fractorium/Source/EmberCL/EmberCLStructs.h
Person c3078f018a --User changes
-Update various tooltips.
 -Increase precision of affine and xaos spinners.
 -Increase precision of fields written in Xml files to 8.

--Bug fixes
 -When rendering on the CPU, if the number of threads didn't divide evenly into the number of rows, it would leave a blank spot on the last few rows.
 -Fix numerous parsing bugs when reading .chaos files.
 -Added compatibility fixes and/or optimizations to the following variations: asteria, bcircle, bcollide, bipolar, blob2, btransform, cell, circlecrop, circlecrop2, collideoscope, cpow2, cropn, cross, curl, depth_ngon2, depth_sine2, edisc, eRotate, escher, fan2, hex_rand, hypershift, hypershift2, hypertile1, julia, julian, julian2, juliaq, juliascope, lazyjess, log, loonie2, murl, murl2, npolar, oscilloscope2, perspective, phoenix_julia, sphericaln, squish, starblur, starblur2, truchet, truchet_glyph, waffle, wavesn.
2023-11-29 15:47:31 -07:00

406 lines
13 KiB
C++

#pragma once
#include "EmberCLPch.h"
/// <summary>
/// Various data structures defined for the CPU and OpenCL.
/// These are stripped down versions of THE classes in Ember, for use with OpenCL.
/// Their sole purpose is to pass values from the host to the device.
/// They retain most of the member variables, but do not contain the functions.
/// Visual Studio defaults to alighment of 16, but it's made explicit in case another compiler is used.
/// This must match the alignment specified in the kernel.
/// </summary>
namespace EmberCLns
{
/// <summary>
/// Various constants needed for rendering.
/// </summary>
static string ConstantDefinesString(bool doublePrecision)
{
ostringstream os;
os << "#if defined(cl_amd_fp64)\n"//AMD extension available?
" #pragma OPENCL EXTENSION cl_amd_fp64 : enable\n"
"#endif\n"
"#if defined(cl_khr_fp64)\n"//Khronos extension available?
" #pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"#endif\n"
"#pragma OPENCL EXTENSION cl_khr_int64_base_atomics : enable\n";//Only supported on nVidia.
if (doublePrecision)
{
os <<
"typedef long intPrec;\n"
"typedef uint atomi;\n"//Same size as real_bucket_t, always 4 bytes.
"typedef double real_t;\n"
"typedef float real_bucket_t;\n"//Assume buckets are always float, even though iter calcs are in double.
"typedef double2 real2;\n"
"typedef double3 real3;\n"
"typedef double4 real4;\n"
"typedef float4 real4_bucket;\n"//And here too.
"#define EPS (DBL_EPSILON)\n"
"#define TLOW (DBL_MIN)\n"
"#define TMAX (DBL_MAX)\n"
;
}
else
{
os << "typedef int intPrec;\n"
"typedef uint atomi;\n"
"typedef float real_t;\n"
"typedef float real_bucket_t;\n"
"typedef float2 real2;\n"
"typedef float3 real3;\n"
"typedef float4 real4;\n"
"typedef float4 real4_bucket;\n"
"#define EPS (FLT_EPSILON)\n"
"#define TLOW (FLT_MIN)\n"
"#define TMAX (FLT_MAX)\n"
;
}
os <<
"typedef long int int64;\n"
"typedef unsigned long int uint64;\n"
"\n"
"#define EPS6 ((1e-6))\n"
"\n"
"//The number of threads per block used in the iteration function. Don't change\n"
"//it lightly; the block size is hard coded to be exactly 32 x 8.\n"
"#define NTHREADS 256u\n"
"#define THREADS_PER_WARP 32u\n"
"#define NWARPS (NTHREADS / THREADS_PER_WARP)\n"
"#define DE_THRESH 100u\n"
"#define BadVal(x) (isnan(x))\n"
"#define SQR(x) ((x) * (x))\n"
"#define CUBE(x) ((x) * (x) * (x))\n"
"#define MPI ((real_t)M_PI)\n"
"#define MPI2 ((real_t)M_PI_2)\n"
"#define MPI3 ((real_t)(1.0471975511965977461542144610932))\n"
"#define MPI4 ((real_t)M_PI_4)\n"
"#define MPI6 ((real_t)(0.52359877559829887307710723054658))\n"
"#define M1PI ((real_t)M_1_PI)\n"
"#define M2PI ((real_t)M_2_PI)\n"
"#define M_2PI (MPI * 2)\n"
"#define M_3PI (MPI * 3)\n"
"#define M_SQRT3 ((real_t)(1.7320508075688772935274463415059))\n"
"#define M_SQRT3_2 ((real_t)(0.86602540378443864676372317075294))\n"
"#define M_SQRT3_3 ((real_t)(0.57735026918962576450914878050196))\n"
"#define M_SQRT5 ((real_t)(2.2360679774997896964091736687313))\n"
"#define M_PHI ((real_t)(1.61803398874989484820458683436563))\n"
"#define M_1_2PI ((real_t)(0.15915494309189533576888376337251))\n"
"#define DEG_2_RAD (MPI / 180)\n"
"#define CURVES_LENGTH_M1 ((real_bucket_t)" << CURVES_LENGTH_M1 << ")\n" <<
"#define ONE_OVER_CURVES_LENGTH_M1 ((real_bucket_t)" << ONE_OVER_CURVES_LENGTH_M1 << ")\n" <<
"\n"
"//Index in each dimension of a thread within a block.\n"
"#define THREAD_ID_X (get_local_id(0))\n"
"#define THREAD_ID_Y (get_local_id(1))\n"
"#define THREAD_ID_Z (get_local_id(2))\n"
"\n"
"//Index in each dimension of a block within a grid.\n"
"#define BLOCK_ID_X (get_group_id(0))\n"
"#define BLOCK_ID_Y (get_group_id(1))\n"
"#define BLOCK_ID_Z (get_group_id(2))\n"
"\n"
"//Absolute index in each dimension of a thread within a grid.\n"
"#define GLOBAL_ID_X (get_global_id(0))\n"
"#define GLOBAL_ID_Y (get_global_id(1))\n"
"#define GLOBAL_ID_Z (get_global_id(2))\n"
"\n"
"//Dimensions of a block.\n"
"#define BLOCK_SIZE_X (get_local_size(0))\n"
"#define BLOCK_SIZE_Y (get_local_size(1))\n"
"#define BLOCK_SIZE_Z (get_local_size(2))\n"
"\n"
"//Dimensions of a grid, in terms of blocks.\n"
"#define GRID_SIZE_X (get_num_groups(0))\n"
"#define GRID_SIZE_Y (get_num_groups(1))\n"
"#define GRID_SIZE_Z (get_num_groups(2))\n"
"\n"
"//Dimensions of a grid, in terms of threads.\n"
"#define GLOBAL_SIZE_X (get_global_size(0))\n"
"#define GLOBAL_SIZE_Y (get_global_size(1))\n"
"#define GLOBAL_SIZE_Z (get_global_size(2))\n"
"\n"
"#define INDEX_IN_BLOCK_2D (THREAD_ID_Y * BLOCK_SIZE_X + THREAD_ID_X)\n"
"#define INDEX_IN_BLOCK_3D ((BLOCK_SIZE_X * BLOCK_SIZE_Y * THREAD_ID_Z) + INDEX_IN_BLOCK_2D)\n"
"\n"
"#define INDEX_IN_GRID_2D (GLOBAL_ID_Y * GLOBAL_SIZE_X + GLOBAL_ID_X)\n"
"#define INDEX_IN_GRID_3D ((GLOBAL_SIZE_X * GLOBAL_SIZE_Y * GLOBAL_ID_Z) + INDEX_IN_GRID_2D)\n"
"\n"
"#define BLOCK_START_INDEX_IN_GRID_2D ((BLOCK_ID_Y * GRID_SIZE_X * BLOCK_SIZE_Y * BLOCK_SIZE_X) + (BLOCK_ID_X * BLOCK_SIZE_X * BLOCK_SIZE_Y))\n"
"\n";
return os.str();
}
/// <summary>
/// A point structure on the host that maps to the one used on the device to iterate in OpenCL.
/// It might seem better to use vec4, however 2D palettes and even 3D coordinates may eventually
/// be supported, which will make it more than 4 members.
/// </summary>
template <typename T>
struct ALIGN PointCL
{
T m_X;
T m_Y;
T m_Z;
T m_ColorX;
uint m_LastXfUsed;
};
/// <summary>
/// The point structure used to iterate in OpenCL.
/// It might seem better to use float4, however 2D palettes and even 3D coordinates may eventually
/// be supported, which will make it more than 4 members.
/// </summary>
static constexpr char PointCLStructString[] =
"typedef struct __attribute__ " ALIGN_CL " _Point\n"
"{\n"
" real_t m_X;\n"
" real_t m_Y;\n"
" real_t m_Z;\n"
" real_t m_ColorX;\n"
" uint m_LastXfUsed;\n"
"} Point;\n"
"\n";
/// <summary>
/// A structure on the host used to hold all of the needed information for an xform used on the device to iterate in OpenCL.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
struct ALIGN XformCL
{
T m_A, m_B, m_C, m_D, m_E, m_F;//24 (48)
T m_PostA, m_PostB, m_PostC, m_PostD, m_PostE, m_PostF;//48 (96)
T m_DirectColor;//52 (104)
T m_ColorSpeedCache;//56 (112)
T m_OneMinusColorCache;//60 (120)
T m_Opacity;//64 (128)
};
/// <summary>
/// The xform structure used to iterate in OpenCL.
/// </summary>
static constexpr char XformCLStructString[] =
"typedef struct __attribute__ " ALIGN_CL " _XformCL\n"
"{\n"
" real_t m_A, m_B, m_C, m_D, m_E, m_F;\n"
" real_t m_PostA, m_PostB, m_PostC, m_PostD, m_PostE, m_PostF;\n"
" real_t m_DirectColor;\n"
" real_t m_ColorSpeedCache;\n"
" real_t m_OneMinusColorCache;\n"
" real_t m_Opacity;\n"
"} XformCL;\n"
"\n";
/// <summary>
/// A structure on the host used to hold all of the needed information for an ember used on the device to iterate in OpenCL.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
struct ALIGN EmberCL
{
T m_RandPointRange;
T m_CamZPos;
T m_CamPerspective;
T m_CamYaw;
T m_CamPitch;
T m_BlurCurve;
T m_CamDepthBlur;
T m_BlurCoef;
m3T m_CamMat;
T m_CenterX, m_CenterY;
T m_RotA, m_RotB, m_RotD, m_RotE;
T m_Psm1;
T m_Psm2;
};
/// <summary>
/// The ember structure used to iterate in OpenCL.
/// </summary>
static constexpr char EmberCLStructString[] =
"typedef struct __attribute__ " ALIGN_CL " _EmberCL\n"
"{\n"
" real_t m_RandPointRange;\n"
" real_t m_CamZPos;\n"
" real_t m_CamPerspective;\n"
" real_t m_CamYaw;\n"
" real_t m_CamPitch;\n"
" real_t m_BlurCurve;\n"
" real_t m_CamDepthBlur;\n"
" real_t m_BlurCoef;\n"
" real_t m_C00;\n"
" real_t m_C01;\n"
" real_t m_C02;\n"
" real_t m_C10;\n"
" real_t m_C11;\n"
" real_t m_C12;\n"
" real_t m_C20;\n"
" real_t m_C21;\n"
" real_t m_C22;\n"
" real_t m_CenterX, m_CenterY;\n"
" real_t m_RotA, m_RotB, m_RotD, m_RotE;\n"
" real_t m_Psm1;\n"
" real_t m_Psm2;\n"
"} EmberCL;\n"
"\n";
/// <summary>
/// A structure on the host used to hold all of the needed information for cartesian to raster mapping used on the device to iterate in OpenCL.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
struct ALIGN CarToRasCL
{
T m_PixPerImageUnitW, m_RasLlX;
uint m_RasWidth;
T m_PixPerImageUnitH, m_RasLlY;
T m_CarLlX, m_CarUrX, m_CarUrY, m_CarLlY;
T m_CarHalfX, m_CarHalfY, m_CarCenterX, m_CarCenterY;
};
/// <summary>
/// The cartesian to raster structure used to iterate in OpenCL.
/// </summary>
static constexpr char CarToRasCLStructString[] =
"typedef struct __attribute__ " ALIGN_CL " _CarToRasCL\n"
"{\n"
" real_t m_PixPerImageUnitW, m_RasLlX;\n"
" uint m_RasWidth;\n"
" real_t m_PixPerImageUnitH, m_RasLlY;\n"
" real_t m_CarLlX, m_CarUrX, m_CarUrY, m_CarLlY;\n"
" real_t m_CarHalfX, m_CarHalfY, m_CarCenterX, m_CarCenterY;\n"
"} CarToRasCL;\n"
"\n";
/// <summary>
/// A structure on the host used to hold all of the needed information for density filtering used on the device to iterate in OpenCL.
/// Note that the actual filter buffer is held elsewhere.
/// Template argument expected to be float or double.
/// </summary>
template <typename T>
struct ALIGN DensityFilterCL
{
T m_Curve;
T m_K1;
T m_K2;
uint m_Supersample;
uint m_SuperRasW;
uint m_SuperRasH;
uint m_KernelSize;
uint m_MaxFilterIndex;
uint m_MaxFilteredCounts;
uint m_FilterWidth;
};
/// <summary>
/// The density filtering structure used to iterate in OpenCL.
/// Note that the actual filter buffer is held elsewhere.
/// </summary>
static constexpr char DensityFilterCLStructString[] =
"typedef struct __attribute__ " ALIGN_CL " _DensityFilterCL\n"
"{\n"
" real_bucket_t m_Curve;\n"
" real_bucket_t m_K1;\n"
" real_bucket_t m_K2;\n"
" uint m_Supersample;\n"
" uint m_SuperRasW;\n"
" uint m_SuperRasH;\n"
" uint m_KernelSize;\n"
" uint m_MaxFilterIndex;\n"
" uint m_MaxFilteredCounts;\n"
" uint m_FilterWidth;\n"
"} DensityFilterCL;\n"
"\n";
/// <summary>
/// A structure on the host used to hold all of the needed information for spatial filtering used on the device to iterate in OpenCL.
/// Note that the actual filter buffer is held elsewhere.
/// </summary>
template <typename T>
struct ALIGN SpatialFilterCL
{
uint m_SuperRasW = 0;
uint m_SuperRasH = 0;
uint m_FinalRasW = 0;
uint m_FinalRasH = 0;
uint m_Supersample = 0;
uint m_FilterWidth = 0;
uint m_DensityFilterOffset = 0;
uint m_YAxisUp = 0;
T m_Vibrancy = 0;
T m_HighlightPower = 0;
T m_Gamma = 0;
T m_LinRange = 0;
Color<T> m_Background;
};
/// <summary>
/// The spatial filtering structure used to iterate in OpenCL.
/// Note that the actual filter buffer is held elsewhere.
/// </summary>
static constexpr char SpatialFilterCLStructString[] =
"typedef struct __attribute__ ((aligned (16))) _SpatialFilterCL\n"
"{\n"
" uint m_SuperRasW;\n"
" uint m_SuperRasH;\n"
" uint m_FinalRasW;\n"
" uint m_FinalRasH;\n"
" uint m_Supersample;\n"
" uint m_FilterWidth;\n"
" uint m_DensityFilterOffset;\n"
" uint m_YAxisUp;\n"
" real_bucket_t m_Vibrancy;\n"
" real_bucket_t m_HighlightPower;\n"
" real_bucket_t m_Gamma;\n"
" real_bucket_t m_LinRange;\n"
" real_bucket_t m_Background[4];\n"//For some reason, using float4/double4 here does not align no matter what. So just use an array of 4.
"} SpatialFilterCL;\n"
"\n";
/// <summary>
/// EmberCL makes extensive use of the build in vector types, however accessing
/// their members as a buffer is not natively supported.
/// Declaring them in a union with a buffer resolves this problem.
/// </summary>
static constexpr char UnionCLStructString[] =
"typedef union\n"
"{\n"
" uchar3 m_Uchar3;\n"
" uchar m_Uchars[3];\n"
"} uchar3uchars;\n"
"\n"
"typedef union\n"
"{\n"
" uchar4 m_Uchar4;\n"
" uchar m_Uchars[4];\n"
"} uchar4uchars;\n"
"\n"
"typedef union\n"
"{\n"
" uint4 m_Uint4;\n"
" uint m_Uints[4];\n"
"} uint4uints;\n"
"\n"
"typedef union\n"//Use in places where float is required.
"{\n"
" float4 m_Float4;\n"
" float m_Floats[4];\n"
"} float4floats;\n"
"\n"
"typedef union\n"//Use in places where float or double can be used depending on the template type.
"{\n"
" real4 m_Real4;\n"
" real_t m_Reals[4];\n"
"} real4reals;\n"
"\n"
"typedef union\n"//Used to match the bucket template type.
"{\n"
" real4_bucket m_Real4;\n"
" real_bucket_t m_Reals[4];\n"
"} real4reals_bucket;\n"
"\n";
}