fractorium/Source/EmberCommon/EmberCommon.h
2024-01-30 14:24:56 -07:00

982 lines
34 KiB
C++

#pragma once
#include "EmberCommonPch.h"
#include "EmberOptions.h"
/// <summary>
/// Global utility classes and functions that are common to all programs that use
/// Ember and its derivatives.
/// </summary>
namespace EmberCommon
{
enum class eXaosPasteStyle : int { NONE, ZERO_TO_ONE, ZERO_TO_VALS, ONE_TO_VALS, VALS_TO_ONE };
/// <summary>
/// Derivation of the RenderCallback class to do custom printing action
/// whenever the progress function is internally called inside of Ember
/// and its derivatives.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
class RenderProgress : public RenderCallback
{
public:
/// <summary>
/// Constructor that initializes the state to zero.
/// </summary>
RenderProgress() = default;
RenderProgress(RenderProgress<T>& progress) = delete;
~RenderProgress() = default;
/// <summary>
/// The progress function which will be called from inside the renderer.
/// </summary>
/// <param name="ember">The ember currently being rendered</param>
/// <param name="foo">An extra dummy parameter</param>
/// <param name="fraction">The progress fraction from 0-100</param>
/// <param name="stage">The stage of iteration. 1 is iterating, 2 is density filtering, 2 is final accumulation.</param>
/// <param name="etaMs">The estimated milliseconds to completion of the current stage</param>
/// <returns>The value of m_Running, which is always true since this is intended to run in an environment where the render runs to completion, unlike interactive rendering.</returns>
virtual int ProgressFunc(Ember<T>& ember, void* foo, double fraction, int stage, double etaMs)
{
if (stage == 0 || stage == 1)
{
if (m_LastStage != stage)
cout << "\n";
cout << "\r" << string(m_S.length() * 2, ' ');//Clear what was previously here, * 2 just to be safe because the end parts of previous strings might be longer.
m_SS.str("");//Begin new output.
m_SS << "\rStage = " << (stage ? "filtering" : "iterating");
m_SS << ", progress = " << int(fraction) << "%";
m_SS << ", eta = " << t.Format(etaMs);
m_S = m_SS.str();
cout << m_S;
}
m_LastStage = stage;
return m_Running;
}
/// <summary>
/// Reset the state.
/// </summary>
void Clear()
{
m_Running = 1;
m_LastStage = 0;
m_LastLength = 0;
m_SS.clear();
m_S.clear();
}
/// <summary>
/// Stop this instance.
/// </summary>
void Stop()
{
m_Running = 0;
}
private:
int m_Running = 1;
int m_LastStage = 0;
int m_LastLength = 0;
stringstream m_SS;
string m_S;
Timing t;
};
/// <summary>
/// Wrapper for parsing an ember Xml file, storing the embers in a vector and printing
/// any errors that occurred.
/// Template argument expected to be float or double.
/// </summary>
/// <param name="parser">The parser to use</param>
/// <param name="filename">The full path and name of the file</param>
/// <param name="embers">Storage for the embers read from the file</param>
/// <param name="useDefaults">True to use defaults if they are not present in the file, else false to use invalid values as placeholders to indicate the values were not present. Default: true.</param>
/// <returns>True if success, else false.</returns>
template <typename T>
static bool ParseEmberFile(XmlToEmber<T>& parser, const string& filename, vector<Ember<T>>& embers, bool useDefaults = true)
{
if (!parser.Parse(filename.c_str(), embers, useDefaults))
{
cerr << "Error parsing flame file " << filename << ", returning without executing.\n";
return false;
}
if (embers.empty())
{
cerr << "Error: No data present in file " << filename << ". Aborting.\n";
return false;
}
return true;
}
/// <summary>
/// Cross platform wrapper for getting the full path of the current executable.
/// </summary>
/// <param name="programPath">The value of argv[0] passed into main()</param>
/// <returns>The full path of the executable as a string</returns>
static string GetExePath(const char* argv0)
{
string fullpath;
#ifdef _WIN32
fullpath = argv0;
#else
vector<char> v;
v.resize(2048);
#if __APPLE__
uint32_t vs = uint32_t(v.size());
if (_NSGetExecutablePath(v.data(), &vs) == 0)
fullpath = string(v.data());
else
cerr << "Could not discern full path from executable.\n";
#else
readlink("/proc/self/exe", v.data(), v.size());
fullpath = string(v.data());
#endif
#endif
return GetPath(fullpath);
}
/// <summary>
/// Wrapper for parsing palette Xml file and initializing it's private static members,
/// and printing any errors that occurred.
/// Template argument expected to be float or double.
/// </summary>
/// <param name="programPath">The full path of the folder the program is running in</param>
/// <param name="filename">The full path and name of the file</param>
/// <returns>True if success, else false.</returns>
template <typename T>
static bool InitPaletteList(const string& programPath, const string& filename)
{
auto paletteList = PaletteList<float>::Instance();
static vector<string> paths =
{
programPath
#ifndef _WIN32
, "~/",
"~/.config/fractorium/",
"/usr/share/fractorium/",
"/usr/local/share/fractorium/"
#endif
};
bool added = false;
for (auto& p : paths)
{
auto fullpath = p + filename;
//cout << "Trying: " << fullpath << endl;
if (!added)
{
if (std::ifstream(fullpath))
added |= paletteList->Add(fullpath);
}
else
break;
}
if (!added || !paletteList->Size())
{
cerr << "Error parsing palette file " << filename << ". Reason: \n"
<< paletteList->ErrorReportString() << "\nReturning without executing.\n";
return false;
}
return true;
}
/// <summary>
/// Formats a filename with digits using the passed in amount of 0 padding.
/// </summary>
/// <param name="result">The ember whose name will be set</param>
/// <param name="os">The ostringstream which will be used to format</param>
/// <param name="padding">The amount of padding to use</param>
template <typename T>
void FormatName(Ember<T>& result, ostringstream& os, streamsize padding)
{
os << std::setw(padding) << result.m_Time;
result.m_Name = os.str();
os.str("");
}
/// <summary>
/// Convert an RGBA 32-bit float buffer to an RGB 8-bit buffer.
/// The two buffers can point to the same memory location if needed.
/// </summary>
/// <param name="rgba">The RGBA 32-bit float buffer</param>
/// <param name="rgb">The RGB 8-bit buffer</param>
/// <param name="width">The width of the image in pixels</param>
/// <param name="height">The height of the image in pixels</param>
static void Rgba32ToRgb8(const v4F* rgba, unsigned char* rgb, size_t width, size_t height)
{
if (rgba != nullptr && rgb != nullptr)
{
for (size_t i = 0, j = 0; i < (width * height); i++)
{
rgb[j++] = static_cast<unsigned char>(Clamp<float>(rgba[i].r * 255.0f, 0.0f, 255.0f));
rgb[j++] = static_cast<unsigned char>(Clamp<float>(rgba[i].g * 255.0f, 0.0f, 255.0f));
rgb[j++] = static_cast<unsigned char>(Clamp<float>(rgba[i].b * 255.0f, 0.0f, 255.0f));
}
}
}
/// <summary>
/// Convert an RGBA 32-bit float buffer to an RGBA 8-bit buffer.
/// The two buffers can point to the same memory location if needed.
/// </summary>
/// <param name="rgba">The RGBA 32-bit float buffer</param>
/// <param name="rgb">The RGBA 8-bit buffer</param>
/// <param name="width">The width of the image in pixels</param>
/// <param name="height">The height of the image in pixels</param>
/// <param name="doAlpha">True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible</param>
static void Rgba32ToRgba8(const v4F* rgba, unsigned char* rgb, size_t width, size_t height, bool doAlpha)
{
if (rgba != nullptr && rgb != nullptr)
{
for (size_t i = 0, j = 0; i < (width * height); i++)
{
rgb[j++] = static_cast<unsigned char>(Clamp<float>(rgba[i].r * 255.0f, 0.0f, 255.0f));
rgb[j++] = static_cast<unsigned char>(Clamp<float>(rgba[i].g * 255.0f, 0.0f, 255.0f));
rgb[j++] = static_cast<unsigned char>(Clamp<float>(rgba[i].b * 255.0f, 0.0f, 255.0f));
rgb[j++] = doAlpha ? static_cast<unsigned char>(Clamp<float>(rgba[i].a * 255.0f, 0.0f, 255.0f)) : 255;
}
}
}
/// <summary>
/// Convert an RGBA 32-bit float buffer to an RGBA 16-bit buffer.
/// The two buffers can point to the same memory location if needed.
/// </summary>
/// <param name="rgba">The RGBA 32-bit float buffer</param>
/// <param name="rgb">The RGBA 16-bit buffer</param>
/// <param name="width">The width of the image in pixels</param>
/// <param name="height">The height of the image in pixels</param>
/// <param name="doAlpha">True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible</param>
static void Rgba32ToRgba16(const v4F* rgba, glm::uint16* rgb, size_t width, size_t height, bool doAlpha)
{
if (rgba != nullptr && rgb != nullptr)
{
for (size_t i = 0, j = 0; i < (width * height); i++)
{
rgb[j++] = static_cast<glm::uint16>(Clamp<float>(rgba[i].r * 65535.0f, 0.0f, 65535.0f));
rgb[j++] = static_cast<glm::uint16>(Clamp<float>(rgba[i].g * 65535.0f, 0.0f, 65535.0f));
rgb[j++] = static_cast<glm::uint16>(Clamp<float>(rgba[i].b * 65535.0f, 0.0f, 65535.0f));
rgb[j++] = doAlpha ? static_cast<glm::uint16>(Clamp<float>(rgba[i].a * 65535.0f, 0.0f, 65535.0f)) : glm::uint16{ 65535 };
}
}
}
/// <summary>
/// Convert an RGBA 32-bit float buffer to an EXR RGBA 16-bit float buffer.
/// The two buffers can point to the same memory location if needed.
/// Note that this squares the values coming in, for some reason EXR expects that.
/// </summary>
/// <param name="rgba">The RGBA 32-bit float buffer</param>
/// <param name="ilmfRgba">The EXR RGBA 16-bit float buffer</param>
/// <param name="width">The width of the image in pixels</param>
/// <param name="height">The height of the image in pixels</param>
/// <param name="doAlpha">True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible</param>
static void Rgba32ToRgbaExr(const v4F* rgba, Rgba* ilmfRgba, size_t width, size_t height, bool doAlpha)
{
if (rgba != nullptr && ilmfRgba != nullptr)
{
for (size_t i = 0; i < (width * height); i++)
{
ilmfRgba[i].r = Clamp<float>(Sqr(rgba[i].r), 0.0f, 1.0f);
ilmfRgba[i].g = Clamp<float>(Sqr(rgba[i].g), 0.0f, 1.0f);
ilmfRgba[i].b = Clamp<float>(Sqr(rgba[i].b), 0.0f, 1.0f);
ilmfRgba[i].a = doAlpha ? Clamp<float>(rgba[i].a * 1.0f, 0.0f, 1.0f) : 1.0f;
}
}
}
/// <summary>
/// Convert an RGBA 32-bit float buffer to an EXR RGBA 32-bit float buffer.
/// The two buffers can point to the same memory location if needed.
/// Note that this squares the values coming in, for some reason EXR expects that.
/// </summary>
/// <param name="rgba">The RGBA 32-bit float buffer</param>
/// <param name="r">The EXR red 32-bit float buffer</param>
/// <param name="g">The EXR green 32-bit float buffer</param>
/// <param name="b">The EXR blue 32-bit float buffer</param>
/// <param name="a">The EXR alpha 32-bit float buffer</param>
/// <param name="width">The width of the image in pixels</param>
/// <param name="height">The height of the image in pixels</param>
/// <param name="doAlpha">True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible</param>
static void Rgba32ToRgba32Exr(const v4F* rgba, float* r, float* g, float* b, float* a, size_t width, size_t height, bool doAlpha)
{
if (rgba != nullptr && r != nullptr && g != nullptr && b != nullptr && a != nullptr)
{
for (size_t i = 0; i < (width * height); i++)
{
r[i] = Clamp<float>(Sqr(rgba[i].r), 0.0f, 1.0f);
g[i] = Clamp<float>(Sqr(rgba[i].g), 0.0f, 1.0f);
b[i] = Clamp<float>(Sqr(rgba[i].b), 0.0f, 1.0f);
a[i] = doAlpha ? Clamp<float>(rgba[i].a * 1.0f, 0.0f, 1.0f) : 1.0f;
}
}
}
/// <summary>
/// Returns a string with all illegal file path characters removed.
/// </summary>
/// <param name="filename">The path to remove illegal characters from</param>
/// <returns>The cleaned full file path and name.</returns>
static string CleanPath(const string& filename)
{
static string illegalChars = "\\/:*?\"<>|";
auto tempfilename = filename;
for (auto& ch : illegalChars)
tempfilename.erase(remove(tempfilename.begin(), tempfilename.end(), ch), tempfilename.end());
return tempfilename;
}
/// <summary>
/// Make a filename for a single render. This is used in EmberRender.
/// </summary>
/// <param name="path">The path portion of where to save the file</param>
/// <param name="out">The full name and path to override everything else</param>
/// <param name="finalName">The name to use when useFinalName is true</param>
/// <param name="prefix">The prefix to prepend to the filename</param>
/// <param name="suffix">True suffix to append to the filename</param>
/// <param name="format">The format extention. This must not contain a period.</param>
/// <param name="padding">The width padding to use, which will be zero filled.</param>
/// <param name="i">The numerical value to use for the filename when useFinalName is false and out is empty</param>
/// <param name="useFinalName">Whether to use the name included in the flame. The i parameter is ignored in this case.</param>
static string MakeSingleFilename(const string& path, const string& out, const string& finalName, const string& prefix, const string& suffix, const string& format, glm::uint padding, size_t i, bool useFinalName)
{
string filename;
if (!out.empty())
{
filename = out;
}
else if (useFinalName)
{
filename = path + prefix + CleanPath(finalName + suffix + "." + format);
}
else
{
ostringstream fnstream;
fnstream << setfill('0') << setprecision(0) << fixed << setw(padding) << i << suffix << "." << format;
filename = path + prefix + CleanPath(fnstream.str());
}
return filename;
}
/// <summary>
/// Make a filename for a frame of an animation render. This is used in EmberAnimate.
/// </summary>
/// <param name="path">The path portion of where to save the file</param>
/// <param name="prefix">The prefix to prepend to the filename</param>
/// <param name="suffix">True suffix to append to the filename</param>
/// <param name="format">The format extention. This must contain a period.</param>
/// <param name="padding">The width padding to use, which will be zero filled.</param>
/// <param name="ftime">The numerical value to use for the filename</param>
static string MakeAnimFilename(const string& path, const string& prefix, const string& suffix, const string& format, glm::uint padding, size_t ftime)
{
ostringstream fnstream;
fnstream << setfill('0') << setprecision(0) << fixed << setw(padding) << ftime << suffix << format;
return path + prefix + CleanPath(fnstream.str());
}
/// <summary>
/// Calculate the number of strips required if the needed amount of memory
/// is greater than the system memory, or greater than what the user wants to allow.
/// </summary>
/// <param name="mem">Amount of memory required</param>
/// <param name="memAvailable">Amount of memory available on the system</param>
/// <param name="useMem">The maximum amount of memory to use. Use max if 0.</param>
/// <returns>The number of strips to use</returns>
static uint CalcStrips(double memRequired, double memAvailable, double useMem) noexcept
{
if (useMem > 0)
memAvailable = useMem;
else
memAvailable *= 0.8;
if (memAvailable >= memRequired)
return 1;
return static_cast<uint>(ceil(memRequired / memAvailable));
}
/// <summary>
/// Given a numerator and a denominator, find the next highest denominator that divides
/// evenly into the numerator.
/// </summary>
/// <param name="numerator">The numerator</param>
/// <param name="denominator">The denominator</param>
/// <returns>The next highest divisor if found, else 1.</returns>
template <typename T>
static T NextHighestEvenDiv(T numerator, T denominator) noexcept
{
T result = 1;
T numDiv2 = numerator / 2;
do
{
denominator++;
if (numerator % denominator == 0)
{
result = denominator;
break;
}
}
while (denominator <= numDiv2);
return result;
}
/// <summary>
/// Given a numerator and a denominator, find the next lowest denominator that divides
/// evenly into the numerator.
/// </summary>
/// <param name="numerator">The numerator</param>
/// <param name="denominator">The denominator</param>
/// <returns>The next lowest divisor if found, else 1.</returns>
template <typename T>
static T NextLowestEvenDiv(T numerator, T denominator) noexcept
{
T result = 1;
T numDiv2 = numerator / 2;
denominator--;
if (denominator > numDiv2)
denominator = numDiv2;
while (denominator >= 1)
{
if (numerator % denominator == 0)
{
result = denominator;
break;
}
denominator--;
}
return result;
}
/// <summary>
/// Wrapper for converting a vector of absolute device indices to a vector
/// of platform,device index pairs.
/// </summary>
/// <param name="selectedDevices">The vector of absolute device indices to convert</param>
/// <returns>The converted vector of platform,device index pairs</returns>
static vector<pair<size_t, size_t>> Devices(const vector<size_t>& selectedDevices)
{
vector<pair<size_t, size_t>> vec;
auto info = OpenCLInfo::Instance();
auto& devices = info->DeviceIndices();
vec.reserve(selectedDevices.size());
for (size_t i = 0; i < selectedDevices.size(); i++)
{
auto index = selectedDevices[i];
if (index < devices.size())
vec.push_back(devices[index]);
}
return vec;
}
/// <summary>
/// Wrapper for creating a renderer of the specified type.
/// </summary>
/// <param name="renderType">Type of renderer to create</param>
/// <param name="devices">The vector of platform/device indices to use</param>
/// <param name="shared">True if shared with OpenGL, else false.</param>
/// <param name="texId">The texture ID of the shared OpenGL texture if shared</param>
/// <param name="errorReport">The error report for holding errors if anything goes wrong</param>
/// <returns>A pointer to the created renderer if successful, else false.</returns>
template <typename T>
static Renderer<T, float>* CreateRenderer(eRendererType renderType, const vector<pair<size_t, size_t>>& devices, bool shared, GLuint texId, EmberReport& errorReport)
{
string s;
unique_ptr<Renderer<T, float>> renderer;
try
{
if (renderType == eRendererType::OPENCL_RENDERER && !devices.empty())
{
s = "OpenCL";
renderer = unique_ptr<Renderer<T, float>>(new RendererCL<T, float>(devices, shared, texId));//Can't use make_unique here.
if (!renderer.get() || !renderer->Ok())
{
if (renderer.get())
errorReport.AddToReport(renderer->ErrorReport());
errorReport.AddToReport("Error initializing OpenCL renderer, using CPU renderer instead.");
renderer = make_unique<Renderer<T, float>>();
}
}
else
{
s = "CPU";
renderer = make_unique<Renderer<T, float>>();
}
}
catch (const std::exception& e)
{
errorReport.AddToReport("Error creating " + s + " renderer: " + e.what() + "\n");
}
catch (...)
{
errorReport.AddToReport("Error creating " + s + " renderer.\n");
}
return renderer.release();
}
/// <summary>
/// Wrapper for creating a vector of renderers of the specified type for each passed in device.
/// If shared is true, only the first renderer will be shared with OpenGL.
/// Although a fallback GPU renderer will be created if a failure occurs, it doesn't really
/// make sense since the concept of devices only applies to OpenCL renderers.
/// </summary>
/// <param name="renderType">Type of renderer to create</param>
/// <param name="devices">The vector of platform/device indices to use</param>
/// <param name="shared">True if shared with OpenGL, else false.</param>
/// <param name="texId">The texture ID of the shared OpenGL texture if shared</param>
/// <param name="errorReport">The error report for holding errors if anything goes wrong</param>
/// <returns>The vector of created renderers if successful, else false.</returns>
template <typename T>
static vector<unique_ptr<Renderer<T, float>>> CreateRenderers(eRendererType renderType, const vector<pair<size_t, size_t>>& devices, bool shared, GLuint texId, EmberReport& errorReport)
{
string s;
vector<unique_ptr<Renderer<T, float>>> v;
try
{
if (renderType == eRendererType::OPENCL_RENDERER && !devices.empty())
{
s = "OpenCL";
v.reserve(devices.size());
for (size_t i = 0; i < devices.size(); i++)
{
vector<pair<size_t, size_t>> tempDevices{ devices[i] };
auto renderer = unique_ptr<Renderer<T, float>>(new RendererCL<T, float>(tempDevices, !i ? shared : false, texId));//Can't use make_unique here.
if (!renderer.get() || !renderer->Ok())
{
ostringstream os;
if (renderer.get())
errorReport.AddToReport(renderer->ErrorReport());
os << "Error initializing OpenCL renderer for platform " << devices[i].first << ", " << devices[i].second;
errorReport.AddToReport(os.str());
}
else
v.push_back(std::move(renderer));
}
}
else
{
s = "CPU";
v.push_back(std::move(unique_ptr<Renderer<T, float>>(EmberCommon::CreateRenderer<T>(eRendererType::CPU_RENDERER, devices, shared, texId, errorReport))));
}
}
catch (const std::exception& e)
{
errorReport.AddToReport("Error creating " + s + " renderer: " + e.what() + "\n");
}
catch (...)
{
errorReport.AddToReport("Error creating " + s + " renderer.\n");
}
if (v.empty() && s != "CPU")//OpenCL creation failed and CPU creation has not been attempted, so just create one CPU renderer and place it in the vector.
{
try
{
s = "CPU";
v.push_back(std::move(unique_ptr<Renderer<T, float>>(EmberCommon::CreateRenderer<T>(eRendererType::CPU_RENDERER, devices, shared, texId, errorReport))));
}
catch (const std::exception& e)
{
errorReport.AddToReport("Error creating fallback" + s + " renderer: " + e.what() + "\n");
}
catch (...)
{
errorReport.AddToReport("Error creating fallback " + s + " renderer.\n");
}
}
return v;
}
/// <summary>
/// Perform a render which allows for using strips or not.
/// If an error occurs while rendering any strip, the rendering process stops.
/// Note this must be called after SetEmber(ember, eProcessAction::FULL_RENDER, true) is called on the renderer.
/// The last parameter to SetEmber must be true to compute the camera, because is caches certain values that need to be
/// retained between strips.
/// </summary>
/// <param name="renderer">The renderer to use</param>
/// <param name="ember">The ember to render</param>
/// <param name="finalImage">The vector to place the final output in</param>
/// <param name="time">The time position to use, only valid for animation</param>
/// <param name="strips">The number of strips to use. This must be validated before calling this function.</param>
/// <param name="yAxisUp">True to flip the Y axis, else false.</param>
/// <param name="perStripStart">Function called before the start of the rendering of each strip</param>
/// <param name="perStripFinish">Function called after the end of the rendering of each strip</param>
/// <param name="perStripError">Function called if there is an error rendering a strip</param>
/// <param name="allStripsFinished">Function called when all strips successfully finish rendering</param>
/// <returns>True if all rendering was successful, else false.</returns>
template <typename T>
static bool StripsRender(RendererBase* renderer, Ember<T>& ember, vector<v4F>& finalImage, double time, size_t strips, bool yAxisUp,
std::function<void(size_t strip)> perStripStart,
std::function<void(size_t strip)> perStripFinish,
std::function<void(size_t strip)> perStripError,
std::function<void(Ember<T>& finalEmber)> allStripsFinished)
{
bool success = false;
size_t origHeight, realHeight = ember.m_FinalRasH;
T centerY = ember.m_CenterY;
T floatStripH = T(ember.m_FinalRasH) / T(strips);
T zoomScale = pow(T(2), ember.m_Zoom);
T centerBase = centerY - ((strips - 1) * floatStripH) / (2 * ember.m_PixelsPerUnit * zoomScale);
vector<QTIsaac<ISAAC_SIZE, ISAAC_INT>> randVec;
ember.m_Quality *= strips;
ember.m_FinalRasH = size_t(ceil(floatStripH));
Memset(finalImage);
if (strips > 1)
randVec = renderer->RandVec();
for (size_t strip = 0; strip < strips; strip++)
{
size_t stripOffset;
if (yAxisUp)
stripOffset = ember.m_FinalRasH * ((strips - strip) - 1) * ember.m_FinalRasW;
else
stripOffset = ember.m_FinalRasH * strip * ember.m_FinalRasW;
ember.m_CenterY = centerBase + ember.m_FinalRasH * T(strip) / (ember.m_PixelsPerUnit * zoomScale);
if ((ember.m_FinalRasH * (strip + 1)) > realHeight)
{
origHeight = ember.m_FinalRasH;
ember.m_FinalRasH = realHeight - origHeight * strip;
ember.m_CenterY -= (origHeight - ember.m_FinalRasH) * T(0.5) / (ember.m_PixelsPerUnit * zoomScale);
}
perStripStart(strip);
if (strips > 1)
{
renderer->RandVec(randVec);//Use the same vector of ISAAC rands for each strip.
renderer->SetEmber(ember);//Set one final time after modifications for strips.
}
if ((renderer->Run(finalImage, time, 0, false, stripOffset) == eRenderStatus::RENDER_OK) && !renderer->Aborted() && !finalImage.empty())
{
perStripFinish(strip);
}
else
{
perStripError(strip);
break;
}
if (strip == strips - 1)
success = true;
}
//Restore the ember values to their original values.
ember.m_Quality /= strips;
ember.m_FinalRasH = realHeight;
ember.m_CenterY = centerY;
if (strips > 1)
renderer->SetEmber(ember);//Further processing will require the dimensions to match the original ember, so re-assign.
if (success)
allStripsFinished(ember);
return success;
}
/// <summary>
/// Verify that the specified number of strips is valid for the given height.
/// The passed in error functions will be called if the number of strips needs
/// to be modified for the given height.
/// </summary>
/// <param name="height">The height in pixels of the image to be rendered</param>
/// <param name="strips">The number of strips to split the render into</param>
/// <param name="stripError1">Function called if the number of strips exceeds the height of the image</param>
/// <param name="stripError2">Function called if the number of strips does not divide evently into the height of the image</param>
/// <param name="stripError3">Called if for any reason the number of strips used will differ from the value passed in</param>
/// <returns>The actual number of strips that will be used</returns>
static size_t VerifyStrips(size_t height, size_t strips,
std::function<void(const string& s)> stripError1,
std::function<void(const string& s)> stripError2,
std::function<void(const string& s)> stripError3)
{
ostringstream os;
if (strips > height)
{
os << "Cannot have more strips than rows: " << strips << " > " << height << ". Setting strips = rows.";
stripError1(os.str()); os.str("");
strips = height;
}
if (height % strips != 0)
{
os << "A strips value of " << strips << " does not divide evenly into a height of " << height << ".";
stripError2(os.str()); os.str("");
strips = NextHighestEvenDiv(height, strips);
if (strips == 1)//No higher divisor, check for a lower one.
strips = NextLowestEvenDiv(height, strips);
os << "Setting strips to " << strips << ".";
stripError3(os.str()); os.str("");
}
return strips;
}
/// <summary>
/// Search the variation's OpenCL string to determine whether it contains any of the search strings in stringVec.
/// This is useful for finding variations with certain characteristics since it's not possible
/// to query the CPU C++ code at runtime.
/// </summary>
/// <param name="var">The variation whose OpenCL string will be searched</param>
/// <param name="stringVec">The vector of strings to search for</param>
/// <param name="matchAll">True to find all variations which match any strings, false to break after the first match is found.</param>
/// <returns>True if there was at least one match, else false.</returns>
template <typename T>
bool SearchVar(const Variation<T>* var, const vector<string>& stringVec, bool matchAll)
{
bool ret = false;
size_t i;
auto cl = var->OpenCLFuncsString() + "\n" + var->OpenCLString();
if (matchAll)
{
for (i = 0; i < stringVec.size(); i++)
if (cl.find(stringVec[i]) == std::string::npos)
break;
ret = (i == stringVec.size());
}
else
{
for (i = 0; i < stringVec.size(); i++)
{
if (cl.find(stringVec[i]) != std::string::npos)
{
ret = true;
break;
}
}
}
return ret;
}
template <typename T>
bool SearchVarWWO(const Variation<T>* var, const vector<string>& withVec, const vector<string>& withoutVec)
{
bool ret = false;
size_t i, j, k;
bool onegood = false;
auto cl = var->OpenCLFuncsString() + "\n" + var->OpenCLString();
vector<string> clsplits = Split(cl, '\n');
for (i = 0; i < clsplits.size(); i++)
{
for (j = 0; j < withVec.size(); j++)
{
if (clsplits[i].find(withVec[j]) != std::string::npos)
{
for (k = 0; k < withoutVec.size(); k++)
{
if (clsplits[i].find(withoutVec[k]) != std::string::npos)
{
return false;
}
}
onegood = true;
}
}
}
return onegood;
//return i == clsplits.size() && j == withVec.size() && k == withoutVec.size();
}
/// <summary>
/// Find all variations whose OpenCL string contains any of the search strings in stringVec.
/// This is useful for finding variations with certain characteristics since it's not possible
/// to query the CPU C++ code at runtime.
/// </summary>
/// <param name="stringVec">The vector of variation pointers to search</param>
/// <param name="stringVec">The vector of strings to search for</param>
/// <param name="findAll">True to find all variations which match any strings, false to break after the first match is found.</param>
/// <param name="matchAll">True to find all variations which match all strings, false to stop searching a variation after the first match succeeds.</param>
/// <returns>A vector of pointers to variations whose OpenCL string matched at least one string in stringVec</returns>
template <typename T>
static vector<const Variation<T>*> FindVarsWith(const vector<const Variation<T>*>& vars, const vector<string>& stringVec, bool findAll = true, bool matchAll = false)
{
vector<const Variation<T>*> vec;
auto vl = VariationList<T>::Instance();
for (auto& v : vars)
{
if (SearchVar<T>(v, stringVec, matchAll))
{
vec.push_back(v);
if (!findAll)
break;
}
}
return vec;
}
template <typename T>
static vector<const Variation<T>*> FindVarsWithWithout(const vector<const Variation<T>*>& vars, const vector<string>& withVec, const vector<string>& withoutVec)
{
vector<const Variation<T>*> vec;
auto vl = VariationList<T>::Instance();
for (auto& v : vars)
{
if (SearchVarWWO<T>(v, withVec, withoutVec))
{
vec.push_back(v);
}
}
return vec;
}
/// <summary>
/// Find all variations whose OpenCL string does not contain any of the search strings in stringVec.
/// This is useful for finding variations without certain characteristics since it's not possible
/// to query the CPU C++ code at runtime.
/// </summary>
/// <param name="vars">The vector of variation pointers to search</param>
/// <param name="stringVec">The vector of strings to search for</param>
/// <param name="findAll">True to find all variations which don't match any strings, false to break after the first non-match is found.</param>
/// <returns>A vector of pointers to variations whose OpenCL string did not match any string in stringVec</returns>
template <typename T>
static vector<const Variation<T>*> FindVarsWithout(const vector<const Variation<T>*>& vars, const vector<string>& stringVec, bool findAll = true)
{
vector<const Variation<T>*> vec;
auto vl = VariationList<T>::Instance();
for (auto& v : vars)
{
if (!SearchVar<T>(v, stringVec, false))
{
vec.push_back(v);
if (!findAll)
break;
}
}
return vec;
}
/// <summary>
/// Check whether a file exists, and optionally if it's not empty.
/// </summary>
/// <param name="filename">The full path and file name to check for</param>
/// <param name="notempty">Whether to only return true if the file is found and is not empty. Default: true.</param>
/// <returns>True if the file was found and optionally not empty, else false.</returns>
static bool FileExists(const string& filename, bool notempty = true)
{
try
{
ifstream ifs;
ifs.exceptions(ifstream::failbit);
ifs.open(filename, ios::binary | ios::ate);
if (notempty)
return ifs.tellg() > 0;//Ensure it exists and wasn't empty.
else
return true;
}
catch (...)
{
}
return false;
}
class ThreadedWriter
{
public:
ThreadedWriter(int _size)
{
m_Size = _size;
m_WriteThreads.resize(m_Size);
m_FinalImages.resize(m_Size);
}
size_t Current()
{
return m_CurrentIndex % m_Size;
}
size_t Increment()
{
auto ret = ++m_CurrentIndex % m_Size;
Join(m_WriteThreads[ret]);
return ret;
}
vector<v4F>* GetImage(size_t i)
{
return &m_FinalImages[i];
}
void SetThread(size_t i, std::thread& th)
{
Join(m_WriteThreads[i]);
m_WriteThreads[i] = std::move(th);
}
void JoinAll()
{
Join(m_WriteThreads);
}
private:
size_t m_Size = 0;
size_t m_CurrentIndex = 0;
std::vector<std::thread> m_WriteThreads;
std::vector<vector<v4F>> m_FinalImages;
};
}
/// <summary>
/// Simple macro to print a string if the --verbose options has been specified.
/// </summary>
#define VerbosePrint(s) if (opt.Verbose()) cout << s << "\n"