) + " : Bad palette color source value: " + v);
}
}
else
{
AddToReport(string(loc) + " : Unknown palette attribute " + string(CCX(curAtt->name)));
}
xmlFree(attStr);
}
//Removing support for whatever "old format" was in flam3.
//Read formatted string from contents of tag.
char* palStr = CX(xmlNodeGetContent(childNode));
if (!ParseHexColors(palStr, currentEmber, numColors, numBytes))
{
AddToReport(string(loc) + " : Problem reading hexadecimal color data in palette");
}
xmlFree(palStr);
}
else if (!Compare(childNode->name, "symmetry"))
{
int symKind = INT_MAX;
//Loop through the attributes of the palette element.
att = childNode->properties;
if (att == nullptr)
{
AddToReport(string(loc) + " : No attributes for palette element");
continue;
}
for (curAtt = att; curAtt; curAtt = curAtt->next)
{
attStr = reinterpret_cast<char*>(xmlGetProp(childNode, curAtt->name));
if (!Compare(curAtt->name, "kind"))
{
Aton(attStr, symKind);
}
else
{
AddToReport(string(loc) + " : Unknown symmetry attribute " + string(attStr));
continue;
}
xmlFree(attStr);
}
//if (symKind != INT_MAX)//What to do about this? Should sym not be saved? Or perhaps better intelligence when adding?//TODO//BUG.
//{
// currentEmber.AddSymmetry(symKind, *(GlobalRand.get()));//Determine what to do here.
//}
}
else if (!Compare(childNode->name, "xform") || !Compare(childNode->name, "finalxform"))
{
Xform<T>* theXform = nullptr;
if (!Compare(childNode->name, "finalxform"))
{
Xform<T> finalXform;
finalXform.m_Animate = 0;//Do not animate final by default.
if (!ParseXform(childNode, finalXform, false, fromEmber))
{
AddToReport(string(loc) + " : Error parsing final xform");
}
else
{
if (finalXform.m_Weight != 0)
{
finalXform.m_Weight = 0;
AddToReport(string(loc) + " : Final xforms should not have weight specified, setting to zero");
}
currentEmber.SetFinalXform(finalXform);
theXform = currentEmber.NonConstFinalXform();
}
}
else
{
Xform<T> xform;
if (!ParseXform(childNode, xform, false, fromEmber))
{
AddToReport(string(loc) + " : Error parsing xform");
}
else
{
currentEmber.AddXform(xform);
theXform = currentEmber.GetXform(currentEmber.XformCount() - 1);
}
}
if (theXform)
{
//Check for non-zero motion params.
if (fabs(theXform->m_MotionFreq) > 0.0)//Original checked for motion func being non-zero, but it was set to MOTION_SIN (1) in Xform::Init(), so don't check for 0 here.
{
AddToReport(string(loc) + " : Motion parameters should not be specified in regular, non-motion xforms");
}
//Motion Language: Check the xform element for children - should be named 'motion'.
for (motionNode = childNode->children; motionNode; motionNode = motionNode->next)
{
if (!Compare(motionNode->name, "motion"))
{
Xform<T> xform(false);//Will only have valid values in fields parsed for motion, all others will be EMPTYFIELD.
if (!ParseXform(motionNode, xform, true, fromEmber))
AddToReport(string(loc) + " : Error parsing motion xform");
else
theXform->m_Motion.push_back(xform);
}
}
}
}
else if (!Compare(childNode->name, "edit"))
{
//Create a new XML document with this edit node as the root node.
currentEmber.m_Edits = xmlNewDoc(XC("1.0"));
editNode = xmlCopyNode(childNode, 1);
xmlDocSetRootElement(currentEmber.m_Edits, editNode);
}
else if (!Compare(childNode->name, "flame_motion"))
{
EmberMotion<T> motion;
att = childNode->properties;
if (att == nullptr)
{
AddToReport(string(loc) + " : <flame_motion> element has no attributes");
return false;
}
for (curAtt = att; curAtt; curAtt = curAtt->next)
{
attStr = reinterpret_cast<char*>(xmlGetProp(childNode, curAtt->name));
if (ParseAndAssign(curAtt->name, attStr, "motion_frequency", motion.m_MotionFreq, ret)) {}
else if (ParseAndAssign(curAtt->name, attStr, "motion_offset", motion.m_MotionOffset, ret)) {}
else if (!Compare(curAtt->name, "motion_function"))
{
string func(attStr);
if (func == "sin")
motion.m_MotionFunc = eMotion::MOTION_SIN;
else if (func == "triangle")
motion.m_MotionFunc = eMotion::MOTION_TRIANGLE;
else if (func == "hill")
motion.m_MotionFunc = eMotion::MOTION_HILL;
else if (func == "saw")
motion.m_MotionFunc = eMotion::MOTION_SAW;
else
{
AddToReport(string(loc) + " : invalid flame motion function " + func + ", setting to sin");
motion.m_MotionFunc = eMotion::MOTION_SIN;
}
}
else if (!Compare(curAtt->name, "zoom"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_ZOOM, motion);
else if (!Compare(curAtt->name, "cam_zpos"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_ZPOS, motion);
else if (!Compare(curAtt->name, "cam_persp"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_PERSPECTIVE, motion);
else if (!Compare(curAtt->name, "cam_yaw"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_YAW, motion);
else if (!Compare(curAtt->name, "cam_pitch"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_PITCH, motion);
else if (!Compare(curAtt->name, "cam_dof"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_DEPTH_BLUR, motion);
else if (!Compare(curAtt->name, "rotate"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_ROTATE, motion);
else if (!Compare(curAtt->name, "brightness"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_BRIGHTNESS, motion);
else if (!Compare(curAtt->name, "gamma"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_GAMMA, motion);
else if (!Compare(curAtt->name, "gamma_threshold"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_GAMMA_THRESH, motion);
else if (!Compare(curAtt->name, "highlight_power"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_HIGHLIGHT_POWER, motion);
else if (!Compare(curAtt->name, "logscale_k2"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_K2, motion);
else if (!Compare(curAtt->name, "rand_range"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_RAND_RANGE, motion);
else if (!Compare(curAtt->name, "vibrancy"))
ret = ret && AttToEmberMotionFloat(att, attStr, eEmberMotionParam::FLAME_MOTION_VIBRANCY, motion);
else if (!Compare(curAtt->name, "background"))
{
double r = 0, g = 0, b = 0;
istringstream is(attStr);
is >> r >> g >> b;
if (r != 0)
motion.m_MotionParams.push_back(MotionParam<T>(eEmberMotionParam::FLAME_MOTION_BACKGROUND_R, T(r)));
if (g != 0)
motion.m_MotionParams.push_back(MotionParam<T>(eEmberMotionParam::FLAME_MOTION_BACKGROUND_G, T(g)));
if (b != 0)
motion.m_MotionParams.push_back(MotionParam<T>(eEmberMotionParam::FLAME_MOTION_BACKGROUND_B, T(b)));
}
else if (!Compare(curAtt->name, "center"))
{
double cx = 0, cy = 0;
istringstream is(attStr);
is >> cx >> cy;
if (cx != 0)
motion.m_MotionParams.push_back(MotionParam<T>(eEmberMotionParam::FLAME_MOTION_CENTER_X, T(cx)));
if (cy != 0)
motion.m_MotionParams.push_back(MotionParam<T>(eEmberMotionParam::FLAME_MOTION_CENTER_Y, T(cy)));
}
else
{
AddToReport(string(loc) + " : Unknown flame motion attribute " + string(CCX(curAtt->name)));
}
xmlFree(attStr);
}
currentEmber.m_EmberMotionElements.push_back(motion);
}
}
//If new_linear == 0, manually add a linear
if (!fromEmber && !newLinear)
currentEmber.Flatten(m_FlattenNames);
if (soloXform >= 0)
for (i = 0; i < currentEmber.XformCount(); i++)
currentEmber.GetXform(i)->m_Opacity = T(i == soloXform);//Will calc the cached adjusted viz value later.
return true;
}
/// <summary>
/// Parse a floating point value from an xml attribute and add the value to a EmberMotion object
/// </summary>
/// <param name="att">The current attribute</param>
/// <param name="attStr">The attribute value to parse</param>
/// <param name="param">The flame motion parameter type</param>
/// <param name="motion">The flame motion element to add the parameter to</param>
/// <returns>True if there were no errors, else false.</returns>
template <typename T>
bool XmlToEmber<T>::AttToEmberMotionFloat(xmlAttrPtr att, const char* attStr, eEmberMotionParam param, EmberMotion<T>& motion)
{
const char* loc = __FUNCTION__;
bool r = false;
T val = 0.0;
if (Aton(attStr, val))
{
motion.m_MotionParams.push_back(MotionParam<T>(param, val));
r = true;
}
else
{
AddToReport(string(loc) + " : Failed to parse float value for flame motion attribute \"" + string(CCX(att->name)) + "\" : " + string(attStr));
}
return r;
}
/// <summary>
/// Parse an xform element.
/// </summary>
/// <param name="childNode">The current node to parse</param>
/// <param name="xform">The newly constructed xform based on what was parsed</param>
/// <param name="motion">True if this xform is a motion within a parent xform, else false</param>
/// <returns>True if there were no errors, else false.</returns>
template <typename T>
bool XmlToEmber<T>::ParseXform(xmlNode* childNode, Xform<T>& xform, bool motion, bool fromEmber)
{
bool success = true;
char* attStr;
const char* loc = __FUNCTION__;
size_t j;
T temp;
double a, b, c, d, e, f;
xmlAttrPtr attPtr, curAtt;
//Loop through the attributes of the xform element.
attPtr = childNode->properties;
if (attPtr == nullptr)
{
AddToReport(string(loc) + " : Error: No attributes for element");
return false;
}
for (curAtt = attPtr; curAtt; curAtt = curAtt->next)
{
attStr = reinterpret_cast<char*>(xmlGetProp(childNode, curAtt->name));
//First parse out simple float reads.
if (ParseAndAssign(curAtt->name, attStr, "weight", xform.m_Weight, success)) {}
else if (ParseAndAssign(curAtt->name, attStr, "color_speed", xform.m_ColorSpeed, success)) {}
else if (ParseAndAssign(curAtt->name, attStr, "animate", xform.m_Animate, success)) {}
else if (ParseAndAssign(curAtt->name, attStr, "opacity", xform.m_Opacity, success)) {}
else if (ParseAndAssign(curAtt->name, attStr, "var_color", xform.m_DirectColor, success)) {}
else if (ParseAndAssign(curAtt->name, attStr, "motion_frequency", xform.m_MotionFreq, success)) {}
else if (ParseAndAssign(curAtt->name, attStr, "motion_offset", xform.m_MotionOffset, success)) {}
//Parse more complicated reads that have multiple possible values.
else if (!Compare(curAtt->name, "name"))
{
xform.m_Name = string(attStr);
std::replace(xform.m_Name.begin(), xform.m_Name.end(), ' ', '_');
}
else if (!fromEmber && !Compare(curAtt->name, "symmetry"))//Legacy support.
{
//Deprecated, set both color_speed and animate to this value.
//Huh? Either set it or not?
Aton(attStr, temp);
xform.m_ColorSpeed = (1 - temp) / 2;
xform.m_Animate = T(temp > 0 ? 0 : 1);
}
else if (!Compare(curAtt->name, "motion_function"))
{
if (!_stricmp("sin", attStr))
xform.m_MotionFunc = eMotion::MOTION_SIN;
else if (!_stricmp("triangle", attStr))
xform.m_MotionFunc = eMotion::MOTION_TRIANGLE;
else if (!_stricmp("hill", attStr))
xform.m_MotionFunc = eMotion::MOTION_HILL;
else if (!_stricmp("saw", attStr))
xform.m_MotionFunc = eMotion::MOTION_SAW;
else
{
xform.m_MotionFunc = eMotion::MOTION_SIN;
AddToReport(string(loc) + " : Unknown motion function " + string(attStr) + ", using sin");
}
}
else if (!Compare(curAtt->name, "color"))
{
istringstream is(attStr);
xform.m_ColorX = xform.m_ColorY = T(0.5);
is >> xform.m_ColorX;
is >> xform.m_ColorY;//Very unlikely to be present, but leave for future use.
}
else if (!Compare(curAtt->name, "chaos"))
{
istringstream is(attStr);
j = 0;
while (is >> temp)
{
xform.SetXaos(j, temp);
j++;
}
}
else if (!Compare(curAtt->name, "plotmode"))
{
if (motion == 1)
{
AddToReport(string(loc) + " : Motion element cannot have a plotmode attribute");
}
else if (!_stricmp("off", attStr))
xform.m_Opacity = 0;
}
else if (!Compare(curAtt->name, "coefs"))
{
istringstream is(attStr);
a = b = c = d = e = f = 0;
is >> a >> d >> b >> e >> c >> f;
xform.m_Affine.A(T(a));
xform.m_Affine.B(T(b));
xform.m_Affine.C(T(c));
xform.m_Affine.D(T(d));
xform.m_Affine.E(T(e));
xform.m_Affine.F(T(f));
}
else if (!Compare(curAtt->name, "post"))
{
istringstream is(attStr);
a = b = c = d = e = f = 0;
is >> a >> d >> b >> e >> c >> f;
xform.m_Post.A(T(a));
xform.m_Post.B(T(b));
xform.m_Post.C(T(c));
xform.m_Post.D(T(d));
xform.m_Post.E(T(e));
xform.m_Post.F(T(f));
}
else
{
//Only correct names if it came from an outside source. Names originating from this library are always considered correct.
string s = fromEmber ? string(CCX(curAtt->name)) : GetCorrectedVariationName(m_BadVariationNames, curAtt);
if (auto var = m_VariationList->GetVariation(s))
{
T weight = 0;
Aton(attStr, weight);
if (!IsNearZero(weight))//Having a variation with zero weight makes no sense, so guard against it.
{
auto varCopy = var->Copy();
varCopy->m_Weight = weight;
xform.AddVariation(varCopy);
}
}
//else
//{
// AddToReport("Unsupported variation: " + string((const char*)curAtt->name));
//}
}
xmlFree(attStr);
}
//Handle var1.
for (curAtt = attPtr; curAtt; curAtt = curAtt->next)//Legacy fields, most likely not used.
{
bool var1 = false;
if (!Compare(curAtt->name, "var1"))
{
attStr = reinterpret_cast<char*>(xmlGetProp(childNode, curAtt->name));
for (j = 0; j < xform.TotalVariationCount(); j++)
xform.GetVariation(j)->m_Weight = 0;
if (Aton(attStr, temp))
{
uint iTemp = static_cast<uint>(temp);
if (iTemp < xform.TotalVariationCount())
{
xform.GetVariation(iTemp)->m_Weight = 1;
var1 = true;
}
}
if (!var1)
AddToReport(string(loc) + " : Bad value for var1 " + string(attStr));
xmlFree(attStr);
break;
}
}
//Handle var.
for (curAtt = attPtr; curAtt; curAtt = curAtt->next)//Legacy fields, most likely not used.
{
bool var = false;
if (!Compare(curAtt->name, "var"))
{
attStr = reinterpret_cast<char*>(xmlGetProp(childNode, curAtt->name));
if (Aton(attStr, temp))
{
for (j = 0; j < xform.TotalVariationCount(); j++)
xform.GetVariation(j)->m_Weight = temp;
var = true;
}
if (!var)
AddToReport(string(loc) + " : Bad value for var " + string(attStr));
xmlFree(attStr);
break;
}
}
//Now that all xforms have been parsed, go through and try to find params for the parametric variations.
for (size_t i = 0; i < xform.TotalVariationCount(); i++)
{
if (ParametricVariation<T>* parVar = dynamic_cast<ParametricVariation<T>*>(xform.GetVariation(i)))
{
for (curAtt = attPtr; curAtt; curAtt = curAtt->next)
{
//Only correct names if it came from an outside source. Names originating from this library are always considered correct.
string s = fromEmber ? string(CCX(curAtt->name)) : GetCorrectedParamName(m_BadParamNames, ToLower(CCX(curAtt->name)).c_str());
const char* name = s.c_str();
if (parVar->ContainsParam(name))
{
T val = 0;
attStr = CX(xmlGetProp(childNode, curAtt->name));
if (Aton(attStr, val))
{
if (!parVar->SetParamVal(name, val))
AddToReport(string(loc) + " : Failed to set parametric variation parameter " + name);
}
else
{
AddToReport(string(loc) + " : Failed to parse parametric variation parameter " + s + " - " + string(attStr));
}
xmlFree(attStr);
}
}
}
}
return true;
}
/// <summary>
/// Some Apophysis plugins use an inconsistent naming scheme for the parametric variation variables.
/// This function identifies and converts them to Ember's consistent naming convention.
/// </summary>
/// <param name="names">The map of corrected names to search</param>
/// <param name="name">The current Xml node to check</param>
/// <returns>The corrected name if one was found, else the passed in name.</returns>
template <typename T>
string XmlToEmber<T>::GetCorrectedParamName(const unordered_map<string, string>& names, const char* name)
{
const auto& newName = names.find(ToLower(name));
if (newName != names.end())
return newName->second;
else
return name;
}
/// <summary>
/// Some Apophysis plugins use an inconsistent naming scheme for variation names.
/// This function identifies and converts them to Ember's consistent naming convention.
/// It uses some additional intelligence to ensure the variation is the expected one,
/// by examining the rest of the xform for the existence of parameter names.
/// </summary>
/// <param name="vec">The vector of corrected names to search</param>
/// <param name="att">The xml attribute pointer whose name member is the name of the variation to check</param>
/// <returns>The corrected name if one was found, else the passed in name.</returns>
template <typename T>
string XmlToEmber<T>::GetCorrectedVariationName(vector<pair<pair<string, string>, vector<string>>>& vec, xmlAttrPtr att)
{
for (auto& v : vec)
{
if (!_stricmp(v.first.first.c_str(), CCX(att->name)))//Do case insensitive here.
{
if (!v.second.empty())
{
for (size_t j = 0; j < v.second.size(); j++)
{
if (XmlContainsTag(att, v.second[j].c_str()))
return v.first.second;
}
}
else
{
return v.first.second;
}
}
}
return string(CCX(att->name));
}
/// <summary>
/// Some Apophysis plugins use an inconsistent naming scheme for variation names.
/// This function identifies and converts them to Ember's consistent naming convention.
/// It uses some additional intelligence to ensure the variation is the expected one,
/// by examining the rest of the xform for the existence of parameter names.
/// This overload is specifically for use when parsing .chaos files from Chaotica.
/// </summary>
/// <param name="vec">The vector of corrected names to search</param>
/// <param name="varname">The name of the variation to check</param>
/// <returns>The corrected name if one was found, else the passed in name.</returns>
template <typename T>
string XmlToEmber<T>::GetCorrectedVariationName(vector<pair<pair<string, string>, vector<string>>>& vec, const string& varname)
{
if (varname == "poincare")//for Apo flames, poincare must be the same, but chaotica poincare is implemented as poincare2
return "poincare2";
else if (varname != "mobius")//Chaotica actually gets this right, but Apophysis doesn't.
for (auto& v : vec)
if (!_stricmp(v.first.first.c_str(), varname.c_str()))//Do case insensitive here.
return v.first.second;
return varname;
}
/// <summary>
/// Determine if an Xml node contains a given tag.
/// </summary>
/// <param name="att">The Xml node to search</param>
/// <param name="name">The node name to search for</param>
/// <returns>True if name was found, else false.</returns>
template <typename T>
bool XmlToEmber<T>::XmlContainsTag(xmlAttrPtr att, const char* name)
{
xmlAttrPtr temp = att;
do
{
if (!_stricmp(name, CCX(temp->name)))
return true;
}
while ((temp = temp->next));
return false;
}
/// <summary>
/// Parse hexadecimal colors.
/// This can read RGB and RGBA, however only RGB will be stored.
/// </summary>
/// <param name="colstr">The string of hex colors to parse</param>
/// <param name="ember">The ember whose palette will be assigned the colors</param>
/// <param name="numColors">The number of colors present</param>
/// <param name="chan">The number of channels in each color</param>
/// <returns>True if there were no errors, else false.</returns>
template <typename T>
bool XmlToEmber<T>::ParseHexColors(const char* colstr, Ember<T>& ember, size_t numColors, intmax_t chan)
{
stringstream ss, temp(colstr); ss >> std::hex;
string s1, s;
size_t tmp, colorCount = 0;
s.reserve(1536);
while (temp >> s1)
s += s1;
auto length = s.size();
for (size_t strIndex = 0; strIndex < length;)
{
for (glm::length_t i = 0; i < 3; i++)
{
const char tmpStr[3] = { s[strIndex++], s[strIndex++], 0 };//Read out and convert the string two characters at a time.
ss.clear();//Reset and fill the string stream.
ss.str(tmpStr);
ss >> tmp;//Do the conversion.
while (colorCount >= ember.m_Palette.Size())
ember.m_Palette.m_Entries.push_back(v4F());
ember.m_Palette.m_Entries[colorCount][i] = float(tmp) / 255.0f;//Hex palette is [0..255], convert to [0..1].
}
ember.m_Palette.m_Entries[colorCount][3] = float(1);
colorCount++;
}
return length >= 256;
}
/// <summary>
/// Wrapper to parse a numeric Xml string value and convert it.
/// </summary>
/// <param name="name">The xml tag to parse</param>
/// <param name="attStr">The name of the Xml attribute</param>
/// <param name="str">The name of the Xml tag</param>
/// <param name="val">The parsed value</param>
/// <param name="b">Bitwise ANDed with true if name matched str and the conversion succeeded, else false. Used for keeping a running value between successive calls.</param>
/// <returns>True if the tag was matched and the conversion succeeded, else false</returns>
template <typename T>
template <typename valT>
bool XmlToEmber<T>::ParseAndAssign(const xmlChar* name, const char* attStr, const char* str, valT& val, bool& b)
{
bool ret = false;
if (!Compare(name, str))
{
istringstream istr(attStr);
istr >> val;
ret = !istr.bad() && !istr.fail();//Means the Compare() was right, and the conversion succeeded.
}
return ret;
}
//This class had to be implemented in a cpp file because the compiler was breaking.
//So the explicit instantiation must be declared here rather than in Ember.cpp where
//all of the other classes are done.
#define EXPORT_XML_TO_EMBER(T) \
template EMBER_API class XmlToEmber<T>; \
template EMBER_API bool XmlToEmber<T>::Parse(byte*, const char*, list<Ember<T>>&, bool); \
template EMBER_API bool XmlToEmber<T>::Parse(byte*, const char*, vector<Ember<T>>&, bool); \
template EMBER_API bool XmlToEmber<T>::Parse(const char*, list<Ember<T>>&, bool); \
template EMBER_API bool XmlToEmber<T>::Parse(const char*, vector<Ember<T>>&, bool); \
template EMBER_API bool XmlToEmber<T>::Aton(const char*, size_t&);
EXPORT_XML_TO_EMBER(float)
#ifdef DO_DOUBLE
EXPORT_XML_TO_EMBER(double)
#endif
}